1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2 /*
3 Written 1996-1999 by Donald Becker.
4
5 This software may be used and distributed according to the terms
6 of the GNU General Public License, incorporated herein by reference.
7
8 This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9 Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10 and the EtherLink XL 3c900 and 3c905 cards.
11
12 Problem reports and questions should be directed to
13 vortex@scyld.com
14
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
19
20 */
21
22 /*
23 * FIXME: This driver _could_ support MTU changing, but doesn't. See Don's hamachi.c implementation
24 * as well as other drivers
25 *
26 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
27 * due to dead code elimination. There will be some performance benefits from this due to
28 * elimination of all the tests and reduced cache footprint.
29 */
30
31
32 #define DRV_NAME "3c59x"
33
34
35
36 /* A few values that may be tweaked. */
37 /* Keep the ring sizes a power of two for efficiency. */
38 #define TX_RING_SIZE 16
39 #define RX_RING_SIZE 32
40 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
41
42 /* "Knobs" that adjust features and parameters. */
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44 Setting to > 1512 effectively disables this feature. */
45 #ifndef __arm__
46 static int rx_copybreak = 200;
47 #else
48 /* ARM systems perform better by disregarding the bus-master
49 transfer capability of these cards. -- rmk */
50 static int rx_copybreak = 1513;
51 #endif
52 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
53 static const int mtu = 1500;
54 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
55 static int max_interrupt_work = 32;
56 /* Tx timeout interval (millisecs) */
57 static int watchdog = 5000;
58
59 /* Allow aggregation of Tx interrupts. Saves CPU load at the cost
60 * of possible Tx stalls if the system is blocking interrupts
61 * somewhere else. Undefine this to disable.
62 */
63 #define tx_interrupt_mitigation 1
64
65 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
66 #define vortex_debug debug
67 #ifdef VORTEX_DEBUG
68 static int vortex_debug = VORTEX_DEBUG;
69 #else
70 static int vortex_debug = 1;
71 #endif
72
73 #include <linux/module.h>
74 #include <linux/kernel.h>
75 #include <linux/string.h>
76 #include <linux/timer.h>
77 #include <linux/errno.h>
78 #include <linux/in.h>
79 #include <linux/ioport.h>
80 #include <linux/interrupt.h>
81 #include <linux/pci.h>
82 #include <linux/mii.h>
83 #include <linux/init.h>
84 #include <linux/netdevice.h>
85 #include <linux/etherdevice.h>
86 #include <linux/skbuff.h>
87 #include <linux/ethtool.h>
88 #include <linux/highmem.h>
89 #include <linux/eisa.h>
90 #include <linux/bitops.h>
91 #include <linux/jiffies.h>
92 #include <linux/gfp.h>
93 #include <asm/irq.h> /* For nr_irqs only. */
94 #include <asm/io.h>
95 #include <linux/uaccess.h>
96
97 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
98 This is only in the support-all-kernels source code. */
99
100 #define RUN_AT(x) (jiffies + (x))
101
102 #include <linux/delay.h>
103
104
105 static const char version[] =
106 DRV_NAME ": Donald Becker and others.\n";
107
108 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
109 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
110 MODULE_LICENSE("GPL");
111
112
113 /* Operational parameter that usually are not changed. */
114
115 /* The Vortex size is twice that of the original EtherLinkIII series: the
116 runtime register window, window 1, is now always mapped in.
117 The Boomerang size is twice as large as the Vortex -- it has additional
118 bus master control registers. */
119 #define VORTEX_TOTAL_SIZE 0x20
120 #define BOOMERANG_TOTAL_SIZE 0x40
121
122 /* Set iff a MII transceiver on any interface requires mdio preamble.
123 This only set with the original DP83840 on older 3c905 boards, so the extra
124 code size of a per-interface flag is not worthwhile. */
125 static char mii_preamble_required;
126
127 #define PFX DRV_NAME ": "
128
129
130
131 /*
132 Theory of Operation
133
134 I. Board Compatibility
135
136 This device driver is designed for the 3Com FastEtherLink and FastEtherLink
137 XL, 3Com's PCI to 10/100baseT adapters. It also works with the 10Mbs
138 versions of the FastEtherLink cards. The supported product IDs are
139 3c590, 3c592, 3c595, 3c597, 3c900, 3c905
140
141 The related ISA 3c515 is supported with a separate driver, 3c515.c, included
142 with the kernel source or available from
143 cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
144
145 II. Board-specific settings
146
147 PCI bus devices are configured by the system at boot time, so no jumpers
148 need to be set on the board. The system BIOS should be set to assign the
149 PCI INTA signal to an otherwise unused system IRQ line.
150
151 The EEPROM settings for media type and forced-full-duplex are observed.
152 The EEPROM media type should be left at the default "autoselect" unless using
153 10base2 or AUI connections which cannot be reliably detected.
154
155 III. Driver operation
156
157 The 3c59x series use an interface that's very similar to the previous 3c5x9
158 series. The primary interface is two programmed-I/O FIFOs, with an
159 alternate single-contiguous-region bus-master transfer (see next).
160
161 The 3c900 "Boomerang" series uses a full-bus-master interface with separate
162 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
163 DEC Tulip and Intel Speedo3. The first chip version retains a compatible
164 programmed-I/O interface that has been removed in 'B' and subsequent board
165 revisions.
166
167 One extension that is advertised in a very large font is that the adapters
168 are capable of being bus masters. On the Vortex chip this capability was
169 only for a single contiguous region making it far less useful than the full
170 bus master capability. There is a significant performance impact of taking
171 an extra interrupt or polling for the completion of each transfer, as well
172 as difficulty sharing the single transfer engine between the transmit and
173 receive threads. Using DMA transfers is a win only with large blocks or
174 with the flawed versions of the Intel Orion motherboard PCI controller.
175
176 The Boomerang chip's full-bus-master interface is useful, and has the
177 currently-unused advantages over other similar chips that queued transmit
178 packets may be reordered and receive buffer groups are associated with a
179 single frame.
180
181 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
182 Rather than a fixed intermediate receive buffer, this scheme allocates
183 full-sized skbuffs as receive buffers. The value RX_COPYBREAK is used as
184 the copying breakpoint: it is chosen to trade-off the memory wasted by
185 passing the full-sized skbuff to the queue layer for all frames vs. the
186 copying cost of copying a frame to a correctly-sized skbuff.
187
188 IIIC. Synchronization
189 The driver runs as two independent, single-threaded flows of control. One
190 is the send-packet routine, which enforces single-threaded use by the
191 dev->tbusy flag. The other thread is the interrupt handler, which is single
192 threaded by the hardware and other software.
193
194 IV. Notes
195
196 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
197 3c590, 3c595, and 3c900 boards.
198 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
199 the EISA version is called "Demon". According to Terry these names come
200 from rides at the local amusement park.
201
202 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
203 This driver only supports ethernet packets because of the skbuff allocation
204 limit of 4K.
205 */
206
207 /* This table drives the PCI probe routines. It's mostly boilerplate in all
208 of the drivers, and will likely be provided by some future kernel.
209 */
210 enum pci_flags_bit {
211 PCI_USES_MASTER=4,
212 };
213
214 enum { IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
215 EEPROM_8BIT=0x10, /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
216 HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
217 INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
218 EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
219 EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
220
221 enum vortex_chips {
222 CH_3C590 = 0,
223 CH_3C592,
224 CH_3C597,
225 CH_3C595_1,
226 CH_3C595_2,
227
228 CH_3C595_3,
229 CH_3C900_1,
230 CH_3C900_2,
231 CH_3C900_3,
232 CH_3C900_4,
233
234 CH_3C900_5,
235 CH_3C900B_FL,
236 CH_3C905_1,
237 CH_3C905_2,
238 CH_3C905B_TX,
239 CH_3C905B_1,
240
241 CH_3C905B_2,
242 CH_3C905B_FX,
243 CH_3C905C,
244 CH_3C9202,
245 CH_3C980,
246 CH_3C9805,
247
248 CH_3CSOHO100_TX,
249 CH_3C555,
250 CH_3C556,
251 CH_3C556B,
252 CH_3C575,
253
254 CH_3C575_1,
255 CH_3CCFE575,
256 CH_3CCFE575CT,
257 CH_3CCFE656,
258 CH_3CCFEM656,
259
260 CH_3CCFEM656_1,
261 CH_3C450,
262 CH_3C920,
263 CH_3C982A,
264 CH_3C982B,
265
266 CH_905BT4,
267 CH_920B_EMB_WNM,
268 };
269
270
271 /* note: this array directly indexed by above enums, and MUST
272 * be kept in sync with both the enums above, and the PCI device
273 * table below
274 */
275 static struct vortex_chip_info {
276 const char *name;
277 int flags;
278 int drv_flags;
279 int io_size;
280 } vortex_info_tbl[] = {
281 {"3c590 Vortex 10Mbps",
282 PCI_USES_MASTER, IS_VORTEX, 32, },
283 {"3c592 EISA 10Mbps Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
284 PCI_USES_MASTER, IS_VORTEX, 32, },
285 {"3c597 EISA Fast Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
286 PCI_USES_MASTER, IS_VORTEX, 32, },
287 {"3c595 Vortex 100baseTx",
288 PCI_USES_MASTER, IS_VORTEX, 32, },
289 {"3c595 Vortex 100baseT4",
290 PCI_USES_MASTER, IS_VORTEX, 32, },
291
292 {"3c595 Vortex 100base-MII",
293 PCI_USES_MASTER, IS_VORTEX, 32, },
294 {"3c900 Boomerang 10baseT",
295 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
296 {"3c900 Boomerang 10Mbps Combo",
297 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
298 {"3c900 Cyclone 10Mbps TPO", /* AKPM: from Don's 0.99M */
299 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
300 {"3c900 Cyclone 10Mbps Combo",
301 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
302
303 {"3c900 Cyclone 10Mbps TPC", /* AKPM: from Don's 0.99M */
304 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
305 {"3c900B-FL Cyclone 10base-FL",
306 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
307 {"3c905 Boomerang 100baseTx",
308 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
309 {"3c905 Boomerang 100baseT4",
310 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
311 {"3C905B-TX Fast Etherlink XL PCI",
312 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
313 {"3c905B Cyclone 100baseTx",
314 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
315
316 {"3c905B Cyclone 10/100/BNC",
317 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
318 {"3c905B-FX Cyclone 100baseFx",
319 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
320 {"3c905C Tornado",
321 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
322 {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
323 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
324 {"3c980 Cyclone",
325 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
326
327 {"3c980C Python-T",
328 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
329 {"3cSOHO100-TX Hurricane",
330 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
331 {"3c555 Laptop Hurricane",
332 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
333 {"3c556 Laptop Tornado",
334 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
335 HAS_HWCKSM, 128, },
336 {"3c556B Laptop Hurricane",
337 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
338 WNO_XCVR_PWR|HAS_HWCKSM, 128, },
339
340 {"3c575 [Megahertz] 10/100 LAN CardBus",
341 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
342 {"3c575 Boomerang CardBus",
343 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
344 {"3CCFE575BT Cyclone CardBus",
345 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
346 INVERT_LED_PWR|HAS_HWCKSM, 128, },
347 {"3CCFE575CT Tornado CardBus",
348 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
349 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
350 {"3CCFE656 Cyclone CardBus",
351 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
352 INVERT_LED_PWR|HAS_HWCKSM, 128, },
353
354 {"3CCFEM656B Cyclone+Winmodem CardBus",
355 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
356 INVERT_LED_PWR|HAS_HWCKSM, 128, },
357 {"3CXFEM656C Tornado+Winmodem CardBus", /* From pcmcia-cs-3.1.5 */
358 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
359 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
360 {"3c450 HomePNA Tornado", /* AKPM: from Don's 0.99Q */
361 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
362 {"3c920 Tornado",
363 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
364 {"3c982 Hydra Dual Port A",
365 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
366
367 {"3c982 Hydra Dual Port B",
368 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
369 {"3c905B-T4",
370 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
371 {"3c920B-EMB-WNM Tornado",
372 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
373
374 {NULL,}, /* NULL terminated list. */
375 };
376
377
378 static const struct pci_device_id vortex_pci_tbl[] = {
379 { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
380 { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
381 { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
382 { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
383 { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
384
385 { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
386 { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
387 { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
388 { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
389 { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
390
391 { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
392 { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
393 { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
394 { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
395 { 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
396 { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
397
398 { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
399 { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
400 { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
401 { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
402 { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
403 { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
404
405 { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
406 { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
407 { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
408 { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
409 { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
410
411 { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
412 { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
413 { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
414 { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
415 { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
416
417 { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
418 { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
419 { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
420 { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
421 { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
422
423 { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
424 { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
425
426 {0,} /* 0 terminated list. */
427 };
428 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
429
430
431 /* Operational definitions.
432 These are not used by other compilation units and thus are not
433 exported in a ".h" file.
434
435 First the windows. There are eight register windows, with the command
436 and status registers available in each.
437 */
438 #define EL3_CMD 0x0e
439 #define EL3_STATUS 0x0e
440
441 /* The top five bits written to EL3_CMD are a command, the lower
442 11 bits are the parameter, if applicable.
443 Note that 11 parameters bits was fine for ethernet, but the new chip
444 can handle FDDI length frames (~4500 octets) and now parameters count
445 32-bit 'Dwords' rather than octets. */
446
447 enum vortex_cmd {
448 TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
449 RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
450 UpStall = 6<<11, UpUnstall = (6<<11)+1,
451 DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
452 RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
453 FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
454 SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
455 SetTxThreshold = 18<<11, SetTxStart = 19<<11,
456 StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
457 StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
458
459 /* The SetRxFilter command accepts the following classes: */
460 enum RxFilter {
461 RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
462
463 /* Bits in the general status register. */
464 enum vortex_status {
465 IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
466 TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
467 IntReq = 0x0040, StatsFull = 0x0080,
468 DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
469 DMAInProgress = 1<<11, /* DMA controller is still busy.*/
470 CmdInProgress = 1<<12, /* EL3_CMD is still busy.*/
471 };
472
473 /* Register window 1 offsets, the window used in normal operation.
