1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * PCMCIA high-level CIS access functions
4 *
5 * The initial developer of the original code is David A. Hinds
6 * <dahinds@users.sourceforge.net>. Portions created by David A. Hinds
7 * are Copyright (C) 1999 David A. Hinds. All Rights Reserved.
8 *
9 * Copyright (C) 1999 David A. Hinds
10 * Copyright (C) 2004-2010 Dominik Brodowski
11 */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/netdevice.h>
17
18 #include <pcmcia/cisreg.h>
19 #include <pcmcia/cistpl.h>
20 #include <pcmcia/ss.h>
21 #include <pcmcia/ds.h>
22 #include "cs_internal.h"
23
24
25 /**
26 * pccard_read_tuple() - internal CIS tuple access
27 * @s: the struct pcmcia_socket where the card is inserted
28 * @function: the device function we loop for
29 * @code: which CIS code shall we look for?
30 * @parse: buffer where the tuple shall be parsed (or NULL, if no parse)
31 *
32 * pccard_read_tuple() reads out one tuple and attempts to parse it
33 */
pccard_read_tuple(struct pcmcia_socket * s,unsigned int function,cisdata_t code,void * parse)34 int pccard_read_tuple(struct pcmcia_socket *s, unsigned int function,
35 cisdata_t code, void *parse)
36 {
37 tuple_t tuple;
38 cisdata_t *buf;
39 int ret;
40
41 buf = kmalloc(256, GFP_KERNEL);
42 if (buf == NULL) {
43 dev_warn(&s->dev, "no memory to read tuple\n");
44 return -ENOMEM;
45 }
46 tuple.DesiredTuple = code;
47 tuple.Attributes = 0;
48 if (function == BIND_FN_ALL)
49 tuple.Attributes = TUPLE_RETURN_COMMON;
50 ret = pccard_get_first_tuple(s, function, &tuple);
51 if (ret != 0)
52 goto done;
53 tuple.TupleData = buf;
54 tuple.TupleOffset = 0;
55 tuple.TupleDataMax = 255;
56 ret = pccard_get_tuple_data(s, &tuple);
57 if (ret != 0)
58 goto done;
59 ret = pcmcia_parse_tuple(&tuple, parse);
60 done:
61 kfree(buf);
62 return ret;
63 }
64
65
66 /**
67 * pccard_loop_tuple() - loop over tuples in the CIS
68 * @s: the struct pcmcia_socket where the card is inserted
69 * @function: the device function we loop for
70 * @code: which CIS code shall we look for?
71 * @parse: buffer where the tuple shall be parsed (or NULL, if no parse)
72 * @priv_data: private data to be passed to the loop_tuple function.
73 * @loop_tuple: function to call for each CIS entry of type @function. IT
74 * gets passed the raw tuple, the paresed tuple (if @parse is
75 * set) and @priv_data.
76 *
77 * pccard_loop_tuple() loops over all CIS entries of type @function, and
78 * calls the @loop_tuple function for each entry. If the call to @loop_tuple
79 * returns 0, the loop exits. Returns 0 on success or errorcode otherwise.
