1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Low-level parallel port routines for built-in port on SGI IP32
3 *
4 * Author: Arnaud Giersch <arnaud.giersch@free.fr>
5 *
6 * Based on parport_pc.c by
7 * Phil Blundell, Tim Waugh, Jose Renau, David Campbell,
8 * Andrea Arcangeli, et al.
9 *
10 * Thanks to Ilya A. Volynets-Evenbakh for his help.
11 *
12 * Copyright (C) 2005, 2006 Arnaud Giersch.
13 */
14
15 /* Current status:
16 *
17 * Basic SPP and PS2 modes are supported.
18 * Support for parallel port IRQ is present.
19 * Hardware SPP (a.k.a. compatibility), EPP, and ECP modes are
20 * supported.
21 * SPP/ECP FIFO can be driven in PIO or DMA mode. PIO mode can work with
22 * or without interrupt support.
23 *
24 * Hardware ECP mode is not fully implemented (ecp_read_data and
25 * ecp_write_addr are actually missing).
26 *
27 * To do:
28 *
29 * Fully implement ECP mode.
30 * EPP and ECP mode need to be tested. I currently do not own any
31 * peripheral supporting these extended mode, and cannot test them.
32 * If DMA mode works well, decide if support for PIO FIFO modes should be
33 * dropped.
34 * Use the io{read,write} family functions when they become available in
35 * the linux-mips.org tree. Note: the MIPS specific functions readsb()
36 * and writesb() are to be translated by ioread8_rep() and iowrite8_rep()
37 * respectively.
38 */
39
40 /* The built-in parallel port on the SGI 02 workstation (a.k.a. IP32) is an
41 * IEEE 1284 parallel port driven by a Texas Instrument TL16PIR552PH chip[1].
42 * This chip supports SPP, bidirectional, EPP and ECP modes. It has a 16 byte
43 * FIFO buffer and supports DMA transfers.
44 *
45 * [1] http://focus.ti.com/docs/prod/folders/print/tl16pir552.html
46 *
47 * Theoretically, we could simply use the parport_pc module. It is however
48 * not so simple. The parport_pc code assumes that the parallel port
49 * registers are port-mapped. On the O2, they are memory-mapped.
50 * Furthermore, each register is replicated on 256 consecutive addresses (as
51 * it is for the built-in serial ports on the same chip).
52 */
53
54 /*--- Some configuration defines ---------------------------------------*/
55
56 /* DEBUG_PARPORT_IP32
57 * 0 disable debug
58 * 1 standard level: pr_debug1 is enabled
59 * 2 parport_ip32_dump_state is enabled
60 * >=3 verbose level: pr_debug is enabled
61 */
62 #if !defined(DEBUG_PARPORT_IP32)
63 # define DEBUG_PARPORT_IP32 0 /* 0 (disabled) for production */
64 #endif
65
66 /*----------------------------------------------------------------------*/
67
68 /* Setup DEBUG macros. This is done before any includes, just in case we
69 * activate pr_debug() with DEBUG_PARPORT_IP32 >= 3.
70 */
71 #if DEBUG_PARPORT_IP32 == 1
72 # warning DEBUG_PARPORT_IP32 == 1
73 #elif DEBUG_PARPORT_IP32 == 2
74 # warning DEBUG_PARPORT_IP32 == 2
75 #elif DEBUG_PARPORT_IP32 >= 3
76 # warning DEBUG_PARPORT_IP32 >= 3
77 # if !defined(DEBUG)
78 # define DEBUG /* enable pr_debug() in kernel.h */
79 # endif
80 #endif
81
82 #include <linux/completion.h>
83 #include <linux/delay.h>
84 #include <linux/dma-mapping.h>
85 #include <linux/err.h>
86 #include <linux/init.h>
87 #include <linux/interrupt.h>
88 #include <linux/jiffies.h>
89 #include <linux/kernel.h>
90 #include <linux/module.h>
91 #include <linux/parport.h>
92 #include <linux/sched/signal.h>
93 #include <linux/slab.h>
94 #include <linux/spinlock.h>
95 #include <linux/stddef.h>
96 #include <linux/types.h>
97 #include <asm/io.h>
98 #include <asm/ip32/ip32_ints.h>
99 #include <asm/ip32/mace.h>
100
101 /*--- Global variables -------------------------------------------------*/
102
103 /* Verbose probing on by default for debugging. */
104 #if DEBUG_PARPORT_IP32 >= 1
105 # define DEFAULT_VERBOSE_PROBING 1
106 #else
107 # define DEFAULT_VERBOSE_PROBING 0
108 #endif
109
110 /* Default prefix for printk */
111 #define PPIP32 "parport_ip32: "
112
113 /*
114 * These are the module parameters:
115 * @features: bit mask of features to enable/disable
116 * (all enabled by default)
117 * @verbose_probing: log chit-chat during initialization
118 */
119 #define PARPORT_IP32_ENABLE_IRQ (1U << 0)
120 #define PARPORT_IP32_ENABLE_DMA (1U << 1)
121 #define PARPORT_IP32_ENABLE_SPP (1U << 2)
122 #define PARPORT_IP32_ENABLE_EPP (1U << 3)
123 #define PARPORT_IP32_ENABLE_ECP (1U << 4)
124 static unsigned int features = ~0U;
125 static bool verbose_probing = DEFAULT_VERBOSE_PROBING;
126
127 /* We do not support more than one port. */
128 static struct parport *this_port;
129
130 /* Timing constants for FIFO modes. */
131 #define FIFO_NFAULT_TIMEOUT 100 /* milliseconds */
132 #define FIFO_POLLING_INTERVAL 50 /* microseconds */
133
134 /*--- I/O register definitions -----------------------------------------*/
135
136 /**
137 * struct parport_ip32_regs - virtual addresses of parallel port registers
138 * @data: Data Register
139 * @dsr: Device Status Register
140 * @dcr: Device Control Register
141 * @eppAddr: EPP Address Register
142 * @eppData0: EPP Data Register 0
143 * @eppData1: EPP Data Register 1
144 * @eppData2: EPP Data Register 2
145 * @eppData3: EPP Data Register 3
146 * @ecpAFifo: ECP Address FIFO
147 * @fifo: General FIFO register. The same address is used for:
148 * - cFifo, the Parallel Port DATA FIFO
149 * - ecpDFifo, the ECP Data FIFO
150 * - tFifo, the ECP Test FIFO
151 * @cnfgA: Configuration Register A
152 * @cnfgB: Configuration Register B
153 * @ecr: Extended Control Register
154 */
155 struct parport_ip32_regs {
156 void __iomem *data;
157 void __iomem *dsr;
158 void __iomem *dcr;
159 void __iomem *eppAddr;
160 void __iomem *eppData0;
161 void __iomem *eppData1;
162 void __iomem *eppData2;
163 void __iomem *eppData3;
164 void __iomem *ecpAFifo;
165 void __iomem *fifo;
166 void __iomem *cnfgA;
167 void __iomem *cnfgB;
168 void __iomem *ecr;
169 };
170
171 /* Device Status Register */
172 #define DSR_nBUSY (1U << 7) /* PARPORT_STATUS_BUSY */
173 #define DSR_nACK (1U << 6) /* PARPORT_STATUS_ACK */
174 #define DSR_PERROR (1U << 5) /* PARPORT_STATUS_PAPEROUT */
175 #define DSR_SELECT (1U << 4) /* PARPORT_STATUS_SELECT */
176 #define DSR_nFAULT (1U << 3) /* PARPORT_STATUS_ERROR */
177 #define DSR_nPRINT (1U << 2) /* specific to TL16PIR552 */
178 /* #define DSR_reserved (1U << 1) */
179 #define DSR_TIMEOUT (1U << 0) /* EPP timeout */
180
181 /* Device Control Register */
182 /* #define DCR_reserved (1U << 7) | (1U << 6) */
183 #define DCR_DIR (1U << 5) /* direction */
184 #define DCR_IRQ (1U << 4) /* interrupt on nAck */
185 #define DCR_SELECT (1U << 3) /* PARPORT_CONTROL_SELECT */
186 #define DCR_nINIT (1U << 2) /* PARPORT_CONTROL_INIT */
187 #define DCR_AUTOFD (1U << 1) /* PARPORT_CONTROL_AUTOFD */
188 #define DCR_STROBE (1U << 0) /* PARPORT_CONTROL_STROBE */
189
190 /* ECP Configuration Register A */
191 #define CNFGA_IRQ (1U << 7)
192 #define CNFGA_ID_MASK ((1U << 6) | (1U << 5) | (1U << 4))
193 #define CNFGA_ID_SHIFT 4
194 #define CNFGA_ID_16 (00U << CNFGA_ID_SHIFT)
195 #define CNFGA_ID_8 (01U << CNFGA_ID_SHIFT)
196 #define CNFGA_ID_32 (02U << CNFGA_ID_SHIFT)
197 /* #define CNFGA_reserved (1U << 3) */
198 #define CNFGA_nBYTEINTRANS (1U << 2)
199 #define CNFGA_PWORDLEFT ((1U << 1) | (1U << 0))
200
201 /* ECP Configuration Register B */
202 #define CNFGB_COMPRESS (1U << 7)
203 #define CNFGB_INTRVAL (1U << 6)
204 #define CNFGB_IRQ_MASK ((1U << 5) | (1U << 4) | (1U << 3))
205 #define CNFGB_IRQ_SHIFT 3
206 #define CNFGB_DMA_MASK ((1U << 2) | (1U << 1) | (1U << 0))
207 #define CNFGB_DMA_SHIFT 0
208
209 /* Extended Control Register */
210 #define ECR_MODE_MASK ((1U << 7) | (1U << 6) | (1U << 5))
211 #define ECR_MODE_SHIFT 5
212 #define ECR_MODE_SPP (00U << ECR_MODE_SHIFT)
213 #define ECR_MODE_PS2 (01U << ECR_MODE_SHIFT)
214 #define ECR_MODE_PPF (02U << ECR_MODE_SHIFT)
215 #define ECR_MODE_ECP (03U << ECR_MODE_SHIFT)
216 #define ECR_MODE_EPP (04U << ECR_MODE_SHIFT)
217 /* #define ECR_MODE_reserved (05U << ECR_MODE_SHIFT) */
218 #define ECR_MODE_TST (06U << ECR_MODE_SHIFT)
219 #define ECR_MODE_CFG (07U << ECR_MODE_SHIFT)
220 #define ECR_nERRINTR (1U << 4)
221 #define ECR_DMAEN (1U << 3)
222 #define ECR_SERVINTR (1U << 2)
223 #define ECR_F_FULL (1U << 1)
224 #define ECR_F_EMPTY (1U << 0)
225
226 /*--- Private data -----------------------------------------------------*/
227
228 /**
229 * enum parport_ip32_irq_mode - operation mode of interrupt handler
230 * @PARPORT_IP32_IRQ_FWD: forward interrupt to the upper parport layer
231 * @PARPORT_IP32_IRQ_HERE: interrupt is handled locally
232 */
233 enum parport_ip32_irq_mode { PARPORT_IP32_IRQ_FWD, PARPORT_IP32_IRQ_HERE };
234
235 /**
236 * struct parport_ip32_private - private stuff for &struct parport
237 * @regs: register addresses
238 * @dcr_cache: cached contents of DCR
239 * @dcr_writable: bit mask of writable DCR bits
240 * @pword: number of bytes per PWord
241 * @fifo_depth: number of PWords that FIFO will hold
242 * @readIntrThreshold: minimum number of PWords we can read
243 * if we get an interrupt
244 * @writeIntrThreshold: minimum number of PWords we can write
245 * if we get an interrupt
246 * @irq_mode: operation mode of interrupt handler for this port
247 * @irq_complete: mutex used to wait for an interrupt to occur
248 */
249 struct parport_ip32_private {
250 struct parport_ip32_regs regs;
251 unsigned int dcr_cache;
252 unsigned int dcr_writable;
253 unsigned int pword;
254 unsigned int fifo_depth;
255 unsigned int readIntrThreshold;
256 unsigned int writeIntrThreshold;
257 enum parport_ip32_irq_mode irq_mode;
258 struct completion irq_complete;
259 };
260
261 /*--- Debug code -------------------------------------------------------*/
262
263 /*
264 * pr_debug1 - print debug messages
265 *
266 * This is like pr_debug(), but is defined for %DEBUG_PARPORT_IP32 >= 1
267 */
268 #if DEBUG_PARPORT_IP32 >= 1
269 # define pr_debug1(...) printk(KERN_DEBUG __VA_ARGS__)
270 #else /* DEBUG_PARPORT_IP32 < 1 */
271 # define pr_debug1(...) do { } while (0)
272 #endif
273
274 /*
275 * pr_trace, pr_trace1 - trace function calls
276 * @p: pointer to &struct parport
277 * @fmt: printk format string
278 * @...: parameters for format string
279 *
280 * Macros used to trace function calls. The given string is formatted after
281 * function name. pr_trace() uses pr_debug(), and pr_trace1() uses
282 * pr_debug1(). __pr_trace() is the low-level macro and is not to be used
283 * directly.
