1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Faraday FTGMAC100 Gigabit Ethernet
4 *
5 * (C) Copyright 2009-2011 Faraday Technology
6 * Po-Yu Chuang <ratbert@faraday-tech.com>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/clk.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/etherdevice.h>
14 #include <linux/ethtool.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/module.h>
18 #include <linux/netdevice.h>
19 #include <linux/of.h>
20 #include <linux/of_mdio.h>
21 #include <linux/phy.h>
22 #include <linux/platform_device.h>
23 #include <linux/property.h>
24 #include <linux/crc32.h>
25 #include <linux/if_vlan.h>
26 #include <linux/of_net.h>
27 #include <net/ip.h>
28 #include <net/ncsi.h>
29
30 #include "ftgmac100.h"
31
32 #define DRV_NAME "ftgmac100"
33 #define DRV_VERSION "0.7"
34
35 /* Arbitrary values, I am not sure the HW has limits */
36 #define MAX_RX_QUEUE_ENTRIES 1024
37 #define MAX_TX_QUEUE_ENTRIES 1024
38 #define MIN_RX_QUEUE_ENTRIES 32
39 #define MIN_TX_QUEUE_ENTRIES 32
40
41 /* Defaults */
42 #define DEF_RX_QUEUE_ENTRIES 128
43 #define DEF_TX_QUEUE_ENTRIES 128
44
45 #define MAX_PKT_SIZE 1536
46 #define RX_BUF_SIZE MAX_PKT_SIZE /* must be smaller than 0x3fff */
47
48 /* Min number of tx ring entries before stopping queue */
49 #define TX_THRESHOLD (MAX_SKB_FRAGS + 1)
50
51 #define FTGMAC_100MHZ 100000000
52 #define FTGMAC_25MHZ 25000000
53
54 struct ftgmac100 {
55 /* Registers */
56 struct resource *res;
57 void __iomem *base;
58
59 /* Rx ring */
60 unsigned int rx_q_entries;
61 struct ftgmac100_rxdes *rxdes;
62 dma_addr_t rxdes_dma;
63 struct sk_buff **rx_skbs;
64 unsigned int rx_pointer;
65 u32 rxdes0_edorr_mask;
66
67 /* Tx ring */
68 unsigned int tx_q_entries;
69 struct ftgmac100_txdes *txdes;
70 dma_addr_t txdes_dma;
71 struct sk_buff **tx_skbs;
72 unsigned int tx_clean_pointer;
73 unsigned int tx_pointer;
74 u32 txdes0_edotr_mask;
75
76 /* Used to signal the reset task of ring change request */
77 unsigned int new_rx_q_entries;
78 unsigned int new_tx_q_entries;
79
80 /* Scratch page to use when rx skb alloc fails */
81 void *rx_scratch;
82 dma_addr_t rx_scratch_dma;
83
84 /* Component structures */
85 struct net_device *netdev;
86 struct device *dev;
87 struct ncsi_dev *ndev;
88 struct napi_struct napi;
89 struct work_struct reset_task;
90 struct mii_bus *mii_bus;
91 struct clk *clk;
92
93 /* Link management */
94 int cur_speed;
95 int cur_duplex;
96 bool use_ncsi;
97
98 /* Multicast filter settings */
99 u32 maht0;
100 u32 maht1;
101
102 /* Flow control settings */
103 bool tx_pause;
104 bool rx_pause;
105 bool aneg_pause;
106
107 /* Misc */
108 bool need_mac_restart;
109 bool is_aspeed;
110 };
111
ftgmac100_reset_mac(struct ftgmac100 * priv,u32 maccr)112 static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
113 {
114 struct net_device *netdev = priv->netdev;
115 int i;
116
117 /* NOTE: reset clears all registers */
118 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
119 iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
120 priv->base + FTGMAC100_OFFSET_MACCR);
121 for (i = 0; i < 200; i++) {
122 unsigned int maccr;
123
124 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
125 if (!(maccr & FTGMAC100_MACCR_SW_RST))
126 return 0;
127
128 udelay(1);
129 }
130
131 netdev_err(netdev, "Hardware reset failed\n");
132 return -EIO;
133 }
134
ftgmac100_reset_and_config_mac(struct ftgmac100 * priv)135 static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
136 {
137 u32 maccr = 0;
138
139 switch (priv->cur_speed) {
140 case SPEED_10:
141 case 0: /* no link */
142 break;
143
144 case SPEED_100:
145 maccr |= FTGMAC100_MACCR_FAST_MODE;
146 break;
147
148 case SPEED_1000:
149 maccr |= FTGMAC100_MACCR_GIGA_MODE;
150 break;
151 default:
152 netdev_err(priv->netdev, "Unknown speed %d !\n",
153 priv->cur_speed);
154 break;
155 }
156
157 /* (Re)initialize the queue pointers */
158 priv->rx_pointer = 0;
159 priv->tx_clean_pointer = 0;
160 priv->tx_pointer = 0;
161
162 /* The doc says reset twice with 10us interval */
163 if (ftgmac100_reset_mac(priv, maccr))
164 return -EIO;
165 usleep_range(10, 1000);
166 return ftgmac100_reset_mac(priv, maccr);
167 }
168
ftgmac100_write_mac_addr(struct ftgmac100 * priv,const u8 * mac)169 static void ftgmac100_write_mac_addr(struct ftgmac100 *priv, const u8 *mac)
170 {
171 unsigned int maddr = mac[0] << 8 | mac[1];
172 unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
173
174 iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
175 iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
176 }
177
ftgmac100_initial_mac(struct ftgmac100 * priv)178 static void ftgmac100_initial_mac(struct ftgmac100 *priv)
179 {
180 u8 mac[ETH_ALEN];
181 unsigned int m;
182 unsigned int l;
183 void *addr;
184
185 addr = device_get_mac_address(priv->dev, mac, ETH_ALEN);
186 if (addr) {
187 ether_addr_copy(priv->netdev->dev_addr, mac);
188 dev_info(priv->dev, "Read MAC address %pM from device tree\n",
189 mac);
190 return;
191 }
192
193 m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
194 l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);
195
196 mac[0] = (m >> 8) & 0xff;
197 mac[1] = m & 0xff;
198 mac[2] = (l >> 24) & 0xff;
199 mac[3] = (l >> 16) & 0xff;
200 mac[4] = (l >> 8) & 0xff;
201 mac[5] = l & 0xff;
202
203 if (is_valid_ether_addr(mac)) {
204 ether_addr_copy(priv->netdev->dev_addr, mac);
205 dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
206 } else {
207 eth_hw_addr_random(priv->netdev);
208 dev_info(priv->dev, "Generated random MAC address %pM\n",
209 priv->netdev->dev_addr);
210 }
211 }
212
ftgmac100_set_mac_addr(struct net_device * dev,void * p)213 static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
214 {
215 int ret;
216
217 ret = eth_prepare_mac_addr_change(dev, p);
218 if (ret < 0)
219 return ret;
220
221 eth_commit_mac_addr_change(dev, p);
222 ftgmac100_write_mac_addr(netdev_priv(dev), dev->dev_addr);
223
224 return 0;
225 }
226
ftgmac100_config_pause(struct ftgmac100 * priv)227 static void ftgmac100_config_pause(struct ftgmac100 *priv)
228 {
229 u32 fcr = FTGMAC100_FCR_PAUSE_TIME(16);
230
231 /* Throttle tx queue when receiving pause frames */
232 if (priv->rx_pause)
233 fcr |= FTGMAC100_FCR_FC_EN;
234
235 /* Enables sending pause frames when the RX queue is past a
236 * certain threshold.
237 */
238 if (priv->tx_pause)
239 fcr |= FTGMAC100_FCR_FCTHR_EN;
240
241 iowrite32(fcr, priv->base + FTGMAC100_OFFSET_FCR);
242 }
243
ftgmac100_init_hw(struct ftgmac100 * priv)244 static void ftgmac100_init_hw(struct ftgmac100 *priv)
245 {
246 u32 reg, rfifo_sz, tfifo_sz;
247
248 /* Clear stale interrupts */
249 reg = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
250 iowrite32(reg, priv->base + FTGMAC100_OFFSET_ISR);
251
252 /* Setup RX ring buffer base */
253 iowrite32(priv->rxdes_dma, priv->base + FTGMAC100_OFFSET_RXR_BADR);
254
255 /* Setup TX ring buffer base */
256 iowrite32(priv->txdes_dma, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
257
258 /* Configure RX buffer size */
259 iowrite32(FTGMAC100_RBSR_SIZE(RX_BUF_SIZE),
260 priv->base + FTGMAC100_OFFSET_RBSR);
261
262 /* Set RX descriptor autopoll */
263 iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1),
264 priv->base + FTGMAC100_OFFSET_APTC);
265
266 /* Write MAC address */
267 ftgmac100_write_mac_addr(priv, priv->netdev->dev_addr);
268
269 /* Write multicast filter */
270 iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
271 iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
272
273 /* Configure descriptor sizes and increase burst sizes according
274 * to values in Aspeed SDK. The FIFO arbitration is enabled and
275 * the thresholds set based on the recommended values in the
276 * AST2400 specification.
