• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/of.h>
17 #include <linux/of_pci.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pci-ats.h>
33 #include <asm/setup.h>
34 #include <asm/dma.h>
35 #include <linux/aer.h>
36 #include "pci.h"
37 
38 DEFINE_MUTEX(pci_slot_mutex);
39 
40 const char *pci_power_names[] = {
41 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
42 };
43 EXPORT_SYMBOL_GPL(pci_power_names);
44 
45 int isa_dma_bridge_buggy;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy);
47 
48 int pci_pci_problems;
49 EXPORT_SYMBOL(pci_pci_problems);
50 
51 unsigned int pci_pm_d3_delay;
52 
53 static void pci_pme_list_scan(struct work_struct *work);
54 
55 static LIST_HEAD(pci_pme_list);
56 static DEFINE_MUTEX(pci_pme_list_mutex);
57 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
58 
59 struct pci_pme_device {
60 	struct list_head list;
61 	struct pci_dev *dev;
62 };
63 
64 #define PME_TIMEOUT 1000 /* How long between PME checks */
65 
pci_dev_d3_sleep(struct pci_dev * dev)66 static void pci_dev_d3_sleep(struct pci_dev *dev)
67 {
68 	unsigned int delay = dev->d3_delay;
69 
70 	if (delay < pci_pm_d3_delay)
71 		delay = pci_pm_d3_delay;
72 
73 	if (delay)
74 		msleep(delay);
75 }
76 
77 #ifdef CONFIG_PCI_DOMAINS
78 int pci_domains_supported = 1;
79 #endif
80 
81 #define DEFAULT_CARDBUS_IO_SIZE		(256)
82 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
83 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
84 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
85 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
86 
87 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
88 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
89 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
90 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
91 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
92 
93 #define DEFAULT_HOTPLUG_BUS_SIZE	1
94 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
95 
96 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
97 
98 /*
99  * The default CLS is used if arch didn't set CLS explicitly and not
100  * all pci devices agree on the same value.  Arch can override either
101  * the dfl or actual value as it sees fit.  Don't forget this is
102  * measured in 32-bit words, not bytes.
103  */
104 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
105 u8 pci_cache_line_size;
106 
107 /*
108  * If we set up a device for bus mastering, we need to check the latency
109  * timer as certain BIOSes forget to set it properly.
110  */
111 unsigned int pcibios_max_latency = 255;
112 
113 /* If set, the PCIe ARI capability will not be used. */
114 static bool pcie_ari_disabled;
115 
116 /* If set, the PCIe ATS capability will not be used. */
117 static bool pcie_ats_disabled;
118 
119 /* If set, the PCI config space of each device is printed during boot. */
120 bool pci_early_dump;
121 
pci_ats_disabled(void)122 bool pci_ats_disabled(void)
123 {
124 	return pcie_ats_disabled;
125 }
126 EXPORT_SYMBOL_GPL(pci_ats_disabled);
127 
128 /* Disable bridge_d3 for all PCIe ports */
129 static bool pci_bridge_d3_disable;
130 /* Force bridge_d3 for all PCIe ports */
131 static bool pci_bridge_d3_force;
132 
pcie_port_pm_setup(char * str)133 static int __init pcie_port_pm_setup(char *str)
134 {
135 	if (!strcmp(str, "off"))
136 		pci_bridge_d3_disable = true;
137 	else if (!strcmp(str, "force"))
138 		pci_bridge_d3_force = true;
139 	return 1;
140 }
141 __setup("pcie_port_pm=", pcie_port_pm_setup);
142 
143 /* Time to wait after a reset for device to become responsive */
144 #define PCIE_RESET_READY_POLL_MS 60000
145 
146 /**
147  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
148  * @bus: pointer to PCI bus structure to search
149  *
150  * Given a PCI bus, returns the highest PCI bus number present in the set
151  * including the given PCI bus and its list of child PCI buses.
152  */
pci_bus_max_busnr(struct pci_bus * bus)153 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
154 {
155 	struct pci_bus *tmp;
156 	unsigned char max, n;
157 
158 	max = bus->busn_res.end;
159 	list_for_each_entry(tmp, &bus->children, node) {
160 		n = pci_bus_max_busnr(tmp);
161 		if (n > max)
162 			max = n;
163 	}
164 	return max;
165 }
166 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
167 
168 #ifdef CONFIG_HAS_IOMEM
pci_ioremap_bar(struct pci_dev * pdev,int bar)169 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
170 {
171 	struct resource *res = &pdev->resource[bar];
172 
173 	/*
174 	 * Make sure the BAR is actually a memory resource, not an IO resource
175 	 */
176 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
177 		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
178 		return NULL;
179 	}
180 	return ioremap_nocache(res->start, resource_size(res));
181 }
182 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
183 
pci_ioremap_wc_bar(struct pci_dev * pdev,int bar)184 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
185 {
186 	/*
187 	 * Make sure the BAR is actually a memory resource, not an IO resource
188 	 */
189 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
190 		WARN_ON(1);
191 		return NULL;
192 	}
193 	return ioremap_wc(pci_resource_start(pdev, bar),
194 			  pci_resource_len(pdev, bar));
195 }
196 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
197 #endif
198 
199 /**
200  * pci_dev_str_match_path - test if a path string matches a device
201  * @dev: the PCI device to test
202  * @path: string to match the device against
203  * @endptr: pointer to the string after the match
204  *
205  * Test if a string (typically from a kernel parameter) formatted as a
206  * path of device/function addresses matches a PCI device. The string must
207  * be of the form:
208  *
209  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
210  *
211  * A path for a device can be obtained using 'lspci -t'.  Using a path
212  * is more robust against bus renumbering than using only a single bus,
213  * device and function address.
214  *
215  * Returns 1 if the string matches the device, 0 if it does not and
216  * a negative error code if it fails to parse the string.
217  */
pci_dev_str_match_path(struct pci_dev * dev,const char * path,const char ** endptr)218 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
219 				  const char **endptr)
220 {
221 	int ret;
222 	int seg, bus, slot, func;
223 	char *wpath, *p;
224 	char end;
225 
226 	*endptr = strchrnul(path, ';');
227 
228 	wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
229 	if (!wpath)
230 		return -ENOMEM;
231 
232 	while (1) {
233 		p = strrchr(wpath, '/');
234 		if (!p)
235 			break;
236 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
237 		if (ret != 2) {
238 			ret = -EINVAL;
239 			goto free_and_exit;
240 		}
241 
242 		if (dev->devfn != PCI_DEVFN(slot, func)) {
243 			ret = 0;
244 			goto free_and_exit;
245 		}
246 
247 		/*
248 		 * Note: we don't need to get a reference to the upstream
249 		 * bridge because we hold a reference to the top level
250 		 * device which should hold a reference to the bridge,
251 		 * and so on.
252 		 */
253 		dev = pci_upstream_bridge(dev);
254 		if (!dev) {
255 			ret = 0;
256 			goto free_and_exit;
257 		}
258 
259 		*p = 0;
260 	}
261 
262 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
263 		     &func, &end);
264 	if (ret != 4) {
265 		seg = 0;
266 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
267 		if (ret != 3) {
268 			ret = -EINVAL;
269 			goto free_and_exit;
270 		}
271 	}
272 
273 	ret = (seg == pci_domain_nr(dev->bus) &&
274 	       bus == dev->bus->number &&
275 	       dev->devfn == PCI_DEVFN(slot, func));
276 
277 free_and_exit:
278 	kfree(wpath);
279 	return ret;
280 }
281 
282 /**
283  * pci_dev_str_match - test if a string matches a device
284  * @dev: the PCI device to test
285  * @p: string to match the device against
286  * @endptr: pointer to the string after the match
287  *
288  * Test if a string (typically from a kernel parameter) matches a specified
289  * PCI device. The string may be of one of the following formats:
290  *
291  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
292  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
293  *
294  * The first format specifies a PCI bus/device/function address which
295  * may change if new hardware is inserted, if motherboard firmware changes,
296  * or due to changes caused in kernel parameters. If the domain is
297  * left unspecified, it is taken to be 0.  In order to be robust against
298  * bus renumbering issues, a path of PCI device/function numbers may be used
299  * to address the specific device.  The path for a device can be determined
300  * through the use of 'lspci -t'.
301  *
302  * The second format matches devices using IDs in the configuration
303  * space which may match multiple devices in the system. A value of 0
304  * for any field will match all devices. (Note: this differs from
305  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
306  * legacy reasons and convenience so users don't have to specify
307  * FFFFFFFFs on the command line.)
308  *
309  * Returns 1 if the string matches the device, 0 if it does not and
310  * a negative error code if the string cannot be parsed.
311  */
pci_dev_str_match(struct pci_dev * dev,const char * p,const char ** endptr)312 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
313 			     const char **endptr)
314 {
315 	int ret;
316 	int count;
317 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
318 
319 	if (strncmp(p, "pci:", 4) == 0) {
320 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
321 		p += 4;
322 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
323 			     &subsystem_vendor, &subsystem_device, &count);
324 		if (ret != 4) {
325 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
326 			if (ret != 2)
327 				return -EINVAL;
328 
329 			subsystem_vendor = 0;
330 			subsystem_device = 0;
331 		}
332 
333 		p += count;
334 
335 		if ((!vendor || vendor == dev->vendor) &&
336 		    (!device || device == dev->device) &&
337 		    (!subsystem_vendor ||
338 			    subsystem_vendor == dev->subsystem_vendor) &&
339 		    (!subsystem_device ||
340 			    subsystem_device == dev->subsystem_device))
341 			goto found;
342 	} else {
343 		/*
344 		 * PCI Bus, Device, Function IDs are specified
345 		 * (optionally, may include a path of devfns following it)
346 		 */
347 		ret = pci_dev_str_match_path(dev, p, &p);
348 		if (ret < 0)
349 			return ret;
350 		else if (ret)
351 			goto found;
352 	}
353 
354 	*endptr = p;
355 	return 0;
356 
357 found:
358 	*endptr = p;
359 	return 1;
360 }
361 
__pci_find_next_cap_ttl(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap,int * ttl)362 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
363 				   u8 pos, int cap, int *ttl)
364 {
365 	u8 id;
366 	u16 ent;
367 
368 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
369 
370 	while ((*ttl)--) {
371 		if (pos < 0x40)
372 			break;
373 		pos &= ~3;
374 		pci_bus_read_config_word(bus, devfn, pos, &ent);
375 
376 		id = ent & 0xff;
377 		if (id == 0xff)
378 			break;
379 		if (id == cap)
380 			return pos;
381 		pos = (ent >> 8);
382 	}
383 	return 0;
384 }
385 
__pci_find_next_cap(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap)386 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
387 			       u8 pos, int cap)
388 {
389 	int ttl = PCI_FIND_CAP_TTL;
390 
391 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
392 }
393 
pci_find_next_capability(struct pci_dev * dev,u8 pos,int cap)394 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
395 {
396 	return __pci_find_next_cap(dev->bus, dev->devfn,
397 				   pos + PCI_CAP_LIST_NEXT, cap);
398 }
399 EXPORT_SYMBOL_GPL(pci_find_next_capability);
400 
__pci_bus_find_cap_start(struct pci_bus * bus,unsigned int devfn,u8 hdr_type)401 static int __pci_bus_find_cap_start(struct pci_bus *bus,
402 				    unsigned int devfn, u8 hdr_type)
403 {
404 	u16 status;
405 
406 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
407 	if (!(status & PCI_STATUS_CAP_LIST))
408 		return 0;
409 
410 	switch (hdr_type) {
411 	case PCI_HEADER_TYPE_NORMAL:
412 	case PCI_HEADER_TYPE_BRIDGE:
413 		return PCI_CAPABILITY_LIST;
414 	case PCI_HEADER_TYPE_CARDBUS:
415 		return PCI_CB_CAPABILITY_LIST;
416 	}
417 
418 	return 0;
419 }
420 
421 /**
422  * pci_find_capability - query for devices' capabilities
423  * @dev: PCI device to query
424  * @cap: capability code
425  *
426  * Tell if a device supports a given PCI capability.
427  * Returns the address of the requested capability structure within the
428  * device's PCI configuration space or 0 in case the device does not
429  * support it.  Possible values for @cap include:
430  *
431  *  %PCI_CAP_ID_PM           Power Management
432  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
433  *  %PCI_CAP_ID_VPD          Vital Product Data
434  *  %PCI_CAP_ID_SLOTID       Slot Identification
435  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
436  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
437  *  %PCI_CAP_ID_PCIX         PCI-X
438  *  %PCI_CAP_ID_EXP          PCI Express
439  */
pci_find_capability(struct pci_dev * dev,int cap)440 int pci_find_capability(struct pci_dev *dev, int cap)
441 {
442 	int pos;
443 
444 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
445 	if (pos)
446 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
447 
448 	return pos;
449 }
450 EXPORT_SYMBOL(pci_find_capability);
451 
452 /**
453  * pci_bus_find_capability - query for devices' capabilities
454  * @bus: the PCI bus to query
455  * @devfn: PCI device to query
456  * @cap: capability code
457  *
458  * Like pci_find_capability() but works for PCI devices that do not have a
459  * pci_dev structure set up yet.
460  *
461  * Returns the address of the requested capability structure within the
462  * device's PCI configuration space or 0 in case the device does not
463  * support it.
464  */
pci_bus_find_capability(struct pci_bus * bus,unsigned int devfn,int cap)465 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
466 {
467 	int pos;
468 	u8 hdr_type;
469 
470 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
471 
472 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
473 	if (pos)
474 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
475 
476 	return pos;
477 }
478 EXPORT_SYMBOL(pci_bus_find_capability);
479 
480 /**
481  * pci_find_next_ext_capability - Find an extended capability
482  * @dev: PCI device to query
483  * @start: address at which to start looking (0 to start at beginning of list)
484  * @cap: capability code
485  *
486  * Returns the address of the next matching extended capability structure
487  * within the device's PCI configuration space or 0 if the device does
488  * not support it.  Some capabilities can occur several times, e.g., the
489  * vendor-specific capability, and this provides a way to find them all.
490  */
pci_find_next_ext_capability(struct pci_dev * dev,int start,int cap)491 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
492 {
493 	u32 header;
494 	int ttl;
495 	int pos = PCI_CFG_SPACE_SIZE;
496 
497 	/* minimum 8 bytes per capability */
498 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
499 
500 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
501 		return 0;
502 
503 	if (start)
504 		pos = start;
505 
506 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
507 		return 0;
508 
509 	/*
510 	 * If we have no capabilities, this is indicated by cap ID,
511 	 * cap version and next pointer all being 0.
512 	 */
513 	if (header == 0)
514 		return 0;
515 
516 	while (ttl-- > 0) {
517 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
518 			return pos;
519 
520 		pos = PCI_EXT_CAP_NEXT(header);
521 		if (pos < PCI_CFG_SPACE_SIZE)
522 			break;
523 
524 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
525 			break;
526 	}
527 
528 	return 0;
529 }
530 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
531 
532 /**
533  * pci_find_ext_capability - Find an extended capability
534  * @dev: PCI device to query
535  * @cap: capability code
536  *
537  * Returns the address of the requested extended capability structure
538  * within the device's PCI configuration space or 0 if the device does
539  * not support it.  Possible values for @cap include:
540  *
541  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
542  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
543  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
544  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
545  */
pci_find_ext_capability(struct pci_dev * dev,int cap)546 int pci_find_ext_capability(struct pci_dev *dev, int cap)
547 {
548 	return pci_find_next_ext_capability(dev, 0, cap);
549 }
550 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
551 
__pci_find_next_ht_cap(struct pci_dev * dev,int pos,int ht_cap)552 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
553 {
554 	int rc, ttl = PCI_FIND_CAP_TTL;
555 	u8 cap, mask;
556 
557 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
558 		mask = HT_3BIT_CAP_MASK;
559 	else
560 		mask = HT_5BIT_CAP_MASK;
561 
562 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
563 				      PCI_CAP_ID_HT, &ttl);
564 	while (pos) {
565 		rc = pci_read_config_byte(dev, pos + 3, &cap);
566 		if (rc != PCIBIOS_SUCCESSFUL)
567 			return 0;
568 
569 		if ((cap & mask) == ht_cap)
570 			return pos;
571 
572 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
573 					      pos + PCI_CAP_LIST_NEXT,
574 					      PCI_CAP_ID_HT, &ttl);
575 	}
576 
577 	return 0;
578 }
579 /**
580  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
581  * @dev: PCI device to query
582  * @pos: Position from which to continue searching
583  * @ht_cap: Hypertransport capability code
584  *
585  * To be used in conjunction with pci_find_ht_capability() to search for
586  * all capabilities matching @ht_cap. @pos should always be a value returned
587  * from pci_find_ht_capability().
588  *
589  * NB. To be 100% safe against broken PCI devices, the caller should take
590  * steps to avoid an infinite loop.
591  */
pci_find_next_ht_capability(struct pci_dev * dev,int pos,int ht_cap)592 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
593 {
594 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
595 }
596 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
597 
598 /**
599  * pci_find_ht_capability - query a device's Hypertransport capabilities
600  * @dev: PCI device to query
601  * @ht_cap: Hypertransport capability code
602  *
603  * Tell if a device supports a given Hypertransport capability.
604  * Returns an address within the device's PCI configuration space
605  * or 0 in case the device does not support the request capability.
606  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
607  * which has a Hypertransport capability matching @ht_cap.
608  */
pci_find_ht_capability(struct pci_dev * dev,int ht_cap)609 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
610 {
611 	int pos;
612 
613 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
614 	if (pos)
615 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
616 
617 	return pos;
618 }
619 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
620 
621 /**
622  * pci_find_parent_resource - return resource region of parent bus of given
623  *			      region
624  * @dev: PCI device structure contains resources to be searched
625  * @res: child resource record for which parent is sought
626  *
627  * For given resource region of given device, return the resource region of
628  * parent bus the given region is contained in.
629  */
pci_find_parent_resource(const struct pci_dev * dev,struct resource * res)630 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
631 					  struct resource *res)
632 {
633 	const struct pci_bus *bus = dev->bus;
634 	struct resource *r;
635 	int i;
636 
637 	pci_bus_for_each_resource(bus, r, i) {
638 		if (!r)
639 			continue;
640 		if (resource_contains(r, res)) {
641 
642 			/*
643 			 * If the window is prefetchable but the BAR is
644 			 * not, the allocator made a mistake.
645 			 */
646 			if (r->flags & IORESOURCE_PREFETCH &&
647 			    !(res->flags & IORESOURCE_PREFETCH))
648 				return NULL;
649 
650 			/*
651 			 * If we're below a transparent bridge, there may
652 			 * be both a positively-decoded aperture and a
653 			 * subtractively-decoded region that contain the BAR.
654 			 * We want the positively-decoded one, so this depends
655 			 * on pci_bus_for_each_resource() giving us those
656 			 * first.
657 			 */
658 			return r;
659 		}
660 	}
661 	return NULL;
662 }
663 EXPORT_SYMBOL(pci_find_parent_resource);
664 
665 /**
666  * pci_find_resource - Return matching PCI device resource
667  * @dev: PCI device to query
668  * @res: Resource to look for
669  *
670  * Goes over standard PCI resources (BARs) and checks if the given resource
671  * is partially or fully contained in any of them. In that case the
672  * matching resource is returned, %NULL otherwise.
673  */
pci_find_resource(struct pci_dev * dev,struct resource * res)674 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
675 {
676 	int i;
677 
678 	for (i = 0; i < PCI_ROM_RESOURCE; i++) {
679 		struct resource *r = &dev->resource[i];
680 
681 		if (r->start && resource_contains(r, res))
682 			return r;
683 	}
684 
685 	return NULL;
686 }
687 EXPORT_SYMBOL(pci_find_resource);
688 
689 /**
690  * pci_find_pcie_root_port - return PCIe Root Port
691  * @dev: PCI device to query
692  *
693  * Traverse up the parent chain and return the PCIe Root Port PCI Device
694  * for a given PCI Device.
695  */
pci_find_pcie_root_port(struct pci_dev * dev)696 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
697 {
698 	struct pci_dev *bridge, *highest_pcie_bridge = dev;
699 
700 	bridge = pci_upstream_bridge(dev);
701 	while (bridge && pci_is_pcie(bridge)) {
702 		highest_pcie_bridge = bridge;
703 		bridge = pci_upstream_bridge(bridge);
704 	}
705 
706 	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
707 		return NULL;
708 
709 	return highest_pcie_bridge;
710 }
711 EXPORT_SYMBOL(pci_find_pcie_root_port);
712 
713 /**
714  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
715  * @dev: the PCI device to operate on
716  * @pos: config space offset of status word
717  * @mask: mask of bit(s) to care about in status word
718  *
719  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
720  */
pci_wait_for_pending(struct pci_dev * dev,int pos,u16 mask)721 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
722 {
723 	int i;
724 
725 	/* Wait for Transaction Pending bit clean */
726 	for (i = 0; i < 4; i++) {
727 		u16 status;
728 		if (i)
729 			msleep((1 << (i - 1)) * 100);
730 
731 		pci_read_config_word(dev, pos, &status);
732 		if (!(status & mask))
733 			return 1;
734 	}
735 
736 	return 0;
737 }
738 
739 /**
740  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
741  * @dev: PCI device to have its BARs restored
742  *
743  * Restore the BAR values for a given device, so as to make it
744  * accessible by its driver.
745  */
pci_restore_bars(struct pci_dev * dev)746 static void pci_restore_bars(struct pci_dev *dev)
747 {
748 	int i;
749 
750 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
751 		pci_update_resource(dev, i);
752 }
753 
754 static const struct pci_platform_pm_ops *pci_platform_pm;
755 
pci_set_platform_pm(const struct pci_platform_pm_ops * ops)756 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
757 {
758 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
759 	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
760 		return -EINVAL;
761 	pci_platform_pm = ops;
762 	return 0;
763 }
764 
platform_pci_power_manageable(struct pci_dev * dev)765 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
766 {
767 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
768 }
769 
platform_pci_set_power_state(struct pci_dev * dev,pci_power_t t)770 static inline int platform_pci_set_power_state(struct pci_dev *dev,
771 					       pci_power_t t)
772 {
773 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
774 }
775 
platform_pci_get_power_state(struct pci_dev * dev)776 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
777 {
778 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
779 }
780 
platform_pci_refresh_power_state(struct pci_dev * dev)781 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
782 {
783 	if (pci_platform_pm && pci_platform_pm->refresh_state)
784 		pci_platform_pm->refresh_state(dev);
785 }
786 
platform_pci_choose_state(struct pci_dev * dev)787 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
788 {
789 	return pci_platform_pm ?
790 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
791 }
792 
platform_pci_set_wakeup(struct pci_dev * dev,bool enable)793 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
794 {
795 	return pci_platform_pm ?
796 			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
797 }
798 
platform_pci_need_resume(struct pci_dev * dev)799 static inline bool platform_pci_need_resume(struct pci_dev *dev)
800 {
801 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
802 }
803 
platform_pci_bridge_d3(struct pci_dev * dev)804 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
805 {
806 	return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false;
807 }
808 
809 /**
810  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
811  *			     given PCI device
812  * @dev: PCI device to handle.
813  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
814  *
815  * RETURN VALUE:
816  * -EINVAL if the requested state is invalid.
817  * -EIO if device does not support PCI PM or its PM capabilities register has a
818  * wrong version, or device doesn't support the requested state.
819  * 0 if device already is in the requested state.
820  * 0 if device's power state has been successfully changed.
821  */
pci_raw_set_power_state(struct pci_dev * dev,pci_power_t state)822 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
823 {
824 	u16 pmcsr;
825 	bool need_restore = false;
826 
827 	/* Check if we're already there */
828 	if (dev->current_state == state)
829 		return 0;
830 
831 	if (!dev->pm_cap)
832 		return -EIO;
833 
834 	if (state < PCI_D0 || state > PCI_D3hot)
835 		return -EINVAL;
836 
837 	/*
838 	 * Validate current state:
839 	 * Can enter D0 from any state, but if we can only go deeper
840 	 * to sleep if we're already in a low power state
841 	 */
842 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
843 	    && dev->current_state > state) {
844 		pci_err(dev, "invalid power transition (from state %d to %d)\n",
845 			dev->current_state, state);
846 		return -EINVAL;
847 	}
848 
849 	/* Check if this device supports the desired state */
850 	if ((state == PCI_D1 && !dev->d1_support)
851 	   || (state == PCI_D2 && !dev->d2_support))
852 		return -EIO;
853 
854 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
855 
856 	/*
857 	 * If we're (effectively) in D3, force entire word to 0.
858 	 * This doesn't affect PME_Status, disables PME_En, and
859 	 * sets PowerState to 0.
