1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2005-2013 Solarflare Communications Inc.
6 */
7
8 #include <linux/socket.h>
9 #include <linux/in.h>
10 #include <linux/slab.h>
11 #include <linux/ip.h>
12 #include <linux/ipv6.h>
13 #include <linux/tcp.h>
14 #include <linux/udp.h>
15 #include <linux/prefetch.h>
16 #include <linux/moduleparam.h>
17 #include <linux/iommu.h>
18 #include <net/ip.h>
19 #include <net/checksum.h>
20 #include "net_driver.h"
21 #include "efx.h"
22 #include "filter.h"
23 #include "nic.h"
24 #include "selftest.h"
25 #include "workarounds.h"
26
27 /* Preferred number of descriptors to fill at once */
28 #define EF4_RX_PREFERRED_BATCH 8U
29
30 /* Number of RX buffers to recycle pages for. When creating the RX page recycle
31 * ring, this number is divided by the number of buffers per page to calculate
32 * the number of pages to store in the RX page recycle ring.
33 */
34 #define EF4_RECYCLE_RING_SIZE_IOMMU 4096
35 #define EF4_RECYCLE_RING_SIZE_NOIOMMU (2 * EF4_RX_PREFERRED_BATCH)
36
37 /* Size of buffer allocated for skb header area. */
38 #define EF4_SKB_HEADERS 128u
39
40 /* This is the percentage fill level below which new RX descriptors
41 * will be added to the RX descriptor ring.
42 */
43 static unsigned int rx_refill_threshold;
44
45 /* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */
46 #define EF4_RX_MAX_FRAGS DIV_ROUND_UP(EF4_MAX_FRAME_LEN(EF4_MAX_MTU), \
47 EF4_RX_USR_BUF_SIZE)
48
49 /*
50 * RX maximum head room required.
51 *
52 * This must be at least 1 to prevent overflow, plus one packet-worth
53 * to allow pipelined receives.
54 */
55 #define EF4_RXD_HEAD_ROOM (1 + EF4_RX_MAX_FRAGS)
56
ef4_rx_buf_va(struct ef4_rx_buffer * buf)57 static inline u8 *ef4_rx_buf_va(struct ef4_rx_buffer *buf)
58 {
59 return page_address(buf->page) + buf->page_offset;
60 }
61
ef4_rx_buf_hash(struct ef4_nic * efx,const u8 * eh)62 static inline u32 ef4_rx_buf_hash(struct ef4_nic *efx, const u8 *eh)
63 {
64 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
65 return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_hash_offset));
66 #else
67 const u8 *data = eh + efx->rx_packet_hash_offset;
68 return (u32)data[0] |
69 (u32)data[1] << 8 |
70 (u32)data[2] << 16 |
71 (u32)data[3] << 24;
72 #endif
73 }
74
75 static inline struct ef4_rx_buffer *
ef4_rx_buf_next(struct ef4_rx_queue * rx_queue,struct ef4_rx_buffer * rx_buf)76 ef4_rx_buf_next(struct ef4_rx_queue *rx_queue, struct ef4_rx_buffer *rx_buf)
77 {
78 if (unlikely(rx_buf == ef4_rx_buffer(rx_queue, rx_queue->ptr_mask)))
79 return ef4_rx_buffer(rx_queue, 0);
80 else
81 return rx_buf + 1;
82 }
83
ef4_sync_rx_buffer(struct ef4_nic * efx,struct ef4_rx_buffer * rx_buf,unsigned int len)84 static inline void ef4_sync_rx_buffer(struct ef4_nic *efx,
85 struct ef4_rx_buffer *rx_buf,
86 unsigned int len)
87 {
88 dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len,
89 DMA_FROM_DEVICE);
90 }
91
ef4_rx_config_page_split(struct ef4_nic * efx)92 void ef4_rx_config_page_split(struct ef4_nic *efx)
93 {
94 efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align,
95 EF4_RX_BUF_ALIGNMENT);
96 efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
97 ((PAGE_SIZE - sizeof(struct ef4_rx_page_state)) /
98 efx->rx_page_buf_step);
99 efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
100 efx->rx_bufs_per_page;
101 efx->rx_pages_per_batch = DIV_ROUND_UP(EF4_RX_PREFERRED_BATCH,
102 efx->rx_bufs_per_page);
103 }
104
105 /* Check the RX page recycle ring for a page that can be reused. */
ef4_reuse_page(struct ef4_rx_queue * rx_queue)106 static struct page *ef4_reuse_page(struct ef4_rx_queue *rx_queue)
107 {
108 struct ef4_nic *efx = rx_queue->efx;
109 struct page *page;
110 struct ef4_rx_page_state *state;
111 unsigned index;
112
113 index = rx_queue->page_remove & rx_queue->page_ptr_mask;
114 page = rx_queue->page_ring[index];
115 if (page == NULL)
116 return NULL;
117
118 rx_queue->page_ring[index] = NULL;
119 /* page_remove cannot exceed page_add. */
120 if (rx_queue->page_remove != rx_queue->page_add)
121 ++rx_queue->page_remove;
122
123 /* If page_count is 1 then we hold the only reference to this page. */
124 if (page_count(page) == 1) {
125 ++rx_queue->page_recycle_count;
126 return page;
127 } else {
128 state = page_address(page);
129 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
130 PAGE_SIZE << efx->rx_buffer_order,
131 DMA_FROM_DEVICE);
132 put_page(page);
133 ++rx_queue->page_recycle_failed;
134 }
135
136 return NULL;
137 }
138
139 /**
140 * ef4_init_rx_buffers - create EF4_RX_BATCH page-based RX buffers
141 *
142 * @rx_queue: Efx RX queue
143 *
144 * This allocates a batch of pages, maps them for DMA, and populates
145 * struct ef4_rx_buffers for each one. Return a negative error code or
146 * 0 on success. If a single page can be used for multiple buffers,
147 * then the page will either be inserted fully, or not at all.