474 On the Vortex this window is always mapped at offsets 0x10-0x1f. */
475 enum Window1 {
476 TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14,
477 RxStatus = 0x18, Timer=0x1A, TxStatus = 0x1B,
478 TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
479 };
480 enum Window0 {
481 Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */
482 Wn0EepromData = 12, /* Window 0: EEPROM results register. */
483 IntrStatus=0x0E, /* Valid in all windows. */
484 };
485 enum Win0_EEPROM_bits {
486 EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
487 EEPROM_EWENB = 0x30, /* Enable erasing/writing for 10 msec. */
488 EEPROM_EWDIS = 0x00, /* Disable EWENB before 10 msec timeout. */
489 };
490 /* EEPROM locations. */
491 enum eeprom_offset {
492 PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
493 EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
494 NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
495 DriverTune=13, Checksum=15};
496
497 enum Window2 { /* Window 2. */
498 Wn2_ResetOptions=12,
499 };
500 enum Window3 { /* Window 3: MAC/config bits. */
501 Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
502 };
503
504 #define BFEXT(value, offset, bitcount) \
505 ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
506
507 #define BFINS(lhs, rhs, offset, bitcount) \
508 (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) | \
509 (((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
510
511 #define RAM_SIZE(v) BFEXT(v, 0, 3)
512 #define RAM_WIDTH(v) BFEXT(v, 3, 1)
513 #define RAM_SPEED(v) BFEXT(v, 4, 2)
514 #define ROM_SIZE(v) BFEXT(v, 6, 2)
515 #define RAM_SPLIT(v) BFEXT(v, 16, 2)
516 #define XCVR(v) BFEXT(v, 20, 4)
517 #define AUTOSELECT(v) BFEXT(v, 24, 1)
518
519 enum Window4 { /* Window 4: Xcvr/media bits. */
520 Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
521 };
522 enum Win4_Media_bits {
523 Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */
524 Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */
525 Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */
526 Media_LnkBeat = 0x0800,
527 };
528 enum Window7 { /* Window 7: Bus Master control. */
529 Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
530 Wn7_MasterStatus = 12,
531 };
532 /* Boomerang bus master control registers. */
533 enum MasterCtrl {
534 PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
535 TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
536 };
537
538 /* The Rx and Tx descriptor lists.
539 Caution Alpha hackers: these types are 32 bits! Note also the 8 byte
540 alignment contraint on tx_ring[] and rx_ring[]. */
541 #define LAST_FRAG 0x80000000 /* Last Addr/Len pair in descriptor. */
542 #define DN_COMPLETE 0x00010000 /* This packet has been downloaded */
543 struct boom_rx_desc {
544 __le32 next; /* Last entry points to 0. */
545 __le32 status;
546 __le32 addr; /* Up to 63 addr/len pairs possible. */
547 __le32 length; /* Set LAST_FRAG to indicate last pair. */
548 };
549 /* Values for the Rx status entry. */
550 enum rx_desc_status {
551 RxDComplete=0x00008000, RxDError=0x4000,
552 /* See boomerang_rx() for actual error bits */
553 IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
554 IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
555 };
556
557 #ifdef MAX_SKB_FRAGS
558 #define DO_ZEROCOPY 1
559 #else
560 #define DO_ZEROCOPY 0
561 #endif
562
563 struct boom_tx_desc {
564 __le32 next; /* Last entry points to 0. */
565 __le32 status; /* bits 0:12 length, others see below. */
566 #if DO_ZEROCOPY
567 struct {
568 __le32 addr;
569 __le32 length;
570 } frag[1+MAX_SKB_FRAGS];
571 #else
572 __le32 addr;
573 __le32 length;
574 #endif
575 };
576
577 /* Values for the Tx status entry. */
578 enum tx_desc_status {
579 CRCDisable=0x2000, TxDComplete=0x8000,
580 AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
581 TxIntrUploaded=0x80000000, /* IRQ when in FIFO, but maybe not sent. */
582 };
583
584 /* Chip features we care about in vp->capabilities, read from the EEPROM. */
585 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
586
587 struct vortex_extra_stats {
588 unsigned long tx_deferred;
589 unsigned long tx_max_collisions;
590 unsigned long tx_multiple_collisions;
591 unsigned long tx_single_collisions;
592 unsigned long rx_bad_ssd;
593 };
594
595 struct vortex_private {
596 /* The Rx and Tx rings should be quad-word-aligned. */
597 struct boom_rx_desc* rx_ring;
598 struct boom_tx_desc* tx_ring;
599 dma_addr_t rx_ring_dma;
600 dma_addr_t tx_ring_dma;
601 /* The addresses of transmit- and receive-in-place skbuffs. */
602 struct sk_buff* rx_skbuff[RX_RING_SIZE];
603 struct sk_buff* tx_skbuff[TX_RING_SIZE];
604 unsigned int cur_rx, cur_tx; /* The next free ring entry */
605 unsigned int dirty_tx; /* The ring entries to be free()ed. */
606 struct vortex_extra_stats xstats; /* NIC-specific extra stats */
607 struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */
608 dma_addr_t tx_skb_dma; /* Allocated DMA address for bus master ctrl DMA. */
609
610 /* PCI configuration space information. */
611 struct device *gendev;
612 void __iomem *ioaddr; /* IO address space */
613 void __iomem *cb_fn_base; /* CardBus function status addr space. */
614
615 /* Some values here only for performance evaluation and path-coverage */
616 int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
617 int card_idx;
618
619 /* The remainder are related to chip state, mostly media selection. */
620 struct timer_list timer; /* Media selection timer. */
621 int options; /* User-settable misc. driver options. */
622 unsigned int media_override:4, /* Passed-in media type. */
623 default_media:4, /* Read from the EEPROM/Wn3_Config. */
624 full_duplex:1, autoselect:1,
625 bus_master:1, /* Vortex can only do a fragment bus-m. */
626 full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang */
627 flow_ctrl:1, /* Use 802.3x flow control (PAUSE only) */
628 partner_flow_ctrl:1, /* Partner supports flow control */
629 has_nway:1,
630 enable_wol:1, /* Wake-on-LAN is enabled */
631 pm_state_valid:1, /* pci_dev->saved_config_space has sane contents */
632 open:1,
633 medialock:1,
634 large_frames:1, /* accept large frames */
635 handling_irq:1; /* private in_irq indicator */
636 /* {get|set}_wol operations are already serialized by rtnl.
637 * no additional locking is required for the enable_wol and acpi_set_WOL()
638 */
639 int drv_flags;
640 u16 status_enable;
641 u16 intr_enable;
642 u16 available_media; /* From Wn3_Options. */
643 u16 capabilities, info1, info2; /* Various, from EEPROM. */
644 u16 advertising; /* NWay media advertisement */
645 unsigned char phys[2]; /* MII device addresses. */
646 u16 deferred; /* Resend these interrupts when we
647 * bale from the ISR */
648 u16 io_size; /* Size of PCI region (for release_region) */
649
650 /* Serialises access to hardware other than MII and variables below.
651 * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */
652 spinlock_t lock;
653
654 spinlock_t mii_lock; /* Serialises access to MII */
655 struct mii_if_info mii; /* MII lib hooks/info */
656 spinlock_t window_lock; /* Serialises access to windowed regs */
657 int window; /* Register window */
658 };
659
window_set(struct vortex_private * vp,int window)660 static void window_set(struct vortex_private *vp, int window)
661 {
662 if (window != vp->window) {
663 iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD);
664 vp->window = window;
665 }
666 }
667
668 #define DEFINE_WINDOW_IO(size) \
669 static u ## size \
670 window_read ## size(struct vortex_private *vp, int window, int addr) \
671 { \
672 unsigned long flags; \
673 u ## size ret; \
674 spin_lock_irqsave(&vp->window_lock, flags); \
675 window_set(vp, window); \
676 ret = ioread ## size(vp->ioaddr + addr); \
677 spin_unlock_irqrestore(&vp->window_lock, flags); \
678 return ret; \
679 } \
680 static void \
681 window_write ## size(struct vortex_private *vp, u ## size value, \
682 int window, int addr) \
683 { \
684 unsigned long flags; \
685 spin_lock_irqsave(&vp->window_lock, flags); \
686 window_set(vp, window); \
687 iowrite ## size(value, vp->ioaddr + addr); \
688 spin_unlock_irqrestore(&vp->window_lock, flags); \
689 }
690 DEFINE_WINDOW_IO(8)
691 DEFINE_WINDOW_IO(16)
692 DEFINE_WINDOW_IO(32)
693
694 #ifdef CONFIG_PCI
695 #define DEVICE_PCI(dev) ((dev_is_pci(dev)) ? to_pci_dev((dev)) : NULL)
696 #else
697 #define DEVICE_PCI(dev) NULL
698 #endif
699
700 #define VORTEX_PCI(vp) \
701 ((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL))
702
703 #ifdef CONFIG_EISA
704 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
705 #else
706 #define DEVICE_EISA(dev) NULL
707 #endif
708
709 #define VORTEX_EISA(vp) \
710 ((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL))
711
712 /* The action to take with a media selection timer tick.
713 Note that we deviate from the 3Com order by checking 10base2 before AUI.
714 */
715 enum xcvr_types {
716 XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
717 XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
718 };
719
720 static const struct media_table {
721 char *name;
722 unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */
723 mask:8, /* The transceiver-present bit in Wn3_Config.*/
724 next:8; /* The media type to try next. */
725 int wait; /* Time before we check media status. */
726 } media_tbl[] = {
727 { "10baseT", Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
728 { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
729 { "undefined", 0, 0x80, XCVR_10baseT, 10000},
730 { "10base2", 0, 0x10, XCVR_AUI, (1*HZ)/10},
731 { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
732 { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14*HZ)/10},
733 { "MII", 0, 0x41, XCVR_10baseT, 3*HZ },
734 { "undefined", 0, 0x01, XCVR_10baseT, 10000},
735 { "Autonegotiate", 0, 0x41, XCVR_10baseT, 3*HZ},
736 { "MII-External", 0, 0x41, XCVR_10baseT, 3*HZ },
737 { "Default", 0, 0xFF, XCVR_10baseT, 10000},
738 };
739
740 static struct {
741 const char str[ETH_GSTRING_LEN];
742 } ethtool_stats_keys[] = {
743 { "tx_deferred" },
744 { "tx_max_collisions" },
745 { "tx_multiple_collisions" },
746 { "tx_single_collisions" },
747 { "rx_bad_ssd" },
748 };
749
750 /* number of ETHTOOL_GSTATS u64's */
751 #define VORTEX_NUM_STATS 5
752
753 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
754 int chip_idx, int card_idx);
755 static int vortex_up(struct net_device *dev);
756 static void vortex_down(struct net_device *dev, int final);
757 static int vortex_open(struct net_device *dev);
758 static void mdio_sync(struct vortex_private *vp, int bits);
759 static int mdio_read(struct net_device *dev, int phy_id, int location);
760 static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
761 static void vortex_timer(struct timer_list *t);
762 static netdev_tx_t vortex_start_xmit(struct sk_buff *skb,
763 struct net_device *dev);
764 static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb,
765 struct net_device *dev);
766 static int vortex_rx(struct net_device *dev);
767 static int boomerang_rx(struct net_device *dev);
768 static irqreturn_t vortex_boomerang_interrupt(int irq, void *dev_id);
769 static irqreturn_t _vortex_interrupt(int irq, struct net_device *dev);
770 static irqreturn_t _boomerang_interrupt(int irq, struct net_device *dev);
771 static int vortex_close(struct net_device *dev);
772 static void dump_tx_ring(struct net_device *dev);
773 static void update_stats(void __iomem *ioaddr, struct net_device *dev);
774 static struct net_device_stats *vortex_get_stats(struct net_device *dev);
775 static void set_rx_mode(struct net_device *dev);
776 #ifdef CONFIG_PCI
777 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
778 #endif
779 static void vortex_tx_timeout(struct net_device *dev);
780 static void acpi_set_WOL(struct net_device *dev);
781 static const struct ethtool_ops vortex_ethtool_ops;
782 static void set_8021q_mode(struct net_device *dev, int enable);
783
784 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
785 /* Option count limit only -- unlimited interfaces are supported. */
786 #define MAX_UNITS 8
787 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
788 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
789 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
790 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
791 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
792 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
793 static int global_options = -1;
794 static int global_full_duplex = -1;
795 static int global_enable_wol = -1;
796 static int global_use_mmio = -1;
797
798 /* Variables to work-around the Compaq PCI BIOS32 problem. */
799 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
800 static struct net_device *compaq_net_device;
801
802 static int vortex_cards_found;
803
804 module_param(debug, int, 0);
805 module_param(global_options, int, 0);
806 module_param_array(options, int, NULL, 0);
807 module_param(global_full_duplex, int, 0);
808 module_param_array(full_duplex, int, NULL, 0);
809 module_param_array(hw_checksums, int, NULL, 0);
810 module_param_array(flow_ctrl, int, NULL, 0);
811 module_param(global_enable_wol, int, 0);
812 module_param_array(enable_wol, int, NULL, 0);
813 module_param(rx_copybreak, int, 0);
814 module_param(max_interrupt_work, int, 0);
815 module_param_hw(compaq_ioaddr, int, ioport, 0);
816 module_param_hw(compaq_irq, int, irq, 0);
817 module_param(compaq_device_id, int, 0);
818 module_param(watchdog, int, 0);
819 module_param(global_use_mmio, int, 0);
820 module_param_array(use_mmio, int, NULL, 0);
821 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
822 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
823 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
824 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
825 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
826 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
827 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
828 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
829 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
830 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
831 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
832 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
833 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
834 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
835 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
836 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
837 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
838
839 #ifdef CONFIG_NET_POLL_CONTROLLER
poll_vortex(struct net_device * dev)840 static void poll_vortex(struct net_device *dev)
841 {
842 vortex_boomerang_interrupt(dev->irq, dev);
843 }
844 #endif
845
846 #ifdef CONFIG_PM
847
vortex_suspend(struct device * dev)848 static int vortex_suspend(struct device *dev)
849 {
850 struct net_device *ndev = dev_get_drvdata(dev);
851
852 if (!ndev || !netif_running(ndev))
853 return 0;
854
855 netif_device_detach(ndev);
856 vortex_down(ndev, 1);
857
858 return 0;
859 }
860
vortex_resume(struct device * dev)861 static int vortex_resume(struct device *dev)
862 {
863 struct net_device *ndev = dev_get_drvdata(dev);
864 int err;
865
866 if (!ndev || !netif_running(ndev))
867 return 0;
868
869 err = vortex_up(ndev);
870 if (err)
871 return err;
872
873 netif_device_attach(ndev);
874
875 return 0;
876 }
877
878 static const struct dev_pm_ops vortex_pm_ops = {
879 .suspend = vortex_suspend,
880 .resume = vortex_resume,
881 .freeze = vortex_suspend,
882 .thaw = vortex_resume,
883 .poweroff = vortex_suspend,
884 .restore = vortex_resume,
885 };
886
887 #define VORTEX_PM_OPS (&vortex_pm_ops)
888
889 #else /* !CONFIG_PM */
890
891 #define VORTEX_PM_OPS NULL
892
893 #endif /* !CONFIG_PM */
894
895 #ifdef CONFIG_EISA
896 static const struct eisa_device_id vortex_eisa_ids[] = {
897 { "TCM5920", CH_3C592 },
898 { "TCM5970", CH_3C597 },
899 { "" }
900 };
901 MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
902
vortex_eisa_probe(struct device * device)903 static int vortex_eisa_probe(struct device *device)
904 {
905 void __iomem *ioaddr;
906 struct eisa_device *edev;
907
908 edev = to_eisa_device(device);
909
910 if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
911 return -EBUSY;
912
913 ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
914
915 if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
916 edev->id.driver_data, vortex_cards_found)) {
917 release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
918 return -ENODEV;
919 }
920
921 vortex_cards_found++;
922
923 return 0;
924 }
925
vortex_eisa_remove(struct device * device)926 static int vortex_eisa_remove(struct device *device)
927 {
928 struct eisa_device *edev;
929 struct net_device *dev;
930 struct vortex_private *vp;
931 void __iomem *ioaddr;
932
933 edev = to_eisa_device(device);
934 dev = eisa_get_drvdata(edev);
935
936 if (!dev) {
937 pr_err("vortex_eisa_remove called for Compaq device!\n");
938 BUG();
939 }
940
941 vp = netdev_priv(dev);
942 ioaddr = vp->ioaddr;
943
944 unregister_netdev(dev);
945 iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
946 release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
947
948 free_netdev(dev);
949 return 0;
950 }
951
952 static struct eisa_driver vortex_eisa_driver = {
953 .id_table = vortex_eisa_ids,
954 .driver = {
955 .name = "3c59x",
956 .probe = vortex_eisa_probe,
957 .remove = vortex_eisa_remove
958 }
959 };
960
961 #endif /* CONFIG_EISA */
962
963 /* returns count found (>= 0), or negative on error */
vortex_eisa_init(void)964 static int __init vortex_eisa_init(void)
965 {
966 int eisa_found = 0;
967 int orig_cards_found = vortex_cards_found;
968
969 #ifdef CONFIG_EISA
970 int err;
971
972 err = eisa_driver_register (&vortex_eisa_driver);
973 if (!err) {
974 /*
975 * Because of the way EISA bus is probed, we cannot assume
976 * any device have been found when we exit from
977 * eisa_driver_register (the bus root driver may not be
978 * initialized yet). So we blindly assume something was
979 * found, and let the sysfs magic happened...
