1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Intel Corporation */
3
4 #include "igc_phy.h"
5
6 /**
7 * igc_check_reset_block - Check if PHY reset is blocked
8 * @hw: pointer to the HW structure
9 *
10 * Read the PHY management control register and check whether a PHY reset
11 * is blocked. If a reset is not blocked return 0, otherwise
12 * return IGC_ERR_BLK_PHY_RESET (12).
13 */
igc_check_reset_block(struct igc_hw * hw)14 s32 igc_check_reset_block(struct igc_hw *hw)
15 {
16 u32 manc;
17
18 manc = rd32(IGC_MANC);
19
20 return (manc & IGC_MANC_BLK_PHY_RST_ON_IDE) ?
21 IGC_ERR_BLK_PHY_RESET : 0;
22 }
23
24 /**
25 * igc_get_phy_id - Retrieve the PHY ID and revision
26 * @hw: pointer to the HW structure
27 *
28 * Reads the PHY registers and stores the PHY ID and possibly the PHY
29 * revision in the hardware structure.
30 */
igc_get_phy_id(struct igc_hw * hw)31 s32 igc_get_phy_id(struct igc_hw *hw)
32 {
33 struct igc_phy_info *phy = &hw->phy;
34 s32 ret_val = 0;
35 u16 phy_id;
36
37 ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
38 if (ret_val)
39 goto out;
40
41 phy->id = (u32)(phy_id << 16);
42 usleep_range(200, 500);
43 ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
44 if (ret_val)
45 goto out;
46
47 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
48 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
49
50 out:
51 return ret_val;
52 }
53
54 /**
55 * igc_phy_has_link - Polls PHY for link
56 * @hw: pointer to the HW structure
57 * @iterations: number of times to poll for link
58 * @usec_interval: delay between polling attempts
59 * @success: pointer to whether polling was successful or not
60 *
61 * Polls the PHY status register for link, 'iterations' number of times.
62 */
igc_phy_has_link(struct igc_hw * hw,u32 iterations,u32 usec_interval,bool * success)63 s32 igc_phy_has_link(struct igc_hw *hw, u32 iterations,
64 u32 usec_interval, bool *success)
65 {
66 u16 i, phy_status;
67 s32 ret_val = 0;
68
69 for (i = 0; i < iterations; i++) {
70 /* Some PHYs require the PHY_STATUS register to be read
71 * twice due to the link bit being sticky. No harm doing
72 * it across the board.
73 */
74 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
75 if (ret_val && usec_interval > 0) {
76 /* If the first read fails, another entity may have
77 * ownership of the resources, wait and try again to
78 * see if they have relinquished the resources yet.
79 */
80 if (usec_interval >= 1000)
81 mdelay(usec_interval / 1000);
82 else
83 udelay(usec_interval);
84 }
85 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
86 if (ret_val)
87 break;
88 if (phy_status & MII_SR_LINK_STATUS)
89 break;
90 if (usec_interval >= 1000)
91 mdelay(usec_interval / 1000);
92 else
93 udelay(usec_interval);
94 }
95
96 *success = (i < iterations) ? true : false;
97
98 return ret_val;
99 }
100
101 /**
102 * igc_power_up_phy_copper - Restore copper link in case of PHY power down
103 * @hw: pointer to the HW structure
104 *
105 * In the case of a PHY power down to save power, or to turn off link during a
106 * driver unload, restore the link to previous settings.
107 */
igc_power_up_phy_copper(struct igc_hw * hw)108 void igc_power_up_phy_copper(struct igc_hw *hw)
109 {
110 u16 mii_reg = 0;
111
112 /* The PHY will retain its settings across a power down/up cycle */
113 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
114 mii_reg &= ~MII_CR_POWER_DOWN;
115 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
116 }
117
118 /**
119 * igc_power_down_phy_copper - Power down copper PHY
120 * @hw: pointer to the HW structure
121 *
122 * Power down PHY to save power when interface is down and wake on lan
123 * is not enabled.
124 */
igc_power_down_phy_copper(struct igc_hw * hw)125 void igc_power_down_phy_copper(struct igc_hw *hw)
126 {
127 u16 mii_reg = 0;
128
129 /* The PHY will retain its settings across a power down/up cycle */
130 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
131 mii_reg |= MII_CR_POWER_DOWN;
132
133 /* Temporary workaround - should be removed when PHY will implement
134 * IEEE registers as properly
135 */
136 /* hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);*/
137 usleep_range(1000, 2000);
138 }
139
140 /**
141 * igc_check_downshift - Checks whether a downshift in speed occurred
142 * @hw: pointer to the HW structure
143 *
144 * Success returns 0, Failure returns 1
145 *
146 * A downshift is detected by querying the PHY link health.