148 */
ef4_init_rx_buffers(struct ef4_rx_queue * rx_queue,bool atomic)149 static int ef4_init_rx_buffers(struct ef4_rx_queue *rx_queue, bool atomic)
150 {
151 struct ef4_nic *efx = rx_queue->efx;
152 struct ef4_rx_buffer *rx_buf;
153 struct page *page;
154 unsigned int page_offset;
155 struct ef4_rx_page_state *state;
156 dma_addr_t dma_addr;
157 unsigned index, count;
158
159 count = 0;
160 do {
161 page = ef4_reuse_page(rx_queue);
162 if (page == NULL) {
163 page = alloc_pages(__GFP_COMP |
164 (atomic ? GFP_ATOMIC : GFP_KERNEL),
165 efx->rx_buffer_order);
166 if (unlikely(page == NULL))
167 return -ENOMEM;
168 dma_addr =
169 dma_map_page(&efx->pci_dev->dev, page, 0,
170 PAGE_SIZE << efx->rx_buffer_order,
171 DMA_FROM_DEVICE);
172 if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
173 dma_addr))) {
174 __free_pages(page, efx->rx_buffer_order);
175 return -EIO;
176 }
177 state = page_address(page);
178 state->dma_addr = dma_addr;
179 } else {
180 state = page_address(page);
181 dma_addr = state->dma_addr;
182 }
183
184 dma_addr += sizeof(struct ef4_rx_page_state);
185 page_offset = sizeof(struct ef4_rx_page_state);
186
187 do {
188 index = rx_queue->added_count & rx_queue->ptr_mask;
189 rx_buf = ef4_rx_buffer(rx_queue, index);
190 rx_buf->dma_addr = dma_addr + efx->rx_ip_align;
191 rx_buf->page = page;
192 rx_buf->page_offset = page_offset + efx->rx_ip_align;
193 rx_buf->len = efx->rx_dma_len;
194 rx_buf->flags = 0;
195 ++rx_queue->added_count;
196 get_page(page);
197 dma_addr += efx->rx_page_buf_step;
198 page_offset += efx->rx_page_buf_step;
199 } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
200
201 rx_buf->flags = EF4_RX_BUF_LAST_IN_PAGE;
202 } while (++count < efx->rx_pages_per_batch);
203
204 return 0;
205 }
206
207 /* Unmap a DMA-mapped page. This function is only called for the final RX
208 * buffer in a page.
209 */
ef4_unmap_rx_buffer(struct ef4_nic * efx,struct ef4_rx_buffer * rx_buf)210 static void ef4_unmap_rx_buffer(struct ef4_nic *efx,
211 struct ef4_rx_buffer *rx_buf)
212 {
213 struct page *page = rx_buf->page;
214
215 if (page) {
216 struct ef4_rx_page_state *state = page_address(page);
217 dma_unmap_page(&efx->pci_dev->dev,
218 state->dma_addr,
219 PAGE_SIZE << efx->rx_buffer_order,
220 DMA_FROM_DEVICE);
221 }
222 }
223
ef4_free_rx_buffers(struct ef4_rx_queue * rx_queue,struct ef4_rx_buffer * rx_buf,unsigned int num_bufs)224 static void ef4_free_rx_buffers(struct ef4_rx_queue *rx_queue,
225 struct ef4_rx_buffer *rx_buf,
226 unsigned int num_bufs)
227 {
228 do {
229 if (rx_buf->page) {
230 put_page(rx_buf->page);
231 rx_buf->page = NULL;
232 }
233 rx_buf = ef4_rx_buf_next(rx_queue, rx_buf);
234 } while (--num_bufs);
235 }
236
237 /* Attempt to recycle the page if there is an RX recycle ring; the page can
238 * only be added if this is the final RX buffer, to prevent pages being used in
239 * the descriptor ring and appearing in the recycle ring simultaneously.