980 */
981 eisa_found = 1;
982 }
983 #endif
984
985 /* Special code to work-around the Compaq PCI BIOS32 problem. */
986 if (compaq_ioaddr) {
987 vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
988 compaq_irq, compaq_device_id, vortex_cards_found++);
989 }
990
991 return vortex_cards_found - orig_cards_found + eisa_found;
992 }
993
994 /* returns count (>= 0), or negative on error */
vortex_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)995 static int vortex_init_one(struct pci_dev *pdev,
996 const struct pci_device_id *ent)
997 {
998 int rc, unit, pci_bar;
999 struct vortex_chip_info *vci;
1000 void __iomem *ioaddr;
1001
1002 /* wake up and enable device */
1003 rc = pci_enable_device(pdev);
1004 if (rc < 0)
1005 goto out;
1006
1007 rc = pci_request_regions(pdev, DRV_NAME);
1008 if (rc < 0)
1009 goto out_disable;
1010
1011 unit = vortex_cards_found;
1012
1013 if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1014 /* Determine the default if the user didn't override us */
1015 vci = &vortex_info_tbl[ent->driver_data];
1016 pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1017 } else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1018 pci_bar = use_mmio[unit] ? 1 : 0;
1019 else
1020 pci_bar = global_use_mmio ? 1 : 0;
1021
1022 ioaddr = pci_iomap(pdev, pci_bar, 0);
1023 if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1024 ioaddr = pci_iomap(pdev, 0, 0);
1025 if (!ioaddr) {
1026 rc = -ENOMEM;
1027 goto out_release;
1028 }
1029
1030 rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1031 ent->driver_data, unit);
1032 if (rc < 0)
1033 goto out_iounmap;
1034
1035 vortex_cards_found++;
1036 goto out;
1037
1038 out_iounmap:
1039 pci_iounmap(pdev, ioaddr);
1040 out_release:
1041 pci_release_regions(pdev);
1042 out_disable:
1043 pci_disable_device(pdev);
1044 out:
1045 return rc;
1046 }
1047
1048 static const struct net_device_ops boomrang_netdev_ops = {
1049 .ndo_open = vortex_open,
1050 .ndo_stop = vortex_close,
1051 .ndo_start_xmit = boomerang_start_xmit,
1052 .ndo_tx_timeout = vortex_tx_timeout,
1053 .ndo_get_stats = vortex_get_stats,
1054 #ifdef CONFIG_PCI
1055 .ndo_do_ioctl = vortex_ioctl,
1056 #endif
1057 .ndo_set_rx_mode = set_rx_mode,
1058 .ndo_set_mac_address = eth_mac_addr,
1059 .ndo_validate_addr = eth_validate_addr,
1060 #ifdef CONFIG_NET_POLL_CONTROLLER
1061 .ndo_poll_controller = poll_vortex,
1062 #endif
1063 };
1064
1065 static const struct net_device_ops vortex_netdev_ops = {
1066 .ndo_open = vortex_open,
1067 .ndo_stop = vortex_close,
1068 .ndo_start_xmit = vortex_start_xmit,
1069 .ndo_tx_timeout = vortex_tx_timeout,
1070 .ndo_get_stats = vortex_get_stats,
1071 #ifdef CONFIG_PCI
1072 .ndo_do_ioctl = vortex_ioctl,
1073 #endif
1074 .ndo_set_rx_mode = set_rx_mode,
1075 .ndo_set_mac_address = eth_mac_addr,
1076 .ndo_validate_addr = eth_validate_addr,
1077 #ifdef CONFIG_NET_POLL_CONTROLLER
1078 .ndo_poll_controller = poll_vortex,
1079 #endif
1080 };
1081
1082 /*
1083 * Start up the PCI/EISA device which is described by *gendev.
1084 * Return 0 on success.
1085 *
1086 * NOTE: pdev can be NULL, for the case of a Compaq device
1087 */
vortex_probe1(struct device * gendev,void __iomem * ioaddr,int irq,int chip_idx,int card_idx)1088 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
1089 int chip_idx, int card_idx)
1090 {
1091 struct vortex_private *vp;
1092 int option;
1093 unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */
1094 int i, step;
1095 struct net_device *dev;
1096 static int printed_version;
1097 int retval, print_info;
1098 struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1099 const char *print_name = "3c59x";
1100 struct pci_dev *pdev = NULL;
1101 struct eisa_device *edev = NULL;
1102
1103 if (!printed_version) {
1104 pr_info("%s", version);
1105 printed_version = 1;
1106 }
1107
1108 if (gendev) {
1109 if ((pdev = DEVICE_PCI(gendev))) {
1110 print_name = pci_name(pdev);
1111 }
1112
1113 if ((edev = DEVICE_EISA(gendev))) {
1114 print_name = dev_name(&edev->dev);
1115 }
1116 }
1117
1118 dev = alloc_etherdev(sizeof(*vp));
1119 retval = -ENOMEM;
1120 if (!dev)
1121 goto out;
1122
1123 SET_NETDEV_DEV(dev, gendev);
1124 vp = netdev_priv(dev);
1125
1126 option = global_options;
1127
1128 /* The lower four bits are the media type. */
1129 if (dev->mem_start) {
1130 /*
1131 * The 'options' param is passed in as the third arg to the
1132 * LILO 'ether=' argument for non-modular use
1133 */
1134 option = dev->mem_start;
1135 }
1136 else if (card_idx < MAX_UNITS) {
1137 if (options[card_idx] >= 0)
1138 option = options[card_idx];
1139 }
1140
1141 if (option > 0) {
1142 if (option & 0x8000)
1143 vortex_debug = 7;
1144 if (option & 0x4000)
1145 vortex_debug = 2;
1146 if (option & 0x0400)
1147 vp->enable_wol = 1;
1148 }
1149
1150 print_info = (vortex_debug > 1);
1151 if (print_info)
1152 pr_info("See Documentation/networking/device_drivers/3com/vortex.txt\n");
1153
1154 pr_info("%s: 3Com %s %s at %p.\n",
1155 print_name,
1156 pdev ? "PCI" : "EISA",
1157 vci->name,
1158 ioaddr);
1159
1160 dev->base_addr = (unsigned long)ioaddr;
1161 dev->irq = irq;
1162 dev->mtu = mtu;
1163 vp->ioaddr = ioaddr;
1164 vp->large_frames = mtu > 1500;
1165 vp->drv_flags = vci->drv_flags;
1166 vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1167 vp->io_size = vci->io_size;
1168 vp->card_idx = card_idx;
1169 vp->window = -1;
1170
1171 /* module list only for Compaq device */
1172 if (gendev == NULL) {
1173 compaq_net_device = dev;
1174 }
1175
1176 /* PCI-only startup logic */
1177 if (pdev) {
1178 /* enable bus-mastering if necessary */
1179 if (vci->flags & PCI_USES_MASTER)
1180 pci_set_master(pdev);
1181
1182 if (vci->drv_flags & IS_VORTEX) {
1183 u8 pci_latency;
1184 u8 new_latency = 248;
1185
1186 /* Check the PCI latency value. On the 3c590 series the latency timer
1187 must be set to the maximum value to avoid data corruption that occurs
1188 when the timer expires during a transfer. This bug exists the Vortex
1189 chip only. */
1190 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1191 if (pci_latency < new_latency) {
1192 pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1193 print_name, pci_latency, new_latency);
1194 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1195 }
1196 }
1197 }
1198
1199 spin_lock_init(&vp->lock);
1200 spin_lock_init(&vp->mii_lock);
1201 spin_lock_init(&vp->window_lock);
1202 vp->gendev = gendev;
1203 vp->mii.dev = dev;
1204 vp->mii.mdio_read = mdio_read;
1205 vp->mii.mdio_write = mdio_write;
1206 vp->mii.phy_id_mask = 0x1f;
1207 vp->mii.reg_num_mask = 0x1f;
1208
1209 /* Makes sure rings are at least 16 byte aligned. */
1210 vp->rx_ring = dma_alloc_coherent(gendev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1211 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1212 &vp->rx_ring_dma, GFP_KERNEL);
1213 retval = -ENOMEM;
1214 if (!vp->rx_ring)
1215 goto free_device;
1216
1217 vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1218 vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1219
1220 /* if we are a PCI driver, we store info in pdev->driver_data
1221 * instead of a module list */
1222 if (pdev)
1223 pci_set_drvdata(pdev, dev);
1224 if (edev)
1225 eisa_set_drvdata(edev, dev);
1226
1227 vp->media_override = 7;
1228 if (option >= 0) {
1229 vp->media_override = ((option & 7) == 2) ? 0 : option & 15;
1230 if (vp->media_override != 7)
1231 vp->medialock = 1;
1232 vp->full_duplex = (option & 0x200) ? 1 : 0;
1233 vp->bus_master = (option & 16) ? 1 : 0;
1234 }
1235
1236 if (global_full_duplex > 0)
1237 vp->full_duplex = 1;
1238 if (global_enable_wol > 0)
1239 vp->enable_wol = 1;
1240
1241 if (card_idx < MAX_UNITS) {
1242 if (full_duplex[card_idx] > 0)
1243 vp->full_duplex = 1;
1244 if (flow_ctrl[card_idx] > 0)
1245 vp->flow_ctrl = 1;
1246 if (enable_wol[card_idx] > 0)
1247 vp->enable_wol = 1;
1248 }
1249
1250 vp->mii.force_media = vp->full_duplex;
1251 vp->options = option;
1252 /* Read the station address from the EEPROM. */
1253 {
1254 int base;
1255
1256 if (vci->drv_flags & EEPROM_8BIT)
1257 base = 0x230;
1258 else if (vci->drv_flags & EEPROM_OFFSET)
1259 base = EEPROM_Read + 0x30;
1260 else
1261 base = EEPROM_Read;
1262
1263 for (i = 0; i < 0x40; i++) {
1264 int timer;
1265 window_write16(vp, base + i, 0, Wn0EepromCmd);
1266 /* Pause for at least 162 us. for the read to take place. */
1267 for (timer = 10; timer >= 0; timer--) {
1268 udelay(162);
1269 if ((window_read16(vp, 0, Wn0EepromCmd) &
1270 0x8000) == 0)
1271 break;
1272 }
1273 eeprom[i] = window_read16(vp, 0, Wn0EepromData);
1274 }
1275 }
1276 for (i = 0; i < 0x18; i++)
1277 checksum ^= eeprom[i];
1278 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1279 if (checksum != 0x00) { /* Grrr, needless incompatible change 3Com. */
1280 while (i < 0x21)
1281 checksum ^= eeprom[i++];
1282 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1283 }
1284 if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1285 pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1286 for (i = 0; i < 3; i++)
1287 ((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1288 if (print_info)
1289 pr_cont(" %pM", dev->dev_addr);
1290 /* Unfortunately an all zero eeprom passes the checksum and this
1291 gets found in the wild in failure cases. Crypto is hard 8) */
1292 if (!is_valid_ether_addr(dev->dev_addr)) {
1293 retval = -EINVAL;
1294 pr_err("*** EEPROM MAC address is invalid.\n");
1295 goto free_ring; /* With every pack */
1296 }
1297 for (i = 0; i < 6; i++)
1298 window_write8(vp, dev->dev_addr[i], 2, i);
1299
1300 if (print_info)
1301 pr_cont(", IRQ %d\n", dev->irq);
1302 /* Tell them about an invalid IRQ. */
1303 if (dev->irq <= 0 || dev->irq >= nr_irqs)
1304 pr_warn(" *** Warning: IRQ %d is unlikely to work! ***\n",
1305 dev->irq);
1306
1307 step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1;
1308 if (print_info) {
1309 pr_info(" product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1310 eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1311 step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1312 }
1313
1314
1315 if (pdev && vci->drv_flags & HAS_CB_FNS) {
1316 unsigned short n;
1317
1318 vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1319 if (!vp->cb_fn_base) {
1320 retval = -ENOMEM;
1321 goto free_ring;
1322 }
1323
1324 if (print_info) {
1325 pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1326 print_name,
1327 (unsigned long long)pci_resource_start(pdev, 2),
1328 vp->cb_fn_base);
1329 }
1330
1331 n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1332 if (vp->drv_flags & INVERT_LED_PWR)
1333 n |= 0x10;
1334 if (vp->drv_flags & INVERT_MII_PWR)
1335 n |= 0x4000;
1336 window_write16(vp, n, 2, Wn2_ResetOptions);
1337 if (vp->drv_flags & WNO_XCVR_PWR) {
1338 window_write16(vp, 0x0800, 0, 0);
1339 }
1340 }
1341
1342 /* Extract our information from the EEPROM data. */
1343 vp->info1 = eeprom[13];
1344 vp->info2 = eeprom[15];
1345 vp->capabilities = eeprom[16];
1346
1347 if (vp->info1 & 0x8000) {
1348 vp->full_duplex = 1;
1349 if (print_info)
1350 pr_info("Full duplex capable\n");
1351 }
1352
1353 {
1354 static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1355 unsigned int config;
1356 vp->available_media = window_read16(vp, 3, Wn3_Options);
1357 if ((vp->available_media & 0xff) == 0) /* Broken 3c916 */
1358 vp->available_media = 0x40;
1359 config = window_read32(vp, 3, Wn3_Config);
1360 if (print_info) {
1361 pr_debug(" Internal config register is %4.4x, transceivers %#x.\n",
1362 config, window_read16(vp, 3, Wn3_Options));
1363 pr_info(" %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1364 8 << RAM_SIZE(config),
1365 RAM_WIDTH(config) ? "word" : "byte",
1366 ram_split[RAM_SPLIT(config)],
1367 AUTOSELECT(config) ? "autoselect/" : "",
1368 XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1369 media_tbl[XCVR(config)].name);
1370 }
1371 vp->default_media = XCVR(config);
1372 if (vp->default_media == XCVR_NWAY)
1373 vp->has_nway = 1;
1374 vp->autoselect = AUTOSELECT(config);
1375 }
1376
1377 if (vp->media_override != 7) {
1378 pr_info("%s: Media override to transceiver type %d (%s).\n",
1379 print_name, vp->media_override,
1380 media_tbl[vp->media_override].name);
1381 dev->if_port = vp->media_override;
1382 } else
1383 dev->if_port = vp->default_media;
1384
1385 if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1386 dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1387 int phy, phy_idx = 0;
1388 mii_preamble_required++;
1389 if (vp->drv_flags & EXTRA_PREAMBLE)
1390 mii_preamble_required++;
1391 mdio_sync(vp, 32);
1392 mdio_read(dev, 24, MII_BMSR);
1393 for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1394 int mii_status, phyx;
1395
1396 /*
1397 * For the 3c905CX we look at index 24 first, because it bogusly
1398 * reports an external PHY at all indices
1399 */
1400 if (phy == 0)
1401 phyx = 24;
1402 else if (phy <= 24)
1403 phyx = phy - 1;
1404 else
1405 phyx = phy;
1406 mii_status = mdio_read(dev, phyx, MII_BMSR);
1407 if (mii_status && mii_status != 0xffff) {
1408 vp->phys[phy_idx++] = phyx;
1409 if (print_info) {
1410 pr_info(" MII transceiver found at address %d, status %4x.\n",
1411 phyx, mii_status);
1412 }
1413 if ((mii_status & 0x0040) == 0)
1414 mii_preamble_required++;
1415 }
1416 }
1417 mii_preamble_required--;
1418 if (phy_idx == 0) {
1419 pr_warn(" ***WARNING*** No MII transceivers found!\n");
1420 vp->phys[0] = 24;
1421 } else {
1422 vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1423 if (vp->full_duplex) {
1424 /* Only advertise the FD media types. */
1425 vp->advertising &= ~0x02A0;
1426 mdio_write(dev, vp->phys[0], 4, vp->advertising);
1427 }
1428 }