277 */
278 iowrite32(FTGMAC100_DBLAC_RXDES_SIZE(2) | /* 2*8 bytes RX descs */
279 FTGMAC100_DBLAC_TXDES_SIZE(2) | /* 2*8 bytes TX descs */
280 FTGMAC100_DBLAC_RXBURST_SIZE(3) | /* 512 bytes max RX bursts */
281 FTGMAC100_DBLAC_TXBURST_SIZE(3) | /* 512 bytes max TX bursts */
282 FTGMAC100_DBLAC_RX_THR_EN | /* Enable fifo threshold arb */
283 FTGMAC100_DBLAC_RXFIFO_HTHR(6) | /* 6/8 of FIFO high threshold */
284 FTGMAC100_DBLAC_RXFIFO_LTHR(2), /* 2/8 of FIFO low threshold */
285 priv->base + FTGMAC100_OFFSET_DBLAC);
286
287 /* Interrupt mitigation configured for 1 interrupt/packet. HW interrupt
288 * mitigation doesn't seem to provide any benefit with NAPI so leave
289 * it at that.
290 */
291 iowrite32(FTGMAC100_ITC_RXINT_THR(1) |
292 FTGMAC100_ITC_TXINT_THR(1),
293 priv->base + FTGMAC100_OFFSET_ITC);
294
295 /* Configure FIFO sizes in the TPAFCR register */
296 reg = ioread32(priv->base + FTGMAC100_OFFSET_FEAR);
297 rfifo_sz = reg & 0x00000007;
298 tfifo_sz = (reg >> 3) & 0x00000007;
299 reg = ioread32(priv->base + FTGMAC100_OFFSET_TPAFCR);
300 reg &= ~0x3f000000;
301 reg |= (tfifo_sz << 27);
302 reg |= (rfifo_sz << 24);
303 iowrite32(reg, priv->base + FTGMAC100_OFFSET_TPAFCR);
304 }
305
ftgmac100_start_hw(struct ftgmac100 * priv)306 static void ftgmac100_start_hw(struct ftgmac100 *priv)
307 {
308 u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
309
310 /* Keep the original GMAC and FAST bits */
311 maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
312
313 /* Add all the main enable bits */
314 maccr |= FTGMAC100_MACCR_TXDMA_EN |
315 FTGMAC100_MACCR_RXDMA_EN |
316 FTGMAC100_MACCR_TXMAC_EN |
317 FTGMAC100_MACCR_RXMAC_EN |
318 FTGMAC100_MACCR_CRC_APD |
319 FTGMAC100_MACCR_PHY_LINK_LEVEL |
320 FTGMAC100_MACCR_RX_RUNT |
321 FTGMAC100_MACCR_RX_BROADPKT;
322
323 /* Add other bits as needed */
324 if (priv->cur_duplex == DUPLEX_FULL)
325 maccr |= FTGMAC100_MACCR_FULLDUP;
326 if (priv->netdev->flags & IFF_PROMISC)
327 maccr |= FTGMAC100_MACCR_RX_ALL;
328 if (priv->netdev->flags & IFF_ALLMULTI)
329 maccr |= FTGMAC100_MACCR_RX_MULTIPKT;
330 else if (netdev_mc_count(priv->netdev))
331 maccr |= FTGMAC100_MACCR_HT_MULTI_EN;
332
333 /* Vlan filtering enabled */
334 if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
335 maccr |= FTGMAC100_MACCR_RM_VLAN;
336
337 /* Hit the HW */
338 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
339 }
340
ftgmac100_stop_hw(struct ftgmac100 * priv)341 static void ftgmac100_stop_hw(struct ftgmac100 *priv)
342 {
343 iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
344 }
345
ftgmac100_calc_mc_hash(struct ftgmac100 * priv)346 static void ftgmac100_calc_mc_hash(struct ftgmac100 *priv)
347 {
348 struct netdev_hw_addr *ha;
349
350 priv->maht1 = 0;
351 priv->maht0 = 0;
352 netdev_for_each_mc_addr(ha, priv->netdev) {
353 u32 crc_val = ether_crc_le(ETH_ALEN, ha->addr);
354
355 crc_val = (~(crc_val >> 2)) & 0x3f;
356 if (crc_val >= 32)
357 priv->maht1 |= 1ul << (crc_val - 32);
358 else
359 priv->maht0 |= 1ul << (crc_val);
360 }
361 }
362
ftgmac100_set_rx_mode(struct net_device * netdev)363 static void ftgmac100_set_rx_mode(struct net_device *netdev)
364 {
365 struct ftgmac100 *priv = netdev_priv(netdev);
366
367 /* Setup the hash filter */
368 ftgmac100_calc_mc_hash(priv);
369
370 /* Interface down ? that's all there is to do */
371 if (!netif_running(netdev))
372 return;
373
374 /* Update the HW */
375 iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
376 iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
377
378 /* Reconfigure MACCR */
379 ftgmac100_start_hw(priv);
380 }
381
ftgmac100_alloc_rx_buf(struct ftgmac100 * priv,unsigned int entry,struct ftgmac100_rxdes * rxdes,gfp_t gfp)382 static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
383 struct ftgmac100_rxdes *rxdes, gfp_t gfp)
384 {
385 struct net_device *netdev = priv->netdev;
386 struct sk_buff *skb;
387 dma_addr_t map;
388 int err = 0;
389
390 skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
391 if (unlikely(!skb)) {
392 if (net_ratelimit())
393 netdev_warn(netdev, "failed to allocate rx skb\n");
394 err = -ENOMEM;
395 map = priv->rx_scratch_dma;
396 } else {
397 map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
398 DMA_FROM_DEVICE);
399 if (unlikely(dma_mapping_error(priv->dev, map))) {
400 if (net_ratelimit())
401 netdev_err(netdev, "failed to map rx page\n");
402 dev_kfree_skb_any(skb);
403 map = priv->rx_scratch_dma;
404 skb = NULL;
405 err = -ENOMEM;
406 }
407 }
408
409 /* Store skb */
410 priv->rx_skbs[entry] = skb;
411
412 /* Store DMA address into RX desc */
413 rxdes->rxdes3 = cpu_to_le32(map);
414
415 /* Ensure the above is ordered vs clearing the OWN bit */
416 dma_wmb();
417
418 /* Clean status (which resets own bit) */
419 if (entry == (priv->rx_q_entries - 1))
420 rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
421 else
422 rxdes->rxdes0 = 0;
423
424 return err;
425 }
426
ftgmac100_next_rx_pointer(struct ftgmac100 * priv,unsigned int pointer)427 static unsigned int ftgmac100_next_rx_pointer(struct ftgmac100 *priv,
428 unsigned int pointer)
429 {
430 return (pointer + 1) & (priv->rx_q_entries - 1);
431 }
432
ftgmac100_rx_packet_error(struct ftgmac100 * priv,u32 status)433 static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
434 {
435 struct net_device *netdev = priv->netdev;
436
437 if (status & FTGMAC100_RXDES0_RX_ERR)
438 netdev->stats.rx_errors++;
439
440 if (status & FTGMAC100_RXDES0_CRC_ERR)
441 netdev->stats.rx_crc_errors++;
442
443 if (status & (FTGMAC100_RXDES0_FTL |
444 FTGMAC100_RXDES0_RUNT |
445 FTGMAC100_RXDES0_RX_ODD_NB))
446 netdev->stats.rx_length_errors++;
447 }
448
ftgmac100_rx_packet(struct ftgmac100 * priv,int * processed)449 static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
450 {
451 struct net_device *netdev = priv->netdev;
452 struct ftgmac100_rxdes *rxdes;
453 struct sk_buff *skb;
454 unsigned int pointer, size;
455 u32 status, csum_vlan;
456 dma_addr_t map;
457
458 /* Grab next RX descriptor */
459 pointer = priv->rx_pointer;
460 rxdes = &priv->rxdes[pointer];
461
462 /* Grab descriptor status */
463 status = le32_to_cpu(rxdes->rxdes0);
464
465 /* Do we have a packet ? */
466 if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
467 return false;
468
469 /* Order subsequent reads with the test for the ready bit */
470 dma_rmb();
471
472 /* We don't cope with fragmented RX packets */
473 if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
474 !(status & FTGMAC100_RXDES0_LRS)))
475 goto drop;
476
477 /* Grab received size and csum vlan field in the descriptor */
478 size = status & FTGMAC100_RXDES0_VDBC;
479 csum_vlan = le32_to_cpu(rxdes->rxdes1);
480
481 /* Any error (other than csum offload) flagged ? */
482 if (unlikely(status & RXDES0_ANY_ERROR)) {
483 /* Correct for incorrect flagging of runt packets
484 * with vlan tags... Just accept a runt packet that
485 * has been flagged as vlan and whose size is at
486 * least 60 bytes.