240 */
ef4_recycle_rx_page(struct ef4_channel * channel,struct ef4_rx_buffer * rx_buf)241 static void ef4_recycle_rx_page(struct ef4_channel *channel,
242 struct ef4_rx_buffer *rx_buf)
243 {
244 struct page *page = rx_buf->page;
245 struct ef4_rx_queue *rx_queue = ef4_channel_get_rx_queue(channel);
246 struct ef4_nic *efx = rx_queue->efx;
247 unsigned index;
248
249 /* Only recycle the page after processing the final buffer. */
250 if (!(rx_buf->flags & EF4_RX_BUF_LAST_IN_PAGE))
251 return;
252
253 index = rx_queue->page_add & rx_queue->page_ptr_mask;
254 if (rx_queue->page_ring[index] == NULL) {
255 unsigned read_index = rx_queue->page_remove &
256 rx_queue->page_ptr_mask;
257
258 /* The next slot in the recycle ring is available, but
259 * increment page_remove if the read pointer currently
260 * points here.
261 */
262 if (read_index == index)
263 ++rx_queue->page_remove;
264 rx_queue->page_ring[index] = page;
265 ++rx_queue->page_add;
266 return;
267 }
268 ++rx_queue->page_recycle_full;
269 ef4_unmap_rx_buffer(efx, rx_buf);
270 put_page(rx_buf->page);
271 }
272
ef4_fini_rx_buffer(struct ef4_rx_queue * rx_queue,struct ef4_rx_buffer * rx_buf)273 static void ef4_fini_rx_buffer(struct ef4_rx_queue *rx_queue,
274 struct ef4_rx_buffer *rx_buf)
275 {
276 /* Release the page reference we hold for the buffer. */
277 if (rx_buf->page)
278 put_page(rx_buf->page);
279
280 /* If this is the last buffer in a page, unmap and free it. */
281 if (rx_buf->flags & EF4_RX_BUF_LAST_IN_PAGE) {
282 ef4_unmap_rx_buffer(rx_queue->efx, rx_buf);
283 ef4_free_rx_buffers(rx_queue, rx_buf, 1);
284 }
285 rx_buf->page = NULL;
286 }
287
288 /* Recycle the pages that are used by buffers that have just been received. */
ef4_recycle_rx_pages(struct ef4_channel * channel,struct ef4_rx_buffer * rx_buf,unsigned int n_frags)289 static void ef4_recycle_rx_pages(struct ef4_channel *channel,
290 struct ef4_rx_buffer *rx_buf,
291 unsigned int n_frags)
292 {
293 struct ef4_rx_queue *rx_queue = ef4_channel_get_rx_queue(channel);
294
295 do {
296 ef4_recycle_rx_page(channel, rx_buf);
297 rx_buf = ef4_rx_buf_next(rx_queue, rx_buf);
298 } while (--n_frags);
299 }
300
ef4_discard_rx_packet(struct ef4_channel * channel,struct ef4_rx_buffer * rx_buf,unsigned int n_frags)301 static void ef4_discard_rx_packet(struct ef4_channel *channel,
302 struct ef4_rx_buffer *rx_buf,
303 unsigned int n_frags)
304 {
305 struct ef4_rx_queue *rx_queue = ef4_channel_get_rx_queue(channel);
306
307 ef4_recycle_rx_pages(channel, rx_buf, n_frags);
308
309 ef4_free_rx_buffers(rx_queue, rx_buf, n_frags);
310 }
311
312 /**
313 * ef4_fast_push_rx_descriptors - push new RX descriptors quickly
314 * @rx_queue: RX descriptor queue
315 *
316 * This will aim to fill the RX descriptor queue up to
317 * @rx_queue->@max_fill. If there is insufficient atomic
318 * memory to do so, a slow fill will be scheduled.
319 *
320 * The caller must provide serialisation (none is used here). In practise,
321 * this means this function must run from the NAPI handler, or be called
322 * when NAPI is disabled.
323 */
ef4_fast_push_rx_descriptors(struct ef4_rx_queue * rx_queue,bool atomic)324 void ef4_fast_push_rx_descriptors(struct ef4_rx_queue *rx_queue, bool atomic)
325 {
326 struct ef4_nic *efx = rx_queue->efx;
327 unsigned int fill_level, batch_size;
328 int space, rc = 0;
329
330 if (!rx_queue->refill_enabled)
331 return;
332
333 /* Calculate current fill level, and exit if we don't need to fill */
334 fill_level = (rx_queue->added_count - rx_queue->removed_count);
335 EF4_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
336 if (fill_level >= rx_queue->fast_fill_trigger)
337 goto out;
338
339 /* Record minimum fill level */
340 if (unlikely(fill_level < rx_queue->min_fill)) {
341 if (fill_level)
342 rx_queue->min_fill = fill_level;
343 }
344
345 batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
346 space = rx_queue->max_fill - fill_level;
347 EF4_BUG_ON_PARANOID(space < batch_size);
348
349 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
350 "RX queue %d fast-filling descriptor ring from"
351 " level %d to level %d\n",
352 ef4_rx_queue_index(rx_queue), fill_level,