1429 vp->mii.phy_id = vp->phys[0];
1430 }
1431
1432 if (vp->capabilities & CapBusMaster) {
1433 vp->full_bus_master_tx = 1;
1434 if (print_info) {
1435 pr_info(" Enabling bus-master transmits and %s receives.\n",
1436 (vp->info2 & 1) ? "early" : "whole-frame" );
1437 }
1438 vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1439 vp->bus_master = 0; /* AKPM: vortex only */
1440 }
1441
1442 /* The 3c59x-specific entries in the device structure. */
1443 if (vp->full_bus_master_tx) {
1444 dev->netdev_ops = &boomrang_netdev_ops;
1445 /* Actually, it still should work with iommu. */
1446 if (card_idx < MAX_UNITS &&
1447 ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1448 hw_checksums[card_idx] == 1)) {
1449 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1450 }
1451 } else
1452 dev->netdev_ops = &vortex_netdev_ops;
1453
1454 if (print_info) {
1455 pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1456 print_name,
1457 (dev->features & NETIF_F_SG) ? "en":"dis",
1458 (dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1459 }
1460
1461 dev->ethtool_ops = &vortex_ethtool_ops;
1462 dev->watchdog_timeo = (watchdog * HZ) / 1000;
1463
1464 if (pdev) {
1465 vp->pm_state_valid = 1;
1466 pci_save_state(pdev);
1467 acpi_set_WOL(dev);
1468 }
1469 retval = register_netdev(dev);
1470 if (retval == 0)
1471 return 0;
1472
1473 free_ring:
1474 dma_free_coherent(&pdev->dev,
1475 sizeof(struct boom_rx_desc) * RX_RING_SIZE +
1476 sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1477 vp->rx_ring, vp->rx_ring_dma);
1478 free_device:
1479 free_netdev(dev);
1480 pr_err(PFX "vortex_probe1 fails. Returns %d\n", retval);
1481 out:
1482 return retval;
1483 }
1484
1485 static void
issue_and_wait(struct net_device * dev,int cmd)1486 issue_and_wait(struct net_device *dev, int cmd)
1487 {
1488 struct vortex_private *vp = netdev_priv(dev);
1489 void __iomem *ioaddr = vp->ioaddr;
1490 int i;
1491
1492 iowrite16(cmd, ioaddr + EL3_CMD);
1493 for (i = 0; i < 2000; i++) {
1494 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1495 return;
1496 }
1497
1498 /* OK, that didn't work. Do it the slow way. One second */
1499 for (i = 0; i < 100000; i++) {
1500 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1501 if (vortex_debug > 1)
1502 pr_info("%s: command 0x%04x took %d usecs\n",
1503 dev->name, cmd, i * 10);
1504 return;
1505 }
1506 udelay(10);
1507 }
1508 pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1509 dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1510 }
1511
1512 static void
vortex_set_duplex(struct net_device * dev)1513 vortex_set_duplex(struct net_device *dev)
1514 {
1515 struct vortex_private *vp = netdev_priv(dev);
1516
1517 pr_info("%s: setting %s-duplex.\n",
1518 dev->name, (vp->full_duplex) ? "full" : "half");
1519
1520 /* Set the full-duplex bit. */
1521 window_write16(vp,
1522 ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1523 (vp->large_frames ? 0x40 : 0) |
1524 ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1525 0x100 : 0),
1526 3, Wn3_MAC_Ctrl);
1527 }
1528
vortex_check_media(struct net_device * dev,unsigned int init)1529 static void vortex_check_media(struct net_device *dev, unsigned int init)
1530 {
1531 struct vortex_private *vp = netdev_priv(dev);
1532 unsigned int ok_to_print = 0;
1533
1534 if (vortex_debug > 3)
1535 ok_to_print = 1;
1536
1537 if (mii_check_media(&vp->mii, ok_to_print, init)) {
1538 vp->full_duplex = vp->mii.full_duplex;
1539 vortex_set_duplex(dev);
1540 } else if (init) {
1541 vortex_set_duplex(dev);
1542 }
1543 }
1544
1545 static int
vortex_up(struct net_device * dev)1546 vortex_up(struct net_device *dev)
1547 {
1548 struct vortex_private *vp = netdev_priv(dev);
1549 void __iomem *ioaddr = vp->ioaddr;
1550 unsigned int config;
1551 int i, mii_reg1, mii_reg5, err = 0;
1552
1553 if (VORTEX_PCI(vp)) {
1554 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
1555 if (vp->pm_state_valid)
1556 pci_restore_state(VORTEX_PCI(vp));
1557 err = pci_enable_device(VORTEX_PCI(vp));
1558 if (err) {
1559 pr_warn("%s: Could not enable device\n", dev->name);
1560 goto err_out;
1561 }
1562 }
1563
1564 /* Before initializing select the active media port. */
1565 config = window_read32(vp, 3, Wn3_Config);
1566
1567 if (vp->media_override != 7) {
1568 pr_info("%s: Media override to transceiver %d (%s).\n",
1569 dev->name, vp->media_override,
1570 media_tbl[vp->media_override].name);
1571 dev->if_port = vp->media_override;
1572 } else if (vp->autoselect) {
1573 if (vp->has_nway) {
1574 if (vortex_debug > 1)
1575 pr_info("%s: using NWAY device table, not %d\n",
1576 dev->name, dev->if_port);
1577 dev->if_port = XCVR_NWAY;
1578 } else {
1579 /* Find first available media type, starting with 100baseTx. */
1580 dev->if_port = XCVR_100baseTx;
1581 while (! (vp->available_media & media_tbl[dev->if_port].mask))
1582 dev->if_port = media_tbl[dev->if_port].next;
1583 if (vortex_debug > 1)
1584 pr_info("%s: first available media type: %s\n",
1585 dev->name, media_tbl[dev->if_port].name);
1586 }
1587 } else {
1588 dev->if_port = vp->default_media;
1589 if (vortex_debug > 1)
1590 pr_info("%s: using default media %s\n",
1591 dev->name, media_tbl[dev->if_port].name);
1592 }
1593
1594 timer_setup(&vp->timer, vortex_timer, 0);
1595 mod_timer(&vp->timer, RUN_AT(media_tbl[dev->if_port].wait));
1596
1597 if (vortex_debug > 1)
1598 pr_debug("%s: Initial media type %s.\n",
1599 dev->name, media_tbl[dev->if_port].name);
1600
1601 vp->full_duplex = vp->mii.force_media;
1602 config = BFINS(config, dev->if_port, 20, 4);
1603 if (vortex_debug > 6)
1604 pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1605 window_write32(vp, config, 3, Wn3_Config);
1606
1607 if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1608 mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1609 mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1610 vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1611 vp->mii.full_duplex = vp->full_duplex;
1612
1613 vortex_check_media(dev, 1);
1614 }
1615 else
1616 vortex_set_duplex(dev);
1617
1618 issue_and_wait(dev, TxReset);
1619 /*
1620 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1621 */
1622 issue_and_wait(dev, RxReset|0x04);
1623
1624
1625 iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1626
1627 if (vortex_debug > 1) {
1628 pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1629 dev->name, dev->irq, window_read16(vp, 4, Wn4_Media));
1630 }
1631
1632 /* Set the station address and mask in window 2 each time opened. */
1633 for (i = 0; i < 6; i++)
1634 window_write8(vp, dev->dev_addr[i], 2, i);
1635 for (; i < 12; i+=2)
1636 window_write16(vp, 0, 2, i);
1637
1638 if (vp->cb_fn_base) {
1639 unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1640 if (vp->drv_flags & INVERT_LED_PWR)
1641 n |= 0x10;
1642 if (vp->drv_flags & INVERT_MII_PWR)
1643 n |= 0x4000;
1644 window_write16(vp, n, 2, Wn2_ResetOptions);
1645 }
1646
1647 if (dev->if_port == XCVR_10base2)
1648 /* Start the thinnet transceiver. We should really wait 50ms...*/
1649 iowrite16(StartCoax, ioaddr + EL3_CMD);
1650 if (dev->if_port != XCVR_NWAY) {
1651 window_write16(vp,
1652 (window_read16(vp, 4, Wn4_Media) &
1653 ~(Media_10TP|Media_SQE)) |
1654 media_tbl[dev->if_port].media_bits,
1655 4, Wn4_Media);
1656 }
1657
1658 /* Switch to the stats window, and clear all stats by reading. */
1659 iowrite16(StatsDisable, ioaddr + EL3_CMD);
1660 for (i = 0; i < 10; i++)
1661 window_read8(vp, 6, i);
1662 window_read16(vp, 6, 10);
1663 window_read16(vp, 6, 12);
1664 /* New: On the Vortex we must also clear the BadSSD counter. */
1665 window_read8(vp, 4, 12);
1666 /* ..and on the Boomerang we enable the extra statistics bits. */
1667 window_write16(vp, 0x0040, 4, Wn4_NetDiag);
1668
1669 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1670 vp->cur_rx = 0;
1671 /* Initialize the RxEarly register as recommended. */
1672 iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1673 iowrite32(0x0020, ioaddr + PktStatus);
1674 iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1675 }
1676 if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */
1677 vp->cur_tx = vp->dirty_tx = 0;
1678 if (vp->drv_flags & IS_BOOMERANG)
1679 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1680 /* Clear the Rx, Tx rings. */
1681 for (i = 0; i < RX_RING_SIZE; i++) /* AKPM: this is done in vortex_open, too */
1682 vp->rx_ring[i].status = 0;
1683 for (i = 0; i < TX_RING_SIZE; i++)
1684 vp->tx_skbuff[i] = NULL;
1685 iowrite32(0, ioaddr + DownListPtr);
1686 }
1687 /* Set receiver mode: presumably accept b-case and phys addr only. */
1688 set_rx_mode(dev);
1689 /* enable 802.1q tagged frames */
1690 set_8021q_mode(dev, 1);
1691 iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1692
1693 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1694 iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1695 /* Allow status bits to be seen. */
1696 vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1697 (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1698 (vp->full_bus_master_rx ? UpComplete : RxComplete) |
1699 (vp->bus_master ? DMADone : 0);
1700 vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1701 (vp->full_bus_master_rx ? 0 : RxComplete) |
1702 StatsFull | HostError | TxComplete | IntReq
1703 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1704 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1705 /* Ack all pending events, and set active indicator mask. */
1706 iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1707 ioaddr + EL3_CMD);
1708 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1709 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
1710 iowrite32(0x8000, vp->cb_fn_base + 4);
1711 netif_start_queue (dev);
1712 netdev_reset_queue(dev);
1713 err_out:
1714 return err;
1715 }
1716
1717 static int
vortex_open(struct net_device * dev)1718 vortex_open(struct net_device *dev)
1719 {
1720 struct vortex_private *vp = netdev_priv(dev);
1721 int i;
1722 int retval;
1723 dma_addr_t dma;
1724
1725 /* Use the now-standard shared IRQ implementation. */
1726 if ((retval = request_irq(dev->irq, vortex_boomerang_interrupt, IRQF_SHARED, dev->name, dev))) {
1727 pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1728 goto err;
1729 }
1730
1731 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1732 if (vortex_debug > 2)
1733 pr_debug("%s: Filling in the Rx ring.\n", dev->name);
1734 for (i = 0; i < RX_RING_SIZE; i++) {
1735 struct sk_buff *skb;
1736 vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1737 vp->rx_ring[i].status = 0; /* Clear complete bit. */
1738 vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1739
1740 skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1741 GFP_KERNEL);
1742 vp->rx_skbuff[i] = skb;
1743 if (skb == NULL)
1744 break; /* Bad news! */
1745
1746 skb_reserve(skb, NET_IP_ALIGN); /* Align IP on 16 byte boundaries */
1747 dma = dma_map_single(vp->gendev, skb->data,
1748 PKT_BUF_SZ, DMA_FROM_DEVICE);
1749 if (dma_mapping_error(vp->gendev, dma))
1750 break;
1751 vp->rx_ring[i].addr = cpu_to_le32(dma);
1752 }
1753 if (i != RX_RING_SIZE) {
1754 pr_emerg("%s: no memory for rx ring\n", dev->name);
1755 retval = -ENOMEM;
1756 goto err_free_skb;
1757 }
1758 /* Wrap the ring. */
1759 vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1760 }
1761
1762 retval = vortex_up(dev);
1763 if (!retval)
1764 goto out;
1765
1766 err_free_skb:
1767 for (i = 0; i < RX_RING_SIZE; i++) {
1768 if (vp->rx_skbuff[i]) {
1769 dev_kfree_skb(vp->rx_skbuff[i]);
1770 vp->rx_skbuff[i] = NULL;
1771 }
1772 }
1773 free_irq(dev->irq, dev);
1774 err:
1775 if (vortex_debug > 1)
1776 pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1777 out:
1778 return retval;
1779 }
1780
1781 static void
vortex_timer(struct timer_list * t)1782 vortex_timer(struct timer_list *t)
1783 {
1784 struct vortex_private *vp = from_timer(vp, t, timer);
1785 struct net_device *dev = vp->mii.dev;
1786 void __iomem *ioaddr = vp->ioaddr;
1787 int next_tick = 60*HZ;
1788 int ok = 0;
1789 int media_status;
1790
1791 if (vortex_debug > 2) {
1792 pr_debug("%s: Media selection timer tick happened, %s.\n",
1793 dev->name, media_tbl[dev->if_port].name);
1794 pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1795 }
1796
1797 media_status = window_read16(vp, 4, Wn4_Media);
1798 switch (dev->if_port) {
1799 case XCVR_10baseT: case XCVR_100baseTx: case XCVR_100baseFx:
1800 if (media_status & Media_LnkBeat) {
1801 netif_carrier_on(dev);
1802 ok = 1;
1803 if (vortex_debug > 1)
1804 pr_debug("%s: Media %s has link beat, %x.\n",
1805 dev->name, media_tbl[dev->if_port].name, media_status);
1806 } else {
1807 netif_carrier_off(dev);
1808 if (vortex_debug > 1) {
1809 pr_debug("%s: Media %s has no link beat, %x.\n",
1810 dev->name, media_tbl[dev->if_port].name, media_status);
1811 }
1812 }
1813 break;
1814 case XCVR_MII: case XCVR_NWAY:
1815 {
1816 ok = 1;
1817 vortex_check_media(dev, 0);
1818 }
1819 break;
1820 default: /* Other media types handled by Tx timeouts. */
1821 if (vortex_debug > 1)
1822 pr_debug("%s: Media %s has no indication, %x.\n",
1823 dev->name, media_tbl[dev->if_port].name, media_status);
1824 ok = 1;
1825 }
1826
1827 if (dev->flags & IFF_SLAVE || !netif_carrier_ok(dev))
1828 next_tick = 5*HZ;
1829
1830 if (vp->medialock)
1831 goto leave_media_alone;
1832
1833 if (!ok) {
1834 unsigned int config;
1835
1836 spin_lock_irq(&vp->lock);
1837
1838 do {
1839 dev->if_port = media_tbl[dev->if_port].next;
1840 } while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1841 if (dev->if_port == XCVR_Default) { /* Go back to default. */
1842 dev->if_port = vp->default_media;
1843 if (vortex_debug > 1)