80 */
pccard_loop_tuple(struct pcmcia_socket * s,unsigned int function,cisdata_t code,cisparse_t * parse,void * priv_data,int (* loop_tuple)(tuple_t * tuple,cisparse_t * parse,void * priv_data))81 int pccard_loop_tuple(struct pcmcia_socket *s, unsigned int function,
82 cisdata_t code, cisparse_t *parse, void *priv_data,
83 int (*loop_tuple) (tuple_t *tuple,
84 cisparse_t *parse,
85 void *priv_data))
86 {
87 tuple_t tuple;
88 cisdata_t *buf;
89 int ret;
90
91 buf = kzalloc(256, GFP_KERNEL);
92 if (buf == NULL) {
93 dev_warn(&s->dev, "no memory to read tuple\n");
94 return -ENOMEM;
95 }
96
97 tuple.TupleData = buf;
98 tuple.TupleDataMax = 255;
99 tuple.TupleOffset = 0;
100 tuple.DesiredTuple = code;
101 tuple.Attributes = 0;
102
103 ret = pccard_get_first_tuple(s, function, &tuple);
104 while (!ret) {
105 if (pccard_get_tuple_data(s, &tuple))
106 goto next_entry;
107
108 if (parse)
109 if (pcmcia_parse_tuple(&tuple, parse))
110 goto next_entry;
111
112 ret = loop_tuple(&tuple, parse, priv_data);
113 if (!ret)
114 break;
115
116 next_entry:
117 ret = pccard_get_next_tuple(s, function, &tuple);
118 }
119
120 kfree(buf);
121 return ret;
122 }
123
124
125 /**
126 * pcmcia_io_cfg_data_width() - convert cfgtable to data path width parameter
127 */
pcmcia_io_cfg_data_width(unsigned int flags)128 static int pcmcia_io_cfg_data_width(unsigned int flags)
129 {
130 if (!(flags & CISTPL_IO_8BIT))
131 return IO_DATA_PATH_WIDTH_16;
132 if (!(flags & CISTPL_IO_16BIT))
133 return IO_DATA_PATH_WIDTH_8;
134 return IO_DATA_PATH_WIDTH_AUTO;
135 }
136
137
138 struct pcmcia_cfg_mem {
139 struct pcmcia_device *p_dev;
140 int (*conf_check) (struct pcmcia_device *p_dev, void *priv_data);
141 void *priv_data;
142 cisparse_t parse;
143 cistpl_cftable_entry_t dflt;
144 };
145
146 /**
147 * pcmcia_do_loop_config() - internal helper for pcmcia_loop_config()
148 *
149 * pcmcia_do_loop_config() is the internal callback for the call from
150 * pcmcia_loop_config() to pccard_loop_tuple(). Data is transferred
151 * by a struct pcmcia_cfg_mem.
152 */
pcmcia_do_loop_config(tuple_t * tuple,cisparse_t * parse,void * priv)153 static int pcmcia_do_loop_config(tuple_t *tuple, cisparse_t *parse, void *priv)
154 {
155 struct pcmcia_cfg_mem *cfg_mem = priv;
156 struct pcmcia_device *p_dev = cfg_mem->p_dev;
157 cistpl_cftable_entry_t *cfg = &parse->cftable_entry;
158 cistpl_cftable_entry_t *dflt = &cfg_mem->dflt;
159 unsigned int flags = p_dev->config_flags;
160 unsigned int vcc = p_dev->socket->socket.Vcc;
161
162 dev_dbg(&p_dev->dev, "testing configuration %x, autoconf %x\n",
163 cfg->index, flags);
164
165 /* default values */
166 cfg_mem->p_dev->config_index = cfg->index;
167 if (cfg->flags & CISTPL_CFTABLE_DEFAULT)
168 cfg_mem->dflt = *cfg;
169
170 /* check for matching Vcc? */
171 if (flags & CONF_AUTO_CHECK_VCC) {
172 if (cfg->vcc.present & (1 << CISTPL_POWER_VNOM)) {
173 if (vcc != cfg->vcc.param[CISTPL_POWER_VNOM] / 10000)
174 return -ENODEV;
175 } else if (dflt->vcc.present & (1 << CISTPL_POWER_VNOM)) {
176 if (vcc != dflt->vcc.param[CISTPL_POWER_VNOM] / 10000)
177 return -ENODEV;
178 }
179 }
180
181 /* set Vpp? */
182 if (flags & CONF_AUTO_SET_VPP) {
183 if (cfg->vpp1.present & (1 << CISTPL_POWER_VNOM))
184 p_dev->vpp = cfg->vpp1.param[CISTPL_POWER_VNOM] / 10000;
185 else if (dflt->vpp1.present & (1 << CISTPL_POWER_VNOM))
186 p_dev->vpp =
187 dflt->vpp1.param[CISTPL_POWER_VNOM] / 10000;
188 }
189
190 /* enable audio? */
191 if ((flags & CONF_AUTO_AUDIO) && (cfg->flags & CISTPL_CFTABLE_AUDIO))
192 p_dev->config_flags |= CONF_ENABLE_SPKR;
193
194
195 /* IO window settings? */