860 	 */
861 	switch (dev->current_state) {
862 	case PCI_D0:
863 	case PCI_D1:
864 	case PCI_D2:
865 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
866 		pmcsr |= state;
867 		break;
868 	case PCI_D3hot:
869 	case PCI_D3cold:
870 	case PCI_UNKNOWN: /* Boot-up */
871 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
872 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
873 			need_restore = true;
874 		/* Fall-through - force to D0 */
875 	default:
876 		pmcsr = 0;
877 		break;
878 	}
879 
880 	/* Enter specified state */
881 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
882 
883 	/*
884 	 * Mandatory power management transition delays; see PCI PM 1.1
885 	 * 5.6.1 table 18
886 	 */
887 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
888 		pci_dev_d3_sleep(dev);
889 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
890 		udelay(PCI_PM_D2_DELAY);
891 
892 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
893 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
894 	if (dev->current_state != state)
895 		pci_info_ratelimited(dev, "Refused to change power state, currently in D%d\n",
896 			 dev->current_state);
897 
898 	/*
899 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
900 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
901 	 * from D3hot to D0 _may_ perform an internal reset, thereby
902 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
903 	 * For example, at least some versions of the 3c905B and the
904 	 * 3c556B exhibit this behaviour.
905 	 *
906 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
907 	 * devices in a D3hot state at boot.  Consequently, we need to
908 	 * restore at least the BARs so that the device will be
909 	 * accessible to its driver.
910 	 */
911 	if (need_restore)
912 		pci_restore_bars(dev);
913 
914 	if (dev->bus->self)
915 		pcie_aspm_pm_state_change(dev->bus->self);
916 
917 	return 0;
918 }
919 
920 /**
921  * pci_update_current_state - Read power state of given device and cache it
922  * @dev: PCI device to handle.
923  * @state: State to cache in case the device doesn't have the PM capability
924  *
925  * The power state is read from the PMCSR register, which however is
926  * inaccessible in D3cold.  The platform firmware is therefore queried first
927  * to detect accessibility of the register.  In case the platform firmware
928  * reports an incorrect state or the device isn't power manageable by the
929  * platform at all, we try to detect D3cold by testing accessibility of the
930  * vendor ID in config space.
931  */
pci_update_current_state(struct pci_dev * dev,pci_power_t state)932 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
933 {
934 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
935 	    !pci_device_is_present(dev)) {
936 		dev->current_state = PCI_D3cold;
937 	} else if (dev->pm_cap) {
938 		u16 pmcsr;
939 
940 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
941 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
942 	} else {
943 		dev->current_state = state;
944 	}
945 }
946 
947 /**
948  * pci_refresh_power_state - Refresh the given device's power state data
949  * @dev: Target PCI device.
950  *
951  * Ask the platform to refresh the devices power state information and invoke
952  * pci_update_current_state() to update its current PCI power state.
953  */
pci_refresh_power_state(struct pci_dev * dev)954 void pci_refresh_power_state(struct pci_dev *dev)
955 {
956 	if (platform_pci_power_manageable(dev))
957 		platform_pci_refresh_power_state(dev);
958 
959 	pci_update_current_state(dev, dev->current_state);
960 }
961 
962 /**
963  * pci_platform_power_transition - Use platform to change device power state
964  * @dev: PCI device to handle.
965  * @state: State to put the device into.
966  */
pci_platform_power_transition(struct pci_dev * dev,pci_power_t state)967 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
968 {
969 	int error;
970 
971 	if (platform_pci_power_manageable(dev)) {
972 		error = platform_pci_set_power_state(dev, state);
973 		if (!error)
974 			pci_update_current_state(dev, state);
975 	} else
976 		error = -ENODEV;
977 
978 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
979 		dev->current_state = PCI_D0;
980 
981 	return error;
982 }
983 
984 /**
985  * pci_wakeup - Wake up a PCI device
986  * @pci_dev: Device to handle.
987  * @ign: ignored parameter
988  */
pci_wakeup(struct pci_dev * pci_dev,void * ign)989 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
990 {
991 	pci_wakeup_event(pci_dev);
992 	pm_request_resume(&pci_dev->dev);
993 	return 0;
994 }
995 
996 /**
997  * pci_wakeup_bus - Walk given bus and wake up devices on it
998  * @bus: Top bus of the subtree to walk.
999  */
pci_wakeup_bus(struct pci_bus * bus)1000 void pci_wakeup_bus(struct pci_bus *bus)
1001 {
1002 	if (bus)
1003 		pci_walk_bus(bus, pci_wakeup, NULL);
1004 }
1005 
1006 /**
1007  * __pci_start_power_transition - Start power transition of a PCI device
1008  * @dev: PCI device to handle.
1009  * @state: State to put the device into.
1010  */
__pci_start_power_transition(struct pci_dev * dev,pci_power_t state)1011 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
1012 {
1013 	if (state == PCI_D0) {
1014 		pci_platform_power_transition(dev, PCI_D0);
1015 		/*
1016 		 * Mandatory power management transition delays, see
1017 		 * PCI Express Base Specification Revision 2.0 Section
1018 		 * 6.6.1: Conventional Reset.  Do not delay for
1019 		 * devices powered on/off by corresponding bridge,
1020 		 * because have already delayed for the bridge.
1021 		 */
1022 		if (dev->runtime_d3cold) {
1023 			if (dev->d3cold_delay && !dev->imm_ready)
1024 				msleep(dev->d3cold_delay);
1025 			/*
1026 			 * When powering on a bridge from D3cold, the
1027 			 * whole hierarchy may be powered on into
1028 			 * D0uninitialized state, resume them to give
1029 			 * them a chance to suspend again
1030 			 */
1031 			pci_wakeup_bus(dev->subordinate);
1032 		}
1033 	}
1034 }
1035 
1036 /**
1037  * __pci_dev_set_current_state - Set current state of a PCI device
1038  * @dev: Device to handle
1039  * @data: pointer to state to be set
1040  */
__pci_dev_set_current_state(struct pci_dev * dev,void * data)1041 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1042 {
1043 	pci_power_t state = *(pci_power_t *)data;
1044 
1045 	dev->current_state = state;
1046 	return 0;
1047 }
1048 
1049 /**
1050  * pci_bus_set_current_state - Walk given bus and set current state of devices
1051  * @bus: Top bus of the subtree to walk.
1052  * @state: state to be set
1053  */
pci_bus_set_current_state(struct pci_bus * bus,pci_power_t state)1054 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1055 {
1056 	if (bus)
1057 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1058 }
1059 
1060 /**
1061  * __pci_complete_power_transition - Complete power transition of a PCI device
1062  * @dev: PCI device to handle.
1063  * @state: State to put the device into.
1064  *
1065  * This function should not be called directly by device drivers.
1066  */
__pci_complete_power_transition(struct pci_dev * dev,pci_power_t state)1067 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
1068 {
1069 	int ret;
1070 
1071 	if (state <= PCI_D0)
1072 		return -EINVAL;
1073 	ret = pci_platform_power_transition(dev, state);
1074 	/* Power off the bridge may power off the whole hierarchy */
1075 	if (!ret && state == PCI_D3cold)
1076 		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1077 	return ret;
1078 }
1079 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
1080 
1081 /**
1082  * pci_set_power_state - Set the power state of a PCI device
1083  * @dev: PCI device to handle.
1084  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1085  *
1086  * Transition a device to a new power state, using the platform firmware and/or
1087  * the device's PCI PM registers.
1088  *
1089  * RETURN VALUE:
1090  * -EINVAL if the requested state is invalid.
1091  * -EIO if device does not support PCI PM or its PM capabilities register has a
1092  * wrong version, or device doesn't support the requested state.
1093  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1094  * 0 if device already is in the requested state.
1095  * 0 if the transition is to D3 but D3 is not supported.
1096  * 0 if device's power state has been successfully changed.
1097  */
pci_set_power_state(struct pci_dev * dev,pci_power_t state)1098 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1099 {
1100 	int error;
1101 
1102 	/* Bound the state we're entering */
1103 	if (state > PCI_D3cold)
1104 		state = PCI_D3cold;
1105 	else if (state < PCI_D0)
1106 		state = PCI_D0;
1107 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1108 
1109 		/*
1110 		 * If the device or the parent bridge do not support PCI
1111 		 * PM, ignore the request if we're doing anything other
1112 		 * than putting it into D0 (which would only happen on
1113 		 * boot).
1114 		 */
1115 		return 0;
1116 
1117 	/* Check if we're already there */
1118 	if (dev->current_state == state)
1119 		return 0;
1120 
1121 	__pci_start_power_transition(dev, state);
1122 
1123 	/*
1124 	 * This device is quirked not to be put into D3, so don't put it in
1125 	 * D3
1126 	 */
1127 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1128 		return 0;
1129 
1130 	/*
1131 	 * To put device in D3cold, we put device into D3hot in native
1132 	 * way, then put device into D3cold with platform ops
1133 	 */
1134 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1135 					PCI_D3hot : state);
1136 
1137 	if (!__pci_complete_power_transition(dev, state))
1138 		error = 0;
1139 
1140 	return error;
1141 }
1142 EXPORT_SYMBOL(pci_set_power_state);
1143 
1144 /**
1145  * pci_power_up - Put the given device into D0 forcibly
1146  * @dev: PCI device to power up
1147  */
pci_power_up(struct pci_dev * dev)1148 void pci_power_up(struct pci_dev *dev)
1149 {
1150 	__pci_start_power_transition(dev, PCI_D0);
1151 	pci_raw_set_power_state(dev, PCI_D0);
1152 	pci_update_current_state(dev, PCI_D0);
1153 }
1154 
1155 /**
1156  * pci_choose_state - Choose the power state of a PCI device
1157  * @dev: PCI device to be suspended
1158  * @state: target sleep state for the whole system. This is the value
1159  *	   that is passed to suspend() function.
1160  *
1161  * Returns PCI power state suitable for given device and given system
1162  * message.
1163  */
pci_choose_state(struct pci_dev * dev,pm_message_t state)1164 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1165 {
1166 	pci_power_t ret;
1167 
1168 	if (!dev->pm_cap)
1169 		return PCI_D0;
1170 
1171 	ret = platform_pci_choose_state(dev);
1172 	if (ret != PCI_POWER_ERROR)
1173 		return ret;
1174 
1175 	switch (state.event) {
1176 	case PM_EVENT_ON:
1177 		return PCI_D0;
1178 	case PM_EVENT_FREEZE:
1179 	case PM_EVENT_PRETHAW:
1180 		/* REVISIT both freeze and pre-thaw "should" use D0 */
1181 	case PM_EVENT_SUSPEND:
1182 	case PM_EVENT_HIBERNATE:
1183 		return PCI_D3hot;
1184 	default:
1185 		pci_info(dev, "unrecognized suspend event %d\n",
1186 			 state.event);
1187 		BUG();
1188 	}
1189 	return PCI_D0;
1190 }
1191 EXPORT_SYMBOL(pci_choose_state);
1192 
1193 #define PCI_EXP_SAVE_REGS	7
1194 
_pci_find_saved_cap(struct pci_dev * pci_dev,u16 cap,bool extended)1195 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1196 						       u16 cap, bool extended)
1197 {
1198 	struct pci_cap_saved_state *tmp;
1199 
1200 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1201 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1202 			return tmp;
1203 	}
1204 	return NULL;
1205 }
1206 
pci_find_saved_cap(struct pci_dev * dev,char cap)1207 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1208 {
1209 	return _pci_find_saved_cap(dev, cap, false);
1210 }
1211 
pci_find_saved_ext_cap(struct pci_dev * dev,u16 cap)1212 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1213 {
1214 	return _pci_find_saved_cap(dev, cap, true);
1215 }
1216 
pci_save_pcie_state(struct pci_dev * dev)1217 static int pci_save_pcie_state(struct pci_dev *dev)
1218 {
1219 	int i = 0;
1220 	struct pci_cap_saved_state *save_state;
1221 	u16 *cap;
1222 
1223 	if (!pci_is_pcie(dev))
1224 		return 0;
1225 
1226 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1227 	if (!save_state) {
1228 		pci_err(dev, "buffer not found in %s\n", __func__);
1229 		return -ENOMEM;
1230 	}
1231 
1232 	cap = (u16 *)&save_state->cap.data[0];
1233 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1234 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1235 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1236 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1237 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1238 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1239 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1240 
1241 	return 0;
1242 }
1243 
pci_restore_pcie_state(struct pci_dev * dev)1244 static void pci_restore_pcie_state(struct pci_dev *dev)
1245 {
1246 	int i = 0;
1247 	struct pci_cap_saved_state *save_state;
1248 	u16 *cap;
1249 
1250 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1251 	if (!save_state)
1252 		return;
1253 
1254 	cap = (u16 *)&save_state->cap.data[0];
1255 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1256 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1257 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1258 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1259 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1260 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1261 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1262 }
1263 
pci_save_pcix_state(struct pci_dev * dev)1264 static int pci_save_pcix_state(struct pci_dev *dev)
1265 {
1266 	int pos;
1267 	struct pci_cap_saved_state *save_state;
1268 
1269 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1270 	if (!pos)
1271 		return 0;
1272 
1273 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1274 	if (!save_state) {
1275 		pci_err(dev, "buffer not found in %s\n", __func__);
1276 		return -ENOMEM;
1277 	}
1278 
1279 	pci_read_config_word(dev, pos + PCI_X_CMD,
1280 			     (u16 *)save_state->cap.data);
1281 
1282 	return 0;
1283 }
1284 
pci_restore_pcix_state(struct pci_dev * dev)1285 static void pci_restore_pcix_state(struct pci_dev *dev)
1286 {
1287 	int i = 0, pos;
1288 	struct pci_cap_saved_state *save_state;
1289 	u16 *cap;
1290 
1291 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1292 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1293 	if (!save_state || !pos)
1294 		return;
1295 	cap = (u16 *)&save_state->cap.data[0];
1296 
1297 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1298 }
1299 
pci_save_ltr_state(struct pci_dev * dev)1300 static void pci_save_ltr_state(struct pci_dev *dev)
1301 {
1302 	int ltr;
1303 	struct pci_cap_saved_state *save_state;
1304 	u16 *cap;
1305 
1306 	if (!pci_is_pcie(dev))
1307 		return;
1308 
1309 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1310 	if (!ltr)
1311 		return;
1312 
1313 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1314 	if (!save_state) {
1315 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1316 		return;
1317 	}
1318 
1319 	cap = (u16 *)&save_state->cap.data[0];
1320 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1321 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1322 }
1323 
pci_restore_ltr_state(struct pci_dev * dev)1324 static void pci_restore_ltr_state(struct pci_dev *dev)
1325 {
1326 	struct pci_cap_saved_state *save_state;
1327 	int ltr;
1328 	u16 *cap;
1329 
1330 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1331 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1332 	if (!save_state || !ltr)
1333 		return;
1334 
1335 	cap = (u16 *)&save_state->cap.data[0];
1336 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1337 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1338 }
1339 
1340 /**
1341  * pci_save_state - save the PCI configuration space of a device before
1342  *		    suspending
1343  * @dev: PCI device that we're dealing with
1344  */
pci_save_state(struct pci_dev * dev)1345 int pci_save_state(struct pci_dev *dev)
1346 {
1347 	int i;
1348 	/* XXX: 100% dword access ok here? */
1349 	for (i = 0; i < 16; i++)
1350 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1351 	dev->state_saved = true;
1352 
1353 	i = pci_save_pcie_state(dev);
1354 	if (i != 0)
1355 		return i;
1356 
1357 	i = pci_save_pcix_state(dev);
1358 	if (i != 0)
1359 		return i;
1360 
1361 	pci_save_ltr_state(dev);
1362 	pci_save_dpc_state(dev);
1363 	return pci_save_vc_state(dev);
1364 }
1365 EXPORT_SYMBOL(pci_save_state);
1366 
pci_restore_config_dword(struct pci_dev * pdev,int offset,u32 saved_val,int retry,bool force)1367 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1368 				     u32 saved_val, int retry, bool force)
1369 {
1370 	u32 val;
1371 
1372 	pci_read_config_dword(pdev, offset, &val);
1373 	if (!force && val == saved_val)
1374 		return;
1375 
1376 	for (;;) {
1377 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1378 			offset, val, saved_val);
1379 		pci_write_config_dword(pdev, offset, saved_val);
1380 		if (retry-- <= 0)
1381 			return;
1382 
1383 		pci_read_config_dword(pdev, offset, &val);
1384 		if (val == saved_val)
1385 			return;
1386 
1387 		mdelay(1);
1388 	}
1389 }
1390 
pci_restore_config_space_range(struct pci_dev * pdev,int start,int end,int retry,bool force)1391 static void pci_restore_config_space_range(struct pci_dev *pdev,
1392 					   int start, int end, int retry,
1393 					   bool force)
1394 {
1395 	int index;
1396 
1397 	for (index = end; index >= start; index--)
1398 		pci_restore_config_dword(pdev, 4 * index,
1399 					 pdev->saved_config_space[index],
1400 					 retry, force);
1401 }
1402 
pci_restore_config_space(struct pci_dev * pdev)1403 static void pci_restore_config_space(struct pci_dev *pdev)
1404 {
1405 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1406 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1407 		/* Restore BARs before the command register. */
1408 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1409 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1410 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1411 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1412 
1413 		/*
1414 		 * Force rewriting of prefetch registers to avoid S3 resume
1415 		 * issues on Intel PCI bridges that occur when these
1416 		 * registers are not explicitly written.
1417 		 */
1418 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1419 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1420 	} else {
1421 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1422 	}
1423 }
1424 
pci_restore_rebar_state(struct pci_dev * pdev)1425 static void pci_restore_rebar_state(struct pci_dev *pdev)
1426 {
1427 	unsigned int pos, nbars, i;
1428 	u32 ctrl;
1429 
1430 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1431 	if (!pos)
1432 		return;
1433 
1434 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1435 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1436 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1437 
1438 	for (i = 0; i < nbars; i++, pos += 8) {
1439 		struct resource *res;
1440 		int bar_idx, size;
1441 
1442 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1443 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1444 		res = pdev->resource + bar_idx;
1445 		size = ilog2(resource_size(res)) - 20;
1446 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1447 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1448 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1449 	}
1450 }
1451 
1452 /**
1453  * pci_restore_state - Restore the saved state of a PCI device
1454  * @dev: PCI device that we're dealing with
1455  */
pci_restore_state(struct pci_dev * dev)1456 void pci_restore_state(struct pci_dev *dev)
1457 {
1458 	if (!dev->state_saved)
1459 		return;
1460 
1461 	/*
1462 	 * Restore max latencies (in the LTR capability) before enabling
1463 	 * LTR itself (in the PCIe capability).
1464 	 */
1465 	pci_restore_ltr_state(dev);
1466 
1467 	pci_restore_pcie_state(dev);
1468 	pci_restore_pasid_state(dev);
1469 	pci_restore_pri_state(dev);
1470 	pci_restore_ats_state(dev);
1471 	pci_restore_vc_state(dev);
1472 	pci_restore_rebar_state(dev);
1473 	pci_restore_dpc_state(dev);
1474 
1475 	pci_cleanup_aer_error_status_regs(dev);
1476 
1477 	pci_restore_config_space(dev);
1478 
1479 	pci_restore_pcix_state(dev);
1480 	pci_restore_msi_state(dev);
1481 
1482 	/* Restore ACS and IOV configuration state */
1483 	pci_enable_acs(dev);
1484 	pci_restore_iov_state(dev);
1485 
1486 	dev->state_saved = false;
1487 }
1488 EXPORT_SYMBOL(pci_restore_state);
1489 
1490 struct pci_saved_state {
1491 	u32 config_space[16];
1492 	struct pci_cap_saved_data cap[0];
1493 };
1494 
1495 /**
1496  * pci_store_saved_state - Allocate and return an opaque struct containing
1497  *			   the device saved state.
1498  * @dev: PCI device that we're dealing with
1499  *
1500  * Return NULL if no state or error.
1501  */
pci_store_saved_state(struct pci_dev * dev)1502 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1503 {
1504 	struct pci_saved_state *state;
1505 	struct pci_cap_saved_state *tmp;
1506 	struct pci_cap_saved_data *cap;
1507 	size_t size;
1508 
1509 	if (!dev->state_saved)
1510 		return NULL;
1511 
1512 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1513 
1514 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1515 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1516 
1517 	state = kzalloc(size, GFP_KERNEL);
1518 	if (!state)
1519 		return NULL;
1520 
1521 	memcpy(state->config_space, dev->saved_config_space,
1522 	       sizeof(state->config_space));
1523 
1524 	cap = state->cap;
1525 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1526 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1527 		memcpy(cap, &tmp->cap, len);
1528 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1529 	}
1530 	/* Empty cap_save terminates list */
1531 
1532 	return state;
1533 }
1534 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1535 
1536 /**
1537  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1538  * @dev: PCI device that we're dealing with
1539  * @state: Saved state returned from pci_store_saved_state()
1540  */
pci_load_saved_state(struct pci_dev * dev,struct pci_saved_state * state)1541 int pci_load_saved_state(struct pci_dev *dev,
1542 			 struct pci_saved_state *state)
1543 {
1544 	struct pci_cap_saved_data *cap;
1545 
1546 	dev->state_saved = false;
1547 
1548 	if (!state)
1549 		return 0;
1550 
1551 	memcpy(dev->saved_config_space, state->config_space,
1552 	       sizeof(state->config_space));
1553 
1554 	cap = state->cap;
1555 	while (cap->size) {
1556 		struct pci_cap_saved_state *tmp;
1557 
1558 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1559 		if (!tmp || tmp->cap.size != cap->size)
1560 			return -EINVAL;
1561 
1562 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1563 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1564 		       sizeof(struct pci_cap_saved_data) + cap->size);
1565 	}
1566 
1567 	dev->state_saved = true;
1568 	return 0;
1569 }
1570 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1571 
1572 /**
1573  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1574  *				   and free the memory allocated for it.
1575  * @dev: PCI device that we're dealing with
1576  * @state: Pointer to saved state returned from pci_store_saved_state()
1577  */
pci_load_and_free_saved_state(struct pci_dev * dev,struct pci_saved_state ** state)1578 int pci_load_and_free_saved_state(struct pci_dev *dev,
1579 				  struct pci_saved_state **state)
1580 {
1581 	int ret = pci_load_saved_state(dev, *state);
1582 	kfree(*state);
1583 	*state = NULL;
1584 	return ret;
1585 }
1586 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1587 
pcibios_enable_device(struct pci_dev * dev,int bars)1588 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1589 {
1590 	return pci_enable_resources(dev, bars);
1591 }
1592 
do_pci_enable_device(struct pci_dev * dev,int bars)1593 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1594 {
1595 	int err;
1596 	struct pci_dev *bridge;
1597 	u16 cmd;
1598 	u8 pin;
1599 
1600 	err = pci_set_power_state(dev, PCI_D0);
1601 	if (err < 0 && err != -EIO)
1602 		return err;
1603 
1604 	bridge = pci_upstream_bridge(dev);
1605 	if (bridge)
1606 		pcie_aspm_powersave_config_link(bridge);
1607 
1608 	err = pcibios_enable_device(dev, bars);
1609 	if (err < 0)
1610 		return err;
1611 	pci_fixup_device(pci_fixup_enable, dev);
1612 
1613 	if (dev->msi_enabled || dev->msix_enabled)
1614 		return 0;
1615 
1616 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1617 	if (pin) {
1618 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1619 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1620 			pci_write_config_word(dev, PCI_COMMAND,
1621 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1622 	}
1623 
1624 	return 0;
1625 }
1626 
1627 /**
1628  * pci_reenable_device - Resume abandoned device
1629  * @dev: PCI device to be resumed
1630  *
1631  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1632  * to be called by normal code, write proper resume handler and use it instead.
1633  */
pci_reenable_device(struct pci_dev * dev)1634 int pci_reenable_device(struct pci_dev *dev)
1635 {
1636 	if (pci_is_enabled(dev))
1637 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1638 	return 0;
1639 }
1640 EXPORT_SYMBOL(pci_reenable_device);
1641 
pci_enable_bridge(struct pci_dev * dev)1642 static void pci_enable_bridge(struct pci_dev *dev)
1643 {
1644 	struct pci_dev *bridge;
1645 	int retval;
1646 
1647 	bridge = pci_upstream_bridge(dev);
1648 	if (bridge)
1649 		pci_enable_bridge(bridge);
1650 
1651 	if (pci_is_enabled(dev)) {
1652 		if (!dev->is_busmaster)
1653 			pci_set_master(dev);
1654 		return;
1655 	}
1656 
1657 	retval = pci_enable_device(dev);
1658 	if (retval)
1659 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1660 			retval);
1661 	pci_set_master(dev);
1662 }
1663 
pci_enable_device_flags(struct pci_dev * dev,unsigned long flags)1664 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1665 {
1666 	struct pci_dev *bridge;
1667 	int err;
1668 	int i, bars = 0;
1669 
1670 	/*
1671 	 * Power state could be unknown at this point, either due to a fresh
1672 	 * boot or a device removal call.  So get the current power state
1673 	 * so that things like MSI message writing will behave as expected
1674 	 * (e.g. if the device really is in D0 at enable time).
1675 	 */
1676 	if (dev->pm_cap) {
1677 		u16 pmcsr;
1678 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1679 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1680 	}
1681 
1682 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1683 		return 0;		/* already enabled */
1684 
1685 	bridge = pci_upstream_bridge(dev);
1686 	if (bridge)
1687 		pci_enable_bridge(bridge);
1688 
1689 	/* only skip sriov related */
1690 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1691 		if (dev->resource[i].flags & flags)
1692 			bars |= (1 << i);
1693 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1694 		if (dev->resource[i].flags & flags)
1695 			bars |= (1 << i);
1696 
1697 	err = do_pci_enable_device(dev, bars);
1698 	if (err < 0)
1699 		atomic_dec(&dev->enable_cnt);
1700 	return err;
1701 }
1702 
1703 /**
1704  * pci_enable_device_io - Initialize a device for use with IO space
1705  * @dev: PCI device to be initialized
1706  *
1707  * Initialize device before it's used by a driver. Ask low-level code
1708  * to enable I/O resources. Wake up the device if it was suspended.