353 rx_queue->max_fill);
354
355
356 do {
357 rc = ef4_init_rx_buffers(rx_queue, atomic);
358 if (unlikely(rc)) {
359 /* Ensure that we don't leave the rx queue empty */
360 if (rx_queue->added_count == rx_queue->removed_count)
361 ef4_schedule_slow_fill(rx_queue);
362 goto out;
363 }
364 } while ((space -= batch_size) >= batch_size);
365
366 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
367 "RX queue %d fast-filled descriptor ring "
368 "to level %d\n", ef4_rx_queue_index(rx_queue),
369 rx_queue->added_count - rx_queue->removed_count);
370
371 out:
372 if (rx_queue->notified_count != rx_queue->added_count)
373 ef4_nic_notify_rx_desc(rx_queue);
374 }
375
ef4_rx_slow_fill(struct timer_list * t)376 void ef4_rx_slow_fill(struct timer_list *t)
377 {
378 struct ef4_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill);
379
380 /* Post an event to cause NAPI to run and refill the queue */
381 ef4_nic_generate_fill_event(rx_queue);
382 ++rx_queue->slow_fill_count;
383 }
384
ef4_rx_packet__check_len(struct ef4_rx_queue * rx_queue,struct ef4_rx_buffer * rx_buf,int len)385 static void ef4_rx_packet__check_len(struct ef4_rx_queue *rx_queue,
386 struct ef4_rx_buffer *rx_buf,
387 int len)
388 {
389 struct ef4_nic *efx = rx_queue->efx;
390 unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
391
392 if (likely(len <= max_len))
393 return;
394
395 /* The packet must be discarded, but this is only a fatal error
396 * if the caller indicated it was
397 */
398 rx_buf->flags |= EF4_RX_PKT_DISCARD;
399
400 if ((len > rx_buf->len) && EF4_WORKAROUND_8071(efx)) {
401 if (net_ratelimit())
402 netif_err(efx, rx_err, efx->net_dev,
403 " RX queue %d seriously overlength "
404 "RX event (0x%x > 0x%x+0x%x). Leaking\n",
405 ef4_rx_queue_index(rx_queue), len, max_len,
406 efx->type->rx_buffer_padding);
407 ef4_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
408 } else {
409 if (net_ratelimit())
410 netif_err(efx, rx_err, efx->net_dev,
411 " RX queue %d overlength RX event "
412 "(0x%x > 0x%x)\n",
413 ef4_rx_queue_index(rx_queue), len, max_len);
414 }
415
416 ef4_rx_queue_channel(rx_queue)->n_rx_overlength++;
417 }
418
419 /* Pass a received packet up through GRO. GRO can handle pages
420 * regardless of checksum state and skbs with a good checksum.
421 */
422 static void
ef4_rx_packet_gro(struct ef4_channel * channel,struct ef4_rx_buffer * rx_buf,unsigned int n_frags,u8 * eh)423 ef4_rx_packet_gro(struct ef4_channel *channel, struct ef4_rx_buffer *rx_buf,
424 unsigned int n_frags, u8 *eh)
425 {
426 struct napi_struct *napi = &channel->napi_str;
427 struct ef4_nic *efx = channel->efx;
428 struct sk_buff *skb;
429
430 skb = napi_get_frags(napi);
431 if (unlikely(!skb)) {
432 struct ef4_rx_queue *rx_queue;
433
434 rx_queue = ef4_channel_get_rx_queue(channel);
435 ef4_free_rx_buffers(rx_queue, rx_buf, n_frags);
436 return;
437 }
438
439 if (efx->net_dev->features & NETIF_F_RXHASH)
440 skb_set_hash(skb, ef4_rx_buf_hash(efx, eh),
441 PKT_HASH_TYPE_L3);
442 skb->ip_summed = ((rx_buf->flags & EF4_RX_PKT_CSUMMED) ?
443 CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
444
445 for (;;) {
446 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
447 rx_buf->page, rx_buf->page_offset,
448 rx_buf->len);
449 rx_buf->page = NULL;
450 skb->len += rx_buf->len;
451 if (skb_shinfo(skb)->nr_frags == n_frags)
452 break;
453
454 rx_buf = ef4_rx_buf_next(&channel->rx_queue, rx_buf);
455 }
456
457 skb->data_len = skb->len;
458 skb->truesize += n_frags * efx->rx_buffer_truesize;
459
460 skb_record_rx_queue(skb, channel->rx_queue.core_index);
461
462 napi_gro_frags(napi);
463 }
464
465 /* Allocate and construct an SKB around page fragments */
ef4_rx_mk_skb(struct ef4_channel * channel,struct ef4_rx_buffer * rx_buf,unsigned int n_frags,u8 * eh,int hdr_len)466 static struct sk_buff *ef4_rx_mk_skb(struct ef4_channel *channel,
467 struct ef4_rx_buffer *rx_buf,
468 unsigned int n_frags,
469 u8 *eh, int hdr_len)
470 {
471 struct ef4_nic *efx = channel->efx;
472 struct sk_buff *skb;
473
474 /* Allocate an SKB to store the headers */
475 skb = netdev_alloc_skb(efx->net_dev,