284 */
285 #define __pr_trace(pr, p, fmt, ...) \
286 pr("%s: %s" fmt "\n", \
287 ({ const struct parport *__p = (p); \
288 __p ? __p->name : "parport_ip32"; }), \
289 __func__ , ##__VA_ARGS__)
290 #define pr_trace(p, fmt, ...) __pr_trace(pr_debug, p, fmt , ##__VA_ARGS__)
291 #define pr_trace1(p, fmt, ...) __pr_trace(pr_debug1, p, fmt , ##__VA_ARGS__)
292
293 /*
294 * __pr_probe, pr_probe - print message if @verbose_probing is true
295 * @p: pointer to &struct parport
296 * @fmt: printk format string
297 * @...: parameters for format string
298 *
299 * For new lines, use pr_probe(). Use __pr_probe() for continued lines.
300 */
301 #define __pr_probe(...) \
302 do { if (verbose_probing) printk(__VA_ARGS__); } while (0)
303 #define pr_probe(p, fmt, ...) \
304 __pr_probe(KERN_INFO PPIP32 "0x%lx: " fmt, (p)->base , ##__VA_ARGS__)
305
306 /*
307 * parport_ip32_dump_state - print register status of parport
308 * @p: pointer to &struct parport
309 * @str: string to add in message
310 * @show_ecp_config: shall we dump ECP configuration registers too?
311 *
312 * This function is only here for debugging purpose, and should be used with
313 * care. Reading the parallel port registers may have undesired side effects.
314 * Especially if @show_ecp_config is true, the parallel port is resetted.
315 * This function is only defined if %DEBUG_PARPORT_IP32 >= 2.
316 */
317 #if DEBUG_PARPORT_IP32 >= 2
parport_ip32_dump_state(struct parport * p,char * str,unsigned int show_ecp_config)318 static void parport_ip32_dump_state(struct parport *p, char *str,
319 unsigned int show_ecp_config)
320 {
321 struct parport_ip32_private * const priv = p->physport->private_data;
322 unsigned int i;
323
324 printk(KERN_DEBUG PPIP32 "%s: state (%s):\n", p->name, str);
325 {
326 static const char ecr_modes[8][4] = {"SPP", "PS2", "PPF",
327 "ECP", "EPP", "???",
328 "TST", "CFG"};
329 unsigned int ecr = readb(priv->regs.ecr);
330 printk(KERN_DEBUG PPIP32 " ecr=0x%02x", ecr);
331 printk(" %s",
332 ecr_modes[(ecr & ECR_MODE_MASK) >> ECR_MODE_SHIFT]);
333 if (ecr & ECR_nERRINTR)
334 printk(",nErrIntrEn");
335 if (ecr & ECR_DMAEN)
336 printk(",dmaEn");
337 if (ecr & ECR_SERVINTR)
338 printk(",serviceIntr");
339 if (ecr & ECR_F_FULL)
340 printk(",f_full");
341 if (ecr & ECR_F_EMPTY)
342 printk(",f_empty");
343 printk("\n");
344 }
345 if (show_ecp_config) {
346 unsigned int oecr, cnfgA, cnfgB;
347 oecr = readb(priv->regs.ecr);
348 writeb(ECR_MODE_PS2, priv->regs.ecr);
349 writeb(ECR_MODE_CFG, priv->regs.ecr);
350 cnfgA = readb(priv->regs.cnfgA);
351 cnfgB = readb(priv->regs.cnfgB);
352 writeb(ECR_MODE_PS2, priv->regs.ecr);
353 writeb(oecr, priv->regs.ecr);
354 printk(KERN_DEBUG PPIP32 " cnfgA=0x%02x", cnfgA);
355 printk(" ISA-%s", (cnfgA & CNFGA_IRQ) ? "Level" : "Pulses");
356 switch (cnfgA & CNFGA_ID_MASK) {
357 case CNFGA_ID_8:
358 printk(",8 bits");
359 break;
360 case CNFGA_ID_16:
361 printk(",16 bits");
362 break;
363 case CNFGA_ID_32:
364 printk(",32 bits");
365 break;
366 default:
367 printk(",unknown ID");
368 break;
369 }
370 if (!(cnfgA & CNFGA_nBYTEINTRANS))
371 printk(",ByteInTrans");
372 if ((cnfgA & CNFGA_ID_MASK) != CNFGA_ID_8)
373 printk(",%d byte%s left", cnfgA & CNFGA_PWORDLEFT,
374 ((cnfgA & CNFGA_PWORDLEFT) > 1) ? "s" : "");
375 printk("\n");
376 printk(KERN_DEBUG PPIP32 " cnfgB=0x%02x", cnfgB);
377 printk(" irq=%u,dma=%u",
378 (cnfgB & CNFGB_IRQ_MASK) >> CNFGB_IRQ_SHIFT,
379 (cnfgB & CNFGB_DMA_MASK) >> CNFGB_DMA_SHIFT);
380 printk(",intrValue=%d", !!(cnfgB & CNFGB_INTRVAL));
381 if (cnfgB & CNFGB_COMPRESS)
382 printk(",compress");
383 printk("\n");
384 }
385 for (i = 0; i < 2; i++) {
386 unsigned int dcr = i ? priv->dcr_cache : readb(priv->regs.dcr);
387 printk(KERN_DEBUG PPIP32 " dcr(%s)=0x%02x",
388 i ? "soft" : "hard", dcr);
389 printk(" %s", (dcr & DCR_DIR) ? "rev" : "fwd");
390 if (dcr & DCR_IRQ)
391 printk(",ackIntEn");
392 if (!(dcr & DCR_SELECT))
393 printk(",nSelectIn");
394 if (dcr & DCR_nINIT)
395 printk(",nInit");
396 if (!(dcr & DCR_AUTOFD))
397 printk(",nAutoFD");
398 if (!(dcr & DCR_STROBE))
399 printk(",nStrobe");
400 printk("\n");
401 }
402 #define sep (f++ ? ',' : ' ')
403 {
404 unsigned int f = 0;
405 unsigned int dsr = readb(priv->regs.dsr);
406 printk(KERN_DEBUG PPIP32 " dsr=0x%02x", dsr);
407 if (!(dsr & DSR_nBUSY))
408 printk("%cBusy", sep);
409 if (dsr & DSR_nACK)
410 printk("%cnAck", sep);
411 if (dsr & DSR_PERROR)
412 printk("%cPError", sep);
413 if (dsr & DSR_SELECT)
414 printk("%cSelect", sep);
415 if (dsr & DSR_nFAULT)
416 printk("%cnFault", sep);
417 if (!(dsr & DSR_nPRINT))
418 printk("%c(Print)", sep);
419 if (dsr & DSR_TIMEOUT)
420 printk("%cTimeout", sep);
421 printk("\n");
422 }
423 #undef sep
424 }
425 #else /* DEBUG_PARPORT_IP32 < 2 */
426 #define parport_ip32_dump_state(...) do { } while (0)
427 #endif
428
429 /*
430 * CHECK_EXTRA_BITS - track and log extra bits
431 * @p: pointer to &struct parport
432 * @b: byte to inspect
433 * @m: bit mask of authorized bits
434 *
435 * This is used to track and log extra bits that should not be there in
436 * parport_ip32_write_control() and parport_ip32_frob_control(). It is only
437 * defined if %DEBUG_PARPORT_IP32 >= 1.
438 */
439 #if DEBUG_PARPORT_IP32 >= 1
440 #define CHECK_EXTRA_BITS(p, b, m) \
441 do { \
442 unsigned int __b = (b), __m = (m); \
443 if (__b & ~__m) \
444 pr_debug1(PPIP32 "%s: extra bits in %s(%s): " \
445 "0x%02x/0x%02x\n", \
446 (p)->name, __func__, #b, __b, __m); \
447 } while (0)
448 #else /* DEBUG_PARPORT_IP32 < 1 */
449 #define CHECK_EXTRA_BITS(...) do { } while (0)
450 #endif
451
452 /*--- IP32 parallel port DMA operations --------------------------------*/
453
454 /**
455 * struct parport_ip32_dma_data - private data needed for DMA operation
456 * @dir: DMA direction (from or to device)
457 * @buf: buffer physical address
458 * @len: buffer length
459 * @next: address of next bytes to DMA transfer
460 * @left: number of bytes remaining
461 * @ctx: next context to write (0: context_a; 1: context_b)
462 * @irq_on: are the DMA IRQs currently enabled?
463 * @lock: spinlock to protect access to the structure
464 */
465 struct parport_ip32_dma_data {
466 enum dma_data_direction dir;
467 dma_addr_t buf;
468 dma_addr_t next;
469 size_t len;
470 size_t left;
471 unsigned int ctx;
472 unsigned int irq_on;
473 spinlock_t lock;
474 };
475 static struct parport_ip32_dma_data parport_ip32_dma;
476
477 /**
478 * parport_ip32_dma_setup_context - setup next DMA context
479 * @limit: maximum data size for the context
480 *
481 * The alignment constraints must be verified in caller function, and the
482 * parameter @limit must be set accordingly.
483 */
parport_ip32_dma_setup_context(unsigned int limit)484 static void parport_ip32_dma_setup_context(unsigned int limit)
485 {
486 unsigned long flags;
487
488 spin_lock_irqsave(&parport_ip32_dma.lock, flags);
489 if (parport_ip32_dma.left > 0) {
490 /* Note: ctxreg is "volatile" here only because
491 * mace->perif.ctrl.parport.context_a and context_b are
492 * "volatile". */
493 volatile u64 __iomem *ctxreg = (parport_ip32_dma.ctx == 0) ?