1844 pr_debug("%s: Media selection failing, using default %s port.\n",
1845 dev->name, media_tbl[dev->if_port].name);
1846 } else {
1847 if (vortex_debug > 1)
1848 pr_debug("%s: Media selection failed, now trying %s port.\n",
1849 dev->name, media_tbl[dev->if_port].name);
1850 next_tick = media_tbl[dev->if_port].wait;
1851 }
1852 window_write16(vp,
1853 (media_status & ~(Media_10TP|Media_SQE)) |
1854 media_tbl[dev->if_port].media_bits,
1855 4, Wn4_Media);
1856
1857 config = window_read32(vp, 3, Wn3_Config);
1858 config = BFINS(config, dev->if_port, 20, 4);
1859 window_write32(vp, config, 3, Wn3_Config);
1860
1861 iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1862 ioaddr + EL3_CMD);
1863 if (vortex_debug > 1)
1864 pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1865 /* AKPM: FIXME: Should reset Rx & Tx here. P60 of 3c90xc.pdf */
1866
1867 spin_unlock_irq(&vp->lock);
1868 }
1869
1870 leave_media_alone:
1871 if (vortex_debug > 2)
1872 pr_debug("%s: Media selection timer finished, %s.\n",
1873 dev->name, media_tbl[dev->if_port].name);
1874
1875 mod_timer(&vp->timer, RUN_AT(next_tick));
1876 if (vp->deferred)
1877 iowrite16(FakeIntr, ioaddr + EL3_CMD);
1878 }
1879
vortex_tx_timeout(struct net_device * dev)1880 static void vortex_tx_timeout(struct net_device *dev)
1881 {
1882 struct vortex_private *vp = netdev_priv(dev);
1883 void __iomem *ioaddr = vp->ioaddr;
1884
1885 pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1886 dev->name, ioread8(ioaddr + TxStatus),
1887 ioread16(ioaddr + EL3_STATUS));
1888 pr_err(" diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1889 window_read16(vp, 4, Wn4_NetDiag),
1890 window_read16(vp, 4, Wn4_Media),
1891 ioread32(ioaddr + PktStatus),
1892 window_read16(vp, 4, Wn4_FIFODiag));
1893 /* Slight code bloat to be user friendly. */
1894 if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1895 pr_err("%s: Transmitter encountered 16 collisions --"
1896 " network cable problem?\n", dev->name);
1897 if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1898 pr_err("%s: Interrupt posted but not delivered --"
1899 " IRQ blocked by another device?\n", dev->name);
1900 /* Bad idea here.. but we might as well handle a few events. */
1901 vortex_boomerang_interrupt(dev->irq, dev);
1902 }
1903
1904 if (vortex_debug > 0)
1905 dump_tx_ring(dev);
1906
1907 issue_and_wait(dev, TxReset);
1908
1909 dev->stats.tx_errors++;
1910 if (vp->full_bus_master_tx) {
1911 pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1912 if (vp->cur_tx - vp->dirty_tx > 0 && ioread32(ioaddr + DownListPtr) == 0)
1913 iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1914 ioaddr + DownListPtr);
1915 if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE) {
1916 netif_wake_queue (dev);
1917 netdev_reset_queue (dev);
1918 }
1919 if (vp->drv_flags & IS_BOOMERANG)
1920 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1921 iowrite16(DownUnstall, ioaddr + EL3_CMD);
1922 } else {
1923 dev->stats.tx_dropped++;
1924 netif_wake_queue(dev);
1925 netdev_reset_queue(dev);
1926 }
1927 /* Issue Tx Enable */
1928 iowrite16(TxEnable, ioaddr + EL3_CMD);
1929 netif_trans_update(dev); /* prevent tx timeout */
1930 }
1931
1932 /*
1933 * Handle uncommon interrupt sources. This is a separate routine to minimize
1934 * the cache impact.
1935 */
1936 static void
vortex_error(struct net_device * dev,int status)1937 vortex_error(struct net_device *dev, int status)
1938 {
1939 struct vortex_private *vp = netdev_priv(dev);
1940 void __iomem *ioaddr = vp->ioaddr;
1941 int do_tx_reset = 0, reset_mask = 0;
1942 unsigned char tx_status = 0;
1943
1944 if (vortex_debug > 2) {
1945 pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1946 }
1947
1948 if (status & TxComplete) { /* Really "TxError" for us. */
1949 tx_status = ioread8(ioaddr + TxStatus);
1950 /* Presumably a tx-timeout. We must merely re-enable. */
1951 if (vortex_debug > 2 ||
1952 (tx_status != 0x88 && vortex_debug > 0)) {
1953 pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1954 dev->name, tx_status);
1955 if (tx_status == 0x82) {
1956 pr_err("Probably a duplex mismatch. See "
1957 "Documentation/networking/device_drivers/3com/vortex.txt\n");
1958 }
1959 dump_tx_ring(dev);
1960 }
1961 if (tx_status & 0x14) dev->stats.tx_fifo_errors++;
1962 if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
1963 if (tx_status & 0x08) vp->xstats.tx_max_collisions++;
1964 iowrite8(0, ioaddr + TxStatus);
1965 if (tx_status & 0x30) { /* txJabber or txUnderrun */
1966 do_tx_reset = 1;
1967 } else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET)) { /* maxCollisions */
1968 do_tx_reset = 1;
1969 reset_mask = 0x0108; /* Reset interface logic, but not download logic */
1970 } else { /* Merely re-enable the transmitter. */
1971 iowrite16(TxEnable, ioaddr + EL3_CMD);
1972 }
1973 }
1974
1975 if (status & RxEarly) /* Rx early is unused. */
1976 iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
1977
1978 if (status & StatsFull) { /* Empty statistics. */
1979 static int DoneDidThat;
1980 if (vortex_debug > 4)
1981 pr_debug("%s: Updating stats.\n", dev->name);
1982 update_stats(ioaddr, dev);
1983 /* HACK: Disable statistics as an interrupt source. */
1984 /* This occurs when we have the wrong media type! */
1985 if (DoneDidThat == 0 &&
1986 ioread16(ioaddr + EL3_STATUS) & StatsFull) {
1987 pr_warn("%s: Updating statistics failed, disabling stats as an interrupt source\n",
1988 dev->name);
1989 iowrite16(SetIntrEnb |
1990 (window_read16(vp, 5, 10) & ~StatsFull),
1991 ioaddr + EL3_CMD);
1992 vp->intr_enable &= ~StatsFull;
1993 DoneDidThat++;
1994 }
1995 }
1996 if (status & IntReq) { /* Restore all interrupt sources. */
1997 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1998 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1999 }
2000 if (status & HostError) {
2001 u16 fifo_diag;
2002 fifo_diag = window_read16(vp, 4, Wn4_FIFODiag);
2003 pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
2004 dev->name, fifo_diag);
2005 /* Adapter failure requires Tx/Rx reset and reinit. */
2006 if (vp->full_bus_master_tx) {
2007 int bus_status = ioread32(ioaddr + PktStatus);
2008 /* 0x80000000 PCI master abort. */
2009 /* 0x40000000 PCI target abort. */
2010 if (vortex_debug)
2011 pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2012
2013 /* In this case, blow the card away */
2014 /* Must not enter D3 or we can't legally issue the reset! */
2015 vortex_down(dev, 0);
2016 issue_and_wait(dev, TotalReset | 0xff);
2017 vortex_up(dev); /* AKPM: bug. vortex_up() assumes that the rx ring is full. It may not be. */
2018 } else if (fifo_diag & 0x0400)
2019 do_tx_reset = 1;
2020 if (fifo_diag & 0x3000) {
2021 /* Reset Rx fifo and upload logic */
2022 issue_and_wait(dev, RxReset|0x07);
2023 /* Set the Rx filter to the current state. */
2024 set_rx_mode(dev);
2025 /* enable 802.1q VLAN tagged frames */
2026 set_8021q_mode(dev, 1);
2027 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2028 iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2029 }
2030 }
2031
2032 if (do_tx_reset) {
2033 issue_and_wait(dev, TxReset|reset_mask);
2034 iowrite16(TxEnable, ioaddr + EL3_CMD);
2035 if (!vp->full_bus_master_tx)
2036 netif_wake_queue(dev);
2037 }
2038 }
2039
2040 static netdev_tx_t
vortex_start_xmit(struct sk_buff * skb,struct net_device * dev)2041 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2042 {
2043 struct vortex_private *vp = netdev_priv(dev);
2044 void __iomem *ioaddr = vp->ioaddr;
2045 int skblen = skb->len;
2046
2047 /* Put out the doubleword header... */
2048 iowrite32(skb->len, ioaddr + TX_FIFO);
2049 if (vp->bus_master) {
2050 /* Set the bus-master controller to transfer the packet. */
2051 int len = (skb->len + 3) & ~3;
2052 vp->tx_skb_dma = dma_map_single(vp->gendev, skb->data, len,
2053 DMA_TO_DEVICE);
2054 if (dma_mapping_error(vp->gendev, vp->tx_skb_dma)) {
2055 dev_kfree_skb_any(skb);
2056 dev->stats.tx_dropped++;
2057 return NETDEV_TX_OK;
2058 }
2059
2060 spin_lock_irq(&vp->window_lock);
2061 window_set(vp, 7);
2062 iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr);
2063 iowrite16(len, ioaddr + Wn7_MasterLen);
2064 spin_unlock_irq(&vp->window_lock);
2065 vp->tx_skb = skb;
2066 skb_tx_timestamp(skb);
2067 iowrite16(StartDMADown, ioaddr + EL3_CMD);
2068 /* netif_wake_queue() will be called at the DMADone interrupt. */
2069 } else {
2070 /* ... and the packet rounded to a doubleword. */
2071 skb_tx_timestamp(skb);
2072 iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2073 dev_consume_skb_any (skb);
2074 if (ioread16(ioaddr + TxFree) > 1536) {
2075 netif_start_queue (dev); /* AKPM: redundant? */
2076 } else {
2077 /* Interrupt us when the FIFO has room for max-sized packet. */
2078 netif_stop_queue(dev);
2079 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2080 }
2081 }
2082
2083 netdev_sent_queue(dev, skblen);
2084
2085 /* Clear the Tx status stack. */
2086 {
2087 int tx_status;
2088 int i = 32;
2089
2090 while (--i > 0 && (tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2091 if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */
2092 if (vortex_debug > 2)
2093 pr_debug("%s: Tx error, status %2.2x.\n",
2094 dev->name, tx_status);
2095 if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2096 if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2097 if (tx_status & 0x30) {
2098 issue_and_wait(dev, TxReset);
2099 }
2100 iowrite16(TxEnable, ioaddr + EL3_CMD);
2101 }
2102 iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2103 }
2104 }
2105 return NETDEV_TX_OK;
2106 }
2107
2108 static netdev_tx_t
boomerang_start_xmit(struct sk_buff * skb,struct net_device * dev)2109 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2110 {
2111 struct vortex_private *vp = netdev_priv(dev);
2112 void __iomem *ioaddr = vp->ioaddr;
2113 /* Calculate the next Tx descriptor entry. */
2114 int entry = vp->cur_tx % TX_RING_SIZE;
2115 int skblen = skb->len;
2116 struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2117 unsigned long flags;
2118 dma_addr_t dma_addr;
2119
2120 if (vortex_debug > 6) {
2121 pr_debug("boomerang_start_xmit()\n");
2122 pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2123 dev->name, vp->cur_tx);
2124 }
2125
2126 /*
2127 * We can't allow a recursion from our interrupt handler back into the
2128 * tx routine, as they take the same spin lock, and that causes
2129 * deadlock. Just return NETDEV_TX_BUSY and let the stack try again in
2130 * a bit
2131 */
2132 if (vp->handling_irq)
2133 return NETDEV_TX_BUSY;
2134
2135 if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2136 if (vortex_debug > 0)
2137 pr_warn("%s: BUG! Tx Ring full, refusing to send buffer\n",
2138 dev->name);
2139 netif_stop_queue(dev);
2140 return NETDEV_TX_BUSY;
2141 }
2142
2143 vp->tx_skbuff[entry] = skb;
2144
2145 vp->tx_ring[entry].next = 0;
2146 #if DO_ZEROCOPY
2147 if (skb->ip_summed != CHECKSUM_PARTIAL)
2148 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2149 else
2150 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2151
2152 if (!skb_shinfo(skb)->nr_frags) {
2153 dma_addr = dma_map_single(vp->gendev, skb->data, skb->len,
2154 DMA_TO_DEVICE);
2155 if (dma_mapping_error(vp->gendev, dma_addr))
2156 goto out_dma_err;
2157
2158 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2159 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2160 } else {
2161 int i;
2162
2163 dma_addr = dma_map_single(vp->gendev, skb->data,
2164 skb_headlen(skb), DMA_TO_DEVICE);
2165 if (dma_mapping_error(vp->gendev, dma_addr))
2166 goto out_dma_err;
2167
2168 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2169 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb));
2170
2171 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2172 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2173
2174 dma_addr = skb_frag_dma_map(vp->gendev, frag,
2175 0,
2176 skb_frag_size(frag),
2177 DMA_TO_DEVICE);
2178 if (dma_mapping_error(vp->gendev, dma_addr)) {
2179 for(i = i-1; i >= 0; i--)
2180 dma_unmap_page(vp->gendev,
2181 le32_to_cpu(vp->tx_ring[entry].frag[i+1].addr),
2182 le32_to_cpu(vp->tx_ring[entry].frag[i+1].length),
2183 DMA_TO_DEVICE);
2184
2185 dma_unmap_single(vp->gendev,
2186 le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2187 le32_to_cpu(vp->tx_ring[entry].frag[0].length),
2188 DMA_TO_DEVICE);
2189
2190 goto out_dma_err;
2191 }
2192
2193 vp->tx_ring[entry].frag[i+1].addr =
2194 cpu_to_le32(dma_addr);
2195
2196 if (i == skb_shinfo(skb)->nr_frags-1)
2197 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)|LAST_FRAG);
2198 else
2199 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag));
2200 }
2201 }
2202 #else
2203 dma_addr = dma_map_single(vp->gendev, skb->data, skb->len, DMA_TO_DEVICE);
2204 if (dma_mapping_error(vp->gendev, dma_addr))
2205 goto out_dma_err;
2206 vp->tx_ring[entry].addr = cpu_to_le32(dma_addr);
2207 vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2208 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2209 #endif
2210
2211 spin_lock_irqsave(&vp->lock, flags);
2212 /* Wait for the stall to complete. */
2213 issue_and_wait(dev, DownStall);
2214 prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2215 if (ioread32(ioaddr + DownListPtr) == 0) {
2216 iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2217 vp->queued_packet++;
2218 }
2219
2220 vp->cur_tx++;
2221 netdev_sent_queue(dev, skblen);
2222
2223 if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2224 netif_stop_queue (dev);
2225 } else { /* Clear previous interrupt enable. */
2226 #if defined(tx_interrupt_mitigation)
2227 /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2228 * were selected, this would corrupt DN_COMPLETE. No?