147 */
igc_check_downshift(struct igc_hw * hw)148 s32 igc_check_downshift(struct igc_hw *hw)
149 {
150 struct igc_phy_info *phy = &hw->phy;
151 s32 ret_val;
152
153 switch (phy->type) {
154 case igc_phy_i225:
155 default:
156 /* speed downshift not supported */
157 phy->speed_downgraded = false;
158 ret_val = 0;
159 }
160
161 return ret_val;
162 }
163
164 /**
165 * igc_phy_hw_reset - PHY hardware reset
166 * @hw: pointer to the HW structure
167 *
168 * Verify the reset block is not blocking us from resetting. Acquire
169 * semaphore (if necessary) and read/set/write the device control reset
170 * bit in the PHY. Wait the appropriate delay time for the device to
171 * reset and release the semaphore (if necessary).
172 */
igc_phy_hw_reset(struct igc_hw * hw)173 s32 igc_phy_hw_reset(struct igc_hw *hw)
174 {
175 struct igc_phy_info *phy = &hw->phy;
176 s32 ret_val;
177 u32 ctrl;
178
179 ret_val = igc_check_reset_block(hw);
180 if (ret_val) {
181 ret_val = 0;
182 goto out;
183 }
184
185 ret_val = phy->ops.acquire(hw);
186 if (ret_val)
187 goto out;
188
189 ctrl = rd32(IGC_CTRL);
190 wr32(IGC_CTRL, ctrl | IGC_CTRL_PHY_RST);
191 wrfl();
192
193 udelay(phy->reset_delay_us);
194
195 wr32(IGC_CTRL, ctrl);
196 wrfl();
197
198 usleep_range(1500, 2000);
199
200 phy->ops.release(hw);
201
202 out:
203 return ret_val;
204 }
205
206 /**
207 * igc_phy_setup_autoneg - Configure PHY for auto-negotiation
208 * @hw: pointer to the HW structure
209 *
210 * Reads the MII auto-neg advertisement register and/or the 1000T control
211 * register and if the PHY is already setup for auto-negotiation, then
212 * return successful. Otherwise, setup advertisement and flow control to
213 * the appropriate values for the wanted auto-negotiation.
214 */
igc_phy_setup_autoneg(struct igc_hw * hw)215 static s32 igc_phy_setup_autoneg(struct igc_hw *hw)
216 {
217 struct igc_phy_info *phy = &hw->phy;
218 u16 aneg_multigbt_an_ctrl = 0;
219 u16 mii_1000t_ctrl_reg = 0;
220 u16 mii_autoneg_adv_reg;
221 s32 ret_val;
222
223 phy->autoneg_advertised &= phy->autoneg_mask;
224
225 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
226 ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
227 if (ret_val)
228 return ret_val;
229
230 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
231 /* Read the MII 1000Base-T Control Register (Address 9). */
232 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
233 &mii_1000t_ctrl_reg);
234 if (ret_val)
235 return ret_val;
236 }
237
238 if ((phy->autoneg_mask & ADVERTISE_2500_FULL) &&
239 hw->phy.id == I225_I_PHY_ID) {
240 /* Read the MULTI GBT AN Control Register - reg 7.32 */
241 ret_val = phy->ops.read_reg(hw, (STANDARD_AN_REG_MASK <<
242 MMD_DEVADDR_SHIFT) |
243 ANEG_MULTIGBT_AN_CTRL,
244 &aneg_multigbt_an_ctrl);
245
246 if (ret_val)
247 return ret_val;
248 }
249
250 /* Need to parse both autoneg_advertised and fc and set up
251 * the appropriate PHY registers. First we will parse for
252 * autoneg_advertised software override. Since we can advertise
253 * a plethora of combinations, we need to check each bit
254 * individually.
255 */
256
257 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
258 * Advertisement Register (Address 4) and the 1000 mb speed bits in
259 * the 1000Base-T Control Register (Address 9).