487 */
488 if ((status & FTGMAC100_RXDES0_RUNT) &&
489 (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
490 (size >= 60))
491 status &= ~FTGMAC100_RXDES0_RUNT;
492
493 /* Any error still in there ? */
494 if (status & RXDES0_ANY_ERROR) {
495 ftgmac100_rx_packet_error(priv, status);
496 goto drop;
497 }
498 }
499
500 /* If the packet had no skb (failed to allocate earlier)
501 * then try to allocate one and skip
502 */
503 skb = priv->rx_skbs[pointer];
504 if (!unlikely(skb)) {
505 ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
506 goto drop;
507 }
508
509 if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
510 netdev->stats.multicast++;
511
512 /* If the HW found checksum errors, bounce it to software.
513 *
514 * If we didn't, we need to see if the packet was recognized
515 * by HW as one of the supported checksummed protocols before
516 * we accept the HW test results.
517 */
518 if (netdev->features & NETIF_F_RXCSUM) {
519 u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
520 FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
521 FTGMAC100_RXDES1_IP_CHKSUM_ERR;
522 if ((csum_vlan & err_bits) ||
523 !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
524 skb->ip_summed = CHECKSUM_NONE;
525 else
526 skb->ip_summed = CHECKSUM_UNNECESSARY;
527 }
528
529 /* Transfer received size to skb */
530 skb_put(skb, size);
531
532 /* Extract vlan tag */
533 if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
534 (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL))
535 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
536 csum_vlan & 0xffff);
537
538 /* Tear down DMA mapping, do necessary cache management */
539 map = le32_to_cpu(rxdes->rxdes3);
540
541 #if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
542 /* When we don't have an iommu, we can save cycles by not
543 * invalidating the cache for the part of the packet that
544 * wasn't received.
545 */
546 dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
547 #else
548 dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
549 #endif
550
551
552 /* Resplenish rx ring */
553 ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
554 priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
555
556 skb->protocol = eth_type_trans(skb, netdev);
557
558 netdev->stats.rx_packets++;
559 netdev->stats.rx_bytes += size;
560
561 /* push packet to protocol stack */
562 if (skb->ip_summed == CHECKSUM_NONE)
563 netif_receive_skb(skb);
564 else
565 napi_gro_receive(&priv->napi, skb);
566
567 (*processed)++;
568 return true;
569
570 drop:
571 /* Clean rxdes0 (which resets own bit) */
572 rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
573 priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
574 netdev->stats.rx_dropped++;
575 return true;
576 }
577
ftgmac100_base_tx_ctlstat(struct ftgmac100 * priv,unsigned int index)578 static u32 ftgmac100_base_tx_ctlstat(struct ftgmac100 *priv,
579 unsigned int index)
580 {
581 if (index == (priv->tx_q_entries - 1))
582 return priv->txdes0_edotr_mask;
583 else
584 return 0;
585 }
586
ftgmac100_next_tx_pointer(struct ftgmac100 * priv,unsigned int pointer)587 static unsigned int ftgmac100_next_tx_pointer(struct ftgmac100 *priv,
588 unsigned int pointer)
589 {
590 return (pointer + 1) & (priv->tx_q_entries - 1);
591 }
592
ftgmac100_tx_buf_avail(struct ftgmac100 * priv)593 static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
594 {
595 /* Returns the number of available slots in the TX queue
596 *
597 * This always leaves one free slot so we don't have to
598 * worry about empty vs. full, and this simplifies the
599 * test for ftgmac100_tx_buf_cleanable() below
600 */
601 return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
602 (priv->tx_q_entries - 1);
603 }
604
ftgmac100_tx_buf_cleanable(struct ftgmac100 * priv)605 static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
606 {
607 return priv->tx_pointer != priv->tx_clean_pointer;
608 }
609
ftgmac100_free_tx_packet(struct ftgmac100 * priv,unsigned int pointer,struct sk_buff * skb,struct ftgmac100_txdes * txdes,u32 ctl_stat)610 static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
611 unsigned int pointer,
612 struct sk_buff *skb,
613 struct ftgmac100_txdes *txdes,
614 u32 ctl_stat)
615 {
616 dma_addr_t map = le32_to_cpu(txdes->txdes3);
617 size_t len;
618
619 if (ctl_stat & FTGMAC100_TXDES0_FTS) {
620 len = skb_headlen(skb);
621 dma_unmap_single(priv->dev, map, len, DMA_TO_DEVICE);
622 } else {
623 len = FTGMAC100_TXDES0_TXBUF_SIZE(ctl_stat);
624 dma_unmap_page(priv->dev, map, len, DMA_TO_DEVICE);
625 }
626
627 /* Free SKB on last segment */
628 if (ctl_stat & FTGMAC100_TXDES0_LTS)
629 dev_kfree_skb(skb);
630 priv->tx_skbs[pointer] = NULL;
631 }
632
ftgmac100_tx_complete_packet(struct ftgmac100 * priv)633 static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
634 {
635 struct net_device *netdev = priv->netdev;
636 struct ftgmac100_txdes *txdes;
637 struct sk_buff *skb;
638 unsigned int pointer;
639 u32 ctl_stat;
640
641 pointer = priv->tx_clean_pointer;
642 txdes = &priv->txdes[pointer];
643
644 ctl_stat = le32_to_cpu(txdes->txdes0);
645 if (ctl_stat & FTGMAC100_TXDES0_TXDMA_OWN)
646 return false;
647
648 skb = priv->tx_skbs[pointer];
649 netdev->stats.tx_packets++;
650 netdev->stats.tx_bytes += skb->len;
651 ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
652 txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
653
654 priv->tx_clean_pointer = ftgmac100_next_tx_pointer(priv, pointer);
655
656 return true;
657 }
658
ftgmac100_tx_complete(struct ftgmac100 * priv)659 static void ftgmac100_tx_complete(struct ftgmac100 *priv)
660 {
661 struct net_device *netdev = priv->netdev;
662
663 /* Process all completed packets */
664 while (ftgmac100_tx_buf_cleanable(priv) &&
665 ftgmac100_tx_complete_packet(priv))
666 ;
667
668 /* Restart queue if needed */
669 smp_mb();
670 if (unlikely(netif_queue_stopped(netdev) &&
671 ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
672 struct netdev_queue *txq;
673
674 txq = netdev_get_tx_queue(netdev, 0);
675 __netif_tx_lock(txq, smp_processor_id());
676 if (netif_queue_stopped(netdev) &&
677 ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
678 netif_wake_queue(netdev);
679 __netif_tx_unlock(txq);
680 }
681 }
682
ftgmac100_prep_tx_csum(struct sk_buff * skb,u32 * csum_vlan)683 static bool ftgmac100_prep_tx_csum(struct sk_buff *skb, u32 *csum_vlan)
684 {
685 if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
686 u8 ip_proto = ip_hdr(skb)->protocol;
687
688 *csum_vlan |= FTGMAC100_TXDES1_IP_CHKSUM;
689 switch(ip_proto) {
690 case IPPROTO_TCP:
691 *csum_vlan |= FTGMAC100_TXDES1_TCP_CHKSUM;
692 return true;
693 case IPPROTO_UDP:
694 *csum_vlan |= FTGMAC100_TXDES1_UDP_CHKSUM;
695 return true;
696 case IPPROTO_IP:
697 return true;
698 }
699 }
700 return skb_checksum_help(skb) == 0;
701 }
702
ftgmac100_hard_start_xmit(struct sk_buff * skb,struct net_device * netdev)703 static netdev_tx_t ftgmac100_hard_start_xmit(struct sk_buff *skb,
704 struct net_device *netdev)
705 {
706 struct ftgmac100 *priv = netdev_priv(netdev);
707 struct ftgmac100_txdes *txdes, *first;
708 unsigned int pointer, nfrags, len, i, j;
709 u32 f_ctl_stat, ctl_stat, csum_vlan;
710 dma_addr_t map;
711
712 /* The HW doesn't pad small frames */
713 if (eth_skb_pad(skb)) {
714 netdev->stats.tx_dropped++;
715 return NETDEV_TX_OK;
716 }
717
718 /* Reject oversize packets */
719 if (unlikely(skb->len > MAX_PKT_SIZE)) {
720 if (net_ratelimit())
721 netdev_dbg(netdev, "tx packet too big\n");
722 goto drop;
723 }
724
725 /* Do we have a limit on #fragments ? I yet have to get a reply
726 * from Aspeed. If there's one I haven't hit it.