1709  * Beware, this function can fail.
1710  */
pci_enable_device_io(struct pci_dev * dev)1711 int pci_enable_device_io(struct pci_dev *dev)
1712 {
1713 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1714 }
1715 EXPORT_SYMBOL(pci_enable_device_io);
1716 
1717 /**
1718  * pci_enable_device_mem - Initialize a device for use with Memory space
1719  * @dev: PCI device to be initialized
1720  *
1721  * Initialize device before it's used by a driver. Ask low-level code
1722  * to enable Memory resources. Wake up the device if it was suspended.
1723  * Beware, this function can fail.
1724  */
pci_enable_device_mem(struct pci_dev * dev)1725 int pci_enable_device_mem(struct pci_dev *dev)
1726 {
1727 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1728 }
1729 EXPORT_SYMBOL(pci_enable_device_mem);
1730 
1731 /**
1732  * pci_enable_device - Initialize device before it's used by a driver.
1733  * @dev: PCI device to be initialized
1734  *
1735  * Initialize device before it's used by a driver. Ask low-level code
1736  * to enable I/O and memory. Wake up the device if it was suspended.
1737  * Beware, this function can fail.
1738  *
1739  * Note we don't actually enable the device many times if we call
1740  * this function repeatedly (we just increment the count).
1741  */
pci_enable_device(struct pci_dev * dev)1742 int pci_enable_device(struct pci_dev *dev)
1743 {
1744 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1745 }
1746 EXPORT_SYMBOL(pci_enable_device);
1747 
1748 /*
1749  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
1750  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
1751  * there's no need to track it separately.  pci_devres is initialized
1752  * when a device is enabled using managed PCI device enable interface.
1753  */
1754 struct pci_devres {
1755 	unsigned int enabled:1;
1756 	unsigned int pinned:1;
1757 	unsigned int orig_intx:1;
1758 	unsigned int restore_intx:1;
1759 	unsigned int mwi:1;
1760 	u32 region_mask;
1761 };
1762 
pcim_release(struct device * gendev,void * res)1763 static void pcim_release(struct device *gendev, void *res)
1764 {
1765 	struct pci_dev *dev = to_pci_dev(gendev);
1766 	struct pci_devres *this = res;
1767 	int i;
1768 
1769 	if (dev->msi_enabled)
1770 		pci_disable_msi(dev);
1771 	if (dev->msix_enabled)
1772 		pci_disable_msix(dev);
1773 
1774 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1775 		if (this->region_mask & (1 << i))
1776 			pci_release_region(dev, i);
1777 
1778 	if (this->mwi)
1779 		pci_clear_mwi(dev);
1780 
1781 	if (this->restore_intx)
1782 		pci_intx(dev, this->orig_intx);
1783 
1784 	if (this->enabled && !this->pinned)
1785 		pci_disable_device(dev);
1786 }
1787 
get_pci_dr(struct pci_dev * pdev)1788 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1789 {
1790 	struct pci_devres *dr, *new_dr;
1791 
1792 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1793 	if (dr)
1794 		return dr;
1795 
1796 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1797 	if (!new_dr)
1798 		return NULL;
1799 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1800 }
1801 
find_pci_dr(struct pci_dev * pdev)1802 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1803 {
1804 	if (pci_is_managed(pdev))
1805 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1806 	return NULL;
1807 }
1808 
1809 /**
1810  * pcim_enable_device - Managed pci_enable_device()
1811  * @pdev: PCI device to be initialized
1812  *
1813  * Managed pci_enable_device().
1814  */
pcim_enable_device(struct pci_dev * pdev)1815 int pcim_enable_device(struct pci_dev *pdev)
1816 {
1817 	struct pci_devres *dr;
1818 	int rc;
1819 
1820 	dr = get_pci_dr(pdev);
1821 	if (unlikely(!dr))
1822 		return -ENOMEM;
1823 	if (dr->enabled)
1824 		return 0;
1825 
1826 	rc = pci_enable_device(pdev);
1827 	if (!rc) {
1828 		pdev->is_managed = 1;
1829 		dr->enabled = 1;
1830 	}
1831 	return rc;
1832 }
1833 EXPORT_SYMBOL(pcim_enable_device);
1834 
1835 /**
1836  * pcim_pin_device - Pin managed PCI device
1837  * @pdev: PCI device to pin
1838  *
1839  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1840  * driver detach.  @pdev must have been enabled with
1841  * pcim_enable_device().
1842  */
pcim_pin_device(struct pci_dev * pdev)1843 void pcim_pin_device(struct pci_dev *pdev)
1844 {
1845 	struct pci_devres *dr;
1846 
1847 	dr = find_pci_dr(pdev);
1848 	WARN_ON(!dr || !dr->enabled);
1849 	if (dr)
1850 		dr->pinned = 1;
1851 }
1852 EXPORT_SYMBOL(pcim_pin_device);
1853 
1854 /*
1855  * pcibios_add_device - provide arch specific hooks when adding device dev
1856  * @dev: the PCI device being added
1857  *
1858  * Permits the platform to provide architecture specific functionality when
1859  * devices are added. This is the default implementation. Architecture
1860  * implementations can override this.
1861  */
pcibios_add_device(struct pci_dev * dev)1862 int __weak pcibios_add_device(struct pci_dev *dev)
1863 {
1864 	return 0;
1865 }
1866 
1867 /**
1868  * pcibios_release_device - provide arch specific hooks when releasing
1869  *			    device dev
1870  * @dev: the PCI device being released
1871  *
1872  * Permits the platform to provide architecture specific functionality when
1873  * devices are released. This is the default implementation. Architecture
1874  * implementations can override this.
1875  */
pcibios_release_device(struct pci_dev * dev)1876 void __weak pcibios_release_device(struct pci_dev *dev) {}
1877 
1878 /**
1879  * pcibios_disable_device - disable arch specific PCI resources for device dev
1880  * @dev: the PCI device to disable
1881  *
1882  * Disables architecture specific PCI resources for the device. This
1883  * is the default implementation. Architecture implementations can
1884  * override this.
1885  */
pcibios_disable_device(struct pci_dev * dev)1886 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1887 
1888 /**
1889  * pcibios_penalize_isa_irq - penalize an ISA IRQ
1890  * @irq: ISA IRQ to penalize
1891  * @active: IRQ active or not
1892  *
1893  * Permits the platform to provide architecture-specific functionality when
1894  * penalizing ISA IRQs. This is the default implementation. Architecture
1895  * implementations can override this.
1896  */
pcibios_penalize_isa_irq(int irq,int active)1897 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1898 
do_pci_disable_device(struct pci_dev * dev)1899 static void do_pci_disable_device(struct pci_dev *dev)
1900 {
1901 	u16 pci_command;
1902 
1903 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1904 	if (pci_command & PCI_COMMAND_MASTER) {
1905 		pci_command &= ~PCI_COMMAND_MASTER;
1906 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1907 	}
1908 
1909 	pcibios_disable_device(dev);
1910 }
1911 
1912 /**
1913  * pci_disable_enabled_device - Disable device without updating enable_cnt
1914  * @dev: PCI device to disable
1915  *
1916  * NOTE: This function is a backend of PCI power management routines and is
1917  * not supposed to be called drivers.
1918  */
pci_disable_enabled_device(struct pci_dev * dev)1919 void pci_disable_enabled_device(struct pci_dev *dev)
1920 {
1921 	if (pci_is_enabled(dev))
1922 		do_pci_disable_device(dev);
1923 }
1924 
1925 /**
1926  * pci_disable_device - Disable PCI device after use
1927  * @dev: PCI device to be disabled
1928  *
1929  * Signal to the system that the PCI device is not in use by the system
1930  * anymore.  This only involves disabling PCI bus-mastering, if active.
1931  *
1932  * Note we don't actually disable the device until all callers of
1933  * pci_enable_device() have called pci_disable_device().
1934  */
pci_disable_device(struct pci_dev * dev)1935 void pci_disable_device(struct pci_dev *dev)
1936 {
1937 	struct pci_devres *dr;
1938 
1939 	dr = find_pci_dr(dev);
1940 	if (dr)
1941 		dr->enabled = 0;
1942 
1943 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1944 		      "disabling already-disabled device");
1945 
1946 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1947 		return;
1948 
1949 	do_pci_disable_device(dev);
1950 
1951 	dev->is_busmaster = 0;
1952 }
1953 EXPORT_SYMBOL(pci_disable_device);
1954 
1955 /**
1956  * pcibios_set_pcie_reset_state - set reset state for device dev
1957  * @dev: the PCIe device reset
1958  * @state: Reset state to enter into
1959  *
1960  * Set the PCIe reset state for the device. This is the default
1961  * implementation. Architecture implementations can override this.
1962  */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)1963 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1964 					enum pcie_reset_state state)
1965 {
1966 	return -EINVAL;
1967 }
1968 
1969 /**
1970  * pci_set_pcie_reset_state - set reset state for device dev
1971  * @dev: the PCIe device reset
1972  * @state: Reset state to enter into
1973  *
1974  * Sets the PCI reset state for the device.
1975  */
pci_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)1976 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1977 {
1978 	return pcibios_set_pcie_reset_state(dev, state);
1979 }
1980 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1981 
1982 /**
1983  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
1984  * @dev: PCIe root port or event collector.
1985  */
pcie_clear_root_pme_status(struct pci_dev * dev)1986 void pcie_clear_root_pme_status(struct pci_dev *dev)
1987 {
1988 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
1989 }
1990 
1991 /**
1992  * pci_check_pme_status - Check if given device has generated PME.
1993  * @dev: Device to check.
1994  *
1995  * Check the PME status of the device and if set, clear it and clear PME enable
1996  * (if set).  Return 'true' if PME status and PME enable were both set or
1997  * 'false' otherwise.
1998  */
pci_check_pme_status(struct pci_dev * dev)1999 bool pci_check_pme_status(struct pci_dev *dev)
2000 {
2001 	int pmcsr_pos;
2002 	u16 pmcsr;
2003 	bool ret = false;
2004 
2005 	if (!dev->pm_cap)
2006 		return false;
2007 
2008 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2009 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2010 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2011 		return false;
2012 
2013 	/* Clear PME status. */
2014 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2015 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2016 		/* Disable PME to avoid interrupt flood. */
2017 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2018 		ret = true;
2019 	}
2020 
2021 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2022 
2023 	return ret;
2024 }
2025 
2026 /**
2027  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2028  * @dev: Device to handle.
2029  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2030  *
2031  * Check if @dev has generated PME and queue a resume request for it in that
2032  * case.
2033  */
pci_pme_wakeup(struct pci_dev * dev,void * pme_poll_reset)2034 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2035 {
2036 	if (pme_poll_reset && dev->pme_poll)
2037 		dev->pme_poll = false;
2038 
2039 	if (pci_check_pme_status(dev)) {
2040 		pci_wakeup_event(dev);
2041 		pm_request_resume(&dev->dev);
2042 	}
2043 	return 0;
2044 }
2045 
2046 /**
2047  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2048  * @bus: Top bus of the subtree to walk.
2049  */
pci_pme_wakeup_bus(struct pci_bus * bus)2050 void pci_pme_wakeup_bus(struct pci_bus *bus)
2051 {
2052 	if (bus)
2053 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2054 }
2055 
2056 
2057 /**
2058  * pci_pme_capable - check the capability of PCI device to generate PME#
2059  * @dev: PCI device to handle.
2060  * @state: PCI state from which device will issue PME#.
2061  */
pci_pme_capable(struct pci_dev * dev,pci_power_t state)2062 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2063 {
2064 	if (!dev->pm_cap)
2065 		return false;
2066 
2067 	return !!(dev->pme_support & (1 << state));
2068 }
2069 EXPORT_SYMBOL(pci_pme_capable);
2070 
pci_pme_list_scan(struct work_struct * work)2071 static void pci_pme_list_scan(struct work_struct *work)
2072 {
2073 	struct pci_pme_device *pme_dev, *n;
2074 
2075 	mutex_lock(&pci_pme_list_mutex);
2076 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2077 		if (pme_dev->dev->pme_poll) {
2078 			struct pci_dev *bridge;
2079 
2080 			bridge = pme_dev->dev->bus->self;
2081 			/*
2082 			 * If bridge is in low power state, the
2083 			 * configuration space of subordinate devices
2084 			 * may be not accessible
2085 			 */
2086 			if (bridge && bridge->current_state != PCI_D0)
2087 				continue;
2088 			/*
2089 			 * If the device is in D3cold it should not be
2090 			 * polled either.
2091 			 */
2092 			if (pme_dev->dev->current_state == PCI_D3cold)
2093 				continue;
2094 
2095 			pci_pme_wakeup(pme_dev->dev, NULL);
2096 		} else {
2097 			list_del(&pme_dev->list);
2098 			kfree(pme_dev);
2099 		}
2100 	}
2101 	if (!list_empty(&pci_pme_list))
2102 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2103 				   msecs_to_jiffies(PME_TIMEOUT));
2104 	mutex_unlock(&pci_pme_list_mutex);
2105 }
2106 
__pci_pme_active(struct pci_dev * dev,bool enable)2107 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2108 {
2109 	u16 pmcsr;
2110 
2111 	if (!dev->pme_support)
2112 		return;
2113 
2114 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2115 	/* Clear PME_Status by writing 1 to it and enable PME# */
2116 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2117 	if (!enable)
2118 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2119 
2120 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2121 }
2122 
2123 /**
2124  * pci_pme_restore - Restore PME configuration after config space restore.
2125  * @dev: PCI device to update.
2126  */
pci_pme_restore(struct pci_dev * dev)2127 void pci_pme_restore(struct pci_dev *dev)
2128 {
2129 	u16 pmcsr;
2130 
2131 	if (!dev->pme_support)
2132 		return;
2133 
2134 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2135 	if (dev->wakeup_prepared) {
2136 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2137 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2138 	} else {
2139 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2140 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2141 	}
2142 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2143 }
2144 
2145 /**
2146  * pci_pme_active - enable or disable PCI device's PME# function
2147  * @dev: PCI device to handle.
2148  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2149  *
2150  * The caller must verify that the device is capable of generating PME# before
2151  * calling this function with @enable equal to 'true'.
2152  */
pci_pme_active(struct pci_dev * dev,bool enable)2153 void pci_pme_active(struct pci_dev *dev, bool enable)
2154 {
2155 	__pci_pme_active(dev, enable);
2156 
2157 	/*
2158 	 * PCI (as opposed to PCIe) PME requires that the device have
2159 	 * its PME# line hooked up correctly. Not all hardware vendors
2160 	 * do this, so the PME never gets delivered and the device
2161 	 * remains asleep. The easiest way around this is to
2162 	 * periodically walk the list of suspended devices and check
2163 	 * whether any have their PME flag set. The assumption is that
2164 	 * we'll wake up often enough anyway that this won't be a huge
2165 	 * hit, and the power savings from the devices will still be a
2166 	 * win.
2167 	 *
2168 	 * Although PCIe uses in-band PME message instead of PME# line
2169 	 * to report PME, PME does not work for some PCIe devices in
2170 	 * reality.  For example, there are devices that set their PME
2171 	 * status bits, but don't really bother to send a PME message;
2172 	 * there are PCI Express Root Ports that don't bother to
2173 	 * trigger interrupts when they receive PME messages from the
2174 	 * devices below.  So PME poll is used for PCIe devices too.
2175 	 */
2176 
2177 	if (dev->pme_poll) {
2178 		struct pci_pme_device *pme_dev;
2179 		if (enable) {
2180 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2181 					  GFP_KERNEL);
2182 			if (!pme_dev) {
2183 				pci_warn(dev, "can't enable PME#\n");
2184 				return;
2185 			}
2186 			pme_dev->dev = dev;
2187 			mutex_lock(&pci_pme_list_mutex);
2188 			list_add(&pme_dev->list, &pci_pme_list);
2189 			if (list_is_singular(&pci_pme_list))
2190 				queue_delayed_work(system_freezable_wq,
2191 						   &pci_pme_work,
2192 						   msecs_to_jiffies(PME_TIMEOUT));
2193 			mutex_unlock(&pci_pme_list_mutex);
2194 		} else {
2195 			mutex_lock(&pci_pme_list_mutex);
2196 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2197 				if (pme_dev->dev == dev) {
2198 					list_del(&pme_dev->list);
2199 					kfree(pme_dev);
2200 					break;
2201 				}
2202 			}
2203 			mutex_unlock(&pci_pme_list_mutex);
2204 		}
2205 	}
2206 
2207 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2208 }
2209 EXPORT_SYMBOL(pci_pme_active);
2210 
2211 /**
2212  * __pci_enable_wake - enable PCI device as wakeup event source
2213  * @dev: PCI device affected
2214  * @state: PCI state from which device will issue wakeup events
2215  * @enable: True to enable event generation; false to disable
2216  *
2217  * This enables the device as a wakeup event source, or disables it.
2218  * When such events involves platform-specific hooks, those hooks are
2219  * called automatically by this routine.
2220  *
2221  * Devices with legacy power management (no standard PCI PM capabilities)
2222  * always require such platform hooks.
2223  *
2224  * RETURN VALUE:
2225  * 0 is returned on success
2226  * -EINVAL is returned if device is not supposed to wake up the system
2227  * Error code depending on the platform is returned if both the platform and
2228  * the native mechanism fail to enable the generation of wake-up events
2229  */
__pci_enable_wake(struct pci_dev * dev,pci_power_t state,bool enable)2230 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2231 {
2232 	int ret = 0;
2233 
2234 	/*
2235 	 * Bridges that are not power-manageable directly only signal
2236 	 * wakeup on behalf of subordinate devices which is set up
2237 	 * elsewhere, so skip them. However, bridges that are
2238 	 * power-manageable may signal wakeup for themselves (for example,
2239 	 * on a hotplug event) and they need to be covered here.
2240 	 */
2241 	if (!pci_power_manageable(dev))
2242 		return 0;
2243 
2244 	/* Don't do the same thing twice in a row for one device. */
2245 	if (!!enable == !!dev->wakeup_prepared)
2246 		return 0;
2247 
2248 	/*
2249 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2250 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2251 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2252 	 */
2253 
2254 	if (enable) {
2255 		int error;
2256 
2257 		if (pci_pme_capable(dev, state))
2258 			pci_pme_active(dev, true);
2259 		else
2260 			ret = 1;
2261 		error = platform_pci_set_wakeup(dev, true);
2262 		if (ret)
2263 			ret = error;
2264 		if (!ret)
2265 			dev->wakeup_prepared = true;
2266 	} else {
2267 		platform_pci_set_wakeup(dev, false);
2268 		pci_pme_active(dev, false);
2269 		dev->wakeup_prepared = false;
2270 	}
2271 
2272 	return ret;
2273 }
2274 
2275 /**
2276  * pci_enable_wake - change wakeup settings for a PCI device
2277  * @pci_dev: Target device
2278  * @state: PCI state from which device will issue wakeup events
2279  * @enable: Whether or not to enable event generation
2280  *
2281  * If @enable is set, check device_may_wakeup() for the device before calling
2282  * __pci_enable_wake() for it.
2283  */
pci_enable_wake(struct pci_dev * pci_dev,pci_power_t state,bool enable)2284 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2285 {
2286 	if (enable && !device_may_wakeup(&pci_dev->dev))
2287 		return -EINVAL;
2288 
2289 	return __pci_enable_wake(pci_dev, state, enable);
2290 }
2291 EXPORT_SYMBOL(pci_enable_wake);
2292 
2293 /**
2294  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2295  * @dev: PCI device to prepare
2296  * @enable: True to enable wake-up event generation; false to disable
2297  *
2298  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2299  * and this function allows them to set that up cleanly - pci_enable_wake()
2300  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2301  * ordering constraints.
2302  *
2303  * This function only returns error code if the device is not allowed to wake
2304  * up the system from sleep or it is not capable of generating PME# from both
2305  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2306  */
pci_wake_from_d3(struct pci_dev * dev,bool enable)2307 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2308 {
2309 	return pci_pme_capable(dev, PCI_D3cold) ?
2310 			pci_enable_wake(dev, PCI_D3cold, enable) :
2311 			pci_enable_wake(dev, PCI_D3hot, enable);
2312 }
2313 EXPORT_SYMBOL(pci_wake_from_d3);
2314 
2315 /**
2316  * pci_target_state - find an appropriate low power state for a given PCI dev
2317  * @dev: PCI device
2318  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2319  *
2320  * Use underlying platform code to find a supported low power state for @dev.
2321  * If the platform can't manage @dev, return the deepest state from which it
2322  * can generate wake events, based on any available PME info.
2323  */
pci_target_state(struct pci_dev * dev,bool wakeup)2324 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2325 {
2326 	pci_power_t target_state = PCI_D3hot;
2327 
2328 	if (platform_pci_power_manageable(dev)) {
2329 		/*
2330 		 * Call the platform to find the target state for the device.
2331 		 */
2332 		pci_power_t state = platform_pci_choose_state(dev);
2333 
2334 		switch (state) {
2335 		case PCI_POWER_ERROR:
2336 		case PCI_UNKNOWN:
2337 			break;
2338 		case PCI_D1:
2339 		case PCI_D2:
2340 			if (pci_no_d1d2(dev))
2341 				break;
2342 			/* else, fall through */
2343 		default:
2344 			target_state = state;
2345 		}
2346 
2347 		return target_state;
2348 	}
2349 
2350 	if (!dev->pm_cap)
2351 		target_state = PCI_D0;
2352 
2353 	/*
2354 	 * If the device is in D3cold even though it's not power-manageable by
2355 	 * the platform, it may have been powered down by non-standard means.
2356 	 * Best to let it slumber.
2357 	 */
2358 	if (dev->current_state == PCI_D3cold)
2359 		target_state = PCI_D3cold;
2360 
2361 	if (wakeup) {
2362 		/*
2363 		 * Find the deepest state from which the device can generate
2364 		 * PME#.
2365 		 */
2366 		if (dev->pme_support) {
2367 			while (target_state
2368 			      && !(dev->pme_support & (1 << target_state)))
2369 				target_state--;
2370 		}
2371 	}
2372 
2373 	return target_state;
2374 }
2375 
2376 /**
2377  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2378  *			  into a sleep state
2379  * @dev: Device to handle.
2380  *
2381  * Choose the power state appropriate for the device depending on whether
2382  * it can wake up the system and/or is power manageable by the platform
2383  * (PCI_D3hot is the default) and put the device into that state.
2384  */
pci_prepare_to_sleep(struct pci_dev * dev)2385 int pci_prepare_to_sleep(struct pci_dev *dev)
2386 {
2387 	bool wakeup = device_may_wakeup(&dev->dev);
2388 	pci_power_t target_state = pci_target_state(dev, wakeup);
2389 	int error;
2390 
2391 	if (target_state == PCI_POWER_ERROR)
2392 		return -EIO;
2393 
2394 	pci_enable_wake(dev, target_state, wakeup);
2395 
2396 	error = pci_set_power_state(dev, target_state);
2397 
2398 	if (error)
2399 		pci_enable_wake(dev, target_state, false);
2400 
2401 	return error;
2402 }
2403 EXPORT_SYMBOL(pci_prepare_to_sleep);
2404 
2405 /**
2406  * pci_back_from_sleep - turn PCI device on during system-wide transition
2407  *			 into working state
2408  * @dev: Device to handle.
2409  *
2410  * Disable device's system wake-up capability and put it into D0.
2411  */
pci_back_from_sleep(struct pci_dev * dev)2412 int pci_back_from_sleep(struct pci_dev *dev)
2413 {
2414 	pci_enable_wake(dev, PCI_D0, false);
2415 	return pci_set_power_state(dev, PCI_D0);
2416 }
2417 EXPORT_SYMBOL(pci_back_from_sleep);
2418 
2419 /**
2420  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2421  * @dev: PCI device being suspended.
2422  *
2423  * Prepare @dev to generate wake-up events at run time and put it into a low
2424  * power state.
2425  */
pci_finish_runtime_suspend(struct pci_dev * dev)2426 int pci_finish_runtime_suspend(struct pci_dev *dev)
2427 {
2428 	pci_power_t target_state;
2429 	int error;
2430 
2431 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2432 	if (target_state == PCI_POWER_ERROR)
2433 		return -EIO;
2434 
2435 	dev->runtime_d3cold = target_state == PCI_D3cold;
2436 
2437 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2438 
2439 	error = pci_set_power_state(dev, target_state);
2440 
2441 	if (error) {
2442 		pci_enable_wake(dev, target_state, false);
2443 		dev->runtime_d3cold = false;
2444 	}
2445 
2446 	return error;
2447 }
2448 
2449 /**
2450  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2451  * @dev: Device to check.
2452  *
2453  * Return true if the device itself is capable of generating wake-up events
2454  * (through the platform or using the native PCIe PME) or if the device supports
2455  * PME and one of its upstream bridges can generate wake-up events.