494 &mace->perif.ctrl.parport.context_a :
495 &mace->perif.ctrl.parport.context_b;
496 u64 count;
497 u64 ctxval;
498 if (parport_ip32_dma.left <= limit) {
499 count = parport_ip32_dma.left;
500 ctxval = MACEPAR_CONTEXT_LASTFLAG;
501 } else {
502 count = limit;
503 ctxval = 0;
504 }
505
506 pr_trace(NULL,
507 "(%u): 0x%04x:0x%04x, %u -> %u%s",
508 limit,
509 (unsigned int)parport_ip32_dma.buf,
510 (unsigned int)parport_ip32_dma.next,
511 (unsigned int)count,
512 parport_ip32_dma.ctx, ctxval ? "*" : "");
513
514 ctxval |= parport_ip32_dma.next &
515 MACEPAR_CONTEXT_BASEADDR_MASK;
516 ctxval |= ((count - 1) << MACEPAR_CONTEXT_DATALEN_SHIFT) &
517 MACEPAR_CONTEXT_DATALEN_MASK;
518 writeq(ctxval, ctxreg);
519 parport_ip32_dma.next += count;
520 parport_ip32_dma.left -= count;
521 parport_ip32_dma.ctx ^= 1U;
522 }
523 /* If there is nothing more to send, disable IRQs to avoid to
524 * face an IRQ storm which can lock the machine. Disable them
525 * only once. */
526 if (parport_ip32_dma.left == 0 && parport_ip32_dma.irq_on) {
527 pr_debug(PPIP32 "IRQ off (ctx)\n");
528 disable_irq_nosync(MACEISA_PAR_CTXA_IRQ);
529 disable_irq_nosync(MACEISA_PAR_CTXB_IRQ);
530 parport_ip32_dma.irq_on = 0;
531 }
532 spin_unlock_irqrestore(&parport_ip32_dma.lock, flags);
533 }
534
535 /**
536 * parport_ip32_dma_interrupt - DMA interrupt handler
537 * @irq: interrupt number
538 * @dev_id: unused
539 */
parport_ip32_dma_interrupt(int irq,void * dev_id)540 static irqreturn_t parport_ip32_dma_interrupt(int irq, void *dev_id)
541 {
542 if (parport_ip32_dma.left)
543 pr_trace(NULL, "(%d): ctx=%d", irq, parport_ip32_dma.ctx);
544 parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND);
545 return IRQ_HANDLED;
546 }
547
548 #if DEBUG_PARPORT_IP32
parport_ip32_merr_interrupt(int irq,void * dev_id)549 static irqreturn_t parport_ip32_merr_interrupt(int irq, void *dev_id)
550 {
551 pr_trace1(NULL, "(%d)", irq);
552 return IRQ_HANDLED;
553 }
554 #endif
555
556 /**
557 * parport_ip32_dma_start - begins a DMA transfer
558 * @p: partport to work on
559 * @dir: DMA direction: DMA_TO_DEVICE or DMA_FROM_DEVICE
560 * @addr: pointer to data buffer
561 * @count: buffer size
562 *
563 * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be
564 * correctly balanced.
565 */
parport_ip32_dma_start(struct parport * p,enum dma_data_direction dir,void * addr,size_t count)566 static int parport_ip32_dma_start(struct parport *p,
567 enum dma_data_direction dir, void *addr, size_t count)
568 {
569 unsigned int limit;
570 u64 ctrl;
571
572 pr_trace(NULL, "(%d, %lu)", dir, (unsigned long)count);
573
574 /* FIXME - add support for DMA_FROM_DEVICE. In this case, buffer must
575 * be 64 bytes aligned. */
576 BUG_ON(dir != DMA_TO_DEVICE);
577
578 /* Reset DMA controller */
579 ctrl = MACEPAR_CTLSTAT_RESET;
580 writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
581
582 /* DMA IRQs should normally be enabled */
583 if (!parport_ip32_dma.irq_on) {
584 WARN_ON(1);
585 enable_irq(MACEISA_PAR_CTXA_IRQ);
586 enable_irq(MACEISA_PAR_CTXB_IRQ);
587 parport_ip32_dma.irq_on = 1;
588 }
589
590 /* Prepare DMA pointers */
591 parport_ip32_dma.dir = dir;
592 parport_ip32_dma.buf = dma_map_single(&p->bus_dev, addr, count, dir);
593 parport_ip32_dma.len = count;
594 parport_ip32_dma.next = parport_ip32_dma.buf;
595 parport_ip32_dma.left = parport_ip32_dma.len;
596 parport_ip32_dma.ctx = 0;
597
598 /* Setup DMA direction and first two contexts */
599 ctrl = (dir == DMA_TO_DEVICE) ? 0 : MACEPAR_CTLSTAT_DIRECTION;
600 writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
601 /* Single transfer should not cross a 4K page boundary */
602 limit = MACEPAR_CONTEXT_DATA_BOUND -
603 (parport_ip32_dma.next & (MACEPAR_CONTEXT_DATA_BOUND - 1));
604 parport_ip32_dma_setup_context(limit);
605 parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND);
606
607 /* Real start of DMA transfer */
608 ctrl |= MACEPAR_CTLSTAT_ENABLE;
609 writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
610
611 return 0;
612 }
613
614 /**
615 * parport_ip32_dma_stop - ends a running DMA transfer
616 * @p: partport to work on
617 *
618 * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be
619 * correctly balanced.
620 */
parport_ip32_dma_stop(struct parport * p)621 static void parport_ip32_dma_stop(struct parport *p)
622 {
623 u64 ctx_a;
624 u64 ctx_b;
625 u64 ctrl;
626 u64 diag;
627 size_t res[2]; /* {[0] = res_a, [1] = res_b} */
628
629 pr_trace(NULL, "()");
630
631 /* Disable IRQs */
632 spin_lock_irq(&parport_ip32_dma.lock);
633 if (parport_ip32_dma.irq_on) {
634 pr_debug(PPIP32 "IRQ off (stop)\n");
635 disable_irq_nosync(MACEISA_PAR_CTXA_IRQ);
636 disable_irq_nosync(MACEISA_PAR_CTXB_IRQ);
637 parport_ip32_dma.irq_on = 0;
638 }
639 spin_unlock_irq(&parport_ip32_dma.lock);
640 /* Force IRQ synchronization, even if the IRQs were disabled
641 * elsewhere. */
642 synchronize_irq(MACEISA_PAR_CTXA_IRQ);
643 synchronize_irq(MACEISA_PAR_CTXB_IRQ);
644
645 /* Stop DMA transfer */
646 ctrl = readq(&mace->perif.ctrl.parport.cntlstat);
647 ctrl &= ~MACEPAR_CTLSTAT_ENABLE;
648 writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
649
650 /* Adjust residue (parport_ip32_dma.left) */
651 ctx_a = readq(&mace->perif.ctrl.parport.context_a);
652 ctx_b = readq(&mace->perif.ctrl.parport.context_b);
653 ctrl = readq(&mace->perif.ctrl.parport.cntlstat);
654 diag = readq(&mace->perif.ctrl.parport.diagnostic);
655 res[0] = (ctrl & MACEPAR_CTLSTAT_CTXA_VALID) ?
656 1 + ((ctx_a & MACEPAR_CONTEXT_DATALEN_MASK) >>
657 MACEPAR_CONTEXT_DATALEN_SHIFT) :
658 0;
659 res[1] = (ctrl & MACEPAR_CTLSTAT_CTXB_VALID) ?
660 1 + ((ctx_b & MACEPAR_CONTEXT_DATALEN_MASK) >>
661 MACEPAR_CONTEXT_DATALEN_SHIFT) :
662 0;
663 if (diag & MACEPAR_DIAG_DMACTIVE)
664 res[(diag & MACEPAR_DIAG_CTXINUSE) != 0] =
665 1 + ((diag & MACEPAR_DIAG_CTRMASK) >>
666 MACEPAR_DIAG_CTRSHIFT);
667 parport_ip32_dma.left += res[0] + res[1];
668
669 /* Reset DMA controller, and re-enable IRQs */
670 ctrl = MACEPAR_CTLSTAT_RESET;
671 writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
672 pr_debug(PPIP32 "IRQ on (stop)\n");
673 enable_irq(MACEISA_PAR_CTXA_IRQ);
674 enable_irq(MACEISA_PAR_CTXB_IRQ);
675 parport_ip32_dma.irq_on = 1;
676
677 dma_unmap_single(&p->bus_dev, parport_ip32_dma.buf,
678 parport_ip32_dma.len, parport_ip32_dma.dir);
679 }
680
681 /**
682 * parport_ip32_dma_get_residue - get residue from last DMA transfer
683 *
684 * Returns the number of bytes remaining from last DMA transfer.
685 */
parport_ip32_dma_get_residue(void)686 static inline size_t parport_ip32_dma_get_residue(void)
687 {
688 return parport_ip32_dma.left;
689 }
690
691 /**
692 * parport_ip32_dma_register - initialize DMA engine
693 *
694 * Returns zero for success.
695 */
parport_ip32_dma_register(void)696 static int parport_ip32_dma_register(void)
697 {
698 int err;
699
700 spin_lock_init(&parport_ip32_dma.lock);
701 parport_ip32_dma.irq_on = 1;
702
703 /* Reset DMA controller */
704 writeq(MACEPAR_CTLSTAT_RESET, &mace->perif.ctrl.parport.cntlstat);
705
706 /* Request IRQs */
707 err = request_irq(MACEISA_PAR_CTXA_IRQ, parport_ip32_dma_interrupt,
708 0, "parport_ip32", NULL);
709 if (err)
710 goto fail_a;
711 err = request_irq(MACEISA_PAR_CTXB_IRQ, parport_ip32_dma_interrupt,
712 0, "parport_ip32", NULL);
713 if (err)
714 goto fail_b;
715 #if DEBUG_PARPORT_IP32
716 /* FIXME - what is this IRQ for? */
717 err = request_irq(MACEISA_PAR_MERR_IRQ, parport_ip32_merr_interrupt,
718 0, "parport_ip32", NULL);
719 if (err)
720 goto fail_merr;
721 #endif
722 return 0;
723
724 #if DEBUG_PARPORT_IP32
725 fail_merr:
726 free_irq(MACEISA_PAR_CTXB_IRQ, NULL);
727 #endif
728 fail_b:
729 free_irq(MACEISA_PAR_CTXA_IRQ, NULL);
730 fail_a:
731 return err;
732 }
733
734 /**
735 * parport_ip32_dma_unregister - release and free resources for DMA engine
736 */
parport_ip32_dma_unregister(void)737 static void parport_ip32_dma_unregister(void)
738 {
739 #if DEBUG_PARPORT_IP32
740 free_irq(MACEISA_PAR_MERR_IRQ, NULL);
741 #endif
742 free_irq(MACEISA_PAR_CTXB_IRQ, NULL);
743 free_irq(MACEISA_PAR_CTXA_IRQ, NULL);
744 }
745
746 /*--- Interrupt handlers and associates --------------------------------*/
747
748 /**
749 * parport_ip32_wakeup - wakes up code waiting for an interrupt
750 * @p: pointer to &struct parport
751 */
parport_ip32_wakeup(struct parport * p)752 static inline void parport_ip32_wakeup(struct parport *p)
753 {
754 struct parport_ip32_private * const priv = p->physport->private_data;
755 complete(&priv->irq_complete);
756 }
757
758 /**
759 * parport_ip32_interrupt - interrupt handler
760 * @irq: interrupt number
761 * @dev_id: pointer to &struct parport
762 *
763 * Caught interrupts are forwarded to the upper parport layer if IRQ_mode is
764 * %PARPORT_IP32_IRQ_FWD.
765 */
parport_ip32_interrupt(int irq,void * dev_id)766 static irqreturn_t parport_ip32_interrupt(int irq, void *dev_id)
767 {
768 struct parport * const p = dev_id;
769 struct parport_ip32_private * const priv = p->physport->private_data;
770 enum parport_ip32_irq_mode irq_mode = priv->irq_mode;
771
772 switch (irq_mode) {
773 case PARPORT_IP32_IRQ_FWD:
774 return parport_irq_handler(irq, dev_id);
775
776 case PARPORT_IP32_IRQ_HERE:
777 parport_ip32_wakeup(p);
778 break;
779 }
780
781 return IRQ_HANDLED;
782 }
783
784 /*--- Some utility function to manipulate ECR register -----------------*/
785
786 /**
787 * parport_ip32_read_econtrol - read contents of the ECR register
788 * @p: pointer to &struct parport
789 */
parport_ip32_read_econtrol(struct parport * p)790 static inline unsigned int parport_ip32_read_econtrol(struct parport *p)
791 {
792 struct parport_ip32_private * const priv = p->physport->private_data;
793 return readb(priv->regs.ecr);
794 }
795
796 /**
797 * parport_ip32_write_econtrol - write new contents to the ECR register
798 * @p: pointer to &struct parport
799 * @c: new value to write
800 */
parport_ip32_write_econtrol(struct parport * p,unsigned int c)801 static inline void parport_ip32_write_econtrol(struct parport *p,
802 unsigned int c)
803 {
804 struct parport_ip32_private * const priv = p->physport->private_data;
805 writeb(c, priv->regs.ecr);
806 }
807
808 /**
809 * parport_ip32_frob_econtrol - change bits from the ECR register
810 * @p: pointer to &struct parport
811 * @mask: bit mask of bits to change
812 * @val: new value for changed bits
813 *
814 * Read from the ECR, mask out the bits in @mask, exclusive-or with the bits
815 * in @val, and write the result to the ECR.