196 if (flags & CONF_AUTO_SET_IO) {
197 cistpl_io_t *io = (cfg->io.nwin) ? &cfg->io : &dflt->io;
198 int i = 0;
199
200 p_dev->resource[0]->start = p_dev->resource[0]->end = 0;
201 p_dev->resource[1]->start = p_dev->resource[1]->end = 0;
202 if (io->nwin == 0)
203 return -ENODEV;
204
205 p_dev->resource[0]->flags &= ~IO_DATA_PATH_WIDTH;
206 p_dev->resource[0]->flags |=
207 pcmcia_io_cfg_data_width(io->flags);
208 if (io->nwin > 1) {
209 /* For multifunction cards, by convention, we
210 * configure the network function with window 0,
211 * and serial with window 1 */
212 i = (io->win[1].len > io->win[0].len);
213 p_dev->resource[1]->flags = p_dev->resource[0]->flags;
214 p_dev->resource[1]->start = io->win[1-i].base;
215 p_dev->resource[1]->end = io->win[1-i].len;
216 }
217 p_dev->resource[0]->start = io->win[i].base;
218 p_dev->resource[0]->end = io->win[i].len;
219 p_dev->io_lines = io->flags & CISTPL_IO_LINES_MASK;
220 }
221
222 /* MEM window settings? */
223 if (flags & CONF_AUTO_SET_IOMEM) {
224 /* so far, we only set one memory window */
225 cistpl_mem_t *mem = (cfg->mem.nwin) ? &cfg->mem : &dflt->mem;
226
227 p_dev->resource[2]->start = p_dev->resource[2]->end = 0;
228 if (mem->nwin == 0)
229 return -ENODEV;
230
231 p_dev->resource[2]->start = mem->win[0].host_addr;
232 p_dev->resource[2]->end = mem->win[0].len;
233 if (p_dev->resource[2]->end < 0x1000)
234 p_dev->resource[2]->end = 0x1000;
235 p_dev->card_addr = mem->win[0].card_addr;
236 }
237
238 dev_dbg(&p_dev->dev,
239 "checking configuration %x: %pr %pr %pr (%d lines)\n",
240 p_dev->config_index, p_dev->resource[0], p_dev->resource[1],
241 p_dev->resource[2], p_dev->io_lines);
242
243 return cfg_mem->conf_check(p_dev, cfg_mem->priv_data);
244 }
245
246 /**
247 * pcmcia_loop_config() - loop over configuration options
248 * @p_dev: the struct pcmcia_device which we need to loop for.
249 * @conf_check: function to call for each configuration option.
250 * It gets passed the struct pcmcia_device and private data
251 * being passed to pcmcia_loop_config()
252 * @priv_data: private data to be passed to the conf_check function.
253 *
254 * pcmcia_loop_config() loops over all configuration options, and calls
255 * the driver-specific conf_check() for each one, checking whether
256 * it is a valid one. Returns 0 on success or errorcode otherwise.
257 */
pcmcia_loop_config(struct pcmcia_device * p_dev,int (* conf_check)(struct pcmcia_device * p_dev,void * priv_data),void * priv_data)258 int pcmcia_loop_config(struct pcmcia_device *p_dev,
259 int (*conf_check) (struct pcmcia_device *p_dev,
260 void *priv_data),
261 void *priv_data)
262 {
263 struct pcmcia_cfg_mem *cfg_mem;
264 int ret;
265
266 cfg_mem = kzalloc(sizeof(struct pcmcia_cfg_mem), GFP_KERNEL);
267 if (cfg_mem == NULL)
268 return -ENOMEM;
269
270 cfg_mem->p_dev = p_dev;
271 cfg_mem->conf_check = conf_check;
272 cfg_mem->priv_data = priv_data;
273
274 ret = pccard_loop_tuple(p_dev->socket, p_dev->func,
275 CISTPL_CFTABLE_ENTRY, &cfg_mem->parse,
276 cfg_mem, pcmcia_do_loop_config);
277
278 kfree(cfg_mem);
279 return ret;
280 }
281 EXPORT_SYMBOL(pcmcia_loop_config);
282
283
284 struct pcmcia_loop_mem {
285 struct pcmcia_device *p_dev;
286 void *priv_data;
287 int (*loop_tuple) (struct pcmcia_device *p_dev,
288 tuple_t *tuple,
289 void *priv_data);
290 };
291
292 /**
293 * pcmcia_do_loop_tuple() - internal helper for pcmcia_loop_config()
294 *
295 * pcmcia_do_loop_tuple() is the internal callback for the call from
296 * pcmcia_loop_tuple() to pccard_loop_tuple(). Data is transferred
297 * by a struct pcmcia_cfg_mem.