2456  */
pci_dev_run_wake(struct pci_dev * dev)2457 bool pci_dev_run_wake(struct pci_dev *dev)
2458 {
2459 	struct pci_bus *bus = dev->bus;
2460 
2461 	if (!dev->pme_support)
2462 		return false;
2463 
2464 	/* PME-capable in principle, but not from the target power state */
2465 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2466 		return false;
2467 
2468 	if (device_can_wakeup(&dev->dev))
2469 		return true;
2470 
2471 	while (bus->parent) {
2472 		struct pci_dev *bridge = bus->self;
2473 
2474 		if (device_can_wakeup(&bridge->dev))
2475 			return true;
2476 
2477 		bus = bus->parent;
2478 	}
2479 
2480 	/* We have reached the root bus. */
2481 	if (bus->bridge)
2482 		return device_can_wakeup(bus->bridge);
2483 
2484 	return false;
2485 }
2486 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2487 
2488 /**
2489  * pci_dev_need_resume - Check if it is necessary to resume the device.
2490  * @pci_dev: Device to check.
2491  *
2492  * Return 'true' if the device is not runtime-suspended or it has to be
2493  * reconfigured due to wakeup settings difference between system and runtime
2494  * suspend, or the current power state of it is not suitable for the upcoming
2495  * (system-wide) transition.
2496  */
pci_dev_need_resume(struct pci_dev * pci_dev)2497 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2498 {
2499 	struct device *dev = &pci_dev->dev;
2500 	pci_power_t target_state;
2501 
2502 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2503 		return true;
2504 
2505 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2506 
2507 	/*
2508 	 * If the earlier platform check has not triggered, D3cold is just power
2509 	 * removal on top of D3hot, so no need to resume the device in that
2510 	 * case.
2511 	 */
2512 	return target_state != pci_dev->current_state &&
2513 		target_state != PCI_D3cold &&
2514 		pci_dev->current_state != PCI_D3hot;
2515 }
2516 
2517 /**
2518  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2519  * @pci_dev: Device to check.
2520  *
2521  * If the device is suspended and it is not configured for system wakeup,
2522  * disable PME for it to prevent it from waking up the system unnecessarily.
2523  *
2524  * Note that if the device's power state is D3cold and the platform check in
2525  * pci_dev_need_resume() has not triggered, the device's configuration need not
2526  * be changed.
2527  */
pci_dev_adjust_pme(struct pci_dev * pci_dev)2528 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2529 {
2530 	struct device *dev = &pci_dev->dev;
2531 
2532 	spin_lock_irq(&dev->power.lock);
2533 
2534 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2535 	    pci_dev->current_state < PCI_D3cold)
2536 		__pci_pme_active(pci_dev, false);
2537 
2538 	spin_unlock_irq(&dev->power.lock);
2539 }
2540 
2541 /**
2542  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2543  * @pci_dev: Device to handle.
2544  *
2545  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2546  * it might have been disabled during the prepare phase of system suspend if
2547  * the device was not configured for system wakeup.
2548  */
pci_dev_complete_resume(struct pci_dev * pci_dev)2549 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2550 {
2551 	struct device *dev = &pci_dev->dev;
2552 
2553 	if (!pci_dev_run_wake(pci_dev))
2554 		return;
2555 
2556 	spin_lock_irq(&dev->power.lock);
2557 
2558 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2559 		__pci_pme_active(pci_dev, true);
2560 
2561 	spin_unlock_irq(&dev->power.lock);
2562 }
2563 
pci_config_pm_runtime_get(struct pci_dev * pdev)2564 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2565 {
2566 	struct device *dev = &pdev->dev;
2567 	struct device *parent = dev->parent;
2568 
2569 	if (parent)
2570 		pm_runtime_get_sync(parent);
2571 	pm_runtime_get_noresume(dev);
2572 	/*
2573 	 * pdev->current_state is set to PCI_D3cold during suspending,
2574 	 * so wait until suspending completes
2575 	 */
2576 	pm_runtime_barrier(dev);
2577 	/*
2578 	 * Only need to resume devices in D3cold, because config
2579 	 * registers are still accessible for devices suspended but
2580 	 * not in D3cold.
2581 	 */
2582 	if (pdev->current_state == PCI_D3cold)
2583 		pm_runtime_resume(dev);
2584 }
2585 
pci_config_pm_runtime_put(struct pci_dev * pdev)2586 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2587 {
2588 	struct device *dev = &pdev->dev;
2589 	struct device *parent = dev->parent;
2590 
2591 	pm_runtime_put(dev);
2592 	if (parent)
2593 		pm_runtime_put_sync(parent);
2594 }
2595 
2596 static const struct dmi_system_id bridge_d3_blacklist[] = {
2597 #ifdef CONFIG_X86
2598 	{
2599 		/*
2600 		 * Gigabyte X299 root port is not marked as hotplug capable
2601 		 * which allows Linux to power manage it.  However, this
2602 		 * confuses the BIOS SMI handler so don't power manage root
2603 		 * ports on that system.
2604 		 */
2605 		.ident = "X299 DESIGNARE EX-CF",
2606 		.matches = {
2607 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2608 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2609 		},
2610 	},
2611 #endif
2612 	{ }
2613 };
2614 
2615 /**
2616  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2617  * @bridge: Bridge to check
2618  *
2619  * This function checks if it is possible to move the bridge to D3.
2620  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2621  */
pci_bridge_d3_possible(struct pci_dev * bridge)2622 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2623 {
2624 	if (!pci_is_pcie(bridge))
2625 		return false;
2626 
2627 	switch (pci_pcie_type(bridge)) {
2628 	case PCI_EXP_TYPE_ROOT_PORT:
2629 	case PCI_EXP_TYPE_UPSTREAM:
2630 	case PCI_EXP_TYPE_DOWNSTREAM:
2631 		if (pci_bridge_d3_disable)
2632 			return false;
2633 
2634 		/*
2635 		 * Hotplug ports handled by firmware in System Management Mode
2636 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2637 		 */
2638 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2639 			return false;
2640 
2641 		if (pci_bridge_d3_force)
2642 			return true;
2643 
2644 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2645 		if (bridge->is_thunderbolt)
2646 			return true;
2647 
2648 		/* Platform might know better if the bridge supports D3 */
2649 		if (platform_pci_bridge_d3(bridge))
2650 			return true;
2651 
2652 		/*
2653 		 * Hotplug ports handled natively by the OS were not validated
2654 		 * by vendors for runtime D3 at least until 2018 because there
2655 		 * was no OS support.
2656 		 */
2657 		if (bridge->is_hotplug_bridge)
2658 			return false;
2659 
2660 		if (dmi_check_system(bridge_d3_blacklist))
2661 			return false;
2662 
2663 		/*
2664 		 * It should be safe to put PCIe ports from 2015 or newer
2665 		 * to D3.
2666 		 */
2667 		if (dmi_get_bios_year() >= 2015)
2668 			return true;
2669 		break;
2670 	}
2671 
2672 	return false;
2673 }
2674 
pci_dev_check_d3cold(struct pci_dev * dev,void * data)2675 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2676 {
2677 	bool *d3cold_ok = data;
2678 
2679 	if (/* The device needs to be allowed to go D3cold ... */
2680 	    dev->no_d3cold || !dev->d3cold_allowed ||
2681 
2682 	    /* ... and if it is wakeup capable to do so from D3cold. */
2683 	    (device_may_wakeup(&dev->dev) &&
2684 	     !pci_pme_capable(dev, PCI_D3cold)) ||
2685 
2686 	    /* If it is a bridge it must be allowed to go to D3. */
2687 	    !pci_power_manageable(dev))
2688 
2689 		*d3cold_ok = false;
2690 
2691 	return !*d3cold_ok;
2692 }
2693 
2694 /*
2695  * pci_bridge_d3_update - Update bridge D3 capabilities
2696  * @dev: PCI device which is changed
2697  *
2698  * Update upstream bridge PM capabilities accordingly depending on if the
2699  * device PM configuration was changed or the device is being removed.  The
2700  * change is also propagated upstream.
2701  */
pci_bridge_d3_update(struct pci_dev * dev)2702 void pci_bridge_d3_update(struct pci_dev *dev)
2703 {
2704 	bool remove = !device_is_registered(&dev->dev);
2705 	struct pci_dev *bridge;
2706 	bool d3cold_ok = true;
2707 
2708 	bridge = pci_upstream_bridge(dev);
2709 	if (!bridge || !pci_bridge_d3_possible(bridge))
2710 		return;
2711 
2712 	/*
2713 	 * If D3 is currently allowed for the bridge, removing one of its
2714 	 * children won't change that.
2715 	 */
2716 	if (remove && bridge->bridge_d3)
2717 		return;
2718 
2719 	/*
2720 	 * If D3 is currently allowed for the bridge and a child is added or
2721 	 * changed, disallowance of D3 can only be caused by that child, so
2722 	 * we only need to check that single device, not any of its siblings.
2723 	 *
2724 	 * If D3 is currently not allowed for the bridge, checking the device
2725 	 * first may allow us to skip checking its siblings.
2726 	 */
2727 	if (!remove)
2728 		pci_dev_check_d3cold(dev, &d3cold_ok);
2729 
2730 	/*
2731 	 * If D3 is currently not allowed for the bridge, this may be caused
2732 	 * either by the device being changed/removed or any of its siblings,
2733 	 * so we need to go through all children to find out if one of them
2734 	 * continues to block D3.
2735 	 */
2736 	if (d3cold_ok && !bridge->bridge_d3)
2737 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2738 			     &d3cold_ok);
2739 
2740 	if (bridge->bridge_d3 != d3cold_ok) {
2741 		bridge->bridge_d3 = d3cold_ok;
2742 		/* Propagate change to upstream bridges */
2743 		pci_bridge_d3_update(bridge);
2744 	}
2745 }
2746 
2747 /**
2748  * pci_d3cold_enable - Enable D3cold for device
2749  * @dev: PCI device to handle
2750  *
2751  * This function can be used in drivers to enable D3cold from the device
2752  * they handle.  It also updates upstream PCI bridge PM capabilities
2753  * accordingly.
2754  */
pci_d3cold_enable(struct pci_dev * dev)2755 void pci_d3cold_enable(struct pci_dev *dev)
2756 {
2757 	if (dev->no_d3cold) {
2758 		dev->no_d3cold = false;
2759 		pci_bridge_d3_update(dev);
2760 	}
2761 }
2762 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2763 
2764 /**
2765  * pci_d3cold_disable - Disable D3cold for device
2766  * @dev: PCI device to handle
2767  *
2768  * This function can be used in drivers to disable D3cold from the device
2769  * they handle.  It also updates upstream PCI bridge PM capabilities
2770  * accordingly.
2771  */
pci_d3cold_disable(struct pci_dev * dev)2772 void pci_d3cold_disable(struct pci_dev *dev)
2773 {
2774 	if (!dev->no_d3cold) {
2775 		dev->no_d3cold = true;
2776 		pci_bridge_d3_update(dev);
2777 	}
2778 }
2779 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2780 
2781 /**
2782  * pci_pm_init - Initialize PM functions of given PCI device
2783  * @dev: PCI device to handle.
2784  */
pci_pm_init(struct pci_dev * dev)2785 void pci_pm_init(struct pci_dev *dev)
2786 {
2787 	int pm;
2788 	u16 status;
2789 	u16 pmc;
2790 
2791 	pm_runtime_forbid(&dev->dev);
2792 	pm_runtime_set_active(&dev->dev);
2793 	pm_runtime_enable(&dev->dev);
2794 	device_enable_async_suspend(&dev->dev);
2795 	dev->wakeup_prepared = false;
2796 
2797 	dev->pm_cap = 0;
2798 	dev->pme_support = 0;
2799 
2800 	/* find PCI PM capability in list */
2801 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2802 	if (!pm)
2803 		return;
2804 	/* Check device's ability to generate PME# */
2805 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2806 
2807 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2808 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
2809 			pmc & PCI_PM_CAP_VER_MASK);
2810 		return;
2811 	}
2812 
2813 	dev->pm_cap = pm;
2814 	dev->d3_delay = PCI_PM_D3_WAIT;
2815 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2816 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
2817 	dev->d3cold_allowed = true;
2818 
2819 	dev->d1_support = false;
2820 	dev->d2_support = false;
2821 	if (!pci_no_d1d2(dev)) {
2822 		if (pmc & PCI_PM_CAP_D1)
2823 			dev->d1_support = true;
2824 		if (pmc & PCI_PM_CAP_D2)
2825 			dev->d2_support = true;
2826 
2827 		if (dev->d1_support || dev->d2_support)
2828 			pci_info(dev, "supports%s%s\n",
2829 				   dev->d1_support ? " D1" : "",
2830 				   dev->d2_support ? " D2" : "");
2831 	}
2832 
2833 	pmc &= PCI_PM_CAP_PME_MASK;
2834 	if (pmc) {
2835 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
2836 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2837 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2838 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2839 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2840 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2841 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2842 		dev->pme_poll = true;
2843 		/*
2844 		 * Make device's PM flags reflect the wake-up capability, but
2845 		 * let the user space enable it to wake up the system as needed.
2846 		 */
2847 		device_set_wakeup_capable(&dev->dev, true);
2848 		/* Disable the PME# generation functionality */
2849 		pci_pme_active(dev, false);
2850 	}
2851 
2852 	pci_read_config_word(dev, PCI_STATUS, &status);
2853 	if (status & PCI_STATUS_IMM_READY)
2854 		dev->imm_ready = 1;
2855 }
2856 
pci_ea_flags(struct pci_dev * dev,u8 prop)2857 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2858 {
2859 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2860 
2861 	switch (prop) {
2862 	case PCI_EA_P_MEM:
2863 	case PCI_EA_P_VF_MEM:
2864 		flags |= IORESOURCE_MEM;
2865 		break;
2866 	case PCI_EA_P_MEM_PREFETCH:
2867 	case PCI_EA_P_VF_MEM_PREFETCH:
2868 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2869 		break;
2870 	case PCI_EA_P_IO:
2871 		flags |= IORESOURCE_IO;
2872 		break;
2873 	default:
2874 		return 0;
2875 	}
2876 
2877 	return flags;
2878 }
2879 
pci_ea_get_resource(struct pci_dev * dev,u8 bei,u8 prop)2880 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2881 					    u8 prop)
2882 {
2883 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2884 		return &dev->resource[bei];
2885 #ifdef CONFIG_PCI_IOV
2886 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2887 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2888 		return &dev->resource[PCI_IOV_RESOURCES +
2889 				      bei - PCI_EA_BEI_VF_BAR0];
2890 #endif
2891 	else if (bei == PCI_EA_BEI_ROM)
2892 		return &dev->resource[PCI_ROM_RESOURCE];
2893 	else
2894 		return NULL;
2895 }
2896 
2897 /* Read an Enhanced Allocation (EA) entry */
pci_ea_read(struct pci_dev * dev,int offset)2898 static int pci_ea_read(struct pci_dev *dev, int offset)
2899 {
2900 	struct resource *res;
2901 	int ent_size, ent_offset = offset;
2902 	resource_size_t start, end;
2903 	unsigned long flags;
2904 	u32 dw0, bei, base, max_offset;
2905 	u8 prop;
2906 	bool support_64 = (sizeof(resource_size_t) >= 8);
2907 
2908 	pci_read_config_dword(dev, ent_offset, &dw0);
2909 	ent_offset += 4;
2910 
2911 	/* Entry size field indicates DWORDs after 1st */
2912 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2913 
2914 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2915 		goto out;
2916 
2917 	bei = (dw0 & PCI_EA_BEI) >> 4;
2918 	prop = (dw0 & PCI_EA_PP) >> 8;
2919 
2920 	/*
2921 	 * If the Property is in the reserved range, try the Secondary
2922 	 * Property instead.
2923 	 */
2924 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2925 		prop = (dw0 & PCI_EA_SP) >> 16;
2926 	if (prop > PCI_EA_P_BRIDGE_IO)
2927 		goto out;
2928 
2929 	res = pci_ea_get_resource(dev, bei, prop);
2930 	if (!res) {
2931 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2932 		goto out;
2933 	}
2934 
2935 	flags = pci_ea_flags(dev, prop);
2936 	if (!flags) {
2937 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2938 		goto out;
2939 	}
2940 
2941 	/* Read Base */
2942 	pci_read_config_dword(dev, ent_offset, &base);
2943 	start = (base & PCI_EA_FIELD_MASK);
2944 	ent_offset += 4;
2945 
2946 	/* Read MaxOffset */
2947 	pci_read_config_dword(dev, ent_offset, &max_offset);
2948 	ent_offset += 4;
2949 
2950 	/* Read Base MSBs (if 64-bit entry) */
2951 	if (base & PCI_EA_IS_64) {
2952 		u32 base_upper;
2953 
2954 		pci_read_config_dword(dev, ent_offset, &base_upper);
2955 		ent_offset += 4;
2956 
2957 		flags |= IORESOURCE_MEM_64;
2958 
2959 		/* entry starts above 32-bit boundary, can't use */
2960 		if (!support_64 && base_upper)
2961 			goto out;
2962 
2963 		if (support_64)
2964 			start |= ((u64)base_upper << 32);
2965 	}
2966 
2967 	end = start + (max_offset | 0x03);
2968 
2969 	/* Read MaxOffset MSBs (if 64-bit entry) */
2970 	if (max_offset & PCI_EA_IS_64) {
2971 		u32 max_offset_upper;
2972 
2973 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2974 		ent_offset += 4;
2975 
2976 		flags |= IORESOURCE_MEM_64;
2977 
2978 		/* entry too big, can't use */
2979 		if (!support_64 && max_offset_upper)
2980 			goto out;
2981 
2982 		if (support_64)
2983 			end += ((u64)max_offset_upper << 32);
2984 	}
2985 
2986 	if (end < start) {
2987 		pci_err(dev, "EA Entry crosses address boundary\n");
2988 		goto out;
2989 	}
2990 
2991 	if (ent_size != ent_offset - offset) {
2992 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
2993 			ent_size, ent_offset - offset);
2994 		goto out;
2995 	}
2996 
2997 	res->name = pci_name(dev);
2998 	res->start = start;
2999 	res->end = end;
3000 	res->flags = flags;
3001 
3002 	if (bei <= PCI_EA_BEI_BAR5)
3003 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3004 			   bei, res, prop);
3005 	else if (bei == PCI_EA_BEI_ROM)
3006 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3007 			   res, prop);
3008 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3009 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3010 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3011 	else
3012 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3013 			   bei, res, prop);
3014 
3015 out:
3016 	return offset + ent_size;
3017 }
3018 
3019 /* Enhanced Allocation Initialization */
pci_ea_init(struct pci_dev * dev)3020 void pci_ea_init(struct pci_dev *dev)
3021 {
3022 	int ea;
3023 	u8 num_ent;
3024 	int offset;
3025 	int i;
3026 
3027 	/* find PCI EA capability in list */
3028 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3029 	if (!ea)
3030 		return;
3031 
3032 	/* determine the number of entries */
3033 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3034 					&num_ent);
3035 	num_ent &= PCI_EA_NUM_ENT_MASK;
3036 
3037 	offset = ea + PCI_EA_FIRST_ENT;
3038 
3039 	/* Skip DWORD 2 for type 1 functions */
3040 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3041 		offset += 4;
3042 
3043 	/* parse each EA entry */
3044 	for (i = 0; i < num_ent; ++i)
3045 		offset = pci_ea_read(dev, offset);
3046 }
3047 
pci_add_saved_cap(struct pci_dev * pci_dev,struct pci_cap_saved_state * new_cap)3048 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3049 	struct pci_cap_saved_state *new_cap)
3050 {
3051 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3052 }
3053 
3054 /**
3055  * _pci_add_cap_save_buffer - allocate buffer for saving given
3056  *			      capability registers
3057  * @dev: the PCI device
3058  * @cap: the capability to allocate the buffer for
3059  * @extended: Standard or Extended capability ID
3060  * @size: requested size of the buffer
3061  */
_pci_add_cap_save_buffer(struct pci_dev * dev,u16 cap,bool extended,unsigned int size)3062 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3063 				    bool extended, unsigned int size)
3064 {
3065 	int pos;
3066 	struct pci_cap_saved_state *save_state;
3067 
3068 	if (extended)
3069 		pos = pci_find_ext_capability(dev, cap);
3070 	else
3071 		pos = pci_find_capability(dev, cap);
3072 
3073 	if (!pos)
3074 		return 0;
3075 
3076 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3077 	if (!save_state)
3078 		return -ENOMEM;
3079 
3080 	save_state->cap.cap_nr = cap;
3081 	save_state->cap.cap_extended = extended;
3082 	save_state->cap.size = size;
3083 	pci_add_saved_cap(dev, save_state);
3084 
3085 	return 0;
3086 }
3087 
pci_add_cap_save_buffer(struct pci_dev * dev,char cap,unsigned int size)3088 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3089 {
3090 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3091 }
3092 
pci_add_ext_cap_save_buffer(struct pci_dev * dev,u16 cap,unsigned int size)3093 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3094 {
3095 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3096 }
3097 
3098 /**
3099  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3100  * @dev: the PCI device
3101  */
pci_allocate_cap_save_buffers(struct pci_dev * dev)3102 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3103 {
3104 	int error;
3105 
3106 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3107 					PCI_EXP_SAVE_REGS * sizeof(u16));
3108 	if (error)
3109 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3110 
3111 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3112 	if (error)
3113 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3114 
3115 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3116 					    2 * sizeof(u16));
3117 	if (error)
3118 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3119 
3120 	pci_allocate_vc_save_buffers(dev);
3121 }
3122 
pci_free_cap_save_buffers(struct pci_dev * dev)3123 void pci_free_cap_save_buffers(struct pci_dev *dev)
3124 {
3125 	struct pci_cap_saved_state *tmp;
3126 	struct hlist_node *n;
3127 
3128 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3129 		kfree(tmp);
3130 }
3131 
3132 /**
3133  * pci_configure_ari - enable or disable ARI forwarding
3134  * @dev: the PCI device
3135  *
3136  * If @dev and its upstream bridge both support ARI, enable ARI in the
3137  * bridge.  Otherwise, disable ARI in the bridge.
3138  */
pci_configure_ari(struct pci_dev * dev)3139 void pci_configure_ari(struct pci_dev *dev)
3140 {
3141 	u32 cap;
3142 	struct pci_dev *bridge;
3143 
3144 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3145 		return;
3146 
3147 	bridge = dev->bus->self;
3148 	if (!bridge)
3149 		return;
3150 
3151 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3152 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3153 		return;
3154 
3155 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3156 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3157 					 PCI_EXP_DEVCTL2_ARI);
3158 		bridge->ari_enabled = 1;
3159 	} else {
3160 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3161 					   PCI_EXP_DEVCTL2_ARI);
3162 		bridge->ari_enabled = 0;
3163 	}
3164 }
3165 
3166 static int pci_acs_enable;
3167 
3168 /**
3169  * pci_request_acs - ask for ACS to be enabled if supported
3170  */
pci_request_acs(void)3171 void pci_request_acs(void)
3172 {
3173 	pci_acs_enable = 1;
3174 }
3175 
3176 static const char *disable_acs_redir_param;
3177 
3178 /**
3179  * pci_disable_acs_redir - disable ACS redirect capabilities
3180  * @dev: the PCI device
3181  *
3182  * For only devices specified in the disable_acs_redir parameter.
3183  */
pci_disable_acs_redir(struct pci_dev * dev)3184 static void pci_disable_acs_redir(struct pci_dev *dev)
3185 {
3186 	int ret = 0;
3187 	const char *p;
3188 	int pos;
3189 	u16 ctrl;
3190 
3191 	if (!disable_acs_redir_param)
3192 		return;
3193 
3194 	p = disable_acs_redir_param;
3195 	while (*p) {
3196 		ret = pci_dev_str_match(dev, p, &p);
3197 		if (ret < 0) {
3198 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3199 				     disable_acs_redir_param);
3200 
3201 			break;
3202 		} else if (ret == 1) {
3203 			/* Found a match */
3204 			break;
3205 		}
3206 
3207 		if (*p != ';' && *p != ',') {
3208 			/* End of param or invalid format */
3209 			break;
3210 		}
3211 		p++;
3212 	}
3213 
3214 	if (ret != 1)
3215 		return;
3216 
3217 	if (!pci_dev_specific_disable_acs_redir(dev))
3218 		return;
3219 
3220 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3221 	if (!pos) {
3222 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3223 		return;
3224 	}
3225 
3226 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3227 
3228 	/* P2P Request & Completion Redirect */
3229 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
3230 
3231 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3232 
3233 	pci_info(dev, "disabled ACS redirect\n");
3234 }
3235 
3236 /**
3237  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
3238  * @dev: the PCI device
3239  */
pci_std_enable_acs(struct pci_dev * dev)3240 static void pci_std_enable_acs(struct pci_dev *dev)
3241 {
3242 	int pos;
3243 	u16 cap;
3244 	u16 ctrl;
3245 
3246 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3247 	if (!pos)
3248 		return;
3249 
3250 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
3251 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3252 
3253 	/* Source Validation */
3254 	ctrl |= (cap & PCI_ACS_SV);
3255 
3256 	/* P2P Request Redirect */
3257 	ctrl |= (cap & PCI_ACS_RR);
3258 
3259 	/* P2P Completion Redirect */
3260 	ctrl |= (cap & PCI_ACS_CR);
3261 
3262 	/* Upstream Forwarding */
3263 	ctrl |= (cap & PCI_ACS_UF);
3264 
3265 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3266 }
3267 
3268 /**
3269  * pci_enable_acs - enable ACS if hardware support it
3270  * @dev: the PCI device
3271  */
pci_enable_acs(struct pci_dev * dev)3272 void pci_enable_acs(struct pci_dev *dev)
3273 {
3274 	if (!pci_acs_enable)
3275 		goto disable_acs_redir;
3276 
3277 	if (!pci_dev_specific_enable_acs(dev))
3278 		goto disable_acs_redir;
3279 
3280 	pci_std_enable_acs(dev);
3281 
3282 disable_acs_redir:
3283 	/*
3284 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
3285 	 * enabled by the kernel because it may have been enabled by
3286 	 * platform firmware.  So if we are told to disable it, we should
3287 	 * always disable it after setting the kernel's default
3288 	 * preferences.