2229 */
2230 prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2231 #endif
2232 }
2233 skb_tx_timestamp(skb);
2234 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2235 spin_unlock_irqrestore(&vp->lock, flags);
2236 out:
2237 return NETDEV_TX_OK;
2238 out_dma_err:
2239 dev_err(vp->gendev, "Error mapping dma buffer\n");
2240 goto out;
2241 }
2242
2243 /* The interrupt handler does all of the Rx thread work and cleans up
2244 after the Tx thread. */
2245
2246 /*
2247 * This is the ISR for the vortex series chips.
2248 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2249 */
2250
2251 static irqreturn_t
_vortex_interrupt(int irq,struct net_device * dev)2252 _vortex_interrupt(int irq, struct net_device *dev)
2253 {
2254 struct vortex_private *vp = netdev_priv(dev);
2255 void __iomem *ioaddr;
2256 int status;
2257 int work_done = max_interrupt_work;
2258 int handled = 0;
2259 unsigned int bytes_compl = 0, pkts_compl = 0;
2260
2261 ioaddr = vp->ioaddr;
2262
2263 status = ioread16(ioaddr + EL3_STATUS);
2264
2265 if (vortex_debug > 6)
2266 pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2267
2268 if ((status & IntLatch) == 0)
2269 goto handler_exit; /* No interrupt: shared IRQs cause this */
2270 handled = 1;
2271
2272 if (status & IntReq) {
2273 status |= vp->deferred;
2274 vp->deferred = 0;
2275 }
2276
2277 if (status == 0xffff) /* h/w no longer present (hotplug)? */
2278 goto handler_exit;
2279
2280 if (vortex_debug > 4)
2281 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2282 dev->name, status, ioread8(ioaddr + Timer));
2283
2284 spin_lock(&vp->window_lock);
2285 window_set(vp, 7);
2286
2287 do {
2288 if (vortex_debug > 5)
2289 pr_debug("%s: In interrupt loop, status %4.4x.\n",
2290 dev->name, status);
2291 if (status & RxComplete)
2292 vortex_rx(dev);
2293
2294 if (status & TxAvailable) {
2295 if (vortex_debug > 5)
2296 pr_debug(" TX room bit was handled.\n");
2297 /* There's room in the FIFO for a full-sized packet. */
2298 iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2299 netif_wake_queue (dev);
2300 }
2301
2302 if (status & DMADone) {
2303 if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2304 iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2305 dma_unmap_single(vp->gendev, vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, DMA_TO_DEVICE);
2306 pkts_compl++;
2307 bytes_compl += vp->tx_skb->len;
2308 dev_consume_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2309 if (ioread16(ioaddr + TxFree) > 1536) {
2310 /*
2311 * AKPM: FIXME: I don't think we need this. If the queue was stopped due to
2312 * insufficient FIFO room, the TxAvailable test will succeed and call
2313 * netif_wake_queue()
2314 */
2315 netif_wake_queue(dev);
2316 } else { /* Interrupt when FIFO has room for max-sized packet. */
2317 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2318 netif_stop_queue(dev);
2319 }
2320 }
2321 }
2322 /* Check for all uncommon interrupts at once. */
2323 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2324 if (status == 0xffff)
2325 break;
2326 if (status & RxEarly)
2327 vortex_rx(dev);
2328 spin_unlock(&vp->window_lock);
2329 vortex_error(dev, status);
2330 spin_lock(&vp->window_lock);
2331 window_set(vp, 7);
2332 }
2333
2334 if (--work_done < 0) {
2335 pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2336 dev->name, status);
2337 /* Disable all pending interrupts. */
2338 do {
2339 vp->deferred |= status;
2340 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2341 ioaddr + EL3_CMD);
2342 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2343 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2344 /* The timer will reenable interrupts. */
2345 mod_timer(&vp->timer, jiffies + 1*HZ);
2346 break;
2347 }
2348 /* Acknowledge the IRQ. */
2349 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2350 } while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2351
2352 netdev_completed_queue(dev, pkts_compl, bytes_compl);
2353 spin_unlock(&vp->window_lock);
2354
2355 if (vortex_debug > 4)
2356 pr_debug("%s: exiting interrupt, status %4.4x.\n",
2357 dev->name, status);
2358 handler_exit:
2359 return IRQ_RETVAL(handled);
2360 }
2361
2362 /*
2363 * This is the ISR for the boomerang series chips.
2364 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2365 */
2366
2367 static irqreturn_t
_boomerang_interrupt(int irq,struct net_device * dev)2368 _boomerang_interrupt(int irq, struct net_device *dev)
2369 {
2370 struct vortex_private *vp = netdev_priv(dev);
2371 void __iomem *ioaddr;
2372 int status;
2373 int work_done = max_interrupt_work;
2374 int handled = 0;
2375 unsigned int bytes_compl = 0, pkts_compl = 0;
2376
2377 ioaddr = vp->ioaddr;
2378
2379 vp->handling_irq = 1;
2380
2381 status = ioread16(ioaddr + EL3_STATUS);
2382
2383 if (vortex_debug > 6)
2384 pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2385
2386 if ((status & IntLatch) == 0)
2387 goto handler_exit; /* No interrupt: shared IRQs can cause this */
2388 handled = 1;
2389
2390 if (status == 0xffff) { /* h/w no longer present (hotplug)? */
2391 if (vortex_debug > 1)
2392 pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2393 goto handler_exit;
2394 }
2395
2396 if (status & IntReq) {
2397 status |= vp->deferred;
2398 vp->deferred = 0;
2399 }
2400
2401 if (vortex_debug > 4)
2402 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2403 dev->name, status, ioread8(ioaddr + Timer));
2404 do {
2405 if (vortex_debug > 5)
2406 pr_debug("%s: In interrupt loop, status %4.4x.\n",
2407 dev->name, status);
2408 if (status & UpComplete) {
2409 iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2410 if (vortex_debug > 5)
2411 pr_debug("boomerang_interrupt->boomerang_rx\n");
2412 boomerang_rx(dev);
2413 }
2414
2415 if (status & DownComplete) {
2416 unsigned int dirty_tx = vp->dirty_tx;
2417
2418 iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2419 while (vp->cur_tx - dirty_tx > 0) {
2420 int entry = dirty_tx % TX_RING_SIZE;
2421 #if 1 /* AKPM: the latter is faster, but cyclone-only */
2422 if (ioread32(ioaddr + DownListPtr) ==
2423 vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2424 break; /* It still hasn't been processed. */
2425 #else
2426 if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2427 break; /* It still hasn't been processed. */
2428 #endif
2429
2430 if (vp->tx_skbuff[entry]) {
2431 struct sk_buff *skb = vp->tx_skbuff[entry];
2432 #if DO_ZEROCOPY
2433 int i;
2434 dma_unmap_single(vp->gendev,
2435 le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2436 le32_to_cpu(vp->tx_ring[entry].frag[0].length)&0xFFF,
2437 DMA_TO_DEVICE);
2438
2439 for (i=1; i<=skb_shinfo(skb)->nr_frags; i++)
2440 dma_unmap_page(vp->gendev,
2441 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2442 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2443 DMA_TO_DEVICE);
2444 #else
2445 dma_unmap_single(vp->gendev,
2446 le32_to_cpu(vp->tx_ring[entry].addr), skb->len, DMA_TO_DEVICE);
2447 #endif
2448 pkts_compl++;
2449 bytes_compl += skb->len;
2450 dev_consume_skb_irq(skb);
2451 vp->tx_skbuff[entry] = NULL;
2452 } else {
2453 pr_debug("boomerang_interrupt: no skb!\n");
2454 }
2455 /* dev->stats.tx_packets++; Counted below. */
2456 dirty_tx++;
2457 }
2458 vp->dirty_tx = dirty_tx;
2459 if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2460 if (vortex_debug > 6)
2461 pr_debug("boomerang_interrupt: wake queue\n");
2462 netif_wake_queue (dev);
2463 }
2464 }
2465
2466 /* Check for all uncommon interrupts at once. */
2467 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2468 vortex_error(dev, status);
2469
2470 if (--work_done < 0) {
2471 pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2472 dev->name, status);
2473 /* Disable all pending interrupts. */
2474 do {
2475 vp->deferred |= status;
2476 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2477 ioaddr + EL3_CMD);
2478 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2479 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2480 /* The timer will reenable interrupts. */
2481 mod_timer(&vp->timer, jiffies + 1*HZ);
2482 break;
2483 }
2484 /* Acknowledge the IRQ. */
2485 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2486 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
2487 iowrite32(0x8000, vp->cb_fn_base + 4);
2488
2489 } while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2490 netdev_completed_queue(dev, pkts_compl, bytes_compl);
2491
2492 if (vortex_debug > 4)
2493 pr_debug("%s: exiting interrupt, status %4.4x.\n",
2494 dev->name, status);
2495 handler_exit:
2496 vp->handling_irq = 0;
2497 return IRQ_RETVAL(handled);
2498 }
2499
2500 static irqreturn_t
vortex_boomerang_interrupt(int irq,void * dev_id)2501 vortex_boomerang_interrupt(int irq, void *dev_id)
2502 {
2503 struct net_device *dev = dev_id;
2504 struct vortex_private *vp = netdev_priv(dev);
2505 unsigned long flags;
2506 irqreturn_t ret;
2507
2508 spin_lock_irqsave(&vp->lock, flags);
2509
2510 if (vp->full_bus_master_rx)
2511 ret = _boomerang_interrupt(dev->irq, dev);
2512 else
2513 ret = _vortex_interrupt(dev->irq, dev);
2514
2515 spin_unlock_irqrestore(&vp->lock, flags);
2516
2517 return ret;
2518 }
2519
vortex_rx(struct net_device * dev)2520 static int vortex_rx(struct net_device *dev)
2521 {
2522 struct vortex_private *vp = netdev_priv(dev);
2523 void __iomem *ioaddr = vp->ioaddr;
2524 int i;
2525 short rx_status;
2526
2527 if (vortex_debug > 5)
2528 pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2529 ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2530 while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2531 if (rx_status & 0x4000) { /* Error, update stats. */
2532 unsigned char rx_error = ioread8(ioaddr + RxErrors);
2533 if (vortex_debug > 2)
2534 pr_debug(" Rx error: status %2.2x.\n", rx_error);
2535 dev->stats.rx_errors++;
2536 if (rx_error & 0x01) dev->stats.rx_over_errors++;
2537 if (rx_error & 0x02) dev->stats.rx_length_errors++;
2538 if (rx_error & 0x04) dev->stats.rx_frame_errors++;
2539 if (rx_error & 0x08) dev->stats.rx_crc_errors++;
2540 if (rx_error & 0x10) dev->stats.rx_length_errors++;
2541 } else {
2542 /* The packet length: up to 4.5K!. */
2543 int pkt_len = rx_status & 0x1fff;
2544 struct sk_buff *skb;
2545
2546 skb = netdev_alloc_skb(dev, pkt_len + 5);
2547 if (vortex_debug > 4)
2548 pr_debug("Receiving packet size %d status %4.4x.\n",
2549 pkt_len, rx_status);
2550 if (skb != NULL) {
2551 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2552 /* 'skb_put()' points to the start of sk_buff data area. */