727 */
728 nfrags = skb_shinfo(skb)->nr_frags;
729
730 /* Setup HW checksumming */
731 csum_vlan = 0;
732 if (skb->ip_summed == CHECKSUM_PARTIAL &&
733 !ftgmac100_prep_tx_csum(skb, &csum_vlan))
734 goto drop;
735
736 /* Add VLAN tag */
737 if (skb_vlan_tag_present(skb)) {
738 csum_vlan |= FTGMAC100_TXDES1_INS_VLANTAG;
739 csum_vlan |= skb_vlan_tag_get(skb) & 0xffff;
740 }
741
742 /* Get header len */
743 len = skb_headlen(skb);
744
745 /* Map the packet head */
746 map = dma_map_single(priv->dev, skb->data, len, DMA_TO_DEVICE);
747 if (dma_mapping_error(priv->dev, map)) {
748 if (net_ratelimit())
749 netdev_err(netdev, "map tx packet head failed\n");
750 goto drop;
751 }
752
753 /* Grab the next free tx descriptor */
754 pointer = priv->tx_pointer;
755 txdes = first = &priv->txdes[pointer];
756
757 /* Setup it up with the packet head. Don't write the head to the
758 * ring just yet
759 */
760 priv->tx_skbs[pointer] = skb;
761 f_ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
762 f_ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
763 f_ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
764 f_ctl_stat |= FTGMAC100_TXDES0_FTS;
765 if (nfrags == 0)
766 f_ctl_stat |= FTGMAC100_TXDES0_LTS;
767 txdes->txdes3 = cpu_to_le32(map);
768 txdes->txdes1 = cpu_to_le32(csum_vlan);
769
770 /* Next descriptor */
771 pointer = ftgmac100_next_tx_pointer(priv, pointer);
772
773 /* Add the fragments */
774 for (i = 0; i < nfrags; i++) {
775 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
776
777 len = skb_frag_size(frag);
778
779 /* Map it */
780 map = skb_frag_dma_map(priv->dev, frag, 0, len,
781 DMA_TO_DEVICE);
782 if (dma_mapping_error(priv->dev, map))
783 goto dma_err;
784
785 /* Setup descriptor */
786 priv->tx_skbs[pointer] = skb;
787 txdes = &priv->txdes[pointer];
788 ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
789 ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
790 ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
791 if (i == (nfrags - 1))
792 ctl_stat |= FTGMAC100_TXDES0_LTS;
793 txdes->txdes0 = cpu_to_le32(ctl_stat);
794 txdes->txdes1 = 0;
795 txdes->txdes3 = cpu_to_le32(map);
796
797 /* Next one */
798 pointer = ftgmac100_next_tx_pointer(priv, pointer);
799 }
800
801 /* Order the previous packet and descriptor udpates
802 * before setting the OWN bit on the first descriptor.
803 */
804 dma_wmb();
805 first->txdes0 = cpu_to_le32(f_ctl_stat);
806
807 /* Update next TX pointer */
808 priv->tx_pointer = pointer;
809
810 /* If there isn't enough room for all the fragments of a new packet
811 * in the TX ring, stop the queue. The sequence below is race free
812 * vs. a concurrent restart in ftgmac100_poll()
813 */
814 if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
815 netif_stop_queue(netdev);
816 /* Order the queue stop with the test below */
817 smp_mb();
818 if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
819 netif_wake_queue(netdev);
820 }
821
822 /* Poke transmitter to read the updated TX descriptors */
823 iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
824
825 return NETDEV_TX_OK;
826
827 dma_err:
828 if (net_ratelimit())
829 netdev_err(netdev, "map tx fragment failed\n");
830
831 /* Free head */
832 pointer = priv->tx_pointer;
833 ftgmac100_free_tx_packet(priv, pointer, skb, first, f_ctl_stat);
834 first->txdes0 = cpu_to_le32(f_ctl_stat & priv->txdes0_edotr_mask);
835
836 /* Then all fragments */
837 for (j = 0; j < i; j++) {
838 pointer = ftgmac100_next_tx_pointer(priv, pointer);
839 txdes = &priv->txdes[pointer];
840 ctl_stat = le32_to_cpu(txdes->txdes0);
841 ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
842 txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
843 }
844
845 /* This cannot be reached if we successfully mapped the
846 * last fragment, so we know ftgmac100_free_tx_packet()
847 * hasn't freed the skb yet.
848 */
849 drop:
850 /* Drop the packet */
851 dev_kfree_skb_any(skb);
852 netdev->stats.tx_dropped++;
853
854 return NETDEV_TX_OK;
855 }
856
ftgmac100_free_buffers(struct ftgmac100 * priv)857 static void ftgmac100_free_buffers(struct ftgmac100 *priv)
858 {
859 int i;
860
861 /* Free all RX buffers */
862 for (i = 0; i < priv->rx_q_entries; i++) {
863 struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
864 struct sk_buff *skb = priv->rx_skbs[i];
865 dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
866
867 if (!skb)
868 continue;
869
870 priv->rx_skbs[i] = NULL;
871 dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
872 dev_kfree_skb_any(skb);
873 }
874
875 /* Free all TX buffers */
876 for (i = 0; i < priv->tx_q_entries; i++) {
877 struct ftgmac100_txdes *txdes = &priv->txdes[i];
878 struct sk_buff *skb = priv->tx_skbs[i];
879
880 if (!skb)
881 continue;
882 ftgmac100_free_tx_packet(priv, i, skb, txdes,
883 le32_to_cpu(txdes->txdes0));
884 }
885 }
886
ftgmac100_free_rings(struct ftgmac100 * priv)887 static void ftgmac100_free_rings(struct ftgmac100 *priv)
888 {
889 /* Free skb arrays */
890 kfree(priv->rx_skbs);
891 kfree(priv->tx_skbs);
892
893 /* Free descriptors */
894 if (priv->rxdes)
895 dma_free_coherent(priv->dev, MAX_RX_QUEUE_ENTRIES *
896 sizeof(struct ftgmac100_rxdes),
897 priv->rxdes, priv->rxdes_dma);
898 priv->rxdes = NULL;
899
900 if (priv->txdes)
901 dma_free_coherent(priv->dev, MAX_TX_QUEUE_ENTRIES *
902 sizeof(struct ftgmac100_txdes),
903 priv->txdes, priv->txdes_dma);
904 priv->txdes = NULL;
905
906 /* Free scratch packet buffer */
907 if (priv->rx_scratch)
908 dma_free_coherent(priv->dev, RX_BUF_SIZE,
909 priv->rx_scratch, priv->rx_scratch_dma);
910 }
911
ftgmac100_alloc_rings(struct ftgmac100 * priv)912 static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
913 {
914 /* Allocate skb arrays */
915 priv->rx_skbs = kcalloc(MAX_RX_QUEUE_ENTRIES, sizeof(void *),
916 GFP_KERNEL);
917 if (!priv->rx_skbs)
918 return -ENOMEM;
919 priv->tx_skbs = kcalloc(MAX_TX_QUEUE_ENTRIES, sizeof(void *),
920 GFP_KERNEL);
921 if (!priv->tx_skbs)
922 return -ENOMEM;
923
924 /* Allocate descriptors */
925 priv->rxdes = dma_alloc_coherent(priv->dev,
926 MAX_RX_QUEUE_ENTRIES * sizeof(struct ftgmac100_rxdes),
927 &priv->rxdes_dma, GFP_KERNEL);
928 if (!priv->rxdes)
929 return -ENOMEM;
930 priv->txdes = dma_alloc_coherent(priv->dev,
931 MAX_TX_QUEUE_ENTRIES * sizeof(struct ftgmac100_txdes),
932 &priv->txdes_dma, GFP_KERNEL);
933 if (!priv->txdes)
934 return -ENOMEM;
935
936 /* Allocate scratch packet buffer */
937 priv->rx_scratch = dma_alloc_coherent(priv->dev,
938 RX_BUF_SIZE,
939 &priv->rx_scratch_dma,
940 GFP_KERNEL);
941 if (!priv->rx_scratch)
942 return -ENOMEM;
943
944 return 0;
945 }
946
ftgmac100_init_rings(struct ftgmac100 * priv)947 static void ftgmac100_init_rings(struct ftgmac100 *priv)
948 {
949 struct ftgmac100_rxdes *rxdes = NULL;
950 struct ftgmac100_txdes *txdes = NULL;
951 int i;
952
953 /* Update entries counts */
954 priv->rx_q_entries = priv->new_rx_q_entries;
955 priv->tx_q_entries = priv->new_tx_q_entries;
956
957 if (WARN_ON(priv->rx_q_entries < MIN_RX_QUEUE_ENTRIES))
958 return;
959
960 /* Initialize RX ring */
961 for (i = 0; i < priv->rx_q_entries; i++) {
962 rxdes = &priv->rxdes[i];
963 rxdes->rxdes0 = 0;
964 rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
965 }
966 /* Mark the end of the ring */
967 rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
968
969 if (WARN_ON(priv->tx_q_entries < MIN_RX_QUEUE_ENTRIES))
970 return;
971
972 /* Initialize TX ring */
973 for (i = 0; i < priv->tx_q_entries; i++) {
974 txdes = &priv->txdes[i];
975 txdes->txdes0 = 0;
976 }
977 txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
978 }
979
ftgmac100_alloc_rx_buffers(struct ftgmac100 * priv)980 static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
981 {
982 int i;
983
984 for (i = 0; i < priv->rx_q_entries; i++) {
985 struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
986
987 if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
988 return -ENOMEM;
989 }
990 return 0;
991 }
992
ftgmac100_adjust_link(struct net_device * netdev)993 static void ftgmac100_adjust_link(struct net_device *netdev)
994 {
995 struct ftgmac100 *priv = netdev_priv(netdev);
996 struct phy_device *phydev = netdev->phydev;
997 bool tx_pause, rx_pause;
998 int new_speed;
999
1000 /* We store "no link" as speed 0 */
1001 if (!phydev->link)
1002 new_speed = 0;
1003 else
1004 new_speed = phydev->speed;
1005
1006 /* Grab pause settings from PHY if configured to do so */
1007 if (priv->aneg_pause) {
1008 rx_pause = tx_pause = phydev->pause;
1009 if (phydev->asym_pause)
1010 tx_pause = !rx_pause;
1011 } else {
1012 rx_pause = priv->rx_pause;
1013 tx_pause = priv->tx_pause;
1014 }
1015
1016 /* Link hasn't changed, do nothing */
1017 if (phydev->speed == priv->cur_speed &&
1018 phydev->duplex == priv->cur_duplex &&
1019 rx_pause == priv->rx_pause &&
1020 tx_pause == priv->tx_pause)
1021 return;
1022
1023 /* Print status if we have a link or we had one and just lost it,
1024 * don't print otherwise.