3289 	 */
3290 	pci_disable_acs_redir(dev);
3291 }
3292 
pci_acs_flags_enabled(struct pci_dev * pdev,u16 acs_flags)3293 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3294 {
3295 	int pos;
3296 	u16 cap, ctrl;
3297 
3298 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
3299 	if (!pos)
3300 		return false;
3301 
3302 	/*
3303 	 * Except for egress control, capabilities are either required
3304 	 * or only required if controllable.  Features missing from the
3305 	 * capability field can therefore be assumed as hard-wired enabled.
3306 	 */
3307 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3308 	acs_flags &= (cap | PCI_ACS_EC);
3309 
3310 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3311 	return (ctrl & acs_flags) == acs_flags;
3312 }
3313 
3314 /**
3315  * pci_acs_enabled - test ACS against required flags for a given device
3316  * @pdev: device to test
3317  * @acs_flags: required PCI ACS flags
3318  *
3319  * Return true if the device supports the provided flags.  Automatically
3320  * filters out flags that are not implemented on multifunction devices.
3321  *
3322  * Note that this interface checks the effective ACS capabilities of the
3323  * device rather than the actual capabilities.  For instance, most single
3324  * function endpoints are not required to support ACS because they have no
3325  * opportunity for peer-to-peer access.  We therefore return 'true'
3326  * regardless of whether the device exposes an ACS capability.  This makes
3327  * it much easier for callers of this function to ignore the actual type
3328  * or topology of the device when testing ACS support.
3329  */
pci_acs_enabled(struct pci_dev * pdev,u16 acs_flags)3330 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3331 {
3332 	int ret;
3333 
3334 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3335 	if (ret >= 0)
3336 		return ret > 0;
3337 
3338 	/*
3339 	 * Conventional PCI and PCI-X devices never support ACS, either
3340 	 * effectively or actually.  The shared bus topology implies that
3341 	 * any device on the bus can receive or snoop DMA.
3342 	 */
3343 	if (!pci_is_pcie(pdev))
3344 		return false;
3345 
3346 	switch (pci_pcie_type(pdev)) {
3347 	/*
3348 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3349 	 * but since their primary interface is PCI/X, we conservatively
3350 	 * handle them as we would a non-PCIe device.
3351 	 */
3352 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3353 	/*
3354 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3355 	 * applicable... must never implement an ACS Extended Capability...".
3356 	 * This seems arbitrary, but we take a conservative interpretation
3357 	 * of this statement.
3358 	 */
3359 	case PCI_EXP_TYPE_PCI_BRIDGE:
3360 	case PCI_EXP_TYPE_RC_EC:
3361 		return false;
3362 	/*
3363 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3364 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3365 	 * regardless of whether they are single- or multi-function devices.
3366 	 */
3367 	case PCI_EXP_TYPE_DOWNSTREAM:
3368 	case PCI_EXP_TYPE_ROOT_PORT:
3369 		return pci_acs_flags_enabled(pdev, acs_flags);
3370 	/*
3371 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3372 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3373 	 * capabilities, but only when they are part of a multifunction
3374 	 * device.  The footnote for section 6.12 indicates the specific
3375 	 * PCIe types included here.
3376 	 */
3377 	case PCI_EXP_TYPE_ENDPOINT:
3378 	case PCI_EXP_TYPE_UPSTREAM:
3379 	case PCI_EXP_TYPE_LEG_END:
3380 	case PCI_EXP_TYPE_RC_END:
3381 		if (!pdev->multifunction)
3382 			break;
3383 
3384 		return pci_acs_flags_enabled(pdev, acs_flags);
3385 	}
3386 
3387 	/*
3388 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3389 	 * to single function devices with the exception of downstream ports.
3390 	 */
3391 	return true;
3392 }
3393 
3394 /**
3395  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3396  * @start: starting downstream device
3397  * @end: ending upstream device or NULL to search to the root bus
3398  * @acs_flags: required flags
3399  *
3400  * Walk up a device tree from start to end testing PCI ACS support.  If
3401  * any step along the way does not support the required flags, return false.
3402  */
pci_acs_path_enabled(struct pci_dev * start,struct pci_dev * end,u16 acs_flags)3403 bool pci_acs_path_enabled(struct pci_dev *start,
3404 			  struct pci_dev *end, u16 acs_flags)
3405 {
3406 	struct pci_dev *pdev, *parent = start;
3407 
3408 	do {
3409 		pdev = parent;
3410 
3411 		if (!pci_acs_enabled(pdev, acs_flags))
3412 			return false;
3413 
3414 		if (pci_is_root_bus(pdev->bus))
3415 			return (end == NULL);
3416 
3417 		parent = pdev->bus->self;
3418 	} while (pdev != end);
3419 
3420 	return true;
3421 }
3422 
3423 /**
3424  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3425  * @pdev: PCI device
3426  * @bar: BAR to find
3427  *
3428  * Helper to find the position of the ctrl register for a BAR.
3429  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3430  * Returns -ENOENT if no ctrl register for the BAR could be found.
3431  */
pci_rebar_find_pos(struct pci_dev * pdev,int bar)3432 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3433 {
3434 	unsigned int pos, nbars, i;
3435 	u32 ctrl;
3436 
3437 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3438 	if (!pos)
3439 		return -ENOTSUPP;
3440 
3441 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3442 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3443 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3444 
3445 	for (i = 0; i < nbars; i++, pos += 8) {
3446 		int bar_idx;
3447 
3448 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3449 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3450 		if (bar_idx == bar)
3451 			return pos;
3452 	}
3453 
3454 	return -ENOENT;
3455 }
3456 
3457 /**
3458  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3459  * @pdev: PCI device
3460  * @bar: BAR to query
3461  *
3462  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3463  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3464  */
pci_rebar_get_possible_sizes(struct pci_dev * pdev,int bar)3465 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3466 {
3467 	int pos;
3468 	u32 cap;
3469 
3470 	pos = pci_rebar_find_pos(pdev, bar);
3471 	if (pos < 0)
3472 		return 0;
3473 
3474 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3475 	return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3476 }
3477 
3478 /**
3479  * pci_rebar_get_current_size - get the current size of a BAR
3480  * @pdev: PCI device
3481  * @bar: BAR to set size to
3482  *
3483  * Read the size of a BAR from the resizable BAR config.
3484  * Returns size if found or negative error code.
3485  */
pci_rebar_get_current_size(struct pci_dev * pdev,int bar)3486 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3487 {
3488 	int pos;
3489 	u32 ctrl;
3490 
3491 	pos = pci_rebar_find_pos(pdev, bar);
3492 	if (pos < 0)
3493 		return pos;
3494 
3495 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3496 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3497 }
3498 
3499 /**
3500  * pci_rebar_set_size - set a new size for a BAR
3501  * @pdev: PCI device
3502  * @bar: BAR to set size to
3503  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3504  *
3505  * Set the new size of a BAR as defined in the spec.
3506  * Returns zero if resizing was successful, error code otherwise.
3507  */
pci_rebar_set_size(struct pci_dev * pdev,int bar,int size)3508 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3509 {
3510 	int pos;
3511 	u32 ctrl;
3512 
3513 	pos = pci_rebar_find_pos(pdev, bar);
3514 	if (pos < 0)
3515 		return pos;
3516 
3517 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3518 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3519 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3520 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3521 	return 0;
3522 }
3523 
3524 /**
3525  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3526  * @dev: the PCI device
3527  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3528  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3529  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3530  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3531  *
3532  * Return 0 if all upstream bridges support AtomicOp routing, egress
3533  * blocking is disabled on all upstream ports, and the root port supports
3534  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3535  * AtomicOp completion), or negative otherwise.
3536  */
pci_enable_atomic_ops_to_root(struct pci_dev * dev,u32 cap_mask)3537 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3538 {
3539 	struct pci_bus *bus = dev->bus;
3540 	struct pci_dev *bridge;
3541 	u32 cap, ctl2;
3542 
3543 	if (!pci_is_pcie(dev))
3544 		return -EINVAL;
3545 
3546 	/*
3547 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3548 	 * AtomicOp requesters.  For now, we only support endpoints as
3549 	 * requesters and root ports as completers.  No endpoints as
3550 	 * completers, and no peer-to-peer.
3551 	 */
3552 
3553 	switch (pci_pcie_type(dev)) {
3554 	case PCI_EXP_TYPE_ENDPOINT:
3555 	case PCI_EXP_TYPE_LEG_END:
3556 	case PCI_EXP_TYPE_RC_END:
3557 		break;
3558 	default:
3559 		return -EINVAL;
3560 	}
3561 
3562 	while (bus->parent) {
3563 		bridge = bus->self;
3564 
3565 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3566 
3567 		switch (pci_pcie_type(bridge)) {
3568 		/* Ensure switch ports support AtomicOp routing */
3569 		case PCI_EXP_TYPE_UPSTREAM:
3570 		case PCI_EXP_TYPE_DOWNSTREAM:
3571 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3572 				return -EINVAL;
3573 			break;
3574 
3575 		/* Ensure root port supports all the sizes we care about */
3576 		case PCI_EXP_TYPE_ROOT_PORT:
3577 			if ((cap & cap_mask) != cap_mask)
3578 				return -EINVAL;
3579 			break;
3580 		}
3581 
3582 		/* Ensure upstream ports don't block AtomicOps on egress */
3583 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3584 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3585 						   &ctl2);
3586 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3587 				return -EINVAL;
3588 		}
3589 
3590 		bus = bus->parent;
3591 	}
3592 
3593 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3594 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3595 	return 0;
3596 }
3597 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3598 
3599 /**
3600  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3601  * @dev: the PCI device
3602  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3603  *
3604  * Perform INTx swizzling for a device behind one level of bridge.  This is
3605  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3606  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3607  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3608  * the PCI Express Base Specification, Revision 2.1)
3609  */
pci_swizzle_interrupt_pin(const struct pci_dev * dev,u8 pin)3610 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3611 {
3612 	int slot;
3613 
3614 	if (pci_ari_enabled(dev->bus))
3615 		slot = 0;
3616 	else
3617 		slot = PCI_SLOT(dev->devfn);
3618 
3619 	return (((pin - 1) + slot) % 4) + 1;
3620 }
3621 
pci_get_interrupt_pin(struct pci_dev * dev,struct pci_dev ** bridge)3622 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3623 {
3624 	u8 pin;
3625 
3626 	pin = dev->pin;
3627 	if (!pin)
3628 		return -1;
3629 
3630 	while (!pci_is_root_bus(dev->bus)) {
3631 		pin = pci_swizzle_interrupt_pin(dev, pin);
3632 		dev = dev->bus->self;
3633 	}
3634 	*bridge = dev;
3635 	return pin;
3636 }
3637 
3638 /**
3639  * pci_common_swizzle - swizzle INTx all the way to root bridge
3640  * @dev: the PCI device
3641  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3642  *
3643  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3644  * bridges all the way up to a PCI root bus.
3645  */
pci_common_swizzle(struct pci_dev * dev,u8 * pinp)3646 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3647 {
3648 	u8 pin = *pinp;
3649 
3650 	while (!pci_is_root_bus(dev->bus)) {
3651 		pin = pci_swizzle_interrupt_pin(dev, pin);
3652 		dev = dev->bus->self;
3653 	}
3654 	*pinp = pin;
3655 	return PCI_SLOT(dev->devfn);
3656 }
3657 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3658 
3659 /**
3660  * pci_release_region - Release a PCI bar
3661  * @pdev: PCI device whose resources were previously reserved by
3662  *	  pci_request_region()
3663  * @bar: BAR to release
3664  *
3665  * Releases the PCI I/O and memory resources previously reserved by a
3666  * successful call to pci_request_region().  Call this function only
3667  * after all use of the PCI regions has ceased.
3668  */
pci_release_region(struct pci_dev * pdev,int bar)3669 void pci_release_region(struct pci_dev *pdev, int bar)
3670 {
3671 	struct pci_devres *dr;
3672 
3673 	if (pci_resource_len(pdev, bar) == 0)
3674 		return;
3675 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3676 		release_region(pci_resource_start(pdev, bar),
3677 				pci_resource_len(pdev, bar));
3678 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3679 		release_mem_region(pci_resource_start(pdev, bar),
3680 				pci_resource_len(pdev, bar));
3681 
3682 	dr = find_pci_dr(pdev);
3683 	if (dr)
3684 		dr->region_mask &= ~(1 << bar);
3685 }
3686 EXPORT_SYMBOL(pci_release_region);
3687 
3688 /**
3689  * __pci_request_region - Reserved PCI I/O and memory resource
3690  * @pdev: PCI device whose resources are to be reserved
3691  * @bar: BAR to be reserved
3692  * @res_name: Name to be associated with resource.
3693  * @exclusive: whether the region access is exclusive or not
3694  *
3695  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3696  * being reserved by owner @res_name.  Do not access any
3697  * address inside the PCI regions unless this call returns
3698  * successfully.
3699  *
3700  * If @exclusive is set, then the region is marked so that userspace
3701  * is explicitly not allowed to map the resource via /dev/mem or
3702  * sysfs MMIO access.
3703  *
3704  * Returns 0 on success, or %EBUSY on error.  A warning
3705  * message is also printed on failure.
3706  */
__pci_request_region(struct pci_dev * pdev,int bar,const char * res_name,int exclusive)3707 static int __pci_request_region(struct pci_dev *pdev, int bar,
3708 				const char *res_name, int exclusive)
3709 {
3710 	struct pci_devres *dr;
3711 
3712 	if (pci_resource_len(pdev, bar) == 0)
3713 		return 0;
3714 
3715 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3716 		if (!request_region(pci_resource_start(pdev, bar),
3717 			    pci_resource_len(pdev, bar), res_name))
3718 			goto err_out;
3719 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3720 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3721 					pci_resource_len(pdev, bar), res_name,
3722 					exclusive))
3723 			goto err_out;
3724 	}
3725 
3726 	dr = find_pci_dr(pdev);
3727 	if (dr)
3728 		dr->region_mask |= 1 << bar;
3729 
3730 	return 0;
3731 
3732 err_out:
3733 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3734 		 &pdev->resource[bar]);
3735 	return -EBUSY;
3736 }
3737 
3738 /**
3739  * pci_request_region - Reserve PCI I/O and memory resource
3740  * @pdev: PCI device whose resources are to be reserved
3741  * @bar: BAR to be reserved
3742  * @res_name: Name to be associated with resource
3743  *
3744  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3745  * being reserved by owner @res_name.  Do not access any
3746  * address inside the PCI regions unless this call returns
3747  * successfully.
3748  *
3749  * Returns 0 on success, or %EBUSY on error.  A warning
3750  * message is also printed on failure.
3751  */
pci_request_region(struct pci_dev * pdev,int bar,const char * res_name)3752 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3753 {
3754 	return __pci_request_region(pdev, bar, res_name, 0);
3755 }
3756 EXPORT_SYMBOL(pci_request_region);
3757 
3758 /**
3759  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3760  * @pdev: PCI device whose resources were previously reserved
3761  * @bars: Bitmask of BARs to be released
3762  *
3763  * Release selected PCI I/O and memory resources previously reserved.
3764  * Call this function only after all use of the PCI regions has ceased.
3765  */
pci_release_selected_regions(struct pci_dev * pdev,int bars)3766 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3767 {
3768 	int i;
3769 
3770 	for (i = 0; i < 6; i++)
3771 		if (bars & (1 << i))
3772 			pci_release_region(pdev, i);
3773 }
3774 EXPORT_SYMBOL(pci_release_selected_regions);
3775 
__pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name,int excl)3776 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3777 					  const char *res_name, int excl)
3778 {
3779 	int i;
3780 
3781 	for (i = 0; i < 6; i++)
3782 		if (bars & (1 << i))
3783 			if (__pci_request_region(pdev, i, res_name, excl))
3784 				goto err_out;
3785 	return 0;
3786 
3787 err_out:
3788 	while (--i >= 0)
3789 		if (bars & (1 << i))
3790 			pci_release_region(pdev, i);
3791 
3792 	return -EBUSY;
3793 }
3794 
3795 
3796 /**
3797  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3798  * @pdev: PCI device whose resources are to be reserved
3799  * @bars: Bitmask of BARs to be requested
3800  * @res_name: Name to be associated with resource
3801  */
pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name)3802 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3803 				 const char *res_name)
3804 {
3805 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3806 }
3807 EXPORT_SYMBOL(pci_request_selected_regions);
3808 
pci_request_selected_regions_exclusive(struct pci_dev * pdev,int bars,const char * res_name)3809 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3810 					   const char *res_name)
3811 {
3812 	return __pci_request_selected_regions(pdev, bars, res_name,
3813 			IORESOURCE_EXCLUSIVE);
3814 }
3815 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3816 
3817 /**
3818  * pci_release_regions - Release reserved PCI I/O and memory resources
3819  * @pdev: PCI device whose resources were previously reserved by
3820  *	  pci_request_regions()
3821  *
3822  * Releases all PCI I/O and memory resources previously reserved by a
3823  * successful call to pci_request_regions().  Call this function only
3824  * after all use of the PCI regions has ceased.
3825  */
3826 
pci_release_regions(struct pci_dev * pdev)3827 void pci_release_regions(struct pci_dev *pdev)
3828 {
3829 	pci_release_selected_regions(pdev, (1 << 6) - 1);
3830 }
3831 EXPORT_SYMBOL(pci_release_regions);
3832 
3833 /**
3834  * pci_request_regions - Reserve PCI I/O and memory resources
3835  * @pdev: PCI device whose resources are to be reserved
3836  * @res_name: Name to be associated with resource.
3837  *
3838  * Mark all PCI regions associated with PCI device @pdev as
3839  * being reserved by owner @res_name.  Do not access any
3840  * address inside the PCI regions unless this call returns
3841  * successfully.
3842  *
3843  * Returns 0 on success, or %EBUSY on error.  A warning
3844  * message is also printed on failure.
3845  */
pci_request_regions(struct pci_dev * pdev,const char * res_name)3846 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3847 {
3848 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3849 }
3850 EXPORT_SYMBOL(pci_request_regions);
3851 
3852 /**
3853  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3854  * @pdev: PCI device whose resources are to be reserved
3855  * @res_name: Name to be associated with resource.
3856  *
3857  * Mark all PCI regions associated with PCI device @pdev as being reserved
3858  * by owner @res_name.  Do not access any address inside the PCI regions
3859  * unless this call returns successfully.
3860  *
3861  * pci_request_regions_exclusive() will mark the region so that /dev/mem
3862  * and the sysfs MMIO access will not be allowed.
3863  *
3864  * Returns 0 on success, or %EBUSY on error.  A warning message is also
3865  * printed on failure.
3866  */
pci_request_regions_exclusive(struct pci_dev * pdev,const char * res_name)3867 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3868 {
3869 	return pci_request_selected_regions_exclusive(pdev,
3870 					((1 << 6) - 1), res_name);
3871 }
3872 EXPORT_SYMBOL(pci_request_regions_exclusive);
3873 
3874 /*
3875  * Record the PCI IO range (expressed as CPU physical address + size).
3876  * Return a negative value if an error has occurred, zero otherwise
3877  */
pci_register_io_range(struct fwnode_handle * fwnode,phys_addr_t addr,resource_size_t size)3878 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3879 			resource_size_t	size)
3880 {
3881 	int ret = 0;
3882 #ifdef PCI_IOBASE
3883 	struct logic_pio_hwaddr *range;
3884 
3885 	if (!size || addr + size < addr)
3886 		return -EINVAL;
3887 
3888 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3889 	if (!range)
3890 		return -ENOMEM;
3891 
3892 	range->fwnode = fwnode;
3893 	range->size = size;
3894 	range->hw_start = addr;
3895 	range->flags = LOGIC_PIO_CPU_MMIO;
3896 
3897 	ret = logic_pio_register_range(range);
3898 	if (ret)
3899 		kfree(range);
3900 #endif
3901 
3902 	return ret;
3903 }
3904 
pci_pio_to_address(unsigned long pio)3905 phys_addr_t pci_pio_to_address(unsigned long pio)
3906 {
3907 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3908 
3909 #ifdef PCI_IOBASE
3910 	if (pio >= MMIO_UPPER_LIMIT)
3911 		return address;
3912 
3913 	address = logic_pio_to_hwaddr(pio);
3914 #endif
3915 
3916 	return address;
3917 }
3918 
pci_address_to_pio(phys_addr_t address)3919 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3920 {
3921 #ifdef PCI_IOBASE
3922 	return logic_pio_trans_cpuaddr(address);
3923 #else
3924 	if (address > IO_SPACE_LIMIT)
3925 		return (unsigned long)-1;
3926 
3927 	return (unsigned long) address;
3928 #endif
3929 }
3930 
3931 /**
3932  * pci_remap_iospace - Remap the memory mapped I/O space
3933  * @res: Resource describing the I/O space
3934  * @phys_addr: physical address of range to be mapped
3935  *
3936  * Remap the memory mapped I/O space described by the @res and the CPU
3937  * physical address @phys_addr into virtual address space.  Only
3938  * architectures that have memory mapped IO functions defined (and the
3939  * PCI_IOBASE value defined) should call this function.
3940  */
pci_remap_iospace(const struct resource * res,phys_addr_t phys_addr)3941 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3942 {
3943 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3944 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3945 
3946 	if (!(res->flags & IORESOURCE_IO))
3947 		return -EINVAL;
3948 
3949 	if (res->end > IO_SPACE_LIMIT)
3950 		return -EINVAL;
3951 
3952 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3953 				  pgprot_device(PAGE_KERNEL));
3954 #else
3955 	/*
3956 	 * This architecture does not have memory mapped I/O space,
3957 	 * so this function should never be called
3958 	 */
3959 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3960 	return -ENODEV;
3961 #endif
3962 }
3963 EXPORT_SYMBOL(pci_remap_iospace);
3964 
3965 /**
3966  * pci_unmap_iospace - Unmap the memory mapped I/O space
3967  * @res: resource to be unmapped
3968  *
3969  * Unmap the CPU virtual address @res from virtual address space.  Only
3970  * architectures that have memory mapped IO functions defined (and the
3971  * PCI_IOBASE value defined) should call this function.
3972  */
pci_unmap_iospace(struct resource * res)3973 void pci_unmap_iospace(struct resource *res)
3974 {
3975 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3976 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3977 
3978 	unmap_kernel_range(vaddr, resource_size(res));
3979 #endif
3980 }
3981 EXPORT_SYMBOL(pci_unmap_iospace);
3982 
devm_pci_unmap_iospace(struct device * dev,void * ptr)3983 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
3984 {
3985 	struct resource **res = ptr;
3986 
3987 	pci_unmap_iospace(*res);
3988 }
3989 
3990 /**
3991  * devm_pci_remap_iospace - Managed pci_remap_iospace()
3992  * @dev: Generic device to remap IO address for
3993  * @res: Resource describing the I/O space
3994  * @phys_addr: physical address of range to be mapped
3995  *
3996  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
3997  * detach.
3998  */
devm_pci_remap_iospace(struct device * dev,const struct resource * res,phys_addr_t phys_addr)3999 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4000 			   phys_addr_t phys_addr)
4001 {
4002 	const struct resource **ptr;
4003 	int error;
4004 
4005 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4006 	if (!ptr)
4007 		return -ENOMEM;
4008 
4009 	error = pci_remap_iospace(res, phys_addr);
4010 	if (error) {
4011 		devres_free(ptr);
4012 	} else	{
4013 		*ptr = res;
4014 		devres_add(dev, ptr);
4015 	}
4016 
4017 	return error;
4018 }
4019 EXPORT_SYMBOL(devm_pci_remap_iospace);
4020 
4021 /**
4022  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4023  * @dev: Generic device to remap IO address for
4024  * @offset: Resource address to map
4025  * @size: Size of map
4026  *
4027  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4028  * detach.
4029  */
devm_pci_remap_cfgspace(struct device * dev,resource_size_t offset,resource_size_t size)4030 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4031 				      resource_size_t offset,
4032 				      resource_size_t size)
4033 {
4034 	void __iomem **ptr, *addr;
4035 
4036 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4037 	if (!ptr)
4038 		return NULL;
4039 
4040 	addr = pci_remap_cfgspace(offset, size);
4041 	if (addr) {
4042 		*ptr = addr;
4043 		devres_add(dev, ptr);
4044 	} else
4045 		devres_free(ptr);
4046 
4047 	return addr;
4048 }
4049 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4050 
4051 /**
4052  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4053  * @dev: generic device to handle the resource for
4054  * @res: configuration space resource to be handled
4055  *
4056  * Checks that a resource is a valid memory region, requests the memory
4057  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4058  * proper PCI configuration space memory attributes are guaranteed.