260 */
261 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
262 NWAY_AR_100TX_HD_CAPS |
263 NWAY_AR_10T_FD_CAPS |
264 NWAY_AR_10T_HD_CAPS);
265 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
266
267 hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
268
269 /* Do we want to advertise 10 Mb Half Duplex? */
270 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
271 hw_dbg("Advertise 10mb Half duplex\n");
272 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
273 }
274
275 /* Do we want to advertise 10 Mb Full Duplex? */
276 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
277 hw_dbg("Advertise 10mb Full duplex\n");
278 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
279 }
280
281 /* Do we want to advertise 100 Mb Half Duplex? */
282 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
283 hw_dbg("Advertise 100mb Half duplex\n");
284 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
285 }
286
287 /* Do we want to advertise 100 Mb Full Duplex? */
288 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
289 hw_dbg("Advertise 100mb Full duplex\n");
290 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
291 }
292
293 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
294 if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
295 hw_dbg("Advertise 1000mb Half duplex request denied!\n");
296
297 /* Do we want to advertise 1000 Mb Full Duplex? */
298 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
299 hw_dbg("Advertise 1000mb Full duplex\n");
300 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
301 }
302
303 /* We do not allow the Phy to advertise 2500 Mb Half Duplex */
304 if (phy->autoneg_advertised & ADVERTISE_2500_HALF)
305 hw_dbg("Advertise 2500mb Half duplex request denied!\n");
306
307 /* Do we want to advertise 2500 Mb Full Duplex? */
308 if (phy->autoneg_advertised & ADVERTISE_2500_FULL) {
309 hw_dbg("Advertise 2500mb Full duplex\n");
310 aneg_multigbt_an_ctrl |= CR_2500T_FD_CAPS;
311 } else {
312 aneg_multigbt_an_ctrl &= ~CR_2500T_FD_CAPS;
313 }
314
315 /* Check for a software override of the flow control settings, and
316 * setup the PHY advertisement registers accordingly. If
317 * auto-negotiation is enabled, then software will have to set the
318 * "PAUSE" bits to the correct value in the Auto-Negotiation
319 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
320 * negotiation.
321 *
322 * The possible values of the "fc" parameter are:
323 * 0: Flow control is completely disabled
324 * 1: Rx flow control is enabled (we can receive pause frames
325 * but not send pause frames).
326 * 2: Tx flow control is enabled (we can send pause frames
327 * but we do not support receiving pause frames).
328 * 3: Both Rx and Tx flow control (symmetric) are enabled.
329 * other: No software override. The flow control configuration
330 * in the EEPROM is used.
331 */
332 switch (hw->fc.current_mode) {
333 case igc_fc_none:
334 /* Flow control (Rx & Tx) is completely disabled by a
335 * software over-ride.
336 */
337 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
338 break;
339 case igc_fc_rx_pause:
340 /* Rx Flow control is enabled, and Tx Flow control is
341 * disabled, by a software over-ride.
342 *
343 * Since there really isn't a way to advertise that we are
344 * capable of Rx Pause ONLY, we will advertise that we
345 * support both symmetric and asymmetric Rx PAUSE. Later
346 * (in igc_config_fc_after_link_up) we will disable the
347 * hw's ability to send PAUSE frames.
348 */
349 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
350 break;
351 case igc_fc_tx_pause:
352 /* Tx Flow control is enabled, and Rx Flow control is
353 * disabled, by a software over-ride.
354 */
355 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
356 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
357 break;
358 case igc_fc_full:
359 /* Flow control (both Rx and Tx) is enabled by a software
360 * over-ride.
361 */
362 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
363 break;
364 default:
365 hw_dbg("Flow control param set incorrectly\n");
366 return -IGC_ERR_CONFIG;
367 }
368
369 ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
370 if (ret_val)
371 return ret_val;
372
373 hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
374
375 if (phy->autoneg_mask & ADVERTISE_1000_FULL)
376 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL,
377 mii_1000t_ctrl_reg);
378
379 if ((phy->autoneg_mask & ADVERTISE_2500_FULL) &&
380 hw->phy.id == I225_I_PHY_ID)
381 ret_val = phy->ops.write_reg(hw,
382 (STANDARD_AN_REG_MASK <<
383 MMD_DEVADDR_SHIFT) |
384 ANEG_MULTIGBT_AN_CTRL,
385 aneg_multigbt_an_ctrl);
386
387 return ret_val;
388 }
389
390 /**
391 * igc_wait_autoneg - Wait for auto-neg completion
392 * @hw: pointer to the HW structure
393 *
394 * Waits for auto-negotiation to complete or for the auto-negotiation time
395 * limit to expire, which ever happens first.