476 efx->rx_ip_align + efx->rx_prefix_size +
477 hdr_len);
478 if (unlikely(skb == NULL)) {
479 atomic_inc(&efx->n_rx_noskb_drops);
480 return NULL;
481 }
482
483 EF4_BUG_ON_PARANOID(rx_buf->len < hdr_len);
484
485 memcpy(skb->data + efx->rx_ip_align, eh - efx->rx_prefix_size,
486 efx->rx_prefix_size + hdr_len);
487 skb_reserve(skb, efx->rx_ip_align + efx->rx_prefix_size);
488 __skb_put(skb, hdr_len);
489
490 /* Append the remaining page(s) onto the frag list */
491 if (rx_buf->len > hdr_len) {
492 rx_buf->page_offset += hdr_len;
493 rx_buf->len -= hdr_len;
494
495 for (;;) {
496 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
497 rx_buf->page, rx_buf->page_offset,
498 rx_buf->len);
499 rx_buf->page = NULL;
500 skb->len += rx_buf->len;
501 skb->data_len += rx_buf->len;
502 if (skb_shinfo(skb)->nr_frags == n_frags)
503 break;
504
505 rx_buf = ef4_rx_buf_next(&channel->rx_queue, rx_buf);
506 }
507 } else {
508 __free_pages(rx_buf->page, efx->rx_buffer_order);
509 rx_buf->page = NULL;
510 n_frags = 0;
511 }
512
513 skb->truesize += n_frags * efx->rx_buffer_truesize;
514
515 /* Move past the ethernet header */
516 skb->protocol = eth_type_trans(skb, efx->net_dev);
517
518 skb_mark_napi_id(skb, &channel->napi_str);
519
520 return skb;
521 }
522
ef4_rx_packet(struct ef4_rx_queue * rx_queue,unsigned int index,unsigned int n_frags,unsigned int len,u16 flags)523 void ef4_rx_packet(struct ef4_rx_queue *rx_queue, unsigned int index,
524 unsigned int n_frags, unsigned int len, u16 flags)
525 {
526 struct ef4_nic *efx = rx_queue->efx;
527 struct ef4_channel *channel = ef4_rx_queue_channel(rx_queue);
528 struct ef4_rx_buffer *rx_buf;
529
530 rx_queue->rx_packets++;
531
532 rx_buf = ef4_rx_buffer(rx_queue, index);
533 rx_buf->flags |= flags;
534
535 /* Validate the number of fragments and completed length */
536 if (n_frags == 1) {
537 if (!(flags & EF4_RX_PKT_PREFIX_LEN))
538 ef4_rx_packet__check_len(rx_queue, rx_buf, len);
539 } else if (unlikely(n_frags > EF4_RX_MAX_FRAGS) ||
540 unlikely(len <= (n_frags - 1) * efx->rx_dma_len) ||
541 unlikely(len > n_frags * efx->rx_dma_len) ||
542 unlikely(!efx->rx_scatter)) {
543 /* If this isn't an explicit discard request, either
544 * the hardware or the driver is broken.
545 */
546 WARN_ON(!(len == 0 && rx_buf->flags & EF4_RX_PKT_DISCARD));
547 rx_buf->flags |= EF4_RX_PKT_DISCARD;
548 }
549
550 netif_vdbg(efx, rx_status, efx->net_dev,
551 "RX queue %d received ids %x-%x len %d %s%s\n",
552 ef4_rx_queue_index(rx_queue), index,
553 (index + n_frags - 1) & rx_queue->ptr_mask, len,
554 (rx_buf->flags & EF4_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
555 (rx_buf->flags & EF4_RX_PKT_DISCARD) ? " [DISCARD]" : "");
556
557 /* Discard packet, if instructed to do so. Process the
558 * previous receive first.
559 */
560 if (unlikely(rx_buf->flags & EF4_RX_PKT_DISCARD)) {
561 ef4_rx_flush_packet(channel);
562 ef4_discard_rx_packet(channel, rx_buf, n_frags);
563 return;
564 }
565
566 if (n_frags == 1 && !(flags & EF4_RX_PKT_PREFIX_LEN))
567 rx_buf->len = len;
568
569 /* Release and/or sync the DMA mapping - assumes all RX buffers
570 * consumed in-order per RX queue.
571 */
572 ef4_sync_rx_buffer(efx, rx_buf, rx_buf->len);
573
574 /* Prefetch nice and early so data will (hopefully) be in cache by
575 * the time we look at it.
576 */
577 prefetch(ef4_rx_buf_va(rx_buf));
578
579 rx_buf->page_offset += efx->rx_prefix_size;
580 rx_buf->len -= efx->rx_prefix_size;
581
582 if (n_frags > 1) {
583 /* Release/sync DMA mapping for additional fragments.
584 * Fix length for last fragment.
585 */
586 unsigned int tail_frags = n_frags - 1;
587
588 for (;;) {
589 rx_buf = ef4_rx_buf_next(rx_queue, rx_buf);
590 if (--tail_frags == 0)
591 break;
592 ef4_sync_rx_buffer(efx, rx_buf, efx->rx_dma_len);
593 }
594 rx_buf->len = len - (n_frags - 1) * efx->rx_dma_len;
595 ef4_sync_rx_buffer(efx, rx_buf, rx_buf->len);
596 }
597
598 /* All fragments have been DMA-synced, so recycle pages. */
599 rx_buf = ef4_rx_buffer(rx_queue, index);
600 ef4_recycle_rx_pages(channel, rx_buf, n_frags);
601
602 /* Pipeline receives so that we give time for packet headers to be
603 * prefetched into cache.