4059  *
4060  * All operations are managed and will be undone on driver detach.
4061  *
4062  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4063  * on failure. Usage example::
4064  *
4065  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4066  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4067  *	if (IS_ERR(base))
4068  *		return PTR_ERR(base);
4069  */
devm_pci_remap_cfg_resource(struct device * dev,struct resource * res)4070 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4071 					  struct resource *res)
4072 {
4073 	resource_size_t size;
4074 	const char *name;
4075 	void __iomem *dest_ptr;
4076 
4077 	BUG_ON(!dev);
4078 
4079 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4080 		dev_err(dev, "invalid resource\n");
4081 		return IOMEM_ERR_PTR(-EINVAL);
4082 	}
4083 
4084 	size = resource_size(res);
4085 	name = res->name ?: dev_name(dev);
4086 
4087 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4088 		dev_err(dev, "can't request region for resource %pR\n", res);
4089 		return IOMEM_ERR_PTR(-EBUSY);
4090 	}
4091 
4092 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4093 	if (!dest_ptr) {
4094 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4095 		devm_release_mem_region(dev, res->start, size);
4096 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4097 	}
4098 
4099 	return dest_ptr;
4100 }
4101 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4102 
__pci_set_master(struct pci_dev * dev,bool enable)4103 static void __pci_set_master(struct pci_dev *dev, bool enable)
4104 {
4105 	u16 old_cmd, cmd;
4106 
4107 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4108 	if (enable)
4109 		cmd = old_cmd | PCI_COMMAND_MASTER;
4110 	else
4111 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4112 	if (cmd != old_cmd) {
4113 		pci_dbg(dev, "%s bus mastering\n",
4114 			enable ? "enabling" : "disabling");
4115 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4116 	}
4117 	dev->is_busmaster = enable;
4118 }
4119 
4120 /**
4121  * pcibios_setup - process "pci=" kernel boot arguments
4122  * @str: string used to pass in "pci=" kernel boot arguments
4123  *
4124  * Process kernel boot arguments.  This is the default implementation.
4125  * Architecture specific implementations can override this as necessary.
4126  */
pcibios_setup(char * str)4127 char * __weak __init pcibios_setup(char *str)
4128 {
4129 	return str;
4130 }
4131 
4132 /**
4133  * pcibios_set_master - enable PCI bus-mastering for device dev
4134  * @dev: the PCI device to enable
4135  *
4136  * Enables PCI bus-mastering for the device.  This is the default
4137  * implementation.  Architecture specific implementations can override
4138  * this if necessary.
4139  */
pcibios_set_master(struct pci_dev * dev)4140 void __weak pcibios_set_master(struct pci_dev *dev)
4141 {
4142 	u8 lat;
4143 
4144 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4145 	if (pci_is_pcie(dev))
4146 		return;
4147 
4148 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4149 	if (lat < 16)
4150 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4151 	else if (lat > pcibios_max_latency)
4152 		lat = pcibios_max_latency;
4153 	else
4154 		return;
4155 
4156 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4157 }
4158 
4159 /**
4160  * pci_set_master - enables bus-mastering for device dev
4161  * @dev: the PCI device to enable
4162  *
4163  * Enables bus-mastering on the device and calls pcibios_set_master()
4164  * to do the needed arch specific settings.
4165  */
pci_set_master(struct pci_dev * dev)4166 void pci_set_master(struct pci_dev *dev)
4167 {
4168 	__pci_set_master(dev, true);
4169 	pcibios_set_master(dev);
4170 }
4171 EXPORT_SYMBOL(pci_set_master);
4172 
4173 /**
4174  * pci_clear_master - disables bus-mastering for device dev
4175  * @dev: the PCI device to disable
4176  */
pci_clear_master(struct pci_dev * dev)4177 void pci_clear_master(struct pci_dev *dev)
4178 {
4179 	__pci_set_master(dev, false);
4180 }
4181 EXPORT_SYMBOL(pci_clear_master);
4182 
4183 /**
4184  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4185  * @dev: the PCI device for which MWI is to be enabled
4186  *
4187  * Helper function for pci_set_mwi.
4188  * Originally copied from drivers/net/acenic.c.
4189  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4190  *
4191  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4192  */
pci_set_cacheline_size(struct pci_dev * dev)4193 int pci_set_cacheline_size(struct pci_dev *dev)
4194 {
4195 	u8 cacheline_size;
4196 
4197 	if (!pci_cache_line_size)
4198 		return -EINVAL;
4199 
4200 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4201 	   equal to or multiple of the right value. */
4202 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4203 	if (cacheline_size >= pci_cache_line_size &&
4204 	    (cacheline_size % pci_cache_line_size) == 0)
4205 		return 0;
4206 
4207 	/* Write the correct value. */
4208 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4209 	/* Read it back. */
4210 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4211 	if (cacheline_size == pci_cache_line_size)
4212 		return 0;
4213 
4214 	pci_info(dev, "cache line size of %d is not supported\n",
4215 		   pci_cache_line_size << 2);
4216 
4217 	return -EINVAL;
4218 }
4219 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4220 
4221 /**
4222  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4223  * @dev: the PCI device for which MWI is enabled
4224  *
4225  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4226  *
4227  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4228  */
pci_set_mwi(struct pci_dev * dev)4229 int pci_set_mwi(struct pci_dev *dev)
4230 {
4231 #ifdef PCI_DISABLE_MWI
4232 	return 0;
4233 #else
4234 	int rc;
4235 	u16 cmd;
4236 
4237 	rc = pci_set_cacheline_size(dev);
4238 	if (rc)
4239 		return rc;
4240 
4241 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4242 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4243 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4244 		cmd |= PCI_COMMAND_INVALIDATE;
4245 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4246 	}
4247 	return 0;
4248 #endif
4249 }
4250 EXPORT_SYMBOL(pci_set_mwi);
4251 
4252 /**
4253  * pcim_set_mwi - a device-managed pci_set_mwi()
4254  * @dev: the PCI device for which MWI is enabled
4255  *
4256  * Managed pci_set_mwi().
4257  *
4258  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4259  */
pcim_set_mwi(struct pci_dev * dev)4260 int pcim_set_mwi(struct pci_dev *dev)
4261 {
4262 	struct pci_devres *dr;
4263 
4264 	dr = find_pci_dr(dev);
4265 	if (!dr)
4266 		return -ENOMEM;
4267 
4268 	dr->mwi = 1;
4269 	return pci_set_mwi(dev);
4270 }
4271 EXPORT_SYMBOL(pcim_set_mwi);
4272 
4273 /**
4274  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4275  * @dev: the PCI device for which MWI is enabled
4276  *
4277  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4278  * Callers are not required to check the return value.
4279  *
4280  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4281  */
pci_try_set_mwi(struct pci_dev * dev)4282 int pci_try_set_mwi(struct pci_dev *dev)
4283 {
4284 #ifdef PCI_DISABLE_MWI
4285 	return 0;
4286 #else
4287 	return pci_set_mwi(dev);
4288 #endif
4289 }
4290 EXPORT_SYMBOL(pci_try_set_mwi);
4291 
4292 /**
4293  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4294  * @dev: the PCI device to disable
4295  *
4296  * Disables PCI Memory-Write-Invalidate transaction on the device
4297  */
pci_clear_mwi(struct pci_dev * dev)4298 void pci_clear_mwi(struct pci_dev *dev)
4299 {
4300 #ifndef PCI_DISABLE_MWI
4301 	u16 cmd;
4302 
4303 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4304 	if (cmd & PCI_COMMAND_INVALIDATE) {
4305 		cmd &= ~PCI_COMMAND_INVALIDATE;
4306 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4307 	}
4308 #endif
4309 }
4310 EXPORT_SYMBOL(pci_clear_mwi);
4311 
4312 /**
4313  * pci_intx - enables/disables PCI INTx for device dev
4314  * @pdev: the PCI device to operate on
4315  * @enable: boolean: whether to enable or disable PCI INTx
4316  *
4317  * Enables/disables PCI INTx for device @pdev
4318  */
pci_intx(struct pci_dev * pdev,int enable)4319 void pci_intx(struct pci_dev *pdev, int enable)
4320 {
4321 	u16 pci_command, new;
4322 
4323 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4324 
4325 	if (enable)
4326 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4327 	else
4328 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4329 
4330 	if (new != pci_command) {
4331 		struct pci_devres *dr;
4332 
4333 		pci_write_config_word(pdev, PCI_COMMAND, new);
4334 
4335 		dr = find_pci_dr(pdev);
4336 		if (dr && !dr->restore_intx) {
4337 			dr->restore_intx = 1;
4338 			dr->orig_intx = !enable;
4339 		}
4340 	}
4341 }
4342 EXPORT_SYMBOL_GPL(pci_intx);
4343 
pci_check_and_set_intx_mask(struct pci_dev * dev,bool mask)4344 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4345 {
4346 	struct pci_bus *bus = dev->bus;
4347 	bool mask_updated = true;
4348 	u32 cmd_status_dword;
4349 	u16 origcmd, newcmd;
4350 	unsigned long flags;
4351 	bool irq_pending;
4352 
4353 	/*
4354 	 * We do a single dword read to retrieve both command and status.
4355 	 * Document assumptions that make this possible.
4356 	 */
4357 	BUILD_BUG_ON(PCI_COMMAND % 4);
4358 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4359 
4360 	raw_spin_lock_irqsave(&pci_lock, flags);
4361 
4362 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4363 
4364 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4365 
4366 	/*
4367 	 * Check interrupt status register to see whether our device
4368 	 * triggered the interrupt (when masking) or the next IRQ is
4369 	 * already pending (when unmasking).
4370 	 */
4371 	if (mask != irq_pending) {
4372 		mask_updated = false;
4373 		goto done;
4374 	}
4375 
4376 	origcmd = cmd_status_dword;
4377 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4378 	if (mask)
4379 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4380 	if (newcmd != origcmd)
4381 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4382 
4383 done:
4384 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4385 
4386 	return mask_updated;
4387 }
4388 
4389 /**
4390  * pci_check_and_mask_intx - mask INTx on pending interrupt
4391  * @dev: the PCI device to operate on
4392  *
4393  * Check if the device dev has its INTx line asserted, mask it and return
4394  * true in that case. False is returned if no interrupt was pending.
4395  */
pci_check_and_mask_intx(struct pci_dev * dev)4396 bool pci_check_and_mask_intx(struct pci_dev *dev)
4397 {
4398 	return pci_check_and_set_intx_mask(dev, true);
4399 }
4400 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4401 
4402 /**
4403  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4404  * @dev: the PCI device to operate on
4405  *
4406  * Check if the device dev has its INTx line asserted, unmask it if not and
4407  * return true. False is returned and the mask remains active if there was
4408  * still an interrupt pending.
4409  */
pci_check_and_unmask_intx(struct pci_dev * dev)4410 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4411 {
4412 	return pci_check_and_set_intx_mask(dev, false);
4413 }
4414 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4415 
4416 /**
4417  * pci_wait_for_pending_transaction - wait for pending transaction
4418  * @dev: the PCI device to operate on
4419  *
4420  * Return 0 if transaction is pending 1 otherwise.
4421  */
pci_wait_for_pending_transaction(struct pci_dev * dev)4422 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4423 {
4424 	if (!pci_is_pcie(dev))
4425 		return 1;
4426 
4427 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4428 				    PCI_EXP_DEVSTA_TRPND);
4429 }
4430 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4431 
pci_dev_wait(struct pci_dev * dev,char * reset_type,int timeout)4432 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
4433 {
4434 	int delay = 1;
4435 	u32 id;
4436 
4437 	/*
4438 	 * After reset, the device should not silently discard config
4439 	 * requests, but it may still indicate that it needs more time by
4440 	 * responding to them with CRS completions.  The Root Port will
4441 	 * generally synthesize ~0 data to complete the read (except when
4442 	 * CRS SV is enabled and the read was for the Vendor ID; in that
4443 	 * case it synthesizes 0x0001 data).
4444 	 *
4445 	 * Wait for the device to return a non-CRS completion.  Read the
4446 	 * Command register instead of Vendor ID so we don't have to
4447 	 * contend with the CRS SV value.
4448 	 */
4449 	pci_read_config_dword(dev, PCI_COMMAND, &id);
4450 	while (id == ~0) {
4451 		if (delay > timeout) {
4452 			pci_warn(dev, "not ready %dms after %s; giving up\n",
4453 				 delay - 1, reset_type);
4454 			return -ENOTTY;
4455 		}
4456 
4457 		if (delay > 1000)
4458 			pci_info(dev, "not ready %dms after %s; waiting\n",
4459 				 delay - 1, reset_type);
4460 
4461 		msleep(delay);
4462 		delay *= 2;
4463 		pci_read_config_dword(dev, PCI_COMMAND, &id);
4464 	}
4465 
4466 	if (delay > 1000)
4467 		pci_info(dev, "ready %dms after %s\n", delay - 1,
4468 			 reset_type);
4469 
4470 	return 0;
4471 }
4472 
4473 /**
4474  * pcie_has_flr - check if a device supports function level resets
4475  * @dev: device to check
4476  *
4477  * Returns true if the device advertises support for PCIe function level
4478  * resets.
4479  */
pcie_has_flr(struct pci_dev * dev)4480 bool pcie_has_flr(struct pci_dev *dev)
4481 {
4482 	u32 cap;
4483 
4484 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4485 		return false;
4486 
4487 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4488 	return cap & PCI_EXP_DEVCAP_FLR;
4489 }
4490 EXPORT_SYMBOL_GPL(pcie_has_flr);
4491 
4492 /**
4493  * pcie_flr - initiate a PCIe function level reset
4494  * @dev: device to reset
4495  *
4496  * Initiate a function level reset on @dev.  The caller should ensure the
4497  * device supports FLR before calling this function, e.g. by using the
4498  * pcie_has_flr() helper.
4499  */
pcie_flr(struct pci_dev * dev)4500 int pcie_flr(struct pci_dev *dev)
4501 {
4502 	if (!pci_wait_for_pending_transaction(dev))
4503 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4504 
4505 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4506 
4507 	if (dev->imm_ready)
4508 		return 0;
4509 
4510 	/*
4511 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4512 	 * 100ms, but may silently discard requests while the FLR is in
4513 	 * progress.  Wait 100ms before trying to access the device.
4514 	 */
4515 	msleep(100);
4516 
4517 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4518 }
4519 EXPORT_SYMBOL_GPL(pcie_flr);
4520 
pci_af_flr(struct pci_dev * dev,int probe)4521 static int pci_af_flr(struct pci_dev *dev, int probe)
4522 {
4523 	int pos;
4524 	u8 cap;
4525 
4526 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4527 	if (!pos)
4528 		return -ENOTTY;
4529 
4530 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4531 		return -ENOTTY;
4532 
4533 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4534 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4535 		return -ENOTTY;
4536 
4537 	if (probe)
4538 		return 0;
4539 
4540 	/*
4541 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4542 	 * is used, so we use the control offset rather than status and shift
4543 	 * the test bit to match.
4544 	 */
4545 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4546 				 PCI_AF_STATUS_TP << 8))
4547 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4548 
4549 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4550 
4551 	if (dev->imm_ready)
4552 		return 0;
4553 
4554 	/*
4555 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4556 	 * updated 27 July 2006; a device must complete an FLR within
4557 	 * 100ms, but may silently discard requests while the FLR is in
4558 	 * progress.  Wait 100ms before trying to access the device.
4559 	 */
4560 	msleep(100);
4561 
4562 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4563 }
4564 
4565 /**
4566  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4567  * @dev: Device to reset.
4568  * @probe: If set, only check if the device can be reset this way.
4569  *
4570  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4571  * unset, it will be reinitialized internally when going from PCI_D3hot to
4572  * PCI_D0.  If that's the case and the device is not in a low-power state
4573  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4574  *
4575  * NOTE: This causes the caller to sleep for twice the device power transition
4576  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4577  * by default (i.e. unless the @dev's d3_delay field has a different value).
4578  * Moreover, only devices in D0 can be reset by this function.
4579  */
pci_pm_reset(struct pci_dev * dev,int probe)4580 static int pci_pm_reset(struct pci_dev *dev, int probe)
4581 {
4582 	u16 csr;
4583 
4584 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4585 		return -ENOTTY;
4586 
4587 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4588 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4589 		return -ENOTTY;
4590 
4591 	if (probe)
4592 		return 0;
4593 
4594 	if (dev->current_state != PCI_D0)
4595 		return -EINVAL;
4596 
4597 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4598 	csr |= PCI_D3hot;
4599 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4600 	pci_dev_d3_sleep(dev);
4601 
4602 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4603 	csr |= PCI_D0;
4604 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4605 	pci_dev_d3_sleep(dev);
4606 
4607 	return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS);
4608 }
4609 /**
4610  * pcie_wait_for_link - Wait until link is active or inactive
4611  * @pdev: Bridge device
4612  * @active: waiting for active or inactive?
4613  *
4614  * Use this to wait till link becomes active or inactive.
4615  */
pcie_wait_for_link(struct pci_dev * pdev,bool active)4616 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4617 {
4618 	int timeout = 1000;
4619 	bool ret;
4620 	u16 lnk_status;
4621 
4622 	/*
4623 	 * Some controllers might not implement link active reporting. In this
4624 	 * case, we wait for 1000 + 100 ms.
4625 	 */
4626 	if (!pdev->link_active_reporting) {
4627 		msleep(1100);
4628 		return true;
4629 	}
4630 
4631 	/*
4632 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4633 	 * after which we should expect an link active if the reset was
4634 	 * successful. If so, software must wait a minimum 100ms before sending
4635 	 * configuration requests to devices downstream this port.
4636 	 *
4637 	 * If the link fails to activate, either the device was physically
4638 	 * removed or the link is permanently failed.
4639 	 */
4640 	if (active)
4641 		msleep(20);
4642 	for (;;) {
4643 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4644 		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4645 		if (ret == active)
4646 			break;
4647 		if (timeout <= 0)
4648 			break;
4649 		msleep(10);
4650 		timeout -= 10;
4651 	}
4652 	if (active && ret)
4653 		msleep(100);
4654 	else if (ret != active)
4655 		pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4656 			active ? "set" : "cleared");
4657 	return ret == active;
4658 }
4659 
pci_reset_secondary_bus(struct pci_dev * dev)4660 void pci_reset_secondary_bus(struct pci_dev *dev)
4661 {
4662 	u16 ctrl;
4663 
4664 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4665 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4666 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4667 
4668 	/*
4669 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4670 	 * this to 2ms to ensure that we meet the minimum requirement.
4671 	 */
4672 	msleep(2);
4673 
4674 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4675 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4676 
4677 	/*
4678 	 * Trhfa for conventional PCI is 2^25 clock cycles.
4679 	 * Assuming a minimum 33MHz clock this results in a 1s
4680 	 * delay before we can consider subordinate devices to
4681 	 * be re-initialized.  PCIe has some ways to shorten this,
4682 	 * but we don't make use of them yet.
4683 	 */
4684 	ssleep(1);
4685 }
4686 
pcibios_reset_secondary_bus(struct pci_dev * dev)4687 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4688 {
4689 	pci_reset_secondary_bus(dev);
4690 }
4691 
4692 /**
4693  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4694  * @dev: Bridge device
4695  *
4696  * Use the bridge control register to assert reset on the secondary bus.
4697  * Devices on the secondary bus are left in power-on state.
4698  */
pci_bridge_secondary_bus_reset(struct pci_dev * dev)4699 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4700 {
4701 	pcibios_reset_secondary_bus(dev);
4702 
4703 	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4704 }
4705 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4706 
pci_parent_bus_reset(struct pci_dev * dev,int probe)4707 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4708 {
4709 	struct pci_dev *pdev;
4710 
4711 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4712 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4713 		return -ENOTTY;
4714 
4715 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4716 		if (pdev != dev)
4717 			return -ENOTTY;
4718 
4719 	if (probe)
4720 		return 0;
4721 
4722 	return pci_bridge_secondary_bus_reset(dev->bus->self);
4723 }
4724 
pci_reset_hotplug_slot(struct hotplug_slot * hotplug,int probe)4725 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4726 {
4727 	int rc = -ENOTTY;
4728 
4729 	if (!hotplug || !try_module_get(hotplug->owner))
4730 		return rc;
4731 
4732 	if (hotplug->ops->reset_slot)
4733 		rc = hotplug->ops->reset_slot(hotplug, probe);
4734 
4735 	module_put(hotplug->owner);
4736 
4737 	return rc;
4738 }
4739 
pci_dev_reset_slot_function(struct pci_dev * dev,int probe)4740 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4741 {
4742 	struct pci_dev *pdev;
4743 
4744 	if (dev->subordinate || !dev->slot ||
4745 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4746 		return -ENOTTY;
4747 
4748 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4749 		if (pdev != dev && pdev->slot == dev->slot)
4750 			return -ENOTTY;
4751 
4752 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4753 }
4754 
pci_dev_lock(struct pci_dev * dev)4755 static void pci_dev_lock(struct pci_dev *dev)
4756 {
4757 	pci_cfg_access_lock(dev);
4758 	/* block PM suspend, driver probe, etc. */
4759 	device_lock(&dev->dev);
4760 }
4761 
4762 /* Return 1 on successful lock, 0 on contention */
pci_dev_trylock(struct pci_dev * dev)4763 static int pci_dev_trylock(struct pci_dev *dev)
4764 {
4765 	if (pci_cfg_access_trylock(dev)) {
4766 		if (device_trylock(&dev->dev))
4767 			return 1;
4768 		pci_cfg_access_unlock(dev);
4769 	}
4770 
4771 	return 0;
4772 }
4773 
pci_dev_unlock(struct pci_dev * dev)4774 static void pci_dev_unlock(struct pci_dev *dev)
4775 {
4776 	device_unlock(&dev->dev);
4777 	pci_cfg_access_unlock(dev);
4778 }
4779 
pci_dev_save_and_disable(struct pci_dev * dev)4780 static void pci_dev_save_and_disable(struct pci_dev *dev)
4781 {
4782 	const struct pci_error_handlers *err_handler =
4783 			dev->driver ? dev->driver->err_handler : NULL;
4784 
4785 	/*
4786 	 * dev->driver->err_handler->reset_prepare() is protected against
4787 	 * races with ->remove() by the device lock, which must be held by
4788 	 * the caller.
4789 	 */
4790 	if (err_handler && err_handler->reset_prepare)
4791 		err_handler->reset_prepare(dev);
4792 
4793 	/*
4794 	 * Wake-up device prior to save.  PM registers default to D0 after
4795 	 * reset and a simple register restore doesn't reliably return
4796 	 * to a non-D0 state anyway.
4797 	 */
4798 	pci_set_power_state(dev, PCI_D0);
4799 
4800 	pci_save_state(dev);
4801 	/*
4802 	 * Disable the device by clearing the Command register, except for
4803 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4804 	 * BARs, but also prevents the device from being Bus Master, preventing
4805 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4806 	 * compliant devices, INTx-disable prevents legacy interrupts.
4807 	 */
4808 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4809 }
4810 
pci_dev_restore(struct pci_dev * dev)4811 static void pci_dev_restore(struct pci_dev *dev)
4812 {
4813 	const struct pci_error_handlers *err_handler =
4814 			dev->driver ? dev->driver->err_handler : NULL;
4815 
4816 	pci_restore_state(dev);
4817 
4818 	/*
4819 	 * dev->driver->err_handler->reset_done() is protected against
4820 	 * races with ->remove() by the device lock, which must be held by
4821 	 * the caller.
4822 	 */
4823 	if (err_handler && err_handler->reset_done)
4824 		err_handler->reset_done(dev);
4825 }
4826 
4827 /**
4828  * __pci_reset_function_locked - reset a PCI device function while holding
4829  * the @dev mutex lock.
4830  * @dev: PCI device to reset
4831  *
4832  * Some devices allow an individual function to be reset without affecting
4833  * other functions in the same device.  The PCI device must be responsive
4834  * to PCI config space in order to use this function.
4835  *
4836  * The device function is presumed to be unused and the caller is holding
4837  * the device mutex lock when this function is called.
4838  *
4839  * Resetting the device will make the contents of PCI configuration space
4840  * random, so any caller of this must be prepared to reinitialise the
4841  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4842  * etc.
4843  *
4844  * Returns 0 if the device function was successfully reset or negative if the
4845  * device doesn't support resetting a single function.
4846  */
__pci_reset_function_locked(struct pci_dev * dev)4847 int __pci_reset_function_locked(struct pci_dev *dev)
4848 {
4849 	int rc;
4850 
4851 	might_sleep();
4852 
4853 	/*
4854 	 * A reset method returns -ENOTTY if it doesn't support this device
4855 	 * and we should try the next method.
4856 	 *
4857 	 * If it returns 0 (success), we're finished.  If it returns any
4858 	 * other error, we're also finished: this indicates that further
4859 	 * reset mechanisms might be broken on the device.