396 */
igc_wait_autoneg(struct igc_hw * hw)397 static s32 igc_wait_autoneg(struct igc_hw *hw)
398 {
399 u16 i, phy_status;
400 s32 ret_val = 0;
401
402 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
403 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
404 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
405 if (ret_val)
406 break;
407 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
408 if (ret_val)
409 break;
410 if (phy_status & MII_SR_AUTONEG_COMPLETE)
411 break;
412 msleep(100);
413 }
414
415 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
416 * has completed.
417 */
418 return ret_val;
419 }
420
421 /**
422 * igc_copper_link_autoneg - Setup/Enable autoneg for copper link
423 * @hw: pointer to the HW structure
424 *
425 * Performs initial bounds checking on autoneg advertisement parameter, then
426 * configure to advertise the full capability. Setup the PHY to autoneg
427 * and restart the negotiation process between the link partner. If
428 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
429 */
igc_copper_link_autoneg(struct igc_hw * hw)430 static s32 igc_copper_link_autoneg(struct igc_hw *hw)
431 {
432 struct igc_phy_info *phy = &hw->phy;
433 u16 phy_ctrl;
434 s32 ret_val;
435
436 /* Perform some bounds checking on the autoneg advertisement
437 * parameter.
438 */
439 phy->autoneg_advertised &= phy->autoneg_mask;
440
441 /* If autoneg_advertised is zero, we assume it was not defaulted
442 * by the calling code so we set to advertise full capability.
443 */
444 if (phy->autoneg_advertised == 0)
445 phy->autoneg_advertised = phy->autoneg_mask;
446
447 hw_dbg("Reconfiguring auto-neg advertisement params\n");
448 ret_val = igc_phy_setup_autoneg(hw);
449 if (ret_val) {
450 hw_dbg("Error Setting up Auto-Negotiation\n");
451 goto out;
452 }
453 hw_dbg("Restarting Auto-Neg\n");
454
455 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
456 * the Auto Neg Restart bit in the PHY control register.
457 */
458 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
459 if (ret_val)
460 goto out;
461
462 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
463 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
464 if (ret_val)
465 goto out;
466
467 /* Does the user want to wait for Auto-Neg to complete here, or
468 * check at a later time (for example, callback routine).
469 */
470 if (phy->autoneg_wait_to_complete) {
471 ret_val = igc_wait_autoneg(hw);
472 if (ret_val) {
473 hw_dbg("Error while waiting for autoneg to complete\n");
474 goto out;
475 }
476 }
477
478 hw->mac.get_link_status = true;
479
480 out:
481 return ret_val;
482 }
483
484 /**
485 * igc_setup_copper_link - Configure copper link settings
486 * @hw: pointer to the HW structure
487 *
488 * Calls the appropriate function to configure the link for auto-neg or forced
489 * speed and duplex. Then we check for link, once link is established calls
490 * to configure collision distance and flow control are called. If link is
491 * not established, we return -IGC_ERR_PHY (-2).
492 */
igc_setup_copper_link(struct igc_hw * hw)493 s32 igc_setup_copper_link(struct igc_hw *hw)
494 {
495 s32 ret_val = 0;
496 bool link;
497
498 if (hw->mac.autoneg) {
499 /* Setup autoneg and flow control advertisement and perform
500 * autonegotiation.
501 */
502 ret_val = igc_copper_link_autoneg(hw);
503 if (ret_val)
504 goto out;
505 } else {
506 /* PHY will be set to 10H, 10F, 100H or 100F
507 * depending on user settings.
508 */
509 hw_dbg("Forcing Speed and Duplex\n");
510 ret_val = hw->phy.ops.force_speed_duplex(hw);
511 if (ret_val) {
512 hw_dbg("Error Forcing Speed and Duplex\n");
513 goto out;
514 }
515 }
516
517 /* Check link status. Wait up to 100 microseconds for link to become
518 * valid.
519 */
520 ret_val = igc_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
521 if (ret_val)
522 goto out;
523
524 if (link) {
525 hw_dbg("Valid link established!!!\n");
526 igc_config_collision_dist(hw);
527 ret_val = igc_config_fc_after_link_up(hw);
528 } else {
529 hw_dbg("Unable to establish link!!!\n");
530 }
531
532 out:
533 return ret_val;
534 }
535
536 /**
537 * igc_read_phy_reg_mdic - Read MDI control register
538 * @hw: pointer to the HW structure
539 * @offset: register offset to be read
540 * @data: pointer to the read data
541 *
542 * Reads the MDI control register in the PHY at offset and stores the
543 * information read to data.