604 */
605 ef4_rx_flush_packet(channel);
606 channel->rx_pkt_n_frags = n_frags;
607 channel->rx_pkt_index = index;
608 }
609
ef4_rx_deliver(struct ef4_channel * channel,u8 * eh,struct ef4_rx_buffer * rx_buf,unsigned int n_frags)610 static void ef4_rx_deliver(struct ef4_channel *channel, u8 *eh,
611 struct ef4_rx_buffer *rx_buf,
612 unsigned int n_frags)
613 {
614 struct sk_buff *skb;
615 u16 hdr_len = min_t(u16, rx_buf->len, EF4_SKB_HEADERS);
616
617 skb = ef4_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len);
618 if (unlikely(skb == NULL)) {
619 struct ef4_rx_queue *rx_queue;
620
621 rx_queue = ef4_channel_get_rx_queue(channel);
622 ef4_free_rx_buffers(rx_queue, rx_buf, n_frags);
623 return;
624 }
625 skb_record_rx_queue(skb, channel->rx_queue.core_index);
626
627 /* Set the SKB flags */
628 skb_checksum_none_assert(skb);
629 if (likely(rx_buf->flags & EF4_RX_PKT_CSUMMED))
630 skb->ip_summed = CHECKSUM_UNNECESSARY;
631
632 if (channel->type->receive_skb)
633 if (channel->type->receive_skb(channel, skb))
634 return;
635
636 /* Pass the packet up */
637 netif_receive_skb(skb);
638 }
639
640 /* Handle a received packet. Second half: Touches packet payload. */
__ef4_rx_packet(struct ef4_channel * channel)641 void __ef4_rx_packet(struct ef4_channel *channel)
642 {
643 struct ef4_nic *efx = channel->efx;
644 struct ef4_rx_buffer *rx_buf =
645 ef4_rx_buffer(&channel->rx_queue, channel->rx_pkt_index);
646 u8 *eh = ef4_rx_buf_va(rx_buf);
647
648 /* Read length from the prefix if necessary. This already
649 * excludes the length of the prefix itself.
650 */
651 if (rx_buf->flags & EF4_RX_PKT_PREFIX_LEN)
652 rx_buf->len = le16_to_cpup((__le16 *)
653 (eh + efx->rx_packet_len_offset));
654
655 /* If we're in loopback test, then pass the packet directly to the
656 * loopback layer, and free the rx_buf here
657 */
658 if (unlikely(efx->loopback_selftest)) {
659 struct ef4_rx_queue *rx_queue;
660
661 ef4_loopback_rx_packet(efx, eh, rx_buf->len);
662 rx_queue = ef4_channel_get_rx_queue(channel);
663 ef4_free_rx_buffers(rx_queue, rx_buf,
664 channel->rx_pkt_n_frags);
665 goto out;
666 }
667
668 if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
669 rx_buf->flags &= ~EF4_RX_PKT_CSUMMED;
670
671 if ((rx_buf->flags & EF4_RX_PKT_TCP) && !channel->type->receive_skb)
672 ef4_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh);
673 else
674 ef4_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags);
675 out:
676 channel->rx_pkt_n_frags = 0;
677 }
678
ef4_probe_rx_queue(struct ef4_rx_queue * rx_queue)679 int ef4_probe_rx_queue(struct ef4_rx_queue *rx_queue)
680 {
681 struct ef4_nic *efx = rx_queue->efx;
682 unsigned int entries;
683 int rc;
684
685 /* Create the smallest power-of-two aligned ring */
686 entries = max(roundup_pow_of_two(efx->rxq_entries), EF4_MIN_DMAQ_SIZE);
687 EF4_BUG_ON_PARANOID(entries > EF4_MAX_DMAQ_SIZE);
688 rx_queue->ptr_mask = entries - 1;
689
690 netif_dbg(efx, probe, efx->net_dev,
691 "creating RX queue %d size %#x mask %#x\n",
692 ef4_rx_queue_index(rx_queue), efx->rxq_entries,
693 rx_queue->ptr_mask);
694
695 /* Allocate RX buffers */
696 rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
697 GFP_KERNEL);
698 if (!rx_queue->buffer)
699 return -ENOMEM;
700
701 rc = ef4_nic_probe_rx(rx_queue);
702 if (rc) {
703 kfree(rx_queue->buffer);
704 rx_queue->buffer = NULL;
705 }
706
707 return rc;
708 }
709
ef4_init_rx_recycle_ring(struct ef4_nic * efx,struct ef4_rx_queue * rx_queue)710 static void ef4_init_rx_recycle_ring(struct ef4_nic *efx,
711 struct ef4_rx_queue *rx_queue)
712 {
713 unsigned int bufs_in_recycle_ring, page_ring_size;
714
715 /* Set the RX recycle ring size */
716 #ifdef CONFIG_PPC64
717 bufs_in_recycle_ring = EF4_RECYCLE_RING_SIZE_IOMMU;
718 #else
719 if (iommu_present(&pci_bus_type))
720 bufs_in_recycle_ring = EF4_RECYCLE_RING_SIZE_IOMMU;
721 else
722 bufs_in_recycle_ring = EF4_RECYCLE_RING_SIZE_NOIOMMU;
723 #endif /* CONFIG_PPC64 */
724
725 page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
726 efx->rx_bufs_per_page);