4860 	 */
4861 	rc = pci_dev_specific_reset(dev, 0);
4862 	if (rc != -ENOTTY)
4863 		return rc;
4864 	if (pcie_has_flr(dev)) {
4865 		rc = pcie_flr(dev);
4866 		if (rc != -ENOTTY)
4867 			return rc;
4868 	}
4869 	rc = pci_af_flr(dev, 0);
4870 	if (rc != -ENOTTY)
4871 		return rc;
4872 	rc = pci_pm_reset(dev, 0);
4873 	if (rc != -ENOTTY)
4874 		return rc;
4875 	rc = pci_dev_reset_slot_function(dev, 0);
4876 	if (rc != -ENOTTY)
4877 		return rc;
4878 	return pci_parent_bus_reset(dev, 0);
4879 }
4880 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4881 
4882 /**
4883  * pci_probe_reset_function - check whether the device can be safely reset
4884  * @dev: PCI device to reset
4885  *
4886  * Some devices allow an individual function to be reset without affecting
4887  * other functions in the same device.  The PCI device must be responsive
4888  * to PCI config space in order to use this function.
4889  *
4890  * Returns 0 if the device function can be reset or negative if the
4891  * device doesn't support resetting a single function.
4892  */
pci_probe_reset_function(struct pci_dev * dev)4893 int pci_probe_reset_function(struct pci_dev *dev)
4894 {
4895 	int rc;
4896 
4897 	might_sleep();
4898 
4899 	rc = pci_dev_specific_reset(dev, 1);
4900 	if (rc != -ENOTTY)
4901 		return rc;
4902 	if (pcie_has_flr(dev))
4903 		return 0;
4904 	rc = pci_af_flr(dev, 1);
4905 	if (rc != -ENOTTY)
4906 		return rc;
4907 	rc = pci_pm_reset(dev, 1);
4908 	if (rc != -ENOTTY)
4909 		return rc;
4910 	rc = pci_dev_reset_slot_function(dev, 1);
4911 	if (rc != -ENOTTY)
4912 		return rc;
4913 
4914 	return pci_parent_bus_reset(dev, 1);
4915 }
4916 
4917 /**
4918  * pci_reset_function - quiesce and reset a PCI device function
4919  * @dev: PCI device to reset
4920  *
4921  * Some devices allow an individual function to be reset without affecting
4922  * other functions in the same device.  The PCI device must be responsive
4923  * to PCI config space in order to use this function.
4924  *
4925  * This function does not just reset the PCI portion of a device, but
4926  * clears all the state associated with the device.  This function differs
4927  * from __pci_reset_function_locked() in that it saves and restores device state
4928  * over the reset and takes the PCI device lock.
4929  *
4930  * Returns 0 if the device function was successfully reset or negative if the
4931  * device doesn't support resetting a single function.
4932  */
pci_reset_function(struct pci_dev * dev)4933 int pci_reset_function(struct pci_dev *dev)
4934 {
4935 	int rc;
4936 
4937 	if (!dev->reset_fn)
4938 		return -ENOTTY;
4939 
4940 	pci_dev_lock(dev);
4941 	pci_dev_save_and_disable(dev);
4942 
4943 	rc = __pci_reset_function_locked(dev);
4944 
4945 	pci_dev_restore(dev);
4946 	pci_dev_unlock(dev);
4947 
4948 	return rc;
4949 }
4950 EXPORT_SYMBOL_GPL(pci_reset_function);
4951 
4952 /**
4953  * pci_reset_function_locked - quiesce and reset a PCI device function
4954  * @dev: PCI device to reset
4955  *
4956  * Some devices allow an individual function to be reset without affecting
4957  * other functions in the same device.  The PCI device must be responsive
4958  * to PCI config space in order to use this function.
4959  *
4960  * This function does not just reset the PCI portion of a device, but
4961  * clears all the state associated with the device.  This function differs
4962  * from __pci_reset_function_locked() in that it saves and restores device state
4963  * over the reset.  It also differs from pci_reset_function() in that it
4964  * requires the PCI device lock to be held.
4965  *
4966  * Returns 0 if the device function was successfully reset or negative if the
4967  * device doesn't support resetting a single function.
4968  */
pci_reset_function_locked(struct pci_dev * dev)4969 int pci_reset_function_locked(struct pci_dev *dev)
4970 {
4971 	int rc;
4972 
4973 	if (!dev->reset_fn)
4974 		return -ENOTTY;
4975 
4976 	pci_dev_save_and_disable(dev);
4977 
4978 	rc = __pci_reset_function_locked(dev);
4979 
4980 	pci_dev_restore(dev);
4981 
4982 	return rc;
4983 }
4984 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4985 
4986 /**
4987  * pci_try_reset_function - quiesce and reset a PCI device function
4988  * @dev: PCI device to reset
4989  *
4990  * Same as above, except return -EAGAIN if unable to lock device.
4991  */
pci_try_reset_function(struct pci_dev * dev)4992 int pci_try_reset_function(struct pci_dev *dev)
4993 {
4994 	int rc;
4995 
4996 	if (!dev->reset_fn)
4997 		return -ENOTTY;
4998 
4999 	if (!pci_dev_trylock(dev))
5000 		return -EAGAIN;
5001 
5002 	pci_dev_save_and_disable(dev);
5003 	rc = __pci_reset_function_locked(dev);
5004 	pci_dev_restore(dev);
5005 	pci_dev_unlock(dev);
5006 
5007 	return rc;
5008 }
5009 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5010 
5011 /* Do any devices on or below this bus prevent a bus reset? */
pci_bus_resetable(struct pci_bus * bus)5012 static bool pci_bus_resetable(struct pci_bus *bus)
5013 {
5014 	struct pci_dev *dev;
5015 
5016 
5017 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5018 		return false;
5019 
5020 	list_for_each_entry(dev, &bus->devices, bus_list) {
5021 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5022 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5023 			return false;
5024 	}
5025 
5026 	return true;
5027 }
5028 
5029 /* Lock devices from the top of the tree down */
pci_bus_lock(struct pci_bus * bus)5030 static void pci_bus_lock(struct pci_bus *bus)
5031 {
5032 	struct pci_dev *dev;
5033 
5034 	list_for_each_entry(dev, &bus->devices, bus_list) {
5035 		pci_dev_lock(dev);
5036 		if (dev->subordinate)
5037 			pci_bus_lock(dev->subordinate);
5038 	}
5039 }
5040 
5041 /* Unlock devices from the bottom of the tree up */
pci_bus_unlock(struct pci_bus * bus)5042 static void pci_bus_unlock(struct pci_bus *bus)
5043 {
5044 	struct pci_dev *dev;
5045 
5046 	list_for_each_entry(dev, &bus->devices, bus_list) {
5047 		if (dev->subordinate)
5048 			pci_bus_unlock(dev->subordinate);
5049 		pci_dev_unlock(dev);
5050 	}
5051 }
5052 
5053 /* Return 1 on successful lock, 0 on contention */
pci_bus_trylock(struct pci_bus * bus)5054 static int pci_bus_trylock(struct pci_bus *bus)
5055 {
5056 	struct pci_dev *dev;
5057 
5058 	list_for_each_entry(dev, &bus->devices, bus_list) {
5059 		if (!pci_dev_trylock(dev))
5060 			goto unlock;
5061 		if (dev->subordinate) {
5062 			if (!pci_bus_trylock(dev->subordinate)) {
5063 				pci_dev_unlock(dev);
5064 				goto unlock;
5065 			}
5066 		}
5067 	}
5068 	return 1;
5069 
5070 unlock:
5071 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5072 		if (dev->subordinate)
5073 			pci_bus_unlock(dev->subordinate);
5074 		pci_dev_unlock(dev);
5075 	}
5076 	return 0;
5077 }
5078 
5079 /* Do any devices on or below this slot prevent a bus reset? */
pci_slot_resetable(struct pci_slot * slot)5080 static bool pci_slot_resetable(struct pci_slot *slot)
5081 {
5082 	struct pci_dev *dev;
5083 
5084 	if (slot->bus->self &&
5085 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5086 		return false;
5087 
5088 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5089 		if (!dev->slot || dev->slot != slot)
5090 			continue;
5091 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5092 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5093 			return false;
5094 	}
5095 
5096 	return true;
5097 }
5098 
5099 /* Lock devices from the top of the tree down */
pci_slot_lock(struct pci_slot * slot)5100 static void pci_slot_lock(struct pci_slot *slot)
5101 {
5102 	struct pci_dev *dev;
5103 
5104 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5105 		if (!dev->slot || dev->slot != slot)
5106 			continue;
5107 		pci_dev_lock(dev);
5108 		if (dev->subordinate)
5109 			pci_bus_lock(dev->subordinate);
5110 	}
5111 }
5112 
5113 /* Unlock devices from the bottom of the tree up */
pci_slot_unlock(struct pci_slot * slot)5114 static void pci_slot_unlock(struct pci_slot *slot)
5115 {
5116 	struct pci_dev *dev;
5117 
5118 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5119 		if (!dev->slot || dev->slot != slot)
5120 			continue;
5121 		if (dev->subordinate)
5122 			pci_bus_unlock(dev->subordinate);
5123 		pci_dev_unlock(dev);
5124 	}
5125 }
5126 
5127 /* Return 1 on successful lock, 0 on contention */
pci_slot_trylock(struct pci_slot * slot)5128 static int pci_slot_trylock(struct pci_slot *slot)
5129 {
5130 	struct pci_dev *dev;
5131 
5132 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5133 		if (!dev->slot || dev->slot != slot)
5134 			continue;
5135 		if (!pci_dev_trylock(dev))
5136 			goto unlock;
5137 		if (dev->subordinate) {
5138 			if (!pci_bus_trylock(dev->subordinate)) {
5139 				pci_dev_unlock(dev);
5140 				goto unlock;
5141 			}
5142 		}
5143 	}
5144 	return 1;
5145 
5146 unlock:
5147 	list_for_each_entry_continue_reverse(dev,
5148 					     &slot->bus->devices, bus_list) {
5149 		if (!dev->slot || dev->slot != slot)
5150 			continue;
5151 		if (dev->subordinate)
5152 			pci_bus_unlock(dev->subordinate);
5153 		pci_dev_unlock(dev);
5154 	}
5155 	return 0;
5156 }
5157 
5158 /*
5159  * Save and disable devices from the top of the tree down while holding
5160  * the @dev mutex lock for the entire tree.
5161  */
pci_bus_save_and_disable_locked(struct pci_bus * bus)5162 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5163 {
5164 	struct pci_dev *dev;
5165 
5166 	list_for_each_entry(dev, &bus->devices, bus_list) {
5167 		pci_dev_save_and_disable(dev);
5168 		if (dev->subordinate)
5169 			pci_bus_save_and_disable_locked(dev->subordinate);
5170 	}
5171 }
5172 
5173 /*
5174  * Restore devices from top of the tree down while holding @dev mutex lock
5175  * for the entire tree.  Parent bridges need to be restored before we can
5176  * get to subordinate devices.
5177  */
pci_bus_restore_locked(struct pci_bus * bus)5178 static void pci_bus_restore_locked(struct pci_bus *bus)
5179 {
5180 	struct pci_dev *dev;
5181 
5182 	list_for_each_entry(dev, &bus->devices, bus_list) {
5183 		pci_dev_restore(dev);
5184 		if (dev->subordinate)
5185 			pci_bus_restore_locked(dev->subordinate);
5186 	}
5187 }
5188 
5189 /*
5190  * Save and disable devices from the top of the tree down while holding
5191  * the @dev mutex lock for the entire tree.
5192  */
pci_slot_save_and_disable_locked(struct pci_slot * slot)5193 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5194 {
5195 	struct pci_dev *dev;
5196 
5197 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5198 		if (!dev->slot || dev->slot != slot)
5199 			continue;
5200 		pci_dev_save_and_disable(dev);
5201 		if (dev->subordinate)
5202 			pci_bus_save_and_disable_locked(dev->subordinate);
5203 	}
5204 }
5205 
5206 /*
5207  * Restore devices from top of the tree down while holding @dev mutex lock
5208  * for the entire tree.  Parent bridges need to be restored before we can
5209  * get to subordinate devices.
5210  */
pci_slot_restore_locked(struct pci_slot * slot)5211 static void pci_slot_restore_locked(struct pci_slot *slot)
5212 {
5213 	struct pci_dev *dev;
5214 
5215 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5216 		if (!dev->slot || dev->slot != slot)
5217 			continue;
5218 		pci_dev_restore(dev);
5219 		if (dev->subordinate)
5220 			pci_bus_restore_locked(dev->subordinate);
5221 	}
5222 }
5223 
pci_slot_reset(struct pci_slot * slot,int probe)5224 static int pci_slot_reset(struct pci_slot *slot, int probe)
5225 {
5226 	int rc;
5227 
5228 	if (!slot || !pci_slot_resetable(slot))
5229 		return -ENOTTY;
5230 
5231 	if (!probe)
5232 		pci_slot_lock(slot);
5233 
5234 	might_sleep();
5235 
5236 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5237 
5238 	if (!probe)
5239 		pci_slot_unlock(slot);
5240 
5241 	return rc;
5242 }
5243 
5244 /**
5245  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5246  * @slot: PCI slot to probe
5247  *
5248  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5249  */
pci_probe_reset_slot(struct pci_slot * slot)5250 int pci_probe_reset_slot(struct pci_slot *slot)
5251 {
5252 	return pci_slot_reset(slot, 1);
5253 }
5254 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5255 
5256 /**
5257  * __pci_reset_slot - Try to reset a PCI slot
5258  * @slot: PCI slot to reset
5259  *
5260  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5261  * independent of other slots.  For instance, some slots may support slot power
5262  * control.  In the case of a 1:1 bus to slot architecture, this function may
5263  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5264  * Generally a slot reset should be attempted before a bus reset.  All of the
5265  * function of the slot and any subordinate buses behind the slot are reset
5266  * through this function.  PCI config space of all devices in the slot and
5267  * behind the slot is saved before and restored after reset.
5268  *
5269  * Same as above except return -EAGAIN if the slot cannot be locked
5270  */
__pci_reset_slot(struct pci_slot * slot)5271 static int __pci_reset_slot(struct pci_slot *slot)
5272 {
5273 	int rc;
5274 
5275 	rc = pci_slot_reset(slot, 1);
5276 	if (rc)
5277 		return rc;
5278 
5279 	if (pci_slot_trylock(slot)) {
5280 		pci_slot_save_and_disable_locked(slot);
5281 		might_sleep();
5282 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5283 		pci_slot_restore_locked(slot);
5284 		pci_slot_unlock(slot);
5285 	} else
5286 		rc = -EAGAIN;
5287 
5288 	return rc;
5289 }
5290 
pci_bus_reset(struct pci_bus * bus,int probe)5291 static int pci_bus_reset(struct pci_bus *bus, int probe)
5292 {
5293 	int ret;
5294 
5295 	if (!bus->self || !pci_bus_resetable(bus))
5296 		return -ENOTTY;
5297 
5298 	if (probe)
5299 		return 0;
5300 
5301 	pci_bus_lock(bus);
5302 
5303 	might_sleep();
5304 
5305 	ret = pci_bridge_secondary_bus_reset(bus->self);
5306 
5307 	pci_bus_unlock(bus);
5308 
5309 	return ret;
5310 }
5311 
5312 /**
5313  * pci_bus_error_reset - reset the bridge's subordinate bus
5314  * @bridge: The parent device that connects to the bus to reset
5315  *
5316  * This function will first try to reset the slots on this bus if the method is
5317  * available. If slot reset fails or is not available, this will fall back to a
5318  * secondary bus reset.
5319  */
pci_bus_error_reset(struct pci_dev * bridge)5320 int pci_bus_error_reset(struct pci_dev *bridge)
5321 {
5322 	struct pci_bus *bus = bridge->subordinate;
5323 	struct pci_slot *slot;
5324 
5325 	if (!bus)
5326 		return -ENOTTY;
5327 
5328 	mutex_lock(&pci_slot_mutex);
5329 	if (list_empty(&bus->slots))
5330 		goto bus_reset;
5331 
5332 	list_for_each_entry(slot, &bus->slots, list)
5333 		if (pci_probe_reset_slot(slot))
5334 			goto bus_reset;
5335 
5336 	list_for_each_entry(slot, &bus->slots, list)
5337 		if (pci_slot_reset(slot, 0))
5338 			goto bus_reset;
5339 
5340 	mutex_unlock(&pci_slot_mutex);
5341 	return 0;
5342 bus_reset:
5343 	mutex_unlock(&pci_slot_mutex);
5344 	return pci_bus_reset(bridge->subordinate, 0);
5345 }
5346 
5347 /**
5348  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5349  * @bus: PCI bus to probe
5350  *
5351  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5352  */
pci_probe_reset_bus(struct pci_bus * bus)5353 int pci_probe_reset_bus(struct pci_bus *bus)
5354 {
5355 	return pci_bus_reset(bus, 1);
5356 }
5357 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5358 
5359 /**
5360  * __pci_reset_bus - Try to reset a PCI bus
5361  * @bus: top level PCI bus to reset
5362  *
5363  * Same as above except return -EAGAIN if the bus cannot be locked
5364  */
__pci_reset_bus(struct pci_bus * bus)5365 static int __pci_reset_bus(struct pci_bus *bus)
5366 {
5367 	int rc;
5368 
5369 	rc = pci_bus_reset(bus, 1);
5370 	if (rc)
5371 		return rc;
5372 
5373 	if (pci_bus_trylock(bus)) {
5374 		pci_bus_save_and_disable_locked(bus);
5375 		might_sleep();
5376 		rc = pci_bridge_secondary_bus_reset(bus->self);
5377 		pci_bus_restore_locked(bus);
5378 		pci_bus_unlock(bus);
5379 	} else
5380 		rc = -EAGAIN;
5381 
5382 	return rc;
5383 }
5384 
5385 /**
5386  * pci_reset_bus - Try to reset a PCI bus
5387  * @pdev: top level PCI device to reset via slot/bus
5388  *
5389  * Same as above except return -EAGAIN if the bus cannot be locked
5390  */
pci_reset_bus(struct pci_dev * pdev)5391 int pci_reset_bus(struct pci_dev *pdev)
5392 {
5393 	return (!pci_probe_reset_slot(pdev->slot)) ?
5394 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5395 }
5396 EXPORT_SYMBOL_GPL(pci_reset_bus);
5397 
5398 /**
5399  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5400  * @dev: PCI device to query
5401  *
5402  * Returns mmrbc: maximum designed memory read count in bytes or
5403  * appropriate error value.
5404  */
pcix_get_max_mmrbc(struct pci_dev * dev)5405 int pcix_get_max_mmrbc(struct pci_dev *dev)
5406 {
5407 	int cap;
5408 	u32 stat;
5409 
5410 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5411 	if (!cap)
5412 		return -EINVAL;
5413 
5414 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5415 		return -EINVAL;
5416 
5417 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5418 }
5419 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5420 
5421 /**
5422  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5423  * @dev: PCI device to query
5424  *
5425  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5426  * value.
5427  */
pcix_get_mmrbc(struct pci_dev * dev)5428 int pcix_get_mmrbc(struct pci_dev *dev)
5429 {
5430 	int cap;
5431 	u16 cmd;
5432 
5433 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5434 	if (!cap)
5435 		return -EINVAL;
5436 
5437 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5438 		return -EINVAL;
5439 
5440 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5441 }
5442 EXPORT_SYMBOL(pcix_get_mmrbc);
5443 
5444 /**
5445  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5446  * @dev: PCI device to query
5447  * @mmrbc: maximum memory read count in bytes
5448  *    valid values are 512, 1024, 2048, 4096
5449  *
5450  * If possible sets maximum memory read byte count, some bridges have errata
5451  * that prevent this.
5452  */
pcix_set_mmrbc(struct pci_dev * dev,int mmrbc)5453 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5454 {
5455 	int cap;
5456 	u32 stat, v, o;
5457 	u16 cmd;
5458 
5459 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5460 		return -EINVAL;
5461 
5462 	v = ffs(mmrbc) - 10;
5463 
5464 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5465 	if (!cap)
5466 		return -EINVAL;
5467 
5468 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5469 		return -EINVAL;
5470 
5471 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5472 		return -E2BIG;
5473 
5474 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5475 		return -EINVAL;
5476 
5477 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5478 	if (o != v) {
5479 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5480 			return -EIO;
5481 
5482 		cmd &= ~PCI_X_CMD_MAX_READ;
5483 		cmd |= v << 2;
5484 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5485 			return -EIO;
5486 	}
5487 	return 0;
5488 }
5489 EXPORT_SYMBOL(pcix_set_mmrbc);
5490 
5491 /**
5492  * pcie_get_readrq - get PCI Express read request size
5493  * @dev: PCI device to query
5494  *
5495  * Returns maximum memory read request in bytes or appropriate error value.
5496  */
pcie_get_readrq(struct pci_dev * dev)5497 int pcie_get_readrq(struct pci_dev *dev)
5498 {
5499 	u16 ctl;
5500 
5501 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5502 
5503 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5504 }
5505 EXPORT_SYMBOL(pcie_get_readrq);
5506 
5507 /**
5508  * pcie_set_readrq - set PCI Express maximum memory read request
5509  * @dev: PCI device to query
5510  * @rq: maximum memory read count in bytes
5511  *    valid values are 128, 256, 512, 1024, 2048, 4096
5512  *
5513  * If possible sets maximum memory read request in bytes
5514  */
pcie_set_readrq(struct pci_dev * dev,int rq)5515 int pcie_set_readrq(struct pci_dev *dev, int rq)
5516 {
5517 	u16 v;
5518 
5519 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5520 		return -EINVAL;
5521 
5522 	/*
5523 	 * If using the "performance" PCIe config, we clamp the read rq
5524 	 * size to the max packet size to keep the host bridge from
5525 	 * generating requests larger than we can cope with.
5526 	 */
5527 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5528 		int mps = pcie_get_mps(dev);
5529 
5530 		if (mps < rq)
5531 			rq = mps;
5532 	}
5533 
5534 	v = (ffs(rq) - 8) << 12;
5535 
5536 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5537 						  PCI_EXP_DEVCTL_READRQ, v);
5538 }
5539 EXPORT_SYMBOL(pcie_set_readrq);
5540 
5541 /**
5542  * pcie_get_mps - get PCI Express maximum payload size
5543  * @dev: PCI device to query
5544  *
5545  * Returns maximum payload size in bytes
5546  */
pcie_get_mps(struct pci_dev * dev)5547 int pcie_get_mps(struct pci_dev *dev)
5548 {
5549 	u16 ctl;
5550 
5551 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5552 
5553 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5554 }
5555 EXPORT_SYMBOL(pcie_get_mps);
5556 
5557 /**
5558  * pcie_set_mps - set PCI Express maximum payload size
5559  * @dev: PCI device to query
5560  * @mps: maximum payload size in bytes
5561  *    valid values are 128, 256, 512, 1024, 2048, 4096
5562  *
5563  * If possible sets maximum payload size
5564  */
pcie_set_mps(struct pci_dev * dev,int mps)5565 int pcie_set_mps(struct pci_dev *dev, int mps)
5566 {
5567 	u16 v;
5568 
5569 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5570 		return -EINVAL;
5571 
5572 	v = ffs(mps) - 8;
5573 	if (v > dev->pcie_mpss)
5574 		return -EINVAL;
5575 	v <<= 5;
5576 
5577 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5578 						  PCI_EXP_DEVCTL_PAYLOAD, v);
5579 }
5580 EXPORT_SYMBOL(pcie_set_mps);
5581 
5582 /**
5583  * pcie_bandwidth_available - determine minimum link settings of a PCIe
5584  *			      device and its bandwidth limitation
5585  * @dev: PCI device to query
5586  * @limiting_dev: storage for device causing the bandwidth limitation
5587  * @speed: storage for speed of limiting device
5588  * @width: storage for width of limiting device
5589  *
5590  * Walk up the PCI device chain and find the point where the minimum
5591  * bandwidth is available.  Return the bandwidth available there and (if
5592  * limiting_dev, speed, and width pointers are supplied) information about
5593  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5594  * raw bandwidth.
5595  */
pcie_bandwidth_available(struct pci_dev * dev,struct pci_dev ** limiting_dev,enum pci_bus_speed * speed,enum pcie_link_width * width)5596 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5597 			     enum pci_bus_speed *speed,
5598 			     enum pcie_link_width *width)
5599 {
5600 	u16 lnksta;
5601 	enum pci_bus_speed next_speed;
5602 	enum pcie_link_width next_width;
5603 	u32 bw, next_bw;
5604 
5605 	if (speed)
5606 		*speed = PCI_SPEED_UNKNOWN;
5607 	if (width)
5608 		*width = PCIE_LNK_WIDTH_UNKNOWN;
5609 
5610 	bw = 0;
5611 
5612 	while (dev) {
5613 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5614 
5615 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5616 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5617 			PCI_EXP_LNKSTA_NLW_SHIFT;
5618 
5619 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5620 
5621 		/* Check if current device limits the total bandwidth */
5622 		if (!bw || next_bw <= bw) {
5623 			bw = next_bw;
5624 
5625 			if (limiting_dev)
5626 				*limiting_dev = dev;
5627 			if (speed)
5628 				*speed = next_speed;
5629 			if (width)
5630 				*width = next_width;
5631 		}
5632 
5633 		dev = pci_upstream_bridge(dev);
5634 	}
5635 
5636 	return bw;
5637 }
5638 EXPORT_SYMBOL(pcie_bandwidth_available);
5639 
5640 /**
5641  * pcie_get_speed_cap - query for the PCI device's link speed capability
5642  * @dev: PCI device to query
5643  *
5644  * Query the PCI device speed capability.  Return the maximum link speed
5645  * supported by the device.