1025 */
1026 if (new_speed || priv->cur_speed)
1027 phy_print_status(phydev);
1028
1029 priv->cur_speed = new_speed;
1030 priv->cur_duplex = phydev->duplex;
1031 priv->rx_pause = rx_pause;
1032 priv->tx_pause = tx_pause;
1033
1034 /* Link is down, do nothing else */
1035 if (!new_speed)
1036 return;
1037
1038 /* Disable all interrupts */
1039 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1040
1041 /* Reset the adapter asynchronously */
1042 schedule_work(&priv->reset_task);
1043 }
1044
ftgmac100_mii_probe(struct ftgmac100 * priv,phy_interface_t intf)1045 static int ftgmac100_mii_probe(struct ftgmac100 *priv, phy_interface_t intf)
1046 {
1047 struct net_device *netdev = priv->netdev;
1048 struct phy_device *phydev;
1049
1050 phydev = phy_find_first(priv->mii_bus);
1051 if (!phydev) {
1052 netdev_info(netdev, "%s: no PHY found\n", netdev->name);
1053 return -ENODEV;
1054 }
1055
1056 phydev = phy_connect(netdev, phydev_name(phydev),
1057 &ftgmac100_adjust_link, intf);
1058
1059 if (IS_ERR(phydev)) {
1060 netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
1061 return PTR_ERR(phydev);
1062 }
1063
1064 /* Indicate that we support PAUSE frames (see comment in
1065 * Documentation/networking/phy.rst)
1066 */
1067 phy_support_asym_pause(phydev);
1068
1069 /* Display what we found */
1070 phy_attached_info(phydev);
1071
1072 return 0;
1073 }
1074
ftgmac100_mdiobus_read(struct mii_bus * bus,int phy_addr,int regnum)1075 static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
1076 {
1077 struct net_device *netdev = bus->priv;
1078 struct ftgmac100 *priv = netdev_priv(netdev);
1079 unsigned int phycr;
1080 int i;
1081
1082 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1083
1084 /* preserve MDC cycle threshold */
1085 phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1086
1087 phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1088 FTGMAC100_PHYCR_REGAD(regnum) |
1089 FTGMAC100_PHYCR_MIIRD;
1090
1091 iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1092
1093 for (i = 0; i < 10; i++) {
1094 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1095
1096 if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
1097 int data;
1098
1099 data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
1100 return FTGMAC100_PHYDATA_MIIRDATA(data);
1101 }
1102
1103 udelay(100);
1104 }
1105
1106 netdev_err(netdev, "mdio read timed out\n");
1107 return -EIO;
1108 }
1109
ftgmac100_mdiobus_write(struct mii_bus * bus,int phy_addr,int regnum,u16 value)1110 static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
1111 int regnum, u16 value)
1112 {
1113 struct net_device *netdev = bus->priv;
1114 struct ftgmac100 *priv = netdev_priv(netdev);
1115 unsigned int phycr;
1116 int data;
1117 int i;
1118
1119 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1120
1121 /* preserve MDC cycle threshold */
1122 phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1123
1124 phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1125 FTGMAC100_PHYCR_REGAD(regnum) |
1126 FTGMAC100_PHYCR_MIIWR;
1127
1128 data = FTGMAC100_PHYDATA_MIIWDATA(value);
1129
1130 iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
1131 iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1132
1133 for (i = 0; i < 10; i++) {
1134 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1135
1136 if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
1137 return 0;
1138
1139 udelay(100);
1140 }
1141
1142 netdev_err(netdev, "mdio write timed out\n");
1143 return -EIO;
1144 }
1145
ftgmac100_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * info)1146 static void ftgmac100_get_drvinfo(struct net_device *netdev,
1147 struct ethtool_drvinfo *info)
1148 {
1149 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1150 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1151 strlcpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
1152 }
1153
ftgmac100_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ering)1154 static void ftgmac100_get_ringparam(struct net_device *netdev,
1155 struct ethtool_ringparam *ering)
1156 {
1157 struct ftgmac100 *priv = netdev_priv(netdev);
1158
1159 memset(ering, 0, sizeof(*ering));
1160 ering->rx_max_pending = MAX_RX_QUEUE_ENTRIES;
1161 ering->tx_max_pending = MAX_TX_QUEUE_ENTRIES;
1162 ering->rx_pending = priv->rx_q_entries;
1163 ering->tx_pending = priv->tx_q_entries;
1164 }
1165
ftgmac100_set_ringparam(struct net_device * netdev,struct ethtool_ringparam * ering)1166 static int ftgmac100_set_ringparam(struct net_device *netdev,
1167 struct ethtool_ringparam *ering)
1168 {
1169 struct ftgmac100 *priv = netdev_priv(netdev);
1170
1171 if (ering->rx_pending > MAX_RX_QUEUE_ENTRIES ||
1172 ering->tx_pending > MAX_TX_QUEUE_ENTRIES ||
1173 ering->rx_pending < MIN_RX_QUEUE_ENTRIES ||
1174 ering->tx_pending < MIN_TX_QUEUE_ENTRIES ||
1175 !is_power_of_2(ering->rx_pending) ||
1176 !is_power_of_2(ering->tx_pending))
1177 return -EINVAL;
1178
1179 priv->new_rx_q_entries = ering->rx_pending;
1180 priv->new_tx_q_entries = ering->tx_pending;
1181 if (netif_running(netdev))
1182 schedule_work(&priv->reset_task);
1183
1184 return 0;
1185 }
1186
ftgmac100_get_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * pause)1187 static void ftgmac100_get_pauseparam(struct net_device *netdev,
1188 struct ethtool_pauseparam *pause)
1189 {
1190 struct ftgmac100 *priv = netdev_priv(netdev);
1191
1192 pause->autoneg = priv->aneg_pause;
1193 pause->tx_pause = priv->tx_pause;
1194 pause->rx_pause = priv->rx_pause;
1195 }
1196
ftgmac100_set_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * pause)1197 static int ftgmac100_set_pauseparam(struct net_device *netdev,
1198 struct ethtool_pauseparam *pause)
1199 {
1200 struct ftgmac100 *priv = netdev_priv(netdev);
1201 struct phy_device *phydev = netdev->phydev;
1202
1203 priv->aneg_pause = pause->autoneg;
1204 priv->tx_pause = pause->tx_pause;
1205 priv->rx_pause = pause->rx_pause;
1206
1207 if (phydev)
1208 phy_set_asym_pause(phydev, pause->rx_pause, pause->tx_pause);
1209
1210 if (netif_running(netdev)) {
1211 if (!(phydev && priv->aneg_pause))
1212 ftgmac100_config_pause(priv);
1213 }
1214
1215 return 0;
1216 }
1217
1218 static const struct ethtool_ops ftgmac100_ethtool_ops = {
1219 .get_drvinfo = ftgmac100_get_drvinfo,
1220 .get_link = ethtool_op_get_link,
1221 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1222 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1223 .nway_reset = phy_ethtool_nway_reset,
1224 .get_ringparam = ftgmac100_get_ringparam,
1225 .set_ringparam = ftgmac100_set_ringparam,
1226 .get_pauseparam = ftgmac100_get_pauseparam,
1227 .set_pauseparam = ftgmac100_set_pauseparam,