816 */
parport_ip32_frob_econtrol(struct parport * p,unsigned int mask,unsigned int val)817 static inline void parport_ip32_frob_econtrol(struct parport *p,
818 unsigned int mask,
819 unsigned int val)
820 {
821 unsigned int c;
822 c = (parport_ip32_read_econtrol(p) & ~mask) ^ val;
823 parport_ip32_write_econtrol(p, c);
824 }
825
826 /**
827 * parport_ip32_set_mode - change mode of ECP port
828 * @p: pointer to &struct parport
829 * @mode: new mode to write in ECR
830 *
831 * ECR is reset in a sane state (interrupts and DMA disabled), and placed in
832 * mode @mode. Go through PS2 mode if needed.
833 */
parport_ip32_set_mode(struct parport * p,unsigned int mode)834 static void parport_ip32_set_mode(struct parport *p, unsigned int mode)
835 {
836 unsigned int omode;
837
838 mode &= ECR_MODE_MASK;
839 omode = parport_ip32_read_econtrol(p) & ECR_MODE_MASK;
840
841 if (!(mode == ECR_MODE_SPP || mode == ECR_MODE_PS2
842 || omode == ECR_MODE_SPP || omode == ECR_MODE_PS2)) {
843 /* We have to go through PS2 mode */
844 unsigned int ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
845 parport_ip32_write_econtrol(p, ecr);
846 }
847 parport_ip32_write_econtrol(p, mode | ECR_nERRINTR | ECR_SERVINTR);
848 }
849
850 /*--- Basic functions needed for parport -------------------------------*/
851
852 /**
853 * parport_ip32_read_data - return current contents of the DATA register
854 * @p: pointer to &struct parport
855 */
parport_ip32_read_data(struct parport * p)856 static inline unsigned char parport_ip32_read_data(struct parport *p)
857 {
858 struct parport_ip32_private * const priv = p->physport->private_data;
859 return readb(priv->regs.data);
860 }
861
862 /**
863 * parport_ip32_write_data - set new contents for the DATA register
864 * @p: pointer to &struct parport
865 * @d: new value to write
866 */
parport_ip32_write_data(struct parport * p,unsigned char d)867 static inline void parport_ip32_write_data(struct parport *p, unsigned char d)
868 {
869 struct parport_ip32_private * const priv = p->physport->private_data;
870 writeb(d, priv->regs.data);
871 }
872
873 /**
874 * parport_ip32_read_status - return current contents of the DSR register
875 * @p: pointer to &struct parport
876 */
parport_ip32_read_status(struct parport * p)877 static inline unsigned char parport_ip32_read_status(struct parport *p)
878 {
879 struct parport_ip32_private * const priv = p->physport->private_data;
880 return readb(priv->regs.dsr);
881 }
882
883 /**
884 * __parport_ip32_read_control - return cached contents of the DCR register
885 * @p: pointer to &struct parport
886 */
__parport_ip32_read_control(struct parport * p)887 static inline unsigned int __parport_ip32_read_control(struct parport *p)
888 {
889 struct parport_ip32_private * const priv = p->physport->private_data;
890 return priv->dcr_cache; /* use soft copy */
891 }
892
893 /**
894 * __parport_ip32_write_control - set new contents for the DCR register
895 * @p: pointer to &struct parport
896 * @c: new value to write
897 */
__parport_ip32_write_control(struct parport * p,unsigned int c)898 static inline void __parport_ip32_write_control(struct parport *p,
899 unsigned int c)
900 {
901 struct parport_ip32_private * const priv = p->physport->private_data;
902 CHECK_EXTRA_BITS(p, c, priv->dcr_writable);
903 c &= priv->dcr_writable; /* only writable bits */
904 writeb(c, priv->regs.dcr);
905 priv->dcr_cache = c; /* update soft copy */
906 }
907
908 /**
909 * __parport_ip32_frob_control - change bits from the DCR register
910 * @p: pointer to &struct parport
911 * @mask: bit mask of bits to change
912 * @val: new value for changed bits
913 *
914 * This is equivalent to read from the DCR, mask out the bits in @mask,
915 * exclusive-or with the bits in @val, and write the result to the DCR.
916 * Actually, the cached contents of the DCR is used.
917 */
__parport_ip32_frob_control(struct parport * p,unsigned int mask,unsigned int val)918 static inline void __parport_ip32_frob_control(struct parport *p,
919 unsigned int mask,
920 unsigned int val)
921 {
922 unsigned int c;
923 c = (__parport_ip32_read_control(p) & ~mask) ^ val;
924 __parport_ip32_write_control(p, c);
925 }
926
927 /**
928 * parport_ip32_read_control - return cached contents of the DCR register
929 * @p: pointer to &struct parport
930 *
931 * The return value is masked so as to only return the value of %DCR_STROBE,
932 * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
933 */
parport_ip32_read_control(struct parport * p)934 static inline unsigned char parport_ip32_read_control(struct parport *p)
935 {
936 const unsigned int rm =
937 DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
938 return __parport_ip32_read_control(p) & rm;
939 }
940
941 /**
942 * parport_ip32_write_control - set new contents for the DCR register
943 * @p: pointer to &struct parport
944 * @c: new value to write
945 *
946 * The value is masked so as to only change the value of %DCR_STROBE,
947 * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
948 */
parport_ip32_write_control(struct parport * p,unsigned char c)949 static inline void parport_ip32_write_control(struct parport *p,
950 unsigned char c)
951 {
952 const unsigned int wm =
953 DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
954 CHECK_EXTRA_BITS(p, c, wm);
955 __parport_ip32_frob_control(p, wm, c & wm);
956 }
957
958 /**
959 * parport_ip32_frob_control - change bits from the DCR register
960 * @p: pointer to &struct parport
961 * @mask: bit mask of bits to change
962 * @val: new value for changed bits
963 *
964 * This differs from __parport_ip32_frob_control() in that it only allows to
965 * change the value of %DCR_STROBE, %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
966 */
parport_ip32_frob_control(struct parport * p,unsigned char mask,unsigned char val)967 static inline unsigned char parport_ip32_frob_control(struct parport *p,
968 unsigned char mask,
969 unsigned char val)
970 {
971 const unsigned int wm =
972 DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
973 CHECK_EXTRA_BITS(p, mask, wm);
974 CHECK_EXTRA_BITS(p, val, wm);
975 __parport_ip32_frob_control(p, mask & wm, val & wm);
976 return parport_ip32_read_control(p);
977 }
978
979 /**
980 * parport_ip32_disable_irq - disable interrupts on the rising edge of nACK
981 * @p: pointer to &struct parport
982 */
parport_ip32_disable_irq(struct parport * p)983 static inline void parport_ip32_disable_irq(struct parport *p)
984 {
985 __parport_ip32_frob_control(p, DCR_IRQ, 0);
986 }
987
988 /**
989 * parport_ip32_enable_irq - enable interrupts on the rising edge of nACK
990 * @p: pointer to &struct parport
991 */
parport_ip32_enable_irq(struct parport * p)992 static inline void parport_ip32_enable_irq(struct parport *p)
993 {
994 __parport_ip32_frob_control(p, DCR_IRQ, DCR_IRQ);
995 }
996
997 /**
998 * parport_ip32_data_forward - enable host-to-peripheral communications
999 * @p: pointer to &struct parport
1000 *
1001 * Enable the data line drivers, for 8-bit host-to-peripheral communications.
1002 */
parport_ip32_data_forward(struct parport * p)1003 static inline void parport_ip32_data_forward(struct parport *p)
1004 {
1005 __parport_ip32_frob_control(p, DCR_DIR, 0);
1006 }
1007
1008 /**
1009 * parport_ip32_data_reverse - enable peripheral-to-host communications
1010 * @p: pointer to &struct parport
1011 *
1012 * Place the data bus in a high impedance state, if @p->modes has the
1013 * PARPORT_MODE_TRISTATE bit set.
1014 */
parport_ip32_data_reverse(struct parport * p)1015 static inline void parport_ip32_data_reverse(struct parport *p)
1016 {
1017 __parport_ip32_frob_control(p, DCR_DIR, DCR_DIR);
1018 }
1019
1020 /**
1021 * parport_ip32_init_state - for core parport code
1022 * @dev: pointer to &struct pardevice
1023 * @s: pointer to &struct parport_state to initialize
1024 */
parport_ip32_init_state(struct pardevice * dev,struct parport_state * s)1025 static void parport_ip32_init_state(struct pardevice *dev,
1026 struct parport_state *s)
1027 {
1028 s->u.ip32.dcr = DCR_SELECT | DCR_nINIT;
1029 s->u.ip32.ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
1030 }
1031
1032 /**
1033 * parport_ip32_save_state - for core parport code
1034 * @p: pointer to &struct parport
1035 * @s: pointer to &struct parport_state to save state to
1036 */
parport_ip32_save_state(struct parport * p,struct parport_state * s)1037 static void parport_ip32_save_state(struct parport *p,
1038 struct parport_state *s)
1039 {
1040 s->u.ip32.dcr = __parport_ip32_read_control(p);
1041 s->u.ip32.ecr = parport_ip32_read_econtrol(p);
1042 }
1043
1044 /**
1045 * parport_ip32_restore_state - for core parport code
1046 * @p: pointer to &struct parport
1047 * @s: pointer to &struct parport_state to restore state from
1048 */
parport_ip32_restore_state(struct parport * p,struct parport_state * s)1049 static void parport_ip32_restore_state(struct parport *p,
1050 struct parport_state *s)
1051 {
1052 parport_ip32_set_mode(p, s->u.ip32.ecr & ECR_MODE_MASK);
1053 parport_ip32_write_econtrol(p, s->u.ip32.ecr);
1054 __parport_ip32_write_control(p, s->u.ip32.dcr);
1055 }
1056
1057 /*--- EPP mode functions -----------------------------------------------*/
1058
1059 /**
1060 * parport_ip32_clear_epp_timeout - clear Timeout bit in EPP mode
1061 * @p: pointer to &struct parport
1062 *
1063 * Returns 1 if the Timeout bit is clear, and 0 otherwise.