5646  */
pcie_get_speed_cap(struct pci_dev * dev)5647 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5648 {
5649 	u32 lnkcap2, lnkcap;
5650 
5651 	/*
5652 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
5653 	 * implementation note there recommends using the Supported Link
5654 	 * Speeds Vector in Link Capabilities 2 when supported.
5655 	 *
5656 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5657 	 * should use the Supported Link Speeds field in Link Capabilities,
5658 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5659 	 */
5660 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5661 	if (lnkcap2) { /* PCIe r3.0-compliant */
5662 		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_32_0GB)
5663 			return PCIE_SPEED_32_0GT;
5664 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
5665 			return PCIE_SPEED_16_0GT;
5666 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5667 			return PCIE_SPEED_8_0GT;
5668 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5669 			return PCIE_SPEED_5_0GT;
5670 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5671 			return PCIE_SPEED_2_5GT;
5672 		return PCI_SPEED_UNKNOWN;
5673 	}
5674 
5675 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5676 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5677 		return PCIE_SPEED_5_0GT;
5678 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5679 		return PCIE_SPEED_2_5GT;
5680 
5681 	return PCI_SPEED_UNKNOWN;
5682 }
5683 EXPORT_SYMBOL(pcie_get_speed_cap);
5684 
5685 /**
5686  * pcie_get_width_cap - query for the PCI device's link width capability
5687  * @dev: PCI device to query
5688  *
5689  * Query the PCI device width capability.  Return the maximum link width
5690  * supported by the device.
5691  */
pcie_get_width_cap(struct pci_dev * dev)5692 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5693 {
5694 	u32 lnkcap;
5695 
5696 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5697 	if (lnkcap)
5698 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5699 
5700 	return PCIE_LNK_WIDTH_UNKNOWN;
5701 }
5702 EXPORT_SYMBOL(pcie_get_width_cap);
5703 
5704 /**
5705  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5706  * @dev: PCI device
5707  * @speed: storage for link speed
5708  * @width: storage for link width
5709  *
5710  * Calculate a PCI device's link bandwidth by querying for its link speed
5711  * and width, multiplying them, and applying encoding overhead.  The result
5712  * is in Mb/s, i.e., megabits/second of raw bandwidth.
5713  */
pcie_bandwidth_capable(struct pci_dev * dev,enum pci_bus_speed * speed,enum pcie_link_width * width)5714 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5715 			   enum pcie_link_width *width)
5716 {
5717 	*speed = pcie_get_speed_cap(dev);
5718 	*width = pcie_get_width_cap(dev);
5719 
5720 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5721 		return 0;
5722 
5723 	return *width * PCIE_SPEED2MBS_ENC(*speed);
5724 }
5725 
5726 /**
5727  * __pcie_print_link_status - Report the PCI device's link speed and width
5728  * @dev: PCI device to query
5729  * @verbose: Print info even when enough bandwidth is available
5730  *
5731  * If the available bandwidth at the device is less than the device is
5732  * capable of, report the device's maximum possible bandwidth and the
5733  * upstream link that limits its performance.  If @verbose, always print
5734  * the available bandwidth, even if the device isn't constrained.
5735  */
__pcie_print_link_status(struct pci_dev * dev,bool verbose)5736 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5737 {
5738 	enum pcie_link_width width, width_cap;
5739 	enum pci_bus_speed speed, speed_cap;
5740 	struct pci_dev *limiting_dev = NULL;
5741 	u32 bw_avail, bw_cap;
5742 
5743 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5744 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5745 
5746 	if (bw_avail >= bw_cap && verbose)
5747 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5748 			 bw_cap / 1000, bw_cap % 1000,
5749 			 PCIE_SPEED2STR(speed_cap), width_cap);
5750 	else if (bw_avail < bw_cap)
5751 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5752 			 bw_avail / 1000, bw_avail % 1000,
5753 			 PCIE_SPEED2STR(speed), width,
5754 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5755 			 bw_cap / 1000, bw_cap % 1000,
5756 			 PCIE_SPEED2STR(speed_cap), width_cap);
5757 }
5758 
5759 /**
5760  * pcie_print_link_status - Report the PCI device's link speed and width
5761  * @dev: PCI device to query
5762  *
5763  * Report the available bandwidth at the device.
5764  */
pcie_print_link_status(struct pci_dev * dev)5765 void pcie_print_link_status(struct pci_dev *dev)
5766 {
5767 	__pcie_print_link_status(dev, true);
5768 }
5769 EXPORT_SYMBOL(pcie_print_link_status);
5770 
5771 /**
5772  * pci_select_bars - Make BAR mask from the type of resource
5773  * @dev: the PCI device for which BAR mask is made
5774  * @flags: resource type mask to be selected
5775  *
5776  * This helper routine makes bar mask from the type of resource.
5777  */
pci_select_bars(struct pci_dev * dev,unsigned long flags)5778 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5779 {
5780 	int i, bars = 0;
5781 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
5782 		if (pci_resource_flags(dev, i) & flags)
5783 			bars |= (1 << i);
5784 	return bars;
5785 }
5786 EXPORT_SYMBOL(pci_select_bars);
5787 
5788 /* Some architectures require additional programming to enable VGA */
5789 static arch_set_vga_state_t arch_set_vga_state;
5790 
pci_register_set_vga_state(arch_set_vga_state_t func)5791 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5792 {
5793 	arch_set_vga_state = func;	/* NULL disables */
5794 }
5795 
pci_set_vga_state_arch(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)5796 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5797 				  unsigned int command_bits, u32 flags)
5798 {
5799 	if (arch_set_vga_state)
5800 		return arch_set_vga_state(dev, decode, command_bits,
5801 						flags);
5802 	return 0;
5803 }
5804 
5805 /**
5806  * pci_set_vga_state - set VGA decode state on device and parents if requested
5807  * @dev: the PCI device
5808  * @decode: true = enable decoding, false = disable decoding
5809  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5810  * @flags: traverse ancestors and change bridges
5811  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5812  */
pci_set_vga_state(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)5813 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5814 		      unsigned int command_bits, u32 flags)
5815 {
5816 	struct pci_bus *bus;
5817 	struct pci_dev *bridge;
5818 	u16 cmd;
5819 	int rc;
5820 
5821 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5822 
5823 	/* ARCH specific VGA enables */
5824 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5825 	if (rc)
5826 		return rc;
5827 
5828 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5829 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
5830 		if (decode == true)
5831 			cmd |= command_bits;
5832 		else
5833 			cmd &= ~command_bits;
5834 		pci_write_config_word(dev, PCI_COMMAND, cmd);
5835 	}
5836 
5837 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5838 		return 0;
5839 
5840 	bus = dev->bus;
5841 	while (bus) {
5842 		bridge = bus->self;
5843 		if (bridge) {
5844 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5845 					     &cmd);
5846 			if (decode == true)
5847 				cmd |= PCI_BRIDGE_CTL_VGA;
5848 			else
5849 				cmd &= ~PCI_BRIDGE_CTL_VGA;
5850 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5851 					      cmd);
5852 		}
5853 		bus = bus->parent;
5854 	}
5855 	return 0;
5856 }
5857 
5858 #ifdef CONFIG_ACPI
pci_pr3_present(struct pci_dev * pdev)5859 bool pci_pr3_present(struct pci_dev *pdev)
5860 {
5861 	struct acpi_device *adev;
5862 
5863 	if (acpi_disabled)
5864 		return false;
5865 
5866 	adev = ACPI_COMPANION(&pdev->dev);
5867 	if (!adev)
5868 		return false;
5869 
5870 	return adev->power.flags.power_resources &&
5871 		acpi_has_method(adev->handle, "_PR3");
5872 }
5873 EXPORT_SYMBOL_GPL(pci_pr3_present);
5874 #endif
5875 
5876 /**
5877  * pci_add_dma_alias - Add a DMA devfn alias for a device
5878  * @dev: the PCI device for which alias is added
5879  * @devfn: alias slot and function
5880  *
5881  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
5882  * which is used to program permissible bus-devfn source addresses for DMA
5883  * requests in an IOMMU.  These aliases factor into IOMMU group creation
5884  * and are useful for devices generating DMA requests beyond or different
5885  * from their logical bus-devfn.  Examples include device quirks where the
5886  * device simply uses the wrong devfn, as well as non-transparent bridges
5887  * where the alias may be a proxy for devices in another domain.
5888  *
5889  * IOMMU group creation is performed during device discovery or addition,
5890  * prior to any potential DMA mapping and therefore prior to driver probing
5891  * (especially for userspace assigned devices where IOMMU group definition
5892  * cannot be left as a userspace activity).  DMA aliases should therefore
5893  * be configured via quirks, such as the PCI fixup header quirk.
5894  */
pci_add_dma_alias(struct pci_dev * dev,u8 devfn)5895 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5896 {
5897 	if (!dev->dma_alias_mask)
5898 		dev->dma_alias_mask = bitmap_zalloc(U8_MAX, GFP_KERNEL);
5899 	if (!dev->dma_alias_mask) {
5900 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
5901 		return;
5902 	}
5903 
5904 	set_bit(devfn, dev->dma_alias_mask);
5905 	pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
5906 		 PCI_SLOT(devfn), PCI_FUNC(devfn));
5907 }
5908 
pci_devs_are_dma_aliases(struct pci_dev * dev1,struct pci_dev * dev2)5909 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5910 {
5911 	return (dev1->dma_alias_mask &&
5912 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5913 	       (dev2->dma_alias_mask &&
5914 		test_bit(dev1->devfn, dev2->dma_alias_mask));
5915 }
5916 
pci_device_is_present(struct pci_dev * pdev)5917 bool pci_device_is_present(struct pci_dev *pdev)
5918 {
5919 	u32 v;
5920 
5921 	if (pci_dev_is_disconnected(pdev))
5922 		return false;
5923 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5924 }
5925 EXPORT_SYMBOL_GPL(pci_device_is_present);
5926 
pci_ignore_hotplug(struct pci_dev * dev)5927 void pci_ignore_hotplug(struct pci_dev *dev)
5928 {
5929 	struct pci_dev *bridge = dev->bus->self;
5930 
5931 	dev->ignore_hotplug = 1;
5932 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
5933 	if (bridge)
5934 		bridge->ignore_hotplug = 1;
5935 }
5936 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5937 
pcibios_default_alignment(void)5938 resource_size_t __weak pcibios_default_alignment(void)
5939 {
5940 	return 0;
5941 }
5942 
5943 /*
5944  * Arches that don't want to expose struct resource to userland as-is in
5945  * sysfs and /proc can implement their own pci_resource_to_user().
5946  */
pci_resource_to_user(const struct pci_dev * dev,int bar,const struct resource * rsrc,resource_size_t * start,resource_size_t * end)5947 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
5948 				 const struct resource *rsrc,
5949 				 resource_size_t *start, resource_size_t *end)
5950 {
5951 	*start = rsrc->start;
5952 	*end = rsrc->end;
5953 }
5954 
5955 static char *resource_alignment_param;
5956 static DEFINE_SPINLOCK(resource_alignment_lock);
5957 
5958 /**
5959  * pci_specified_resource_alignment - get resource alignment specified by user.
5960  * @dev: the PCI device to get
5961  * @resize: whether or not to change resources' size when reassigning alignment
5962  *
5963  * RETURNS: Resource alignment if it is specified.
5964  *          Zero if it is not specified.
5965  */
pci_specified_resource_alignment(struct pci_dev * dev,bool * resize)5966 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5967 							bool *resize)
5968 {
5969 	int align_order, count;
5970 	resource_size_t align = pcibios_default_alignment();
5971 	const char *p;
5972 	int ret;
5973 
5974 	spin_lock(&resource_alignment_lock);
5975 	p = resource_alignment_param;
5976 	if (!p || !*p)
5977 		goto out;
5978 	if (pci_has_flag(PCI_PROBE_ONLY)) {
5979 		align = 0;
5980 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5981 		goto out;
5982 	}
5983 
5984 	while (*p) {
5985 		count = 0;
5986 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5987 							p[count] == '@') {
5988 			p += count + 1;
5989 		} else {
5990 			align_order = -1;
5991 		}
5992 
5993 		ret = pci_dev_str_match(dev, p, &p);
5994 		if (ret == 1) {
5995 			*resize = true;
5996 			if (align_order == -1)
5997 				align = PAGE_SIZE;
5998 			else
5999 				align = 1 << align_order;
6000 			break;
6001 		} else if (ret < 0) {
6002 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6003 			       p);
6004 			break;
6005 		}
6006 
6007 		if (*p != ';' && *p != ',') {
6008 			/* End of param or invalid format */
6009 			break;
6010 		}
6011 		p++;
6012 	}
6013 out:
6014 	spin_unlock(&resource_alignment_lock);
6015 	return align;
6016 }
6017 
pci_request_resource_alignment(struct pci_dev * dev,int bar,resource_size_t align,bool resize)6018 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6019 					   resource_size_t align, bool resize)
6020 {
6021 	struct resource *r = &dev->resource[bar];
6022 	resource_size_t size;
6023 
6024 	if (!(r->flags & IORESOURCE_MEM))
6025 		return;
6026 
6027 	if (r->flags & IORESOURCE_PCI_FIXED) {
6028 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6029 			 bar, r, (unsigned long long)align);
6030 		return;
6031 	}
6032 
6033 	size = resource_size(r);
6034 	if (size >= align)
6035 		return;
6036 
6037 	/*
6038 	 * Increase the alignment of the resource.  There are two ways we
6039 	 * can do this:
6040 	 *
6041 	 * 1) Increase the size of the resource.  BARs are aligned on their
6042 	 *    size, so when we reallocate space for this resource, we'll
6043 	 *    allocate it with the larger alignment.  This also prevents
6044 	 *    assignment of any other BARs inside the alignment region, so
6045 	 *    if we're requesting page alignment, this means no other BARs
6046 	 *    will share the page.
6047 	 *
6048 	 *    The disadvantage is that this makes the resource larger than
6049 	 *    the hardware BAR, which may break drivers that compute things
6050 	 *    based on the resource size, e.g., to find registers at a
6051 	 *    fixed offset before the end of the BAR.
6052 	 *
6053 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6054 	 *    set r->start to the desired alignment.  By itself this
6055 	 *    doesn't prevent other BARs being put inside the alignment
6056 	 *    region, but if we realign *every* resource of every device in
6057 	 *    the system, none of them will share an alignment region.
6058 	 *
6059 	 * When the user has requested alignment for only some devices via
6060 	 * the "pci=resource_alignment" argument, "resize" is true and we
6061 	 * use the first method.  Otherwise we assume we're aligning all
6062 	 * devices and we use the second.
6063 	 */
6064 
6065 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6066 		 bar, r, (unsigned long long)align);
6067 
6068 	if (resize) {
6069 		r->start = 0;
6070 		r->end = align - 1;
6071 	} else {
6072 		r->flags &= ~IORESOURCE_SIZEALIGN;
6073 		r->flags |= IORESOURCE_STARTALIGN;
6074 		r->start = align;
6075 		r->end = r->start + size - 1;
6076 	}
6077 	r->flags |= IORESOURCE_UNSET;
6078 }
6079 
6080 /*
6081  * This function disables memory decoding and releases memory resources
6082  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6083  * It also rounds up size to specified alignment.
6084  * Later on, the kernel will assign page-aligned memory resource back
6085  * to the device.
6086  */
pci_reassigndev_resource_alignment(struct pci_dev * dev)6087 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6088 {
6089 	int i;
6090 	struct resource *r;
6091 	resource_size_t align;
6092 	u16 command;
6093 	bool resize = false;
6094 
6095 	/*
6096 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6097 	 * 3.4.1.11.  Their resources are allocated from the space
6098 	 * described by the VF BARx register in the PF's SR-IOV capability.
6099 	 * We can't influence their alignment here.
6100 	 */
6101 	if (dev->is_virtfn)
6102 		return;
6103 
6104 	/* check if specified PCI is target device to reassign */
6105 	align = pci_specified_resource_alignment(dev, &resize);
6106 	if (!align)
6107 		return;
6108 
6109 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6110 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6111 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6112 		return;
6113 	}
6114 
6115 	pci_read_config_word(dev, PCI_COMMAND, &command);
6116 	command &= ~PCI_COMMAND_MEMORY;
6117 	pci_write_config_word(dev, PCI_COMMAND, command);
6118 
6119 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6120 		pci_request_resource_alignment(dev, i, align, resize);
6121 
6122 	/*
6123 	 * Need to disable bridge's resource window,
6124 	 * to enable the kernel to reassign new resource
6125 	 * window later on.
6126 	 */
6127 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6128 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6129 			r = &dev->resource[i];
6130 			if (!(r->flags & IORESOURCE_MEM))
6131 				continue;
6132 			r->flags |= IORESOURCE_UNSET;
6133 			r->end = resource_size(r) - 1;
6134 			r->start = 0;
6135 		}
6136 		pci_disable_bridge_window(dev);
6137 	}
6138 }
6139 
resource_alignment_show(struct bus_type * bus,char * buf)6140 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6141 {
6142 	size_t count = 0;
6143 
6144 	spin_lock(&resource_alignment_lock);
6145 	if (resource_alignment_param)
6146 		count = snprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6147 	spin_unlock(&resource_alignment_lock);
6148 
6149 	/*
6150 	 * When set by the command line, resource_alignment_param will not
6151 	 * have a trailing line feed, which is ugly. So conditionally add
6152 	 * it here.
6153 	 */
6154 	if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6155 		buf[count - 1] = '\n';
6156 		buf[count++] = 0;
6157 	}
6158 
6159 	return count;
6160 }
6161 
resource_alignment_store(struct bus_type * bus,const char * buf,size_t count)6162 static ssize_t resource_alignment_store(struct bus_type *bus,
6163 					const char *buf, size_t count)
6164 {
6165 	char *param = kstrndup(buf, count, GFP_KERNEL);
6166 
6167 	if (!param)
6168 		return -ENOMEM;
6169 
6170 	spin_lock(&resource_alignment_lock);
6171 	kfree(resource_alignment_param);
6172 	resource_alignment_param = param;
6173 	spin_unlock(&resource_alignment_lock);
6174 	return count;
6175 }
6176 
6177 static BUS_ATTR_RW(resource_alignment);
6178 
pci_resource_alignment_sysfs_init(void)6179 static int __init pci_resource_alignment_sysfs_init(void)
6180 {
6181 	return bus_create_file(&pci_bus_type,
6182 					&bus_attr_resource_alignment);
6183 }
6184 late_initcall(pci_resource_alignment_sysfs_init);
6185 
pci_no_domains(void)6186 static void pci_no_domains(void)
6187 {
6188 #ifdef CONFIG_PCI_DOMAINS
6189 	pci_domains_supported = 0;
6190 #endif
6191 }
6192 
6193 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6194 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6195 
pci_get_new_domain_nr(void)6196 static int pci_get_new_domain_nr(void)
6197 {
6198 	return atomic_inc_return(&__domain_nr);
6199 }
6200 
of_pci_bus_find_domain_nr(struct device * parent)6201 static int of_pci_bus_find_domain_nr(struct device *parent)
6202 {
6203 	static int use_dt_domains = -1;
6204 	int domain = -1;
6205 
6206 	if (parent)
6207 		domain = of_get_pci_domain_nr(parent->of_node);
6208 
6209 	/*
6210 	 * Check DT domain and use_dt_domains values.
6211 	 *
6212 	 * If DT domain property is valid (domain >= 0) and
6213 	 * use_dt_domains != 0, the DT assignment is valid since this means
6214 	 * we have not previously allocated a domain number by using
6215 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6216 	 * 1, to indicate that we have just assigned a domain number from
6217 	 * DT.
6218 	 *
6219 	 * If DT domain property value is not valid (ie domain < 0), and we
6220 	 * have not previously assigned a domain number from DT
6221 	 * (use_dt_domains != 1) we should assign a domain number by
6222 	 * using the:
6223 	 *
6224 	 * pci_get_new_domain_nr()
6225 	 *
6226 	 * API and update the use_dt_domains value to keep track of method we
6227 	 * are using to assign domain numbers (use_dt_domains = 0).
6228 	 *
6229 	 * All other combinations imply we have a platform that is trying
6230 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6231 	 * which is a recipe for domain mishandling and it is prevented by
6232 	 * invalidating the domain value (domain = -1) and printing a
6233 	 * corresponding error.
6234 	 */
6235 	if (domain >= 0 && use_dt_domains) {
6236 		use_dt_domains = 1;
6237 	} else if (domain < 0 && use_dt_domains != 1) {
6238 		use_dt_domains = 0;
6239 		domain = pci_get_new_domain_nr();
6240 	} else {
6241 		if (parent)
6242 			pr_err("Node %pOF has ", parent->of_node);
6243 		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6244 		domain = -1;
6245 	}
6246 
6247 	return domain;
6248 }
6249 
pci_bus_find_domain_nr(struct pci_bus * bus,struct device * parent)6250 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6251 {
6252 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6253 			       acpi_pci_bus_find_domain_nr(bus);
6254 }
6255 #endif
6256 
6257 /**
6258  * pci_ext_cfg_avail - can we access extended PCI config space?
6259  *
6260  * Returns 1 if we can access PCI extended config space (offsets
6261  * greater than 0xff). This is the default implementation. Architecture
6262  * implementations can override this.
6263  */
pci_ext_cfg_avail(void)6264 int __weak pci_ext_cfg_avail(void)
6265 {
6266 	return 1;
6267 }
6268 
pci_fixup_cardbus(struct pci_bus * bus)6269 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6270 {
6271 }
6272 EXPORT_SYMBOL(pci_fixup_cardbus);
6273 
pci_setup(char * str)6274 static int __init pci_setup(char *str)
6275 {
6276 	while (str) {
6277 		char *k = strchr(str, ',');
6278 		if (k)
6279 			*k++ = 0;
6280 		if (*str && (str = pcibios_setup(str)) && *str) {
6281 			if (!strcmp(str, "nomsi")) {
6282 				pci_no_msi();
6283 			} else if (!strncmp(str, "noats", 5)) {
6284 				pr_info("PCIe: ATS is disabled\n");
6285 				pcie_ats_disabled = true;
6286 			} else if (!strcmp(str, "noaer")) {
6287 				pci_no_aer();
6288 			} else if (!strcmp(str, "earlydump")) {
6289 				pci_early_dump = true;
6290 			} else if (!strncmp(str, "realloc=", 8)) {
6291 				pci_realloc_get_opt(str + 8);
6292 			} else if (!strncmp(str, "realloc", 7)) {
6293 				pci_realloc_get_opt("on");
6294 			} else if (!strcmp(str, "nodomains")) {
6295 				pci_no_domains();
6296 			} else if (!strncmp(str, "noari", 5)) {
6297 				pcie_ari_disabled = true;
6298 			} else if (!strncmp(str, "cbiosize=", 9)) {
6299 				pci_cardbus_io_size = memparse(str + 9, &str);
6300 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6301 				pci_cardbus_mem_size = memparse(str + 10, &str);
6302 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6303 				resource_alignment_param = str + 19;
6304 			} else if (!strncmp(str, "ecrc=", 5)) {
6305 				pcie_ecrc_get_policy(str + 5);
6306 			} else if (!strncmp(str, "hpiosize=", 9)) {
6307 				pci_hotplug_io_size = memparse(str + 9, &str);
6308 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6309 				pci_hotplug_mem_size = memparse(str + 10, &str);
6310 			} else if (!strncmp(str, "hpbussize=", 10)) {
6311 				pci_hotplug_bus_size =
6312 					simple_strtoul(str + 10, &str, 0);
6313 				if (pci_hotplug_bus_size > 0xff)
6314 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6315 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6316 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6317 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6318 				pcie_bus_config = PCIE_BUS_SAFE;
6319 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6320 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6321 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6322 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6323 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6324 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6325 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6326 				disable_acs_redir_param = str + 18;
6327 			} else {
6328 				pr_err("PCI: Unknown option `%s'\n", str);
6329 			}
6330 		}
6331 		str = k;
6332 	}
6333 	return 0;
6334 }
6335 early_param("pci", pci_setup);
6336 
6337 /*
6338  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6339  * in pci_setup(), above, to point to data in the __initdata section which
6340  * will be freed after the init sequence is complete. We can't allocate memory
6341  * in pci_setup() because some architectures do not have any memory allocation
6342  * service available during an early_param() call. So we allocate memory and
6343  * copy the variable here before the init section is freed.
6344  *
6345  */
pci_realloc_setup_params(void)6346 static int __init pci_realloc_setup_params(void)
6347 {
6348 	resource_alignment_param = kstrdup(resource_alignment_param,
6349 					   GFP_KERNEL);
6350 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6351 
6352 	return 0;
6353 }
6354 pure_initcall(pci_realloc_setup_params);
6355