1228 };
1229
ftgmac100_interrupt(int irq,void * dev_id)1230 static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
1231 {
1232 struct net_device *netdev = dev_id;
1233 struct ftgmac100 *priv = netdev_priv(netdev);
1234 unsigned int status, new_mask = FTGMAC100_INT_BAD;
1235
1236 /* Fetch and clear interrupt bits, process abnormal ones */
1237 status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1238 iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
1239 if (unlikely(status & FTGMAC100_INT_BAD)) {
1240
1241 /* RX buffer unavailable */
1242 if (status & FTGMAC100_INT_NO_RXBUF)
1243 netdev->stats.rx_over_errors++;
1244
1245 /* received packet lost due to RX FIFO full */
1246 if (status & FTGMAC100_INT_RPKT_LOST)
1247 netdev->stats.rx_fifo_errors++;
1248
1249 /* sent packet lost due to excessive TX collision */
1250 if (status & FTGMAC100_INT_XPKT_LOST)
1251 netdev->stats.tx_fifo_errors++;
1252
1253 /* AHB error -> Reset the chip */
1254 if (status & FTGMAC100_INT_AHB_ERR) {
1255 if (net_ratelimit())
1256 netdev_warn(netdev,
1257 "AHB bus error ! Resetting chip.\n");
1258 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1259 schedule_work(&priv->reset_task);
1260 return IRQ_HANDLED;
1261 }
1262
1263 /* We may need to restart the MAC after such errors, delay
1264 * this until after we have freed some Rx buffers though
1265 */
1266 priv->need_mac_restart = true;
1267
1268 /* Disable those errors until we restart */
1269 new_mask &= ~status;
1270 }
1271
1272 /* Only enable "bad" interrupts while NAPI is on */
1273 iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);
1274
1275 /* Schedule NAPI bh */
1276 napi_schedule_irqoff(&priv->napi);
1277
1278 return IRQ_HANDLED;
1279 }
1280
ftgmac100_check_rx(struct ftgmac100 * priv)1281 static bool ftgmac100_check_rx(struct ftgmac100 *priv)
1282 {
1283 struct ftgmac100_rxdes *rxdes = &priv->rxdes[priv->rx_pointer];
1284
1285 /* Do we have a packet ? */
1286 return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
1287 }
1288
ftgmac100_poll(struct napi_struct * napi,int budget)1289 static int ftgmac100_poll(struct napi_struct *napi, int budget)
1290 {
1291 struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1292 int work_done = 0;
1293 bool more;
1294
1295 /* Handle TX completions */
1296 if (ftgmac100_tx_buf_cleanable(priv))
1297 ftgmac100_tx_complete(priv);
1298
1299 /* Handle RX packets */
1300 do {
1301 more = ftgmac100_rx_packet(priv, &work_done);
1302 } while (more && work_done < budget);
1303
1304
1305 /* The interrupt is telling us to kick the MAC back to life
1306 * after an RX overflow
1307 */
1308 if (unlikely(priv->need_mac_restart)) {
1309 ftgmac100_start_hw(priv);
1310
1311 /* Re-enable "bad" interrupts */
1312 iowrite32(FTGMAC100_INT_BAD,
1313 priv->base + FTGMAC100_OFFSET_IER);
1314 }
1315
1316 /* As long as we are waiting for transmit packets to be
1317 * completed we keep NAPI going
1318 */
1319 if (ftgmac100_tx_buf_cleanable(priv))
1320 work_done = budget;
1321
1322 if (work_done < budget) {
1323 /* We are about to re-enable all interrupts. However
1324 * the HW has been latching RX/TX packet interrupts while
1325 * they were masked. So we clear them first, then we need
1326 * to re-check if there's something to process
1327 */
1328 iowrite32(FTGMAC100_INT_RXTX,
1329 priv->base + FTGMAC100_OFFSET_ISR);
1330
1331 /* Push the above (and provides a barrier vs. subsequent
1332 * reads of the descriptor).
1333 */
1334 ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1335
1336 /* Check RX and TX descriptors for more work to do */
1337 if (ftgmac100_check_rx(priv) ||
1338 ftgmac100_tx_buf_cleanable(priv))
1339 return budget;
1340
1341 /* deschedule NAPI */
1342 napi_complete(napi);
1343
1344 /* enable all interrupts */
1345 iowrite32(FTGMAC100_INT_ALL,
1346 priv->base + FTGMAC100_OFFSET_IER);
1347 }
1348
1349 return work_done;
1350 }
1351
ftgmac100_init_all(struct ftgmac100 * priv,bool ignore_alloc_err)1352 static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
1353 {
1354 int err = 0;
1355
1356 /* Re-init descriptors (adjust queue sizes) */
1357 ftgmac100_init_rings(priv);
1358
1359 /* Realloc rx descriptors */
1360 err = ftgmac100_alloc_rx_buffers(priv);
1361 if (err && !ignore_alloc_err)
1362 return err;
1363
1364 /* Reinit and restart HW */
1365 ftgmac100_init_hw(priv);
1366 ftgmac100_config_pause(priv);
1367 ftgmac100_start_hw(priv);
1368
1369 /* Re-enable the device */
1370 napi_enable(&priv->napi);
1371 netif_start_queue(priv->netdev);
1372
1373 /* Enable all interrupts */
1374 iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1375
1376 return err;
1377 }
1378
ftgmac100_reset_task(struct work_struct * work)1379 static void ftgmac100_reset_task(struct work_struct *work)
1380 {
1381 struct ftgmac100 *priv = container_of(work, struct ftgmac100,
1382 reset_task);
1383 struct net_device *netdev = priv->netdev;
1384 int err;
1385
1386 netdev_dbg(netdev, "Resetting NIC...\n");
1387
1388 /* Lock the world */
1389 rtnl_lock();
1390 if (netdev->phydev)
1391 mutex_lock(&netdev->phydev->lock);
1392 if (priv->mii_bus)
1393 mutex_lock(&priv->mii_bus->mdio_lock);
1394
1395
1396 /* Check if the interface is still up */
1397 if (!netif_running(netdev))
1398 goto bail;
1399
1400 /* Stop the network stack */
1401 netif_trans_update(netdev);
1402 napi_disable(&priv->napi);
1403 netif_tx_disable(netdev);
1404
1405 /* Stop and reset the MAC */
1406 ftgmac100_stop_hw(priv);
1407 err = ftgmac100_reset_and_config_mac(priv);
1408 if (err) {
1409 /* Not much we can do ... it might come back... */
1410 netdev_err(netdev, "attempting to continue...\n");
1411 }
1412
1413 /* Free all rx and tx buffers */
1414 ftgmac100_free_buffers(priv);
1415
1416 /* Setup everything again and restart chip */
1417 ftgmac100_init_all(priv, true);
1418
1419 netdev_dbg(netdev, "Reset done !\n");
1420 bail:
1421 if (priv->mii_bus)
1422 mutex_unlock(&priv->mii_bus->mdio_lock);
1423 if (netdev->phydev)
1424 mutex_unlock(&netdev->phydev->lock);
1425 rtnl_unlock();
1426 }
1427
ftgmac100_open(struct net_device * netdev)1428 static int ftgmac100_open(struct net_device *netdev)
1429 {
1430 struct ftgmac100 *priv = netdev_priv(netdev);
1431 int err;
1432
1433 /* Allocate ring buffers */
1434 err = ftgmac100_alloc_rings(priv);
1435 if (err) {
1436 netdev_err(netdev, "Failed to allocate descriptors\n");
1437 return err;
1438 }
1439
1440 /* When using NC-SI we force the speed to 100Mbit/s full duplex,
1441 *
1442 * Otherwise we leave it set to 0 (no link), the link
1443 * message from the PHY layer will handle setting it up to
1444 * something else if needed.