298 */
pcmcia_do_loop_tuple(tuple_t * tuple,cisparse_t * parse,void * priv)299 static int pcmcia_do_loop_tuple(tuple_t *tuple, cisparse_t *parse, void *priv)
300 {
301 struct pcmcia_loop_mem *loop = priv;
302
303 return loop->loop_tuple(loop->p_dev, tuple, loop->priv_data);
304 };
305
306 /**
307 * pcmcia_loop_tuple() - loop over tuples in the CIS
308 * @p_dev: the struct pcmcia_device which we need to loop for.
309 * @code: which CIS code shall we look for?
310 * @priv_data: private data to be passed to the loop_tuple function.
311 * @loop_tuple: function to call for each CIS entry of type @function. IT
312 * gets passed the raw tuple and @priv_data.
313 *
314 * pcmcia_loop_tuple() loops over all CIS entries of type @function, and
315 * calls the @loop_tuple function for each entry. If the call to @loop_tuple
316 * returns 0, the loop exits. Returns 0 on success or errorcode otherwise.
317 */
pcmcia_loop_tuple(struct pcmcia_device * p_dev,cisdata_t code,int (* loop_tuple)(struct pcmcia_device * p_dev,tuple_t * tuple,void * priv_data),void * priv_data)318 int pcmcia_loop_tuple(struct pcmcia_device *p_dev, cisdata_t code,
319 int (*loop_tuple) (struct pcmcia_device *p_dev,
320 tuple_t *tuple,
321 void *priv_data),
322 void *priv_data)
323 {
324 struct pcmcia_loop_mem loop = {
325 .p_dev = p_dev,
326 .loop_tuple = loop_tuple,
327 .priv_data = priv_data};
328
329 return pccard_loop_tuple(p_dev->socket, p_dev->func, code, NULL,
330 &loop, pcmcia_do_loop_tuple);
331 }
332 EXPORT_SYMBOL(pcmcia_loop_tuple);
333
334
335 struct pcmcia_loop_get {
336 size_t len;
337 cisdata_t **buf;
338 };
339
340 /**
341 * pcmcia_do_get_tuple() - internal helper for pcmcia_get_tuple()
342 *
343 * pcmcia_do_get_tuple() is the internal callback for the call from
344 * pcmcia_get_tuple() to pcmcia_loop_tuple(). As we're only interested in
345 * the first tuple, return 0 unconditionally. Create a memory buffer large
346 * enough to hold the content of the tuple, and fill it with the tuple data.
347 * The caller is responsible to free the buffer.
348 */
pcmcia_do_get_tuple(struct pcmcia_device * p_dev,tuple_t * tuple,void * priv)349 static int pcmcia_do_get_tuple(struct pcmcia_device *p_dev, tuple_t *tuple,
350 void *priv)
351 {
352 struct pcmcia_loop_get *get = priv;
353
354 *get->buf = kzalloc(tuple->TupleDataLen, GFP_KERNEL);
355 if (*get->buf) {
356 get->len = tuple->TupleDataLen;
357 memcpy(*get->buf, tuple->TupleData, tuple->TupleDataLen);
358 } else
359 dev_dbg(&p_dev->dev, "do_get_tuple: out of memory\n");
360 return 0;
361 }
362
363 /**
364 * pcmcia_get_tuple() - get first tuple from CIS
365 * @p_dev: the struct pcmcia_device which we need to loop for.
366 * @code: which CIS code shall we look for?
367 * @buf: pointer to store the buffer to.
368 *
369 * pcmcia_get_tuple() gets the content of the first CIS entry of type @code.
370 * It returns the buffer length (or zero). The caller is responsible to free
371 * the buffer passed in @buf.
372 */
pcmcia_get_tuple(struct pcmcia_device * p_dev,cisdata_t code,unsigned char ** buf)373 size_t pcmcia_get_tuple(struct pcmcia_device *p_dev, cisdata_t code,
374 unsigned char **buf)
375 {
376 struct pcmcia_loop_get get = {
377 .len = 0,
378 .buf = buf,
379 };
380
381 *get.buf = NULL;
382 pcmcia_loop_tuple(p_dev, code, pcmcia_do_get_tuple, &get);
383
384 return get.len;
385 }
386 EXPORT_SYMBOL(pcmcia_get_tuple);
387
388
389 /**
390 * pcmcia_do_get_mac() - internal helper for pcmcia_get_mac_from_cis()
391 *
392 * pcmcia_