2553 if (vp->bus_master &&
2554 ! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2555 dma_addr_t dma = dma_map_single(vp->gendev, skb_put(skb, pkt_len),
2556 pkt_len, DMA_FROM_DEVICE);
2557 iowrite32(dma, ioaddr + Wn7_MasterAddr);
2558 iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2559 iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2560 while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2561 ;
2562 dma_unmap_single(vp->gendev, dma, pkt_len, DMA_FROM_DEVICE);
2563 } else {
2564 ioread32_rep(ioaddr + RX_FIFO,
2565 skb_put(skb, pkt_len),
2566 (pkt_len + 3) >> 2);
2567 }
2568 iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2569 skb->protocol = eth_type_trans(skb, dev);
2570 netif_rx(skb);
2571 dev->stats.rx_packets++;
2572 /* Wait a limited time to go to next packet. */
2573 for (i = 200; i >= 0; i--)
2574 if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2575 break;
2576 continue;
2577 } else if (vortex_debug > 0)
2578 pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2579 dev->name, pkt_len);
2580 dev->stats.rx_dropped++;
2581 }
2582 issue_and_wait(dev, RxDiscard);
2583 }
2584
2585 return 0;
2586 }
2587
2588 static int
boomerang_rx(struct net_device * dev)2589 boomerang_rx(struct net_device *dev)
2590 {
2591 struct vortex_private *vp = netdev_priv(dev);
2592 int entry = vp->cur_rx % RX_RING_SIZE;
2593 void __iomem *ioaddr = vp->ioaddr;
2594 int rx_status;
2595 int rx_work_limit = RX_RING_SIZE;
2596
2597 if (vortex_debug > 5)
2598 pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2599
2600 while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2601 if (--rx_work_limit < 0)
2602 break;
2603 if (rx_status & RxDError) { /* Error, update stats. */
2604 unsigned char rx_error = rx_status >> 16;
2605 if (vortex_debug > 2)
2606 pr_debug(" Rx error: status %2.2x.\n", rx_error);
2607 dev->stats.rx_errors++;
2608 if (rx_error & 0x01) dev->stats.rx_over_errors++;
2609 if (rx_error & 0x02) dev->stats.rx_length_errors++;
2610 if (rx_error & 0x04) dev->stats.rx_frame_errors++;
2611 if (rx_error & 0x08) dev->stats.rx_crc_errors++;
2612 if (rx_error & 0x10) dev->stats.rx_length_errors++;
2613 } else {
2614 /* The packet length: up to 4.5K!. */
2615 int pkt_len = rx_status & 0x1fff;
2616 struct sk_buff *skb, *newskb;
2617 dma_addr_t newdma;
2618 dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2619
2620 if (vortex_debug > 4)
2621 pr_debug("Receiving packet size %d status %4.4x.\n",
2622 pkt_len, rx_status);
2623
2624 /* Check if the packet is long enough to just accept without
2625 copying to a properly sized skbuff. */
2626 if (pkt_len < rx_copybreak &&
2627 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
2628 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2629 dma_sync_single_for_cpu(vp->gendev, dma, PKT_BUF_SZ, DMA_FROM_DEVICE);
2630 /* 'skb_put()' points to the start of sk_buff data area. */
2631 skb_put_data(skb, vp->rx_skbuff[entry]->data,
2632 pkt_len);
2633 dma_sync_single_for_device(vp->gendev, dma, PKT_BUF_SZ, DMA_FROM_DEVICE);
2634 vp->rx_copy++;
2635 } else {
2636 /* Pre-allocate the replacement skb. If it or its
2637 * mapping fails then recycle the buffer thats already
2638 * in place
2639 */
2640 newskb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ);
2641 if (!newskb) {
2642 dev->stats.rx_dropped++;
2643 goto clear_complete;
2644 }
2645 newdma = dma_map_single(vp->gendev, newskb->data,
2646 PKT_BUF_SZ, DMA_FROM_DEVICE);
2647 if (dma_mapping_error(vp->gendev, newdma)) {
2648 dev->stats.rx_dropped++;
2649 consume_skb(newskb);
2650 goto clear_complete;
2651 }
2652
2653 /* Pass up the skbuff already on the Rx ring. */
2654 skb = vp->rx_skbuff[entry];
2655 vp->rx_skbuff[entry] = newskb;
2656 vp->rx_ring[entry].addr = cpu_to_le32(newdma);
2657 skb_put(skb, pkt_len);
2658 dma_unmap_single(vp->gendev, dma, PKT_BUF_SZ, DMA_FROM_DEVICE);
2659 vp->rx_nocopy++;
2660 }
2661 skb->protocol = eth_type_trans(skb, dev);
2662 { /* Use hardware checksum info. */
2663 int csum_bits = rx_status & 0xee000000;
2664 if (csum_bits &&
2665 (csum_bits == (IPChksumValid | TCPChksumValid) ||
2666 csum_bits == (IPChksumValid | UDPChksumValid))) {
2667 skb->ip_summed = CHECKSUM_UNNECESSARY;
2668 vp->rx_csumhits++;
2669 }
2670 }
2671 netif_rx(skb);
2672 dev->stats.rx_packets++;
2673 }
2674
2675 clear_complete:
2676 vp->rx_ring[entry].status = 0; /* Clear complete bit. */
2677 iowrite16(UpUnstall, ioaddr + EL3_CMD);
2678 entry = (++vp->cur_rx) % RX_RING_SIZE;
2679 }
2680 return 0;
2681 }
2682
2683 static void
vortex_down(struct net_device * dev,int final_down)2684 vortex_down(struct net_device *dev, int final_down)
2685 {
2686 struct vortex_private *vp = netdev_priv(dev);
2687 void __iomem *ioaddr = vp->ioaddr;
2688
2689 netdev_reset_queue(dev);
2690 netif_stop_queue(dev);
2691
2692 del_timer_sync(&vp->timer);
2693
2694 /* Turn off statistics ASAP. We update dev->stats below. */
2695 iowrite16(StatsDisable, ioaddr + EL3_CMD);
2696
2697 /* Disable the receiver and transmitter. */
2698 iowrite16(RxDisable, ioaddr + EL3_CMD);
2699 iowrite16(TxDisable, ioaddr + EL3_CMD);
2700
2701 /* Disable receiving 802.1q tagged frames */
2702 set_8021q_mode(dev, 0);
2703
2704 if (dev->if_port == XCVR_10base2)
2705 /* Turn off thinnet power. Green! */
2706 iowrite16(StopCoax, ioaddr + EL3_CMD);
2707
2708 iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2709
2710 update_stats(ioaddr, dev);
2711 if (vp->full_bus_master_rx)
2712 iowrite32(0, ioaddr + UpListPtr);
2713 if (vp->full_bus_master_tx)
2714 iowrite32(0, ioaddr + DownListPtr);
2715
2716 if (final_down && VORTEX_PCI(vp)) {
2717 vp->pm_state_valid = 1;
2718 pci_save_state(VORTEX_PCI(vp));
2719 acpi_set_WOL(dev);
2720 }
2721 }
2722
2723 static int
vortex_close(struct net_device * dev)2724 vortex_close(struct net_device *dev)
2725 {
2726 struct vortex_private *vp = netdev_priv(dev);
2727 void __iomem *ioaddr = vp->ioaddr;
2728 int i;
2729
2730 if (netif_device_present(dev))
2731 vortex_down(dev, 1);
2732
2733 if (vortex_debug > 1) {
2734 pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2735 dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2736 pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2737 " tx_queued %d Rx pre-checksummed %d.\n",
2738 dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2739 }
2740
2741 #if DO_ZEROCOPY
2742 if (vp->rx_csumhits &&
2743 (vp->drv_flags & HAS_HWCKSM) == 0 &&
2744 (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2745 pr_warn("%s supports hardware checksums, and we're not using them!\n",
2746 dev->name);
2747 }
2748 #endif
2749
2750 free_irq(dev->irq, dev);
2751
2752 if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2753 for (i = 0; i < RX_RING_SIZE; i++)
2754 if (vp->rx_skbuff[i]) {
2755 dma_unmap_single(vp->gendev, le32_to_cpu(vp->rx_ring[i].addr),
2756 PKT_BUF_SZ, DMA_FROM_DEVICE);
2757 dev_kfree_skb(vp->rx_skbuff[i]);
2758 vp->rx_skbuff[i] = NULL;
2759 }
2760 }
2761 if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2762 for (i = 0; i < TX_RING_SIZE; i++) {
2763 if (vp->tx_skbuff[i]) {
2764 struct sk_buff *skb = vp->tx_skbuff[i];
2765 #if DO_ZEROCOPY
2766 int k;
2767
2768 for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2769 dma_unmap_single(vp->gendev,
2770 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2771 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2772 DMA_TO_DEVICE);
2773 #else
2774 dma_unmap_single(vp->gendev, le32_to_cpu(vp->tx_ring[i].addr), skb->len, DMA_TO_DEVICE);
2775 #endif
2776 dev_kfree_skb(skb);
2777 vp->tx_skbuff[i] = NULL;
2778 }
2779 }
2780 }
2781
2782 return 0;
2783 }
2784
2785 static void
dump_tx_ring(struct net_device * dev)2786 dump_tx_ring(struct net_device *dev)
2787 {
2788 if (vortex_debug > 0) {
2789 struct vortex_private *vp = netdev_priv(dev);
2790 void __iomem *ioaddr = vp->ioaddr;
2791
2792 if (vp->full_bus_master_tx) {
2793 int i;
2794 int stalled = ioread32(ioaddr + PktStatus) & 0x04; /* Possible racy. But it's only debug stuff */
2795
2796 pr_err(" Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2797 vp->full_bus_master_tx,
2798 vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2799 vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2800 pr_err(" Transmit list %8.8x vs. %p.\n",
2801 ioread32(ioaddr + DownListPtr),
2802 &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2803 issue_and_wait(dev, DownStall);
2804 for (i = 0; i < TX_RING_SIZE; i++) {
2805 unsigned int length;
2806
2807 #if DO_ZEROCOPY
2808 length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2809 #else
2810 length = le32_to_cpu(vp->tx_ring[i].length);
2811 #endif
2812 pr_err(" %d: @%p length %8.8x status %8.8x\n",
2813 i, &vp->tx_ring[i], length,
2814 le32_to_cpu(vp->tx_ring[i].status));
2815 }
2816 if (!stalled)
2817 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2818 }
2819 }
2820 }
2821
vortex_get_stats(struct net_device * dev)2822 static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2823 {
2824 struct vortex_private *vp = netdev_priv(dev);
2825 void __iomem *ioaddr = vp->ioaddr;
2826 unsigned long flags;
2827
2828 if (netif_device_present(dev)) { /* AKPM: Used to be netif_running */
2829 spin_lock_irqsave (&vp->lock, flags);
2830 update_stats(ioaddr, dev);
2831 spin_unlock_irqrestore (&vp->lock, flags);
2832 }
2833 return &dev->stats;
2834 }
2835
2836 /* Update statistics.
2837 Unlike with the EL3 we need not worry about interrupts changing
2838 the window setting from underneath us, but we must still guard
2839 against a race condition with a StatsUpdate interrupt updating the
2840 table. This is done by checking that the ASM (!) code generated uses
2841 atomic updates with '+='.
2842 */
update_stats(void __iomem * ioaddr,struct net_device * dev)2843 static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2844 {
2845 struct vortex_private *vp = netdev_priv(dev);
2846
2847 /* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2848 /* Switch to the stats window, and read everything. */
2849 dev->stats.tx_carrier_errors += window_read8(vp, 6, 0);
2850 dev->stats.tx_heartbeat_errors += window_read8(vp, 6, 1);
2851 dev->stats.tx_window_errors += window_read8(vp, 6, 4);
2852 dev->stats.rx_fifo_errors += window_read8(vp, 6, 5);
2853 dev->stats.tx_packets += window_read8(vp, 6, 6);
2854 dev->stats.tx_packets += (window_read8(vp, 6, 9) &
2855 0x30) << 4;
2856 /* Rx packets */ window_read8(vp, 6, 7); /* Must read to clear */
2857 /* Don't bother with register 9, an extension of registers 6&7.