1064 */
parport_ip32_clear_epp_timeout(struct parport * p)1065 static unsigned int parport_ip32_clear_epp_timeout(struct parport *p)
1066 {
1067 struct parport_ip32_private * const priv = p->physport->private_data;
1068 unsigned int cleared;
1069
1070 if (!(parport_ip32_read_status(p) & DSR_TIMEOUT))
1071 cleared = 1;
1072 else {
1073 unsigned int r;
1074 /* To clear timeout some chips require double read */
1075 parport_ip32_read_status(p);
1076 r = parport_ip32_read_status(p);
1077 /* Some reset by writing 1 */
1078 writeb(r | DSR_TIMEOUT, priv->regs.dsr);
1079 /* Others by writing 0 */
1080 writeb(r & ~DSR_TIMEOUT, priv->regs.dsr);
1081
1082 r = parport_ip32_read_status(p);
1083 cleared = !(r & DSR_TIMEOUT);
1084 }
1085
1086 pr_trace(p, "(): %s", cleared ? "cleared" : "failed");
1087 return cleared;
1088 }
1089
1090 /**
1091 * parport_ip32_epp_read - generic EPP read function
1092 * @eppreg: I/O register to read from
1093 * @p: pointer to &struct parport
1094 * @buf: buffer to store read data
1095 * @len: length of buffer @buf
1096 * @flags: may be PARPORT_EPP_FAST
1097 */
parport_ip32_epp_read(void __iomem * eppreg,struct parport * p,void * buf,size_t len,int flags)1098 static size_t parport_ip32_epp_read(void __iomem *eppreg,
1099 struct parport *p, void *buf,
1100 size_t len, int flags)
1101 {
1102 struct parport_ip32_private * const priv = p->physport->private_data;
1103 size_t got;
1104 parport_ip32_set_mode(p, ECR_MODE_EPP);
1105 parport_ip32_data_reverse(p);
1106 parport_ip32_write_control(p, DCR_nINIT);
1107 if ((flags & PARPORT_EPP_FAST) && (len > 1)) {
1108 readsb(eppreg, buf, len);
1109 if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1110 parport_ip32_clear_epp_timeout(p);
1111 return -EIO;
1112 }
1113 got = len;
1114 } else {
1115 u8 *bufp = buf;
1116 for (got = 0; got < len; got++) {
1117 *bufp++ = readb(eppreg);
1118 if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1119 parport_ip32_clear_epp_timeout(p);
1120 break;
1121 }
1122 }
1123 }
1124 parport_ip32_data_forward(p);
1125 parport_ip32_set_mode(p, ECR_MODE_PS2);
1126 return got;
1127 }
1128
1129 /**
1130 * parport_ip32_epp_write - generic EPP write function
1131 * @eppreg: I/O register to write to
1132 * @p: pointer to &struct parport
1133 * @buf: buffer of data to write
1134 * @len: length of buffer @buf
1135 * @flags: may be PARPORT_EPP_FAST
1136 */
parport_ip32_epp_write(void __iomem * eppreg,struct parport * p,const void * buf,size_t len,int flags)1137 static size_t parport_ip32_epp_write(void __iomem *eppreg,
1138 struct parport *p, const void *buf,
1139 size_t len, int flags)
1140 {
1141 struct parport_ip32_private * const priv = p->physport->private_data;
1142 size_t written;
1143 parport_ip32_set_mode(p, ECR_MODE_EPP);
1144 parport_ip32_data_forward(p);
1145 parport_ip32_write_control(p, DCR_nINIT);
1146 if ((flags & PARPORT_EPP_FAST) && (len > 1)) {
1147 writesb(eppreg, buf, len);
1148 if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1149 parport_ip32_clear_epp_timeout(p);
1150 return -EIO;
1151 }
1152 written = len;
1153 } else {
1154 const u8 *bufp = buf;
1155 for (written = 0; written < len; written++) {
1156 writeb(*bufp++, eppreg);
1157 if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1158 parport_ip32_clear_epp_timeout(p);
1159 break;
1160 }
1161 }
1162 }
1163 parport_ip32_set_mode(p, ECR_MODE_PS2);
1164 return written;
1165 }
1166
1167 /**
1168 * parport_ip32_epp_read_data - read a block of data in EPP mode
1169 * @p: pointer to &struct parport
1170 * @buf: buffer to store read data
1171 * @len: length of buffer @buf
1172 * @flags: may be PARPORT_EPP_FAST
1173 */
parport_ip32_epp_read_data(struct parport * p,void * buf,size_t len,int flags)1174 static size_t parport_ip32_epp_read_data(struct parport *p, void *buf,
1175 size_t len, int flags)
1176 {
1177 struct parport_ip32_private * const priv = p->physport->private_data;
1178 return parport_ip32_epp_read(priv->regs.eppData0, p, buf, len, flags);
1179 }
1180
1181 /**
1182 * parport_ip32_epp_write_data - write a block of data in EPP mode
1183 * @p: pointer to &struct parport
1184 * @buf: buffer of data to write
1185 * @len: length of buffer @buf
1186 * @flags: may be PARPORT_EPP_FAST
1187 */
parport_ip32_epp_write_data(struct parport * p,const void * buf,size_t len,int flags)1188 static size_t parport_ip32_epp_write_data(struct parport *p, const void *buf,
1189 size_t len, int flags)
1190 {
1191 struct parport_ip32_private * const priv = p->physport->private_data;
1192 return parport_ip32_epp_write(priv->regs.eppData0, p, buf, len, flags);
1193 }
1194
1195 /**
1196 * parport_ip32_epp_read_addr - read a block of addresses in EPP mode
1197 * @p: pointer to &struct parport
1198 * @buf: buffer to store read data
1199 * @len: length of buffer @buf
1200 * @flags: may be PARPORT_EPP_FAST
1201 */
parport_ip32_epp_read_addr(struct parport * p,void * buf,size_t len,int flags)1202 static size_t parport_ip32_epp_read_addr(struct parport *p, void *buf,
1203 size_t len, int flags)
1204 {
1205 struct parport_ip32_private * const priv = p->physport->private_data;
1206 return parport_ip32_epp_read(priv->regs.eppAddr, p, buf, len, flags);
1207 }
1208
1209 /**
1210 * parport_ip32_epp_write_addr - write a block of addresses in EPP mode
1211 * @p: pointer to &struct parport
1212 * @buf: buffer of data to write
1213 * @len: length of buffer @buf
1214 * @flags: may be PARPORT_EPP_FAST
1215 */
parport_ip32_epp_write_addr(struct parport * p,const void * buf,size_t len,int flags)1216 static size_t parport_ip32_epp_write_addr(struct parport *p, const void *buf,
1217 size_t len, int flags)
1218 {
1219 struct parport_ip32_private * const priv = p->physport->private_data;
1220 return parport_ip32_epp_write(priv->regs.eppAddr, p, buf, len, flags);
1221 }
1222
1223 /*--- ECP mode functions (FIFO) ----------------------------------------*/
1224
1225 /**
1226 * parport_ip32_fifo_wait_break - check if the waiting function should return
1227 * @p: pointer to &struct parport
1228 * @expire: timeout expiring date, in jiffies
1229 *
1230 * parport_ip32_fifo_wait_break() checks if the waiting function should return
1231 * immediately or not. The break conditions are:
1232 * - expired timeout;
1233 * - a pending signal;
1234 * - nFault asserted low.
1235 * This function also calls cond_resched().
1236 */
parport_ip32_fifo_wait_break(struct parport * p,unsigned long expire)1237 static unsigned int parport_ip32_fifo_wait_break(struct parport *p,
1238 unsigned long expire)
1239 {
1240 cond_resched();
1241 if (time_after(jiffies, expire)) {
1242 pr_debug1(PPIP32 "%s: FIFO write timed out\n", p->name);
1243 return 1;
1244 }
1245 if (signal_pending(current)) {
1246 pr_debug1(PPIP32 "%s: Signal pending\n", p->name);
1247 return 1;
1248 }
1249 if (!(parport_ip32_read_status(p) & DSR_nFAULT)) {
1250 pr_debug1(PPIP32 "%s: nFault asserted low\n", p->name);
1251 return 1;
1252 }
1253 return 0;
1254 }
1255
1256 /**
1257 * parport_ip32_fwp_wait_polling - wait for FIFO to empty (polling)
1258 * @p: pointer to &struct parport
1259 *
1260 * Returns the number of bytes that can safely be written in the FIFO. A
1261 * return value of zero means that the calling function should terminate as
1262 * fast as possible.
1263 */
parport_ip32_fwp_wait_polling(struct parport * p)1264 static unsigned int parport_ip32_fwp_wait_polling(struct parport *p)
1265 {
1266 struct parport_ip32_private * const priv = p->physport->private_data;
1267 struct parport * const physport = p->physport;
1268 unsigned long expire;
1269 unsigned int count;
1270 unsigned int ecr;
1271
1272 expire = jiffies + physport->cad->timeout;
1273 count = 0;
1274 while (1) {
1275 if (parport_ip32_fifo_wait_break(p, expire))
1276 break;
1277
1278 /* Check FIFO state. We do nothing when the FIFO is nor full,
1279 * nor empty. It appears that the FIFO full bit is not always
1280 * reliable, the FIFO state is sometimes wrongly reported, and
1281 * the chip gets confused if we give it another byte. */
1282 ecr = parport_ip32_read_econtrol(p);
1283 if (ecr & ECR_F_EMPTY) {
1284 /* FIFO is empty, fill it up */
1285 count = priv->fifo_depth;
1286 break;
1287 }
1288
1289 /* Wait a moment... */
1290 udelay(FIFO_POLLING_INTERVAL);
1291 } /* while (1) */
1292
1293 return count;
1294 }
1295
1296 /**
1297 * parport_ip32_fwp_wait_interrupt - wait for FIFO to empty (interrupt-driven)
1298 * @p: pointer to &struct parport
1299 *
1300 * Returns the number of bytes that can safely be written in the FIFO. A
1301 * return value of zero means that the calling function should terminate as
1302 * fast as possible.
1303 */
parport_ip32_fwp_wait_interrupt(struct parport * p)1304 static unsigned int parport_ip32_fwp_wait_interrupt(struct parport *p)
1305 {
1306 static unsigned int lost_interrupt = 0;
1307 struct parport_ip32_private * const priv = p->physport->private_data;
1308 struct parport * const physport = p->physport;
1309 unsigned long nfault_timeout;
1310 unsigned long expire;
1311 unsigned int count;
1312 unsigned int ecr;
1313
1314 nfault_timeout = min((unsigned long)physport->cad->timeout,
1315 msecs_to_jiffies(FIFO_NFAULT_TIMEOUT));
1316 expire = jiffies + physport->cad->timeout;
1317 count = 0;
1318 while (1) {
1319 if (parport_ip32_fifo_wait_break(p, expire))
1320 break;
1321
1322 /* Initialize mutex used to take interrupts into account */
1323 reinit_completion(&priv->irq_complete);
1324
1325 /* Enable serviceIntr */
1326 parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1327
1328 /* Enabling serviceIntr while the FIFO is empty does not
1329 * always generate an interrupt, so check for emptiness
1330 * now. */
1331 ecr = parport_ip32_read_econtrol(p);
1332 if (!(ecr & ECR_F_EMPTY)) {
1333 /* FIFO is not empty: wait for an interrupt or a
1334 * timeout to occur */
1335 wait_for_completion_interruptible_timeout(
1336 &priv->irq_complete, nfault_timeout);
1337 ecr = parport_ip32_read_econtrol(p);
1338 if ((ecr & ECR_F_EMPTY) && !(ecr & ECR_SERVINTR)
1339 && !lost_interrupt) {
1340 printk(KERN_WARNING PPIP32
1341 "%s: lost interrupt in %s\n",
1342 p->name, __func__);
1343 lost_interrupt = 1;
1344 }
1345 }
1346
1347 /* Disable serviceIntr */
1348 parport_ip32_frob_econtrol(p, ECR_SERVINTR, ECR_SERVINTR);
1349
1350 /* Check FIFO state */
1351 if (ecr & ECR_F_EMPTY) {
1352 /* FIFO is empty, fill it up */
1353 count = priv->fifo_depth;
1354 break;
1355 } else if (ecr & ECR_SERVINTR) {
1356 /* FIFO is not empty, but we know that can safely push
1357 * writeIntrThreshold bytes into it */
1358 count = priv->writeIntrThreshold;
1359 break;
1360 }
1361 /* FIFO is not empty, and we did not get any interrupt.
1362 * Either it's time to check for nFault, or a signal is
1363 * pending. This is verified in
1364 * parport_ip32_fifo_wait_break(), so we continue the loop. */
1365 } /* while (1) */
1366
1367 return count;
1368 }
1369
1370 /**
1371 * parport_ip32_fifo_write_block_pio - write a block of data (PIO mode)
1372 * @p: pointer to &struct parport
1373 * @buf: buffer of data to write
1374 * @len: length of buffer @buf
1375 *
1376 * Uses PIO to write the contents of the buffer @buf into the parallel port
1377 * FIFO. Returns the number of bytes that were actually written. It can work
1378 * with or without the help of interrupts. The parallel port must be
1379 * correctly initialized before calling parport_ip32_fifo_write_block_pio().