727 rx_queue->page_ring = kcalloc(page_ring_size,
728 sizeof(*rx_queue->page_ring), GFP_KERNEL);
729 rx_queue->page_ptr_mask = page_ring_size - 1;
730 }
731
ef4_init_rx_queue(struct ef4_rx_queue * rx_queue)732 void ef4_init_rx_queue(struct ef4_rx_queue *rx_queue)
733 {
734 struct ef4_nic *efx = rx_queue->efx;
735 unsigned int max_fill, trigger, max_trigger;
736
737 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
738 "initialising RX queue %d\n", ef4_rx_queue_index(rx_queue));
739
740 /* Initialise ptr fields */
741 rx_queue->added_count = 0;
742 rx_queue->notified_count = 0;
743 rx_queue->removed_count = 0;
744 rx_queue->min_fill = -1U;
745 ef4_init_rx_recycle_ring(efx, rx_queue);
746
747 rx_queue->page_remove = 0;
748 rx_queue->page_add = rx_queue->page_ptr_mask + 1;
749 rx_queue->page_recycle_count = 0;
750 rx_queue->page_recycle_failed = 0;
751 rx_queue->page_recycle_full = 0;
752
753 /* Initialise limit fields */
754 max_fill = efx->rxq_entries - EF4_RXD_HEAD_ROOM;
755 max_trigger =
756 max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
757 if (rx_refill_threshold != 0) {
758 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
759 if (trigger > max_trigger)
760 trigger = max_trigger;
761 } else {
762 trigger = max_trigger;
763 }
764
765 rx_queue->max_fill = max_fill;
766 rx_queue->fast_fill_trigger = trigger;
767 rx_queue->refill_enabled = true;
768
769 /* Set up RX descriptor ring */
770 ef4_nic_init_rx(rx_queue);
771 }
772
ef4_fini_rx_queue(struct ef4_rx_queue * rx_queue)773 void ef4_fini_rx_queue(struct ef4_rx_queue *rx_queue)
774 {
775 int i;
776 struct ef4_nic *efx = rx_queue->efx;
777 struct ef4_rx_buffer *rx_buf;
778
779 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
780 "shutting down RX queue %d\n", ef4_rx_queue_index(rx_queue));
781
782 del_timer_sync(&rx_queue->slow_fill);
783
784 /* Release RX buffers from the current read ptr to the write ptr */
785 if (rx_queue->buffer) {
786 for (i = rx_queue->removed_count; i < rx_queue->added_count;
787 i++) {
788 unsigned index = i & rx_queue->ptr_mask;
789 rx_buf = ef4_rx_buffer(rx_queue, index);
790 ef4_fini_rx_buffer(rx_queue, rx_buf);
791 }
792 }
793
794 /* Unmap and release the pages in the recycle ring. Remove the ring. */
795 for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
796 struct page *page = rx_queue->page_ring[i];
797 struct ef4_rx_page_state *state;
798
799 if (page == NULL)
800 continue;
801
802 state = page_address(page);
803 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
804 PAGE_SIZE << efx->rx_buffer_order,
805 DMA_FROM_DEVICE);
806 put_page(page);
807 }
808 kfree(rx_queue->page_ring);
809 rx_queue->page_ring = NULL;
810 }
811
ef4_remove_rx_queue(struct ef4_rx_queue * rx_queue)812 void ef4_remove_rx_queue(struct ef4_rx_queue *rx_queue)
813 {
814 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
815 "destroying RX queue %d\n", ef4_rx_queue_index(rx_queue));
816
817 ef4_nic_remove_rx(rx_queue);
818
819 kfree(rx_queue->buffer);
820 rx_queue->buffer = NULL;
821 }
822
823
824 module_param(rx_refill_threshold, uint, 0444);
825 MODULE_PARM_DESC(rx_refill_threshold,
826 "RX descriptor ring refill threshold (%)");
827
828 #ifdef CONFIG_RFS_ACCEL
829
ef4_filter_rfs(struct net_device * net_dev,const struct sk_buff * skb,u16 rxq_index,u32 flow_id)830 int ef4_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
831 u16 rxq_index, u32 flow_id)
832 {
833 struct ef4_nic *efx = netdev_priv(net_dev);
834 struct ef4_channel *channel;
835 struct ef4_filter_spec spec;
836 struct flow_keys fk;
837 int rc;
838
839 if (flow_id == RPS_FLOW_ID_INVALID)
840 return -EINVAL;
841
842 if (!skb_flow_dissect_flow_keys(skb, &fk, 0))
843 return -EPROTONOSUPPORT;
844
845 if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6))
846 return -EPROTONOSUPPORT;
847 if (fk.control.flags & FLOW_DIS_IS_FRAGMENT)
848 return -EPROTONOSUPPORT;
849
850 ef4_filter_init_rx(&spec, EF4_FILTER_PRI_HINT,
851 efx->rx_scatter ? EF4_FILTER_FLAG_RX_SCATTER : 0,
852 rxq_index);
853 spec.match_flags =