544 */
igc_read_phy_reg_mdic(struct igc_hw * hw,u32 offset,u16 * data)545 static s32 igc_read_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 *data)
546 {
547 struct igc_phy_info *phy = &hw->phy;
548 u32 i, mdic = 0;
549 s32 ret_val = 0;
550
551 if (offset > MAX_PHY_REG_ADDRESS) {
552 hw_dbg("PHY Address %d is out of range\n", offset);
553 ret_val = -IGC_ERR_PARAM;
554 goto out;
555 }
556
557 /* Set up Op-code, Phy Address, and register offset in the MDI
558 * Control register. The MAC will take care of interfacing with the
559 * PHY to retrieve the desired data.
560 */
561 mdic = ((offset << IGC_MDIC_REG_SHIFT) |
562 (phy->addr << IGC_MDIC_PHY_SHIFT) |
563 (IGC_MDIC_OP_READ));
564
565 wr32(IGC_MDIC, mdic);
566
567 /* Poll the ready bit to see if the MDI read completed
568 * Increasing the time out as testing showed failures with
569 * the lower time out
570 */
571 for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) {
572 usleep_range(500, 1000);
573 mdic = rd32(IGC_MDIC);
574 if (mdic & IGC_MDIC_READY)
575 break;
576 }
577 if (!(mdic & IGC_MDIC_READY)) {
578 hw_dbg("MDI Read did not complete\n");
579 ret_val = -IGC_ERR_PHY;
580 goto out;
581 }
582 if (mdic & IGC_MDIC_ERROR) {
583 hw_dbg("MDI Error\n");
584 ret_val = -IGC_ERR_PHY;
585 goto out;
586 }
587 *data = (u16)mdic;
588
589 out:
590 return ret_val;
591 }
592
593 /**
594 * igc_write_phy_reg_mdic - Write MDI control register
595 * @hw: pointer to the HW structure
596 * @offset: register offset to write to
597 * @data: data to write to register at offset
598 *
599 * Writes data to MDI control register in the PHY at offset.
600 */
igc_write_phy_reg_mdic(struct igc_hw * hw,u32 offset,u16 data)601 static s32 igc_write_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 data)
602 {
603 struct igc_phy_info *phy = &hw->phy;
604 u32 i, mdic = 0;
605 s32 ret_val = 0;
606
607 if (offset > MAX_PHY_REG_ADDRESS) {
608 hw_dbg("PHY Address %d is out of range\n", offset);
609 ret_val = -IGC_ERR_PARAM;
610 goto out;
611 }
612
613 /* Set up Op-code, Phy Address, and register offset in the MDI
614 * Control register. The MAC will take care of interfacing with the
615 * PHY to write the desired data.
616 */
617 mdic = (((u32)data) |
618 (offset << IGC_MDIC_REG_SHIFT) |
619 (phy->addr << IGC_MDIC_PHY_SHIFT) |
620 (IGC_MDIC_OP_WRITE));
621
622 wr32(IGC_MDIC, mdic);
623
624 /* Poll the ready bit to see if the MDI read completed
625 * Increasing the time out as testing showed failures with
626 * the lower time out
627 */
628 for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) {
629 usleep_range(500, 1000);
630 mdic = rd32(IGC_MDIC);
631 if (mdic & IGC_MDIC_READY)
632 break;
633 }
634 if (!(mdic & IGC_MDIC_READY)) {
635 hw_dbg("MDI Write did not complete\n");
636 ret_val = -IGC_ERR_PHY;
637 goto out;
638 }
639 if (mdic & IGC_MDIC_ERROR) {
640 hw_dbg("MDI Error\n");
641 ret_val = -IGC_ERR_PHY;
642 goto out;
643 }
644
645 out:
646 return ret_val;
647 }
648
649 /**
650 * __igc_access_xmdio_reg - Read/write XMDIO register
651 * @hw: pointer to the HW structure
652 * @address: XMDIO address to program
653 * @dev_addr: device address to program
654 * @data: pointer to value to read/write from/to the XMDIO address
655 * @read: boolean flag to indicate read or write
656 */
__igc_access_xmdio_reg(struct igc_hw * hw,u16 address,u8 dev_addr,u16 * data,bool read)657 static s32 __igc_access_xmdio_reg(struct igc_hw *hw, u16 address,
658 u8 dev_addr, u16 *data, bool read)
659 {
660 s32 ret_val;
661
662 ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, dev_addr);