2858 If we do use the 6&7 values the atomic update assumption above
2859 is invalid. */
2860 dev->stats.rx_bytes += window_read16(vp, 6, 10);
2861 dev->stats.tx_bytes += window_read16(vp, 6, 12);
2862 /* Extra stats for get_ethtool_stats() */
2863 vp->xstats.tx_multiple_collisions += window_read8(vp, 6, 2);
2864 vp->xstats.tx_single_collisions += window_read8(vp, 6, 3);
2865 vp->xstats.tx_deferred += window_read8(vp, 6, 8);
2866 vp->xstats.rx_bad_ssd += window_read8(vp, 4, 12);
2867
2868 dev->stats.collisions = vp->xstats.tx_multiple_collisions
2869 + vp->xstats.tx_single_collisions
2870 + vp->xstats.tx_max_collisions;
2871
2872 {
2873 u8 up = window_read8(vp, 4, 13);
2874 dev->stats.rx_bytes += (up & 0x0f) << 16;
2875 dev->stats.tx_bytes += (up & 0xf0) << 12;
2876 }
2877 }
2878
vortex_nway_reset(struct net_device * dev)2879 static int vortex_nway_reset(struct net_device *dev)
2880 {
2881 struct vortex_private *vp = netdev_priv(dev);
2882
2883 return mii_nway_restart(&vp->mii);
2884 }
2885
vortex_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)2886 static int vortex_get_link_ksettings(struct net_device *dev,
2887 struct ethtool_link_ksettings *cmd)
2888 {
2889 struct vortex_private *vp = netdev_priv(dev);
2890
2891 mii_ethtool_get_link_ksettings(&vp->mii, cmd);
2892
2893 return 0;
2894 }
2895
vortex_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)2896 static int vortex_set_link_ksettings(struct net_device *dev,
2897 const struct ethtool_link_ksettings *cmd)
2898 {
2899 struct vortex_private *vp = netdev_priv(dev);
2900
2901 return mii_ethtool_set_link_ksettings(&vp->mii, cmd);
2902 }
2903
vortex_get_msglevel(struct net_device * dev)2904 static u32 vortex_get_msglevel(struct net_device *dev)
2905 {
2906 return vortex_debug;
2907 }
2908
vortex_set_msglevel(struct net_device * dev,u32 dbg)2909 static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2910 {
2911 vortex_debug = dbg;
2912 }
2913
vortex_get_sset_count(struct net_device * dev,int sset)2914 static int vortex_get_sset_count(struct net_device *dev, int sset)
2915 {
2916 switch (sset) {
2917 case ETH_SS_STATS:
2918 return VORTEX_NUM_STATS;
2919 default:
2920 return -EOPNOTSUPP;
2921 }
2922 }
2923
vortex_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)2924 static void vortex_get_ethtool_stats(struct net_device *dev,
2925 struct ethtool_stats *stats, u64 *data)
2926 {
2927 struct vortex_private *vp = netdev_priv(dev);
2928 void __iomem *ioaddr = vp->ioaddr;
2929 unsigned long flags;
2930
2931 spin_lock_irqsave(&vp->lock, flags);
2932 update_stats(ioaddr, dev);
2933 spin_unlock_irqrestore(&vp->lock, flags);
2934
2935 data[0] = vp->xstats.tx_deferred;
2936 data[1] = vp->xstats.tx_max_collisions;
2937 data[2] = vp->xstats.tx_multiple_collisions;
2938 data[3] = vp->xstats.tx_single_collisions;
2939 data[4] = vp->xstats.rx_bad_ssd;
2940 }
2941
2942
vortex_get_strings(struct net_device * dev,u32 stringset,u8 * data)2943 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2944 {
2945 switch (stringset) {
2946 case ETH_SS_STATS:
2947 memcpy(data, ðtool_stats_keys, sizeof(ethtool_stats_keys));
2948 break;
2949 default:
2950 WARN_ON(1);
2951 break;
2952 }
2953 }
2954
vortex_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)2955 static void vortex_get_drvinfo(struct net_device *dev,
2956 struct ethtool_drvinfo *info)
2957 {
2958 struct vortex_private *vp = netdev_priv(dev);
2959
2960 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2961 if (VORTEX_PCI(vp)) {
2962 strlcpy(info->bus_info, pci_name(VORTEX_PCI(vp)),
2963 sizeof(info->bus_info));
2964 } else {
2965 if (VORTEX_EISA(vp))
2966 strlcpy(info->bus_info, dev_name(vp->gendev),
2967 sizeof(info->bus_info));
2968 else
2969 snprintf(info->bus_info, sizeof(info->bus_info),
2970 "EISA 0x%lx %d", dev->base_addr, dev->irq);
2971 }
2972 }
2973
vortex_get_wol(struct net_device * dev,struct ethtool_wolinfo * wol)2974 static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2975 {
2976 struct vortex_private *vp = netdev_priv(dev);
2977
2978 if (!VORTEX_PCI(vp))
2979 return;
2980
2981 wol->supported = WAKE_MAGIC;
2982
2983 wol->wolopts = 0;
2984 if (vp->enable_wol)
2985 wol->wolopts |= WAKE_MAGIC;
2986 }
2987
vortex_set_wol(struct net_device * dev,struct ethtool_wolinfo * wol)2988 static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2989 {
2990 struct vortex_private *vp = netdev_priv(dev);
2991
2992 if (!VORTEX_PCI(vp))
2993 return -EOPNOTSUPP;
2994
2995 if (wol->wolopts & ~WAKE_MAGIC)
2996 return -EINVAL;
2997
2998 if (wol->wolopts & WAKE_MAGIC)
2999 vp->enable_wol = 1;
3000 else
3001 vp->enable_wol = 0;
3002 acpi_set_WOL(dev);
3003
3004 return 0;
3005 }
3006
3007 static const struct ethtool_ops vortex_ethtool_ops = {
3008 .get_drvinfo = vortex_get_drvinfo,
3009 .get_strings = vortex_get_strings,
3010 .get_msglevel = vortex_get_msglevel,
3011 .set_msglevel = vortex_set_msglevel,
3012 .get_ethtool_stats = vortex_get_ethtool_stats,
3013 .get_sset_count = vortex_get_sset_count,
3014 .get_link = ethtool_op_get_link,
3015 .nway_reset = vortex_nway_reset,
3016 .get_wol = vortex_get_wol,
3017 .set_wol = vortex_set_wol,
3018 .get_ts_info = ethtool_op_get_ts_info,
3019 .get_link_ksettings = vortex_get_link_ksettings,
3020 .set_link_ksettings = vortex_set_link_ksettings,
3021 };
3022
3023 #ifdef CONFIG_PCI
3024 /*
3025 * Must power the device up to do MDIO operations
3026 */
vortex_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)3027 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3028 {
3029 int err;
3030 struct vortex_private *vp = netdev_priv(dev);
3031 pci_power_t state = 0;
3032
3033 if(VORTEX_PCI(vp))
3034 state = VORTEX_PCI(vp)->current_state;
3035
3036 /* The kernel core really should have pci_get_power_state() */
3037
3038 if(state != 0)
3039 pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3040 err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3041 if(state != 0)
3042 pci_set_power_state(VORTEX_PCI(vp), state);
3043
3044 return err;
3045 }
3046 #endif
3047
3048
3049 /* Pre-Cyclone chips have no documented multicast filter, so the only
3050 multicast setting is to receive all multicast frames. At least
3051 the chip has a very clean way to set the mode, unlike many others. */
set_rx_mode(struct net_device * dev)3052 static void set_rx_mode(struct net_device *dev)
3053 {
3054 struct vortex_private *vp = netdev_priv(dev);
3055 void __iomem *ioaddr = vp->ioaddr;
3056 int new_mode;
3057
3058 if (dev->flags & IFF_PROMISC) {
3059 if (vortex_debug > 3)
3060 pr_notice("%s: Setting promiscuous mode.\n", dev->name);
3061 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3062 } else if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
3063 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3064 } else
3065 new_mode = SetRxFilter | RxStation | RxBroadcast;
3066
3067 iowrite16(new_mode, ioaddr + EL3_CMD);
3068 }
3069
3070 #if IS_ENABLED(CONFIG_VLAN_8021Q)
3071 /* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3072 Note that this must be done after each RxReset due to some backwards
3073 compatibility logic in the Cyclone and Tornado ASICs */
3074
3075 /* The Ethernet Type used for 802.1q tagged frames */
3076 #define VLAN_ETHER_TYPE 0x8100
3077
set_8021q_mode(struct net_device * dev,int enable)3078 static void set_8021q_mode(struct net_device *dev, int enable)
3079 {
3080 struct vortex_private *vp = netdev_priv(dev);
3081 int mac_ctrl;
3082
3083 if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3084 /* cyclone and tornado chipsets can recognize 802.1q
3085 * tagged frames and treat them correctly */
3086
3087 int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */
3088 if (enable)
3089 max_pkt_size += 4; /* 802.1Q VLAN tag */
3090
3091 window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize);
3092
3093 /* set VlanEtherType to let the hardware checksumming
3094 treat tagged frames correctly */
3095 window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType);
3096 } else {
3097 /* on older cards we have to enable large frames */
3098
3099 vp->large_frames = dev->mtu > 1500 || enable;
3100
3101 mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl);
3102 if (vp->large_frames)
3103 mac_ctrl |= 0x40;
3104 else
3105 mac_ctrl &= ~0x40;
3106 window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl);
3107 }
3108 }
3109 #else
3110
set_8021q_mode(struct net_device * dev,int enable)3111 static void set_8021q_mode(struct net_device *dev, int enable)
3112 {
3113 }
3114
3115
3116 #endif
3117
3118 /* MII transceiver control section.
3119 Read and write the MII registers using software-generated serial
3120 MDIO protocol. See the MII specifications or DP83840A data sheet
3121 for details. */
3122
3123 /* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
3124 met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3125 "overclocking" issues. */
mdio_delay(struct vortex_private * vp)3126 static void mdio_delay(struct vortex_private *vp)
3127 {
3128 window_read32(vp, 4, Wn4_PhysicalMgmt);
3129 }
3130
3131 #define MDIO_SHIFT_CLK 0x01
3132 #define MDIO_DIR_WRITE 0x04
3133 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3134 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3135 #define MDIO_DATA_READ 0x02
3136 #define MDIO_ENB_IN 0x00
3137
3138 /* Generate the preamble required for initial synchronization and
3139 a few older transceivers. */
mdio_sync(struct vortex_private * vp,int bits)3140 static void mdio_sync(struct vortex_private *vp, int bits)
3141 {
3142 /* Establish sync by sending at least 32 logic ones. */
3143 while (-- bits >= 0) {
3144 window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt);
3145 mdio_delay(vp);
3146 window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK,
3147 4, Wn4_PhysicalMgmt);
3148 mdio_delay(vp);
3149 }
3150 }
3151
mdio_read(struct net_device * dev,int phy_id,int location)3152 static int mdio_read(struct net_device *dev, int phy_id, int location)
3153 {
3154 int i;
3155 struct vortex_private *vp = netdev_priv(dev);
3156 int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3157 unsigned int retval = 0;
3158
3159 spin_lock_bh(&vp->mii_lock);
3160
3161 if (mii_preamble_required)
3162 mdio_sync(vp, 32);
3163
3164 /* Shift the read command bits out. */
3165 for (i = 14; i >= 0; i--) {
3166 int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3167 window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3168 mdio_delay(vp);
3169 window_write16(vp, dataval | MDIO_SHIFT_CLK,
3170 4, Wn4_PhysicalMgmt);
3171 mdio_delay(vp);
3172 }
3173 /* Read the two transition, 16 data, and wire-idle bits. */
3174 for (i = 19; i > 0; i--) {
3175 window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3176 mdio_delay(vp);
3177 retval = (retval << 1) |
3178 ((window_read16(vp, 4, Wn4_PhysicalMgmt) &
3179 MDIO_DATA_READ) ? 1 : 0);
3180 window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3181 4, Wn4_PhysicalMgmt);
3182 mdio_delay(vp);
3183 }
3184
3185 spin_unlock_bh(&vp->mii_lock);
3186
3187 return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3188 }
3189
mdio_write(struct net_device * dev,int phy_id,int location,int value)3190 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3191 {
3192 struct vortex_private *vp = netdev_priv(dev);
3193 int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3194 int i;
3195
3196 spin_lock_bh(&vp->mii_lock);
3197
3198 if (mii_preamble_required)
3199 mdio_sync(vp, 32);
3200
3201 /* Shift the command bits out. */
3202 for (i = 31; i >= 0; i--) {
3203 int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3204 window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3205 mdio_delay(vp);
3206 window_write16(vp, dataval | MDIO_SHIFT_CLK,
3207 4, Wn4_PhysicalMgmt);
3208 mdio_delay(vp);
3209 }
3210 /* Leave the interface idle. */
3211 for (i = 1; i >= 0; i--) {
3212 window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3213 mdio_delay(vp);
3214 window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3215 4, Wn4_PhysicalMgmt);
3216 mdio_delay(vp);
3217 }
3218
3219 spin_unlock_bh(&vp->mii_lock);
3220 }
3221
3222 /* ACPI: Advanced Configuration and Power Interface. */
3223 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
acpi_set_WOL(struct net_device * dev)3224 static void acpi_set_WOL(struct net_device *dev)
3225 {
3226 struct vortex_private *vp = netdev_priv(dev);
3227 void __iomem *ioaddr = vp->ioaddr;
3228
3229 device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3230
3231 if (vp->enable_wol) {
3232 /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3233 window_write16(vp, 2, 7, 0x0c);
3234 /* The RxFilter must accept the WOL frames. */
3235 iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3236 iowrite16(RxEnable, ioaddr + EL3_CMD);
3237
3238 if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3239 pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3240
3241 vp->enable_wol = 0;
3242 return;
3243 }
3244
3245 if (VORTEX_PCI(vp)->current_state < PCI_D3hot)
3246 return;
3247
3248 /* Change the power state to D3; RxEnable doesn't take effect. */
3249 pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3250 }
3251 }
3252
3253
vortex_remove_one(struct pci_dev * pdev)3254 static void vortex_remove_one(struct pci_dev *pdev)
3255 {
3256 struct net_device *dev = pci_get_drvdata(pdev);
3257 struct vortex_private *vp;
3258
3259 if (!dev) {
3260 pr_err("vortex_remove_one called for Compaq device!\n");
3261 BUG();
3262 }
3263
3264 vp = netdev_priv(dev);
3265
3266 if (vp->cb_fn_base)
3267 pci_iounmap(pdev, vp->cb_fn_base);
3268
3269 unregister_netdev(dev);
3270
3271 pci_set_power_state(pdev, PCI_D0); /* Go active */
3272 if (vp->pm_state_valid)
3273 pci_restore_state(pdev);
3274 pci_disable_device(pdev);
3275
3276 /* Should really use issue_and_wait() here */
3277 iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3278 vp->ioaddr + EL3_CMD);
3279
3280 pci_iounmap(pdev, vp->ioaddr);
3281
3282 dma_free_coherent(&pdev->dev,
3283 sizeof(struct boom_rx_desc) * RX_RING_SIZE +
3284 sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3285 vp->rx_ring, vp->rx_ring_dma);
3286
3287 pci_release_regions(pdev);
3288
3289 free_netdev(dev);
3290 }
3291
3292
3293 static struct pci_driver vortex_driver = {
3294 .name = "3c59x",
3295 .probe = vortex_init_one,
3296 .remove = vortex_remove_one,
3297 .id_table = vortex_pci_tbl,
3298 .driver.pm = VORTEX_PM_OPS,
3299 };
3300
3301
3302 static int vortex_have_pci;
3303 static int vortex_have_eisa;
3304
3305
vortex_init(void)3306 static int __init vortex_init(void)
3307 {
3308 int pci_rc, eisa_rc;
3309
3310 pci_rc = pci_register_driver(&vortex_driver);
3311 eisa_rc = vortex_eisa_init();
3312
3313 if (pci_rc == 0)
3314 vortex_have_pci = 1;
3315 if (eisa_rc > 0)
3316 vortex_have_eisa = 1;
3317
3318 return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3319 }
3320
3321
vortex_eisa_cleanup(void)3322 static void __exit vortex_eisa_cleanup(void)
3323 {
3324 void __iomem *ioaddr;
3325
3326 #ifdef CONFIG_EISA
3327 /* Take care of the EISA devices */
3328 eisa_driver_unregister(&vortex_eisa_driver);
3329 #endif
3330
3331 if (compaq_net_device) {
3332 ioaddr = ioport_map(compaq_net_device->base_addr,
3333 VORTEX_TOTAL_SIZE);
3334
3335 unregister_netdev(compaq_net_device);
3336 iowrite16(TotalReset, ioaddr + EL3_CMD);
3337 release_region(compaq_net_device->base_addr,
3338 VORTEX_TOTAL_SIZE);
3339
3340 free_netdev(compaq_net_device);
3341 }
3342 }
3343
3344
vortex_cleanup(void)3345 static void __exit vortex_cleanup(void)
3346 {
3347 if (vortex_have_pci)
3348 pci_unregister_driver(&vortex_driver);
3349 if (vortex_have_eisa)
3350 vortex_eisa_cleanup();
3351 }
3352
3353
3354 module_init(vortex_init);
3355 module_exit(vortex_cleanup);
3356