854 EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_IP_PROTO |
855 EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT |
856 EF4_FILTER_MATCH_REM_HOST | EF4_FILTER_MATCH_REM_PORT;
857 spec.ether_type = fk.basic.n_proto;
858 spec.ip_proto = fk.basic.ip_proto;
859
860 if (fk.basic.n_proto == htons(ETH_P_IP)) {
861 spec.rem_host[0] = fk.addrs.v4addrs.src;
862 spec.loc_host[0] = fk.addrs.v4addrs.dst;
863 } else {
864 memcpy(spec.rem_host, &fk.addrs.v6addrs.src, sizeof(struct in6_addr));
865 memcpy(spec.loc_host, &fk.addrs.v6addrs.dst, sizeof(struct in6_addr));
866 }
867
868 spec.rem_port = fk.ports.src;
869 spec.loc_port = fk.ports.dst;
870
871 rc = efx->type->filter_rfs_insert(efx, &spec);
872 if (rc < 0)
873 return rc;
874
875 /* Remember this so we can check whether to expire the filter later */
876 channel = ef4_get_channel(efx, rxq_index);
877 channel->rps_flow_id[rc] = flow_id;
878 ++channel->rfs_filters_added;
879
880 if (spec.ether_type == htons(ETH_P_IP))
881 netif_info(efx, rx_status, efx->net_dev,
882 "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d]\n",
883 (spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
884 spec.rem_host, ntohs(spec.rem_port), spec.loc_host,
885 ntohs(spec.loc_port), rxq_index, flow_id, rc);
886 else
887 netif_info(efx, rx_status, efx->net_dev,
888 "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d]\n",
889 (spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
890 spec.rem_host, ntohs(spec.rem_port), spec.loc_host,
891 ntohs(spec.loc_port), rxq_index, flow_id, rc);
892
893 return rc;
894 }
895
__ef4_filter_rfs_expire(struct ef4_nic * efx,unsigned int quota)896 bool __ef4_filter_rfs_expire(struct ef4_nic *efx, unsigned int quota)
897 {
898 bool (*expire_one)(struct ef4_nic *efx, u32 flow_id, unsigned int index);
899 unsigned int channel_idx, index, size;
900 u32 flow_id;
901
902 if (!spin_trylock_bh(&efx->filter_lock))
903 return false;
904
905 expire_one = efx->type->filter_rfs_expire_one;
906 channel_idx = efx->rps_expire_channel;
907 index = efx->rps_expire_index;
908 size = efx->type->max_rx_ip_filters;
909 while (quota--) {
910 struct ef4_channel *channel = ef4_get_channel(efx, channel_idx);
911 flow_id = channel->rps_flow_id[index];
912
913 if (flow_id != RPS_FLOW_ID_INVALID &&
914 expire_one(efx, flow_id, index)) {
915 netif_info(efx, rx_status, efx->net_dev,
916 "expired filter %d [queue %u flow %u]\n",
917 index, channel_idx, flow_id);
918 channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID;
919 }
920 if (++index == size) {
921 if (++channel_idx == efx->n_channels)
922 channel_idx = 0;
923 index = 0;
924 }
925 }
926 efx->rps_expire_channel = channel_idx;
927 efx->rps_expire_index = index;
928
929 spin_unlock_bh(&efx->filter_lock);
930 return true;
931 }
932
933 #endif /* CONFIG_RFS_ACCEL */
934
935 /**
936 * ef4_filter_is_mc_recipient - test whether spec is a multicast recipient
937 * @spec: Specification to test
938 *
939 * Return: %true if the specification is a non-drop RX filter that
940 * matches a local MAC address I/G bit value of 1 or matches a local
941 * IPv4 or IPv6 address value in the respective multicast address
942 * range. Otherwise %false.
943 */
ef4_filter_is_mc_recipient(const struct ef4_filter_spec * spec)944 bool ef4_filter_is_mc_recipient(const struct ef4_filter_spec *spec)
945 {
946 if (!(spec->flags & EF4_FILTER_FLAG_RX) ||
947 spec->dmaq_id == EF4_FILTER_RX_DMAQ_ID_DROP)
948 return false;
949
950 if (spec->match_flags &
951 (EF4_FILTER_MATCH_LOC_MAC | EF4_FILTER_MATCH_LOC_MAC_IG) &&
952 is_multicast_ether_addr(spec->loc_mac))
953 return true;
954
955 if ((spec->match_flags &
956 (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_LOC_HOST)) ==
957 (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_LOC_HOST)) {
958 if (spec->ether_type == htons(ETH_P_IP) &&
959 ipv4_is_multicast(spec->loc_host[0]))
960 return true;
961 if (spec->ether_type == htons(ETH_P_IPV6) &&
962 ((const u8 *)spec->loc_host)[0] == 0xff)
963 return true;
964 }
965
966 return false;
967 }
968