1380 */
parport_ip32_fifo_write_block_pio(struct parport * p,const void * buf,size_t len)1381 static size_t parport_ip32_fifo_write_block_pio(struct parport *p,
1382 const void *buf, size_t len)
1383 {
1384 struct parport_ip32_private * const priv = p->physport->private_data;
1385 const u8 *bufp = buf;
1386 size_t left = len;
1387
1388 priv->irq_mode = PARPORT_IP32_IRQ_HERE;
1389
1390 while (left > 0) {
1391 unsigned int count;
1392
1393 count = (p->irq == PARPORT_IRQ_NONE) ?
1394 parport_ip32_fwp_wait_polling(p) :
1395 parport_ip32_fwp_wait_interrupt(p);
1396 if (count == 0)
1397 break; /* Transmission should be stopped */
1398 if (count > left)
1399 count = left;
1400 if (count == 1) {
1401 writeb(*bufp, priv->regs.fifo);
1402 bufp++, left--;
1403 } else {
1404 writesb(priv->regs.fifo, bufp, count);
1405 bufp += count, left -= count;
1406 }
1407 }
1408
1409 priv->irq_mode = PARPORT_IP32_IRQ_FWD;
1410
1411 return len - left;
1412 }
1413
1414 /**
1415 * parport_ip32_fifo_write_block_dma - write a block of data (DMA mode)
1416 * @p: pointer to &struct parport
1417 * @buf: buffer of data to write
1418 * @len: length of buffer @buf
1419 *
1420 * Uses DMA to write the contents of the buffer @buf into the parallel port
1421 * FIFO. Returns the number of bytes that were actually written. The
1422 * parallel port must be correctly initialized before calling
1423 * parport_ip32_fifo_write_block_dma().
1424 */
parport_ip32_fifo_write_block_dma(struct parport * p,const void * buf,size_t len)1425 static size_t parport_ip32_fifo_write_block_dma(struct parport *p,
1426 const void *buf, size_t len)
1427 {
1428 struct parport_ip32_private * const priv = p->physport->private_data;
1429 struct parport * const physport = p->physport;
1430 unsigned long nfault_timeout;
1431 unsigned long expire;
1432 size_t written;
1433 unsigned int ecr;
1434
1435 priv->irq_mode = PARPORT_IP32_IRQ_HERE;
1436
1437 parport_ip32_dma_start(p, DMA_TO_DEVICE, (void *)buf, len);
1438 reinit_completion(&priv->irq_complete);
1439 parport_ip32_frob_econtrol(p, ECR_DMAEN | ECR_SERVINTR, ECR_DMAEN);
1440
1441 nfault_timeout = min((unsigned long)physport->cad->timeout,
1442 msecs_to_jiffies(FIFO_NFAULT_TIMEOUT));
1443 expire = jiffies + physport->cad->timeout;
1444 while (1) {
1445 if (parport_ip32_fifo_wait_break(p, expire))
1446 break;
1447 wait_for_completion_interruptible_timeout(&priv->irq_complete,
1448 nfault_timeout);
1449 ecr = parport_ip32_read_econtrol(p);
1450 if (ecr & ECR_SERVINTR)
1451 break; /* DMA transfer just finished */
1452 }
1453 parport_ip32_dma_stop(p);
1454 written = len - parport_ip32_dma_get_residue();
1455
1456 priv->irq_mode = PARPORT_IP32_IRQ_FWD;
1457
1458 return written;
1459 }
1460
1461 /**
1462 * parport_ip32_fifo_write_block - write a block of data
1463 * @p: pointer to &struct parport
1464 * @buf: buffer of data to write
1465 * @len: length of buffer @buf
1466 *
1467 * Uses PIO or DMA to write the contents of the buffer @buf into the parallel
1468 * p FIFO. Returns the number of bytes that were actually written.
1469 */
parport_ip32_fifo_write_block(struct parport * p,const void * buf,size_t len)1470 static size_t parport_ip32_fifo_write_block(struct parport *p,
1471 const void *buf, size_t len)
1472 {
1473 size_t written = 0;
1474 if (len)
1475 /* FIXME - Maybe some threshold value should be set for @len
1476 * under which we revert to PIO mode? */
1477 written = (p->modes & PARPORT_MODE_DMA) ?
1478 parport_ip32_fifo_write_block_dma(p, buf, len) :
1479 parport_ip32_fifo_write_block_pio(p, buf, len);
1480 return written;
1481 }
1482
1483 /**
1484 * parport_ip32_drain_fifo - wait for FIFO to empty
1485 * @p: pointer to &struct parport
1486 * @timeout: timeout, in jiffies
1487 *
1488 * This function waits for FIFO to empty. It returns 1 when FIFO is empty, or
1489 * 0 if the timeout @timeout is reached before, or if a signal is pending.
1490 */
parport_ip32_drain_fifo(struct parport * p,unsigned long timeout)1491 static unsigned int parport_ip32_drain_fifo(struct parport *p,
1492 unsigned long timeout)
1493 {
1494 unsigned long expire = jiffies + timeout;
1495 unsigned int polling_interval;
1496 unsigned int counter;
1497
1498 /* Busy wait for approx. 200us */
1499 for (counter = 0; counter < 40; counter++) {
1500 if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY)
1501 break;
1502 if (time_after(jiffies, expire))
1503 break;
1504 if (signal_pending(current))
1505 break;
1506 udelay(5);
1507 }
1508 /* Poll slowly. Polling interval starts with 1 millisecond, and is
1509 * increased exponentially until 128. */
1510 polling_interval = 1; /* msecs */
1511 while (!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY)) {
1512 if (time_after_eq(jiffies, expire))
1513 break;
1514 msleep_interruptible(polling_interval);
1515 if (signal_pending(current))
1516 break;
1517 if (polling_interval < 128)
1518 polling_interval *= 2;
1519 }
1520
1521 return !!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY);
1522 }
1523
1524 /**
1525 * parport_ip32_get_fifo_residue - reset FIFO
1526 * @p: pointer to &struct parport
1527 * @mode: current operation mode (ECR_MODE_PPF or ECR_MODE_ECP)
1528 *
1529 * This function resets FIFO, and returns the number of bytes remaining in it.
1530 */
parport_ip32_get_fifo_residue(struct parport * p,unsigned int mode)1531 static unsigned int parport_ip32_get_fifo_residue(struct parport *p,
1532 unsigned int mode)
1533 {
1534 struct parport_ip32_private * const priv = p->physport->private_data;
1535 unsigned int residue;
1536 unsigned int cnfga;
1537
1538 /* FIXME - We are missing one byte if the printer is off-line. I
1539 * don't know how to detect this. It looks that the full bit is not
1540 * always reliable. For the moment, the problem is avoided in most
1541 * cases by testing for BUSY in parport_ip32_compat_write_data().
1542 */
1543 if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY)
1544 residue = 0;
1545 else {
1546 pr_debug1(PPIP32 "%s: FIFO is stuck\n", p->name);
1547
1548 /* Stop all transfers.
1549 *
1550 * Microsoft's document instructs to drive DCR_STROBE to 0,
1551 * but it doesn't work (at least in Compatibility mode, not
1552 * tested in ECP mode). Switching directly to Test mode (as
1553 * in parport_pc) is not an option: it does confuse the port,
1554 * ECP service interrupts are no more working after that. A
1555 * hard reset is then needed to revert to a sane state.
1556 *
1557 * Let's hope that the FIFO is really stuck and that the
1558 * peripheral doesn't wake up now.
1559 */
1560 parport_ip32_frob_control(p, DCR_STROBE, 0);
1561
1562 /* Fill up FIFO */
1563 for (residue = priv->fifo_depth; residue > 0; residue--) {
1564 if (parport_ip32_read_econtrol(p) & ECR_F_FULL)
1565 break;
1566 writeb(0x00, priv->regs.fifo);
1567 }
1568 }
1569 if (residue)
1570 pr_debug1(PPIP32 "%s: %d PWord%s left in FIFO\n",
1571 p->name, residue,
1572 (residue == 1) ? " was" : "s were");
1573
1574 /* Now reset the FIFO */
1575 parport_ip32_set_mode(p, ECR_MODE_PS2);
1576
1577 /* Host recovery for ECP mode */
1578 if (mode == ECR_MODE_ECP) {
1579 parport_ip32_data_reverse(p);
1580 parport_ip32_frob_control(p, DCR_nINIT, 0);
1581 if (parport_wait_peripheral(p, DSR_PERROR, 0))
1582 pr_debug1(PPIP32 "%s: PEerror timeout 1 in %s\n",
1583 p->name, __func__);
1584 parport_ip32_frob_control(p, DCR_STROBE, DCR_STROBE);
1585 parport_ip32_frob_control(p, DCR_nINIT, DCR_nINIT);
1586 if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR))
1587 pr_debug1(PPIP32 "%s: PEerror timeout 2 in %s\n",
1588 p->name, __func__);
1589 }
1590
1591 /* Adjust residue if needed */
1592 parport_ip32_set_mode(p, ECR_MODE_CFG);
1593 cnfga = readb(priv->regs.cnfgA);
1594 if (!(cnfga & CNFGA_nBYTEINTRANS)) {
1595 pr_debug1(PPIP32 "%s: cnfgA contains 0x%02x\n",
1596 p->name, cnfga);
1597 pr_debug1(PPIP32 "%s: Accounting for extra byte\n",
1598 p->name);
1599 residue++;
1600 }
1601
1602 /* Don't care about partial PWords since we do not support
1603 * PWord != 1 byte. */
1604
1605 /* Back to forward PS2 mode. */
1606 parport_ip32_set_mode(p, ECR_MODE_PS2);
1607 parport_ip32_data_forward(p);
1608
1609 return residue;
1610 }
1611
1612 /**
1613 * parport_ip32_compat_write_data - write a block of data in SPP mode
1614 * @p: pointer to &struct parport
1615 * @buf: buffer of data to write
1616 * @len: length of buffer @buf
1617 * @flags: ignored
1618 */
parport_ip32_compat_write_data(struct parport * p,const void * buf,size_t len,int flags)1619 static size_t parport_ip32_compat_write_data(struct parport *p,
1620 const void *buf, size_t len,
1621 int flags)
1622 {
1623 static unsigned int ready_before = 1;
1624 struct parport_ip32_private * const priv = p->physport->private_data;
1625 struct parport * const physport = p->physport;
1626 size_t written = 0;
1627
1628 /* Special case: a timeout of zero means we cannot call schedule().
1629 * Also if O_NONBLOCK is set then use the default implementation. */
1630 if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK)
1631 return parport_ieee1284_write_compat(p, buf, len, flags);
1632
1633 /* Reset FIFO, go in forward mode, and disable ackIntEn */
1634 parport_ip32_set_mode(p, ECR_MODE_PS2);
1635 parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1636 parport_ip32_data_forward(p);
1637 parport_ip32_disable_irq(p);
1638 parport_ip32_set_mode(p, ECR_MODE_PPF);
1639 physport->ieee1284.phase = IEEE1284_PH_FWD_DATA;
1640
1641 /* Wait for peripheral to become ready */
1642 if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT,
1643 DSR_nBUSY | DSR_nFAULT)) {
1644 /* Avoid to flood the logs */
1645 if (ready_before)
1646 printk(KERN_INFO PPIP32 "%s: not ready in %s\n",
1647 p->name, __func__);
1648 ready_before = 0;
1649 goto stop;
1650 }
1651 ready_before = 1;
1652
1653 written = parport_ip32_fifo_write_block(p, buf, len);
1654
1655 /* Wait FIFO to empty. Timeout is proportional to FIFO_depth. */
1656 parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth);
1657
1658 /* Check for a potential residue */
1659 written -= parport_ip32_get_fifo_residue(p, ECR_MODE_PPF);
1660
1661 /* Then, wait for BUSY to get low. */
1662 if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY))
1663 printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n",
1664 p->name, __func__);
1665
1666 stop:
1667 /* Reset FIFO */
1668 parport_ip32_set_mode(p, ECR_MODE_PS2);
1669 physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE;
1670
1671 return written;
1672 }
1673
1674 /*
1675 * FIXME - Insert here parport_ip32_ecp_read_data().