663 if (ret_val)
664 return ret_val;
665
666 ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, address);
667 if (ret_val)
668 return ret_val;
669
670 ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, IGC_MMDAC_FUNC_DATA |
671 dev_addr);
672 if (ret_val)
673 return ret_val;
674
675 if (read)
676 ret_val = hw->phy.ops.read_reg(hw, IGC_MMDAAD, data);
677 else
678 ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, *data);
679 if (ret_val)
680 return ret_val;
681
682 /* Recalibrate the device back to 0 */
683 ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, 0);
684 if (ret_val)
685 return ret_val;
686
687 return ret_val;
688 }
689
690 /**
691 * igc_read_xmdio_reg - Read XMDIO register
692 * @hw: pointer to the HW structure
693 * @addr: XMDIO address to program
694 * @dev_addr: device address to program
695 * @data: value to be read from the EMI address
696 */
igc_read_xmdio_reg(struct igc_hw * hw,u16 addr,u8 dev_addr,u16 * data)697 static s32 igc_read_xmdio_reg(struct igc_hw *hw, u16 addr,
698 u8 dev_addr, u16 *data)
699 {
700 return __igc_access_xmdio_reg(hw, addr, dev_addr, data, true);
701 }
702
703 /**
704 * igc_write_xmdio_reg - Write XMDIO register
705 * @hw: pointer to the HW structure
706 * @addr: XMDIO address to program
707 * @dev_addr: device address to program
708 * @data: value to be written to the XMDIO address
709 */
igc_write_xmdio_reg(struct igc_hw * hw,u16 addr,u8 dev_addr,u16 data)710 static s32 igc_write_xmdio_reg(struct igc_hw *hw, u16 addr,
711 u8 dev_addr, u16 data)
712 {
713 return __igc_access_xmdio_reg(hw, addr, dev_addr, &data, false);
714 }
715
716 /**
717 * igc_write_phy_reg_gpy - Write GPY PHY register
718 * @hw: pointer to the HW structure
719 * @offset: register offset to write to
720 * @data: data to write at register offset
721 *
722 * Acquires semaphore, if necessary, then writes the data to PHY register
723 * at the offset. Release any acquired semaphores before exiting.
724 */
igc_write_phy_reg_gpy(struct igc_hw * hw,u32 offset,u16 data)725 s32 igc_write_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 data)
726 {
727 u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT;
728 s32 ret_val;
729
730 offset = offset & GPY_REG_MASK;
731
732 if (!dev_addr) {
733 ret_val = hw->phy.ops.acquire(hw);
734 if (ret_val)
735 return ret_val;
736 ret_val = igc_write_phy_reg_mdic(hw, offset, data);
737 if (ret_val)
738 return ret_val;
739 hw->phy.ops.release(hw);
740 } else {
741 ret_val = igc_write_xmdio_reg(hw, (u16)offset, dev_addr,
742 data);
743 }
744
745 return ret_val;
746 }
747
748 /**
749 * igc_read_phy_reg_gpy - Read GPY PHY register
750 * @hw: pointer to the HW structure
751 * @offset: lower half is register offset to read to
752 * upper half is MMD to use.
753 * @data: data to read at register offset
754 *
755 * Acquires semaphore, if necessary, then reads the data in the PHY register
756 * at the offset. Release any acquired semaphores before exiting.
757 */
igc_read_phy_reg_gpy(struct igc_hw * hw,u32 offset,u16 * data)758 s32 igc_read_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 *data)
759 {
760 u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT;
761 s32 ret_val;
762
763 offset = offset & GPY_REG_MASK;
764
765 if (!dev_addr) {
766 ret_val = hw->phy.ops.acquire(hw);
767 if (ret_val)
768 return ret_val;
769 ret_val = igc_read_phy_reg_mdic(hw, offset, data);
770 if (ret_val)
771 return ret_val;
772 hw->phy.ops.release(hw);
773 } else {
774 ret_val = igc_read_xmdio_reg(hw, (u16)offset, dev_addr,
775 data);
776 }
777
778 return ret_val;
779 }
780