1445 */
1446 if (priv->use_ncsi) {
1447 priv->cur_duplex = DUPLEX_FULL;
1448 priv->cur_speed = SPEED_100;
1449 } else {
1450 priv->cur_duplex = 0;
1451 priv->cur_speed = 0;
1452 }
1453
1454 /* Reset the hardware */
1455 err = ftgmac100_reset_and_config_mac(priv);
1456 if (err)
1457 goto err_hw;
1458
1459 /* Initialize NAPI */
1460 netif_napi_add(netdev, &priv->napi, ftgmac100_poll, 64);
1461
1462 /* Grab our interrupt */
1463 err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
1464 if (err) {
1465 netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
1466 goto err_irq;
1467 }
1468
1469 /* Start things up */
1470 err = ftgmac100_init_all(priv, false);
1471 if (err) {
1472 netdev_err(netdev, "Failed to allocate packet buffers\n");
1473 goto err_alloc;
1474 }
1475
1476 if (netdev->phydev) {
1477 /* If we have a PHY, start polling */
1478 phy_start(netdev->phydev);
1479 } else if (priv->use_ncsi) {
1480 /* If using NC-SI, set our carrier on and start the stack */
1481 netif_carrier_on(netdev);
1482
1483 /* Start the NCSI device */
1484 err = ncsi_start_dev(priv->ndev);
1485 if (err)
1486 goto err_ncsi;
1487 }
1488
1489 return 0;
1490
1491 err_ncsi:
1492 napi_disable(&priv->napi);
1493 netif_stop_queue(netdev);
1494 err_alloc:
1495 ftgmac100_free_buffers(priv);
1496 free_irq(netdev->irq, netdev);
1497 err_irq:
1498 netif_napi_del(&priv->napi);
1499 err_hw:
1500 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1501 ftgmac100_free_rings(priv);
1502 return err;
1503 }
1504
ftgmac100_stop(struct net_device * netdev)1505 static int ftgmac100_stop(struct net_device *netdev)
1506 {
1507 struct ftgmac100 *priv = netdev_priv(netdev);
1508
1509 /* Note about the reset task: We are called with the rtnl lock
1510 * held, so we are synchronized against the core of the reset
1511 * task. We must not try to synchronously cancel it otherwise
1512 * we can deadlock. But since it will test for netif_running()
1513 * which has already been cleared by the net core, we don't
1514 * anything special to do.
1515 */
1516
1517 /* disable all interrupts */
1518 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1519
1520 netif_stop_queue(netdev);
1521 napi_disable(&priv->napi);
1522 netif_napi_del(&priv->napi);
1523 if (netdev->phydev)
1524 phy_stop(netdev->phydev);
1525 else if (priv->use_ncsi)
1526 ncsi_stop_dev(priv->ndev);
1527
1528 ftgmac100_stop_hw(priv);
1529 free_irq(netdev->irq, netdev);
1530 ftgmac100_free_buffers(priv);
1531 ftgmac100_free_rings(priv);
1532
1533 return 0;
1534 }
1535
1536 /* optional */
ftgmac100_do_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)1537 static int ftgmac100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1538 {
1539 if (!netdev->phydev)
1540 return -ENXIO;
1541
1542 return phy_mii_ioctl(netdev->phydev, ifr, cmd);
1543 }
1544
ftgmac100_tx_timeout(struct net_device * netdev)1545 static void ftgmac100_tx_timeout(struct net_device *netdev)
1546 {
1547 struct ftgmac100 *priv = netdev_priv(netdev);
1548
1549 /* Disable all interrupts */
1550 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1551
1552 /* Do the reset outside of interrupt context */
1553 schedule_work(&priv->reset_task);
1554 }
1555
ftgmac100_set_features(struct net_device * netdev,netdev_features_t features)1556 static int ftgmac100_set_features(struct net_device *netdev,
1557 netdev_features_t features)
1558 {
1559 struct ftgmac100 *priv = netdev_priv(netdev);
1560 netdev_features_t changed = netdev->features ^ features;
1561
1562 if (!netif_running(netdev))
1563 return 0;
1564
1565 /* Update the vlan filtering bit */
1566 if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
1567 u32 maccr;
1568
1569 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
1570 if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
1571 maccr |= FTGMAC100_MACCR_RM_VLAN;
1572 else
1573 maccr &= ~FTGMAC100_MACCR_RM_VLAN;
1574 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
1575 }
1576
1577 return 0;
1578 }
1579
1580 #ifdef CONFIG_NET_POLL_CONTROLLER
ftgmac100_poll_controller(struct net_device * netdev)1581 static void ftgmac100_poll_controller(struct net_device *netdev)
1582 {
1583 unsigned long flags;
1584
1585 local_irq_save(flags);
1586 ftgmac100_interrupt(netdev->irq, netdev);
1587 local_irq_restore(flags);
1588 }
1589 #endif
1590
1591 static const struct net_device_ops ftgmac100_netdev_ops = {
1592 .ndo_open = ftgmac100_open,
1593 .ndo_stop = ftgmac100_stop,
1594 .ndo_start_xmit = ftgmac100_hard_start_xmit,
1595 .ndo_set_mac_address = ftgmac100_set_mac_addr,
1596 .ndo_validate_addr = eth_validate_addr,
1597 .ndo_do_ioctl = ftgmac100_do_ioctl,
1598 .ndo_tx_timeout = ftgmac100_tx_timeout,
1599 .ndo_set_rx_mode = ftgmac100_set_rx_mode,
1600 .ndo_set_features = ftgmac100_set_features,
1601 #ifdef CONFIG_NET_POLL_CONTROLLER
1602 .ndo_poll_controller = ftgmac100_poll_controller,
1603 #endif
1604 .ndo_vlan_rx_add_vid = ncsi_vlan_rx_add_vid,
1605 .ndo_vlan_rx_kill_vid = ncsi_vlan_rx_kill_vid,
1606 };
1607
ftgmac100_setup_mdio(struct net_device * netdev)1608 static int ftgmac100_setup_mdio(struct net_device *netdev)
1609 {
1610 struct ftgmac100 *priv = netdev_priv(netdev);
1611 struct platform_device *pdev = to_platform_device(priv->dev);
1612 int phy_intf = PHY_INTERFACE_MODE_RGMII;
1613 struct device_node *np = pdev->dev.of_node;
1614 int i, err = 0;
1615 u32 reg;
1616
1617 /* initialize mdio bus */
1618 priv->mii_bus = mdiobus_alloc();
1619 if (!priv->mii_bus)
1620 return -EIO;
1621
1622 if (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1623 of_device_is_compatible(np, "aspeed,ast2500-mac")) {
1624 /* The AST2600 has a separate MDIO controller */
1625
1626 /* For the AST2400 and AST2500 this driver only supports the
1627 * old MDIO interface
1628 */
1629 reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
1630 reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
1631 iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
1632 }
1633
1634 /* Get PHY mode from device-tree */
1635 if (np) {
1636 /* Default to RGMII. It's a gigabit part after all */
1637 phy_intf = of_get_phy_mode(np);
1638 if (phy_intf < 0)
1639 phy_intf = PHY_INTERFACE_MODE_RGMII;
1640
1641 /* Aspeed only supports these. I don't know about other IP
1642 * block vendors so I'm going to just let them through for
1643 * now. Note that this is only a warning if for some obscure
1644 * reason the DT really means to lie about it or it's a newer
1645 * part we don't know about.
1646 *
1647 * On the Aspeed SoC there are additionally straps and SCU
1648 * control bits that could tell us what the interface is
1649 * (or allow us to configure it while the IP block is held
1650 * in reset). For now I chose to keep this driver away from
1651 * those SoC specific bits and assume the device-tree is
1652 * right and the SCU has been configured properly by pinmux
1653 * or the firmware.
1654 */
1655 if (priv->is_aspeed &&
1656 phy_intf != PHY_INTERFACE_MODE_RMII &&
1657 phy_intf != PHY_INTERFACE_MODE_RGMII &&
1658 phy_intf != PHY_INTERFACE_MODE_RGMII_ID &&
1659 phy_intf != PHY_INTERFACE_MODE_RGMII_RXID &&
1660 phy_intf != PHY_INTERFACE_MODE_RGMII_TXID) {
1661 netdev_warn(netdev,
1662 "Unsupported PHY mode %s !\n",
1663 phy_modes(phy_intf));
1664 }
1665 }
1666
1667 priv->mii_bus->name = "ftgmac100_mdio";
1668 snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1669 pdev->name, pdev->id);
1670 priv->mii_bus->parent = priv->dev;
1671 priv->mii_bus->priv = priv->netdev;
1672 priv->mii_bus->read = ftgmac100_mdiobus_read;
1673 priv->mii_bus->write = ftgmac100_mdiobus_write;
1674
1675 for (i = 0; i < PHY_MAX_ADDR; i++)
1676 priv->mii_bus->irq[i] = PHY_POLL;
1677
1678 err = mdiobus_register(priv->mii_bus);
1679 if (err) {
1680 dev_err(priv->dev, "Cannot register MDIO bus!\n");
1681 goto err_register_mdiobus;
1682 }
1683
1684 err = ftgmac100_mii_probe(priv, phy_intf);
1685 if (err) {
1686 dev_err(priv->dev, "MII Probe failed!\n");
1687 goto err_mii_probe;
1688 }
1689
1690 return 0;
1691
1692 err_mii_probe:
1693 mdiobus_unregister(priv->mii_bus);
1694 err_register_mdiobus:
1695 mdiobus_free(priv->mii_bus);
1696 return err;
1697 }
1698
ftgmac100_destroy_mdio(struct net_device * netdev)1699 static void ftgmac100_destroy_mdio(struct net_device *netdev)
1700 {
1701 struct ftgmac100 *priv = netdev_priv(netdev);
1702
1703 if (!netdev->phydev)
1704 return;
1705
1706 phy_disconnect(netdev->phydev);
1707 mdiobus_unregister(priv->mii_bus);
1708 mdiobus_free(priv->mii_bus);
1709 }
1710
ftgmac100_ncsi_handler(struct ncsi_dev * nd)1711 static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
1712 {
1713 if (unlikely(nd->state != ncsi_dev_state_functional))
1714 return;
1715
1716 netdev_dbg(nd->dev, "NCSI interface %s\n",
1717 nd->link_up ? "up" : "down");
1718 }
1719
ftgmac100_setup_clk(struct ftgmac100 * priv)1720 static void ftgmac100_setup_clk(struct ftgmac100 *priv)
1721 {
1722 priv->clk = devm_clk_get(priv->dev, NULL);
1723 if (IS_ERR(priv->clk))
1724 return;
1725
1726 clk_prepare_enable(priv->clk);
1727
1728 /* Aspeed specifies a 100MHz clock is required for up to
1729 * 1000Mbit link speeds. As NCSI is limited to 100Mbit, 25MHz
1730 * is sufficient
1731 */
1732 clk_set_rate(priv->clk, priv->use_ncsi ? FTGMAC_25MHZ :
1733 FTGMAC_100MHZ);
1734 }
1735
ftgmac100_probe(struct platform_device * pdev)1736 static int ftgmac100_probe(struct platform_device *pdev)
1737 {
1738 struct resource *res;
1739 int irq;
1740 struct net_device *netdev;
1741 struct ftgmac100 *priv;
1742 struct device_node *np;
1743 int err = 0;
1744
1745 if (!pdev)
1746 return -ENODEV;
1747
1748 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1749 if (!res)
1750 return -ENXIO;
1751
1752 irq = platform_get_irq(pdev, 0);
1753 if (irq < 0)
1754 return irq;
1755
1756 /* setup net_device */
1757 netdev = alloc_etherdev(sizeof(*priv));
1758 if (!netdev) {
1759 err = -ENOMEM;
1760 goto err_alloc_etherdev;
1761 }
1762
1763 SET_NETDEV_DEV(netdev, &pdev->dev);
1764
1765 netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1766 netdev->netdev_ops = &ftgmac100_netdev_ops;
1767 netdev->watchdog_timeo = 5 * HZ;
1768
1769 platform_set_drvdata(pdev, netdev);
1770
1771 /* setup private data */
1772 priv = netdev_priv(netdev);
1773 priv->netdev = netdev;
1774 priv->dev = &pdev->dev;
1775 INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1776
1777 /* map io memory */
1778 priv->res = request_mem_region(res->start, resource_size(res),
1779 dev_name(&pdev->dev));
1780 if (!priv->res) {
1781 dev_err(&pdev->dev, "Could not reserve memory region\n");
1782 err = -ENOMEM;
1783 goto err_req_mem;
1784 }
1785
1786 priv->base = ioremap(res->start, resource_size(res));
1787 if (!priv->base) {
1788 dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
1789 err = -EIO;
1790 goto err_ioremap;
1791 }
1792
1793 netdev->irq = irq;
1794
1795 /* Enable pause */
1796 priv->tx_pause = true;
1797 priv->rx_pause = true;
1798 priv->aneg_pause = true;
1799
1800 /* MAC address from chip or random one */
1801 ftgmac100_initial_mac(priv);
1802
1803 np = pdev->dev.of_node;
1804 if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1805 of_device_is_compatible(np, "aspeed,ast2500-mac") ||
1806 of_device_is_compatible(np, "aspeed,ast2600-mac"))) {
1807 priv->rxdes0_edorr_mask = BIT(30);
1808 priv->txdes0_edotr_mask = BIT(30);
1809 priv->is_aspeed = true;
1810 } else {
1811 priv->rxdes0_edorr_mask = BIT(15);
1812 priv->txdes0_edotr_mask = BIT(15);
1813 }
1814
1815 if (np && of_get_property(np, "use-ncsi", NULL)) {
1816 if (!IS_ENABLED(CONFIG_NET_NCSI)) {
1817 dev_err(&pdev->dev, "NCSI stack not enabled\n");
1818 goto err_ncsi_dev;
1819 }
1820
1821 dev_info(&pdev->dev, "Using NCSI interface\n");
1822 priv->use_ncsi = true;
1823 priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
1824 if (!priv->ndev)
1825 goto err_ncsi_dev;
1826 } else if (np && of_get_property(np, "phy-handle", NULL)) {
1827 struct phy_device *phy;
1828
1829 phy = of_phy_get_and_connect(priv->netdev, np,
1830 &ftgmac100_adjust_link);
1831 if (!phy) {
1832 dev_err(&pdev->dev, "Failed to connect to phy\n");
1833 goto err_setup_mdio;
1834 }
1835
1836 /* Indicate that we support PAUSE frames (see comment in
1837 * Documentation/networking/phy.txt)
1838 */
1839 phy_support_asym_pause(phy);
1840
1841 /* Display what we found */
1842 phy_attached_info(phy);
1843 } else if (np && !of_get_child_by_name(np, "mdio")) {
1844 /* Support legacy ASPEED devicetree descriptions that decribe a
1845 * MAC with an embedded MDIO controller but have no "mdio"
1846 * child node. Automatically scan the MDIO bus for available
1847 * PHYs.
1848 */
1849 priv->use_ncsi = false;
1850 err = ftgmac100_setup_mdio(netdev);
1851 if (err)
1852 goto err_setup_mdio;
1853 }
1854
1855 if (priv->is_aspeed)
1856 ftgmac100_setup_clk(priv);
1857
1858 /* Default ring sizes */
1859 priv->rx_q_entries = priv->new_rx_q_entries = DEF_RX_QUEUE_ENTRIES;
1860 priv->tx_q_entries = priv->new_tx_q_entries = DEF_TX_QUEUE_ENTRIES;
1861
1862 /* Base feature set */
1863 netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM |
1864 NETIF_F_GRO | NETIF_F_SG | NETIF_F_HW_VLAN_CTAG_RX |
1865 NETIF_F_HW_VLAN_CTAG_TX;
1866
1867 if (priv->use_ncsi)
1868 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1869
1870 /* AST2400 doesn't have working HW checksum generation */
1871 if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac")))
1872 netdev->hw_features &= ~NETIF_F_HW_CSUM;
1873 if (np && of_get_property(np, "no-hw-checksum", NULL))
1874 netdev->hw_features &= ~(NETIF_F_HW_CSUM | NETIF_F_RXCSUM);
1875 netdev->features |= netdev->hw_features;
1876
1877 /* register network device */
1878 err = register_netdev(netdev);
1879 if (err) {
1880 dev_err(&pdev->dev, "Failed to register netdev\n");
1881 goto err_register_netdev;
1882 }
1883
1884 netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
1885
1886 return 0;
1887
1888 err_ncsi_dev:
1889 err_register_netdev:
1890 ftgmac100_destroy_mdio(netdev);
1891 err_setup_mdio:
1892 iounmap(priv->base);
1893 err_ioremap:
1894 release_resource(priv->res);
1895 err_req_mem:
1896 free_netdev(netdev);
1897 err_alloc_etherdev:
1898 return err;
1899 }
1900
ftgmac100_remove(struct platform_device * pdev)1901 static int ftgmac100_remove(struct platform_device *pdev)
1902 {
1903 struct net_device *netdev;
1904 struct ftgmac100 *priv;
1905
1906 netdev = platform_get_drvdata(pdev);
1907 priv = netdev_priv(netdev);
1908
1909 unregister_netdev(netdev);
1910
1911 clk_disable_unprepare(priv->clk);
1912
1913 /* There's a small chance the reset task will have been re-queued,
1914 * during stop, make sure it's gone before we free the structure.
1915 */
1916 cancel_work_sync(&priv->reset_task);
1917
1918 ftgmac100_destroy_mdio(netdev);
1919
1920 iounmap(priv->base);
1921 release_resource(priv->res);
1922
1923 netif_napi_del(&priv->napi);
1924 free_netdev(netdev);
1925 return 0;
1926 }
1927
1928 static const struct of_device_id ftgmac100_of_match[] = {
1929 { .compatible = "faraday,ftgmac100" },
1930 { }
1931 };
1932 MODULE_DEVICE_TABLE(of, ftgmac100_of_match);
1933
1934 static struct platform_driver ftgmac100_driver = {
1935 .probe = ftgmac100_probe,
1936 .remove = ftgmac100_remove,
1937 .driver = {
1938 .name = DRV_NAME,
1939 .of_match_table = ftgmac100_of_match,
1940 },
1941 };
1942 module_platform_driver(ftgmac100_driver);
1943
1944 MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
1945 MODULE_DESCRIPTION("FTGMAC100 driver");
1946 MODULE_LICENSE("GPL");
1947