1676 */
1677
1678 /**
1679 * parport_ip32_ecp_write_data - write a block of data in ECP mode
1680 * @p: pointer to &struct parport
1681 * @buf: buffer of data to write
1682 * @len: length of buffer @buf
1683 * @flags: ignored
1684 */
parport_ip32_ecp_write_data(struct parport * p,const void * buf,size_t len,int flags)1685 static size_t parport_ip32_ecp_write_data(struct parport *p,
1686 const void *buf, size_t len,
1687 int flags)
1688 {
1689 static unsigned int ready_before = 1;
1690 struct parport_ip32_private * const priv = p->physport->private_data;
1691 struct parport * const physport = p->physport;
1692 size_t written = 0;
1693
1694 /* Special case: a timeout of zero means we cannot call schedule().
1695 * Also if O_NONBLOCK is set then use the default implementation. */
1696 if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK)
1697 return parport_ieee1284_ecp_write_data(p, buf, len, flags);
1698
1699 /* Negotiate to forward mode if necessary. */
1700 if (physport->ieee1284.phase != IEEE1284_PH_FWD_IDLE) {
1701 /* Event 47: Set nInit high. */
1702 parport_ip32_frob_control(p, DCR_nINIT | DCR_AUTOFD,
1703 DCR_nINIT | DCR_AUTOFD);
1704
1705 /* Event 49: PError goes high. */
1706 if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR)) {
1707 printk(KERN_DEBUG PPIP32 "%s: PError timeout in %s",
1708 p->name, __func__);
1709 physport->ieee1284.phase = IEEE1284_PH_ECP_DIR_UNKNOWN;
1710 return 0;
1711 }
1712 }
1713
1714 /* Reset FIFO, go in forward mode, and disable ackIntEn */
1715 parport_ip32_set_mode(p, ECR_MODE_PS2);
1716 parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1717 parport_ip32_data_forward(p);
1718 parport_ip32_disable_irq(p);
1719 parport_ip32_set_mode(p, ECR_MODE_ECP);
1720 physport->ieee1284.phase = IEEE1284_PH_FWD_DATA;
1721
1722 /* Wait for peripheral to become ready */
1723 if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT,
1724 DSR_nBUSY | DSR_nFAULT)) {
1725 /* Avoid to flood the logs */
1726 if (ready_before)
1727 printk(KERN_INFO PPIP32 "%s: not ready in %s\n",
1728 p->name, __func__);
1729 ready_before = 0;
1730 goto stop;
1731 }
1732 ready_before = 1;
1733
1734 written = parport_ip32_fifo_write_block(p, buf, len);
1735
1736 /* Wait FIFO to empty. Timeout is proportional to FIFO_depth. */
1737 parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth);
1738
1739 /* Check for a potential residue */
1740 written -= parport_ip32_get_fifo_residue(p, ECR_MODE_ECP);
1741
1742 /* Then, wait for BUSY to get low. */
1743 if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY))
1744 printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n",
1745 p->name, __func__);
1746
1747 stop:
1748 /* Reset FIFO */
1749 parport_ip32_set_mode(p, ECR_MODE_PS2);
1750 physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE;
1751
1752 return written;
1753 }
1754
1755 /*
1756 * FIXME - Insert here parport_ip32_ecp_write_addr().
1757 */
1758
1759 /*--- Default parport operations ---------------------------------------*/
1760
1761 static const struct parport_operations parport_ip32_ops __initconst = {
1762 .write_data = parport_ip32_write_data,
1763 .read_data = parport_ip32_read_data,
1764
1765 .write_control = parport_ip32_write_control,
1766 .read_control = parport_ip32_read_control,
1767 .frob_control = parport_ip32_frob_control,
1768
1769 .read_status = parport_ip32_read_status,
1770
1771 .enable_irq = parport_ip32_enable_irq,
1772 .disable_irq = parport_ip32_disable_irq,
1773
1774 .data_forward = parport_ip32_data_forward,
1775 .data_reverse = parport_ip32_data_reverse,
1776
1777 .init_state = parport_ip32_init_state,
1778 .save_state = parport_ip32_save_state,
1779 .restore_state = parport_ip32_restore_state,
1780
1781 .epp_write_data = parport_ieee1284_epp_write_data,
1782 .epp_read_data = parport_ieee1284_epp_read_data,
1783 .epp_write_addr = parport_ieee1284_epp_write_addr,
1784 .epp_read_addr = parport_ieee1284_epp_read_addr,
1785
1786 .ecp_write_data = parport_ieee1284_ecp_write_data,
1787 .ecp_read_data = parport_ieee1284_ecp_read_data,
1788 .ecp_write_addr = parport_ieee1284_ecp_write_addr,
1789
1790 .compat_write_data = parport_ieee1284_write_compat,
1791 .nibble_read_data = parport_ieee1284_read_nibble,
1792 .byte_read_data = parport_ieee1284_read_byte,
1793
1794 .owner = THIS_MODULE,
1795 };
1796
1797 /*--- Device detection -------------------------------------------------*/
1798
1799 /**
1800 * parport_ip32_ecp_supported - check for an ECP port
1801 * @p: pointer to the &parport structure
1802 *
1803 * Returns 1 if an ECP port is found, and 0 otherwise. This function actually
1804 * checks if an Extended Control Register seems to be present. On successful
1805 * return, the port is placed in SPP mode.
1806 */
parport_ip32_ecp_supported(struct parport * p)1807 static __init unsigned int parport_ip32_ecp_supported(struct parport *p)
1808 {
1809 struct parport_ip32_private * const priv = p->physport->private_data;
1810 unsigned int ecr;
1811
1812 ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
1813 writeb(ecr, priv->regs.ecr);
1814 if (readb(priv->regs.ecr) != (ecr | ECR_F_EMPTY))
1815 goto fail;
1816
1817 pr_probe(p, "Found working ECR register\n");
1818 parport_ip32_set_mode(p, ECR_MODE_SPP);
1819 parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1820 return 1;
1821
1822 fail:
1823 pr_probe(p, "ECR register not found\n");
1824 return 0;
1825 }
1826
1827 /**
1828 * parport_ip32_fifo_supported - check for FIFO parameters
1829 * @p: pointer to the &parport structure
1830 *
1831 * Check for FIFO parameters of an Extended Capabilities Port. Returns 1 on
1832 * success, and 0 otherwise. Adjust FIFO parameters in the parport structure.
1833 * On return, the port is placed in SPP mode.
1834 */
parport_ip32_fifo_supported(struct parport * p)1835 static __init unsigned int parport_ip32_fifo_supported(struct parport *p)
1836 {
1837 struct parport_ip32_private * const priv = p->physport->private_data;
1838 unsigned int configa, configb;
1839 unsigned int pword;
1840 unsigned int i;
1841
1842 /* Configuration mode */
1843 parport_ip32_set_mode(p, ECR_MODE_CFG);
1844 configa = readb(priv->regs.cnfgA);
1845 configb = readb(priv->regs.cnfgB);
1846
1847 /* Find out PWord size */
1848 switch (configa & CNFGA_ID_MASK) {
1849 case CNFGA_ID_8:
1850 pword = 1;
1851 break;
1852 case CNFGA_ID_16:
1853 pword = 2;
1854 break;
1855 case CNFGA_ID_32:
1856 pword = 4;
1857 break;
1858 default:
1859 pr_probe(p, "Unknown implementation ID: 0x%0x\n",
1860 (configa & CNFGA_ID_MASK) >> CNFGA_ID_SHIFT);
1861 goto fail;
1862 break;
1863 }
1864 if (pword != 1) {
1865 pr_probe(p, "Unsupported PWord size: %u\n", pword);
1866 goto fail;
1867 }
1868 priv->pword = pword;
1869 pr_probe(p, "PWord is %u bits\n", 8 * priv->pword);
1870
1871 /* Check for compression support */
1872 writeb(configb | CNFGB_COMPRESS, priv->regs.cnfgB);
1873 if (readb(priv->regs.cnfgB) & CNFGB_COMPRESS)
1874 pr_probe(p, "Hardware compression detected (unsupported)\n");
1875 writeb(configb & ~CNFGB_COMPRESS, priv->regs.cnfgB);
1876
1877 /* Reset FIFO and go in test mode (no interrupt, no DMA) */
1878 parport_ip32_set_mode(p, ECR_MODE_TST);
1879
1880 /* FIFO must be empty now */
1881 if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) {
1882 pr_probe(p, "FIFO not reset\n");
1883 goto fail;
1884 }
1885
1886 /* Find out FIFO depth. */
1887 priv->fifo_depth = 0;
1888 for (i = 0; i < 1024; i++) {
1889 if (readb(priv->regs.ecr) & ECR_F_FULL) {
1890 /* FIFO full */
1891 priv->fifo_depth = i;
1892 break;
1893 }
1894 writeb((u8)i, priv->regs.fifo);
1895 }
1896 if (i >= 1024) {
1897 pr_probe(p, "Can't fill FIFO\n");
1898 goto fail;
1899 }
1900 if (!priv->fifo_depth) {
1901 pr_probe(p, "Can't get FIFO depth\n");
1902 goto fail;
1903 }
1904 pr_probe(p, "FIFO is %u PWords deep\n", priv->fifo_depth);
1905
1906 /* Enable interrupts */
1907 parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1908
1909 /* Find out writeIntrThreshold: number of PWords we know we can write
1910 * if we get an interrupt. */
1911 priv->writeIntrThreshold = 0;
1912 for (i = 0; i < priv->fifo_depth; i++) {
1913 if (readb(priv->regs.fifo) != (u8)i) {
1914 pr_probe(p, "Invalid data in FIFO\n");
1915 goto fail;
1916 }
1917 if (!priv->writeIntrThreshold
1918 && readb(priv->regs.ecr) & ECR_SERVINTR)
1919 /* writeIntrThreshold reached */
1920 priv->writeIntrThreshold = i + 1;
1921 if (i + 1 < priv->fifo_depth
1922 && readb(priv->regs.ecr) & ECR_F_EMPTY) {
1923 /* FIFO empty before the last byte? */
1924 pr_probe(p, "Data lost in FIFO\n");
1925 goto fail;
1926 }
1927 }
1928 if (!priv->writeIntrThreshold) {
1929 pr_probe(p, "Can't get writeIntrThreshold\n");
1930 goto fail;
1931 }
1932 pr_probe(p, "writeIntrThreshold is %u\n", priv->writeIntrThreshold);
1933
1934 /* FIFO must be empty now */
1935 if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) {
1936 pr_probe(p, "Can't empty FIFO\n");
1937 goto fail;
1938 }
1939
1940 /* Reset FIFO */
1941 parport_ip32_set_mode(p, ECR_MODE_PS2);
1942 /* Set reverse direction (must be in PS2 mode) */
1943 parport_ip32_data_reverse(p);
1944 /* Test FIFO, no interrupt, no DMA */
1945 parport_ip32_set_mode(p, ECR_MODE_TST);
1946 /* Enable interrupts */
1947 parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1948
1949 /* Find out readIntrThreshold: number of PWords we can read if we get
1950 * an interrupt. */
1951 priv->readIntrThreshold = 0;
1952 for (i = 0; i < priv->fifo_depth; i++) {
1953 writeb(0xaa, priv->regs.fifo);
1954 if (readb(priv->regs.ecr) & ECR_SERVINTR) {
1955 /* readIntrThreshold reached */
1956 priv->readIntrThreshold = i + 1;
1957 break;
1958 }
1959 }
1960 if (!priv->readIntrThreshold) {
1961 pr_probe(p, "Can't get readIntrThreshold\n");
1962 goto fail;
1963 }
1964 pr_probe(p, "readIntrThreshold is %u\n", priv->readIntrThreshold);
1965
1966 /* Reset ECR */
1967 parport_ip32_set_mode(p, ECR_MODE_PS2);
1968 parport_ip32_data_forward(p);
1969 parport_ip32_set_mode(p, ECR_MODE_SPP);
1970 return 1;
1971
1972 fail:
1973 priv->fifo_depth = 0;
1974 parport_ip32_set_mode(p, ECR_MODE_SPP);
1975 return 0;
1976 }
1977
1978 /*--- Initialization code ----------------------------------------------*/
1979
1980 /**
1981 * parport_ip32_make_isa_registers - compute (ISA) register addresses
1982 * @regs: pointer to &struct parport_ip32_regs to fill
1983 * @base: base address of standard and EPP registers
1984 * @base_hi: base address of ECP registers
1985 * @regshift: how much to shift register offset by
1986 *
1987 * Compute register addresses, according to the ISA standard. The addresses
1988 * of the standard and EPP registers are computed from address @base. The
1989 * addresses of the ECP registers are computed from address @base_hi.
1990 */
1991 static void __init
parport_ip32_make_isa_registers(struct parport_ip32_regs * regs,void __iomem * base,void __iomem * base_hi,unsigned int regshift)1992 parport_ip32_make_isa_registers(struct parport_ip32_regs *regs,
1993 void __iomem *base, void __iomem *base_hi,
1994 unsigned int regshift)
1995 {
1996 #define r_base(offset) ((u8 __iomem *)base + ((offset) << regshift))
1997 #define r_base_hi(offset) ((u8 __iomem *)base_hi + ((offset) << regshift))
1998 *regs = (struct parport_ip32_regs){
1999 .data = r_base(0),
2000 .dsr = r_base(1),
2001 .dcr = r_base(2),
2002 .eppAddr = r_base(3),
2003 .eppData0 = r_base(4),
2004 .eppData1 = r_base(5),
2005 .eppData2 = r_base(6),
2006 .eppData3 = r_base(7),
2007 .ecpAFifo = r_base(0),
2008 .fifo = r_base_hi(0),
2009 .cnfgA = r_base_hi(0),
2010 .cnfgB = r_base_hi(1),
2011 .ecr = r_base_hi(2)
2012 };
2013 #undef r_base_hi
2014 #undef r_base
2015 }
2016
2017 /**
2018 * parport_ip32_probe_port - probe and register IP32 built-in parallel port
2019 *
2020 * Returns the new allocated &parport structure. On error, an error code is
2021 * encoded in return value with the ERR_PTR function.
2022 */
parport_ip32_probe_port(void)2023 static __init struct parport *parport_ip32_probe_port(void)
2024 {
2025 struct parport_ip32_regs regs;
2026 struct parport_ip32_private *priv = NULL;
2027 struct parport_operations *ops = NULL;
2028 struct parport *p = NULL;
2029 int err;
2030
2031 parport_ip32_make_isa_registers(®s, &mace->isa.parallel,
2032 &mace->isa.ecp1284, 8 /* regshift */);
2033
2034 ops = kmalloc(sizeof(struct parport_operations), GFP_KERNEL);
2035 priv = kmalloc(sizeof(struct parport_ip32_private), GFP_KERNEL);
2036 p = parport_register_port(0, PARPORT_IRQ_NONE, PARPORT_DMA_NONE, ops);
2037 if (ops == NULL || priv == NULL || p == NULL) {
2038 err = -ENOMEM;
2039 goto fail;
2040 }
2041 p->base = MACE_BASE + offsetof(struct sgi_mace, isa.parallel);
2042 p->base_hi = MACE_BASE + offsetof(struct sgi_mace, isa.ecp1284);
2043 p->private_data = priv;
2044
2045 *ops = parport_ip32_ops;
2046 *priv = (struct parport_ip32_private){
2047 .regs = regs,
2048 .dcr_writable = DCR_DIR | DCR_SELECT | DCR_nINIT |
2049 DCR_AUTOFD | DCR_STROBE,
2050 .irq_mode = PARPORT_IP32_IRQ_FWD,
2051 };
2052 init_completion(&priv->irq_complete);
2053
2054 /* Probe port. */
2055 if (!parport_ip32_ecp_supported(p)) {
2056 err = -ENODEV;
2057 goto fail;
2058 }
2059 parport_ip32_dump_state(p, "begin init", 0);
2060
2061 /* We found what looks like a working ECR register. Simply assume
2062 * that all modes are correctly supported. Enable basic modes. */
2063 p->modes = PARPORT_MODE_PCSPP | PARPORT_MODE_SAFEININT;
2064 p->modes |= PARPORT_MODE_TRISTATE;
2065
2066 if (!parport_ip32_fifo_supported(p)) {
2067 printk(KERN_WARNING PPIP32
2068 "%s: error: FIFO disabled\n", p->name);
2069 /* Disable hardware modes depending on a working FIFO. */
2070 features &= ~PARPORT_IP32_ENABLE_SPP;
2071 features &= ~PARPORT_IP32_ENABLE_ECP;
2072 /* DMA is not needed if FIFO is not supported. */
2073 features &= ~PARPORT_IP32_ENABLE_DMA;
2074 }
2075
2076 /* Request IRQ */
2077 if (features & PARPORT_IP32_ENABLE_IRQ) {
2078 int irq = MACEISA_PARALLEL_IRQ;
2079 if (request_irq(irq, parport_ip32_interrupt, 0, p->name, p)) {
2080 printk(KERN_WARNING PPIP32
2081 "%s: error: IRQ disabled\n", p->name);
2082 /* DMA cannot work without interrupts. */
2083 features &= ~PARPORT_IP32_ENABLE_DMA;
2084 } else {
2085 pr_probe(p, "Interrupt support enabled\n");
2086 p->irq = irq;
2087 priv->dcr_writable |= DCR_IRQ;
2088 }
2089 }
2090
2091 /* Allocate DMA resources */
2092 if (features & PARPORT_IP32_ENABLE_DMA) {
2093 if (parport_ip32_dma_register())
2094 printk(KERN_WARNING PPIP32
2095 "%s: error: DMA disabled\n", p->name);
2096 else {
2097 pr_probe(p, "DMA support enabled\n");
2098 p->dma = 0; /* arbitrary value != PARPORT_DMA_NONE */
2099 p->modes |= PARPORT_MODE_DMA;
2100 }
2101 }
2102
2103 if (features & PARPORT_IP32_ENABLE_SPP) {
2104 /* Enable compatibility FIFO mode */
2105 p->ops->compat_write_data = parport_ip32_compat_write_data;
2106 p->modes |= PARPORT_MODE_COMPAT;
2107 pr_probe(p, "Hardware support for SPP mode enabled\n");
2108 }
2109 if (features & PARPORT_IP32_ENABLE_EPP) {
2110 /* Set up access functions to use EPP hardware. */
2111 p->ops->epp_read_data = parport_ip32_epp_read_data;
2112 p->ops->epp_write_data = parport_ip32_epp_write_data;
2113 p->ops->epp_read_addr = parport_ip32_epp_read_addr;
2114 p->ops->epp_write_addr = parport_ip32_epp_write_addr;
2115 p->modes |= PARPORT_MODE_EPP;
2116 pr_probe(p, "Hardware support for EPP mode enabled\n");
2117 }
2118 if (features & PARPORT_IP32_ENABLE_ECP) {
2119 /* Enable ECP FIFO mode */
2120 p->ops->ecp_write_data = parport_ip32_ecp_write_data;
2121 /* FIXME - not implemented */
2122 /* p->ops->ecp_read_data = parport_ip32_ecp_read_data; */
2123 /* p->ops->ecp_write_addr = parport_ip32_ecp_write_addr; */
2124 p->modes |= PARPORT_MODE_ECP;
2125 pr_probe(p, "Hardware support for ECP mode enabled\n");
2126 }
2127
2128 /* Initialize the port with sensible values */
2129 parport_ip32_set_mode(p, ECR_MODE_PS2);
2130 parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
2131 parport_ip32_data_forward(p);
2132 parport_ip32_disable_irq(p);
2133 parport_ip32_write_data(p, 0x00);
2134 parport_ip32_dump_state(p, "end init", 0);
2135
2136 /* Print out what we found */
2137 printk(KERN_INFO "%s: SGI IP32 at 0x%lx (0x%lx)",
2138 p->name, p->base, p->base_hi);
2139 if (p->irq != PARPORT_IRQ_NONE)
2140 printk(", irq %d", p->irq);
2141 printk(" [");
2142 #define printmode(x) if (p->modes & PARPORT_MODE_##x) \
2143 printk("%s%s", f++ ? "," : "", #x)
2144 {
2145 unsigned int f = 0;
2146 printmode(PCSPP);
2147 printmode(TRISTATE);
2148 printmode(COMPAT);
2149 printmode(EPP);
2150 printmode(ECP);
2151 printmode(DMA);
2152 }
2153 #undef printmode
2154 printk("]\n");
2155
2156 parport_announce_port(p);
2157 return p;
2158
2159 fail:
2160 if (p)
2161 parport_put_port(p);
2162 kfree(priv);
2163 kfree(ops);
2164 return ERR_PTR(err);
2165 }
2166
2167 /**
2168 * parport_ip32_unregister_port - unregister a parallel port
2169 * @p: pointer to the &struct parport
2170 *
2171 * Unregisters a parallel port and free previously allocated resources
2172 * (memory, IRQ, ...).
2173 */
parport_ip32_unregister_port(struct parport * p)2174 static __exit void parport_ip32_unregister_port(struct parport *p)
2175 {
2176 struct parport_ip32_private * const priv = p->physport->private_data;
2177 struct parport_operations *ops = p->ops;
2178
2179 parport_remove_port(p);
2180 if (p->modes & PARPORT_MODE_DMA)
2181 parport_ip32_dma_unregister();
2182 if (p->irq != PARPORT_IRQ_NONE)
2183 free_irq(p->irq, p);
2184 parport_put_port(p);
2185 kfree(priv);
2186 kfree(ops);
2187 }
2188
2189 /**
2190 * parport_ip32_init - module initialization function
2191 */
parport_ip32_init(void)2192 static int __init parport_ip32_init(void)
2193 {
2194 pr_info(PPIP32 "SGI IP32 built-in parallel port driver v0.6\n");
2195 this_port = parport_ip32_probe_port();
2196 return PTR_ERR_OR_ZERO(this_port);
2197 }
2198
2199 /**
2200 * parport_ip32_exit - module termination function
2201 */
parport_ip32_exit(void)2202 static void __exit parport_ip32_exit(void)
2203 {
2204 parport_ip32_unregister_port(this_port);
2205 }
2206
2207 /*--- Module stuff -----------------------------------------------------*/
2208
2209 MODULE_AUTHOR("Arnaud Giersch <arnaud.giersch@free.fr>");
2210 MODULE_DESCRIPTION("SGI IP32 built-in parallel port driver");
2211 MODULE_LICENSE("GPL");
2212 MODULE_VERSION("0.6"); /* update in parport_ip32_init() too */
2213
2214 module_init(parport_ip32_init);
2215 module_exit(parport_ip32_exit);
2216
2217 module_param(verbose_probing, bool, S_IRUGO);
2218 MODULE_PARM_DESC(verbose_probing, "Log chit-chat during initialization");
2219
2220 module_param(features, uint, S_IRUGO);
2221 MODULE_PARM_DESC(features,
2222 "Bit mask of features to enable"
2223 ", bit 0: IRQ support"
2224 ", bit 1: DMA support"
2225 ", bit 2: hardware SPP mode"
2226 ", bit 3: hardware EPP mode"
2227 ", bit 4: hardware ECP mode");
2228
2229 /*--- Inform (X)Emacs about preferred coding style ---------------------*/
2230 /*
2231 * Local Variables:
2232 * mode: c
2233 * c-file-style: "linux"
2234 * indent-tabs-mode: t
2235 * tab-width: 8
2236 * fill-column: 78
2237 * ispell-local-dictionary: "american"
2238 * End:
2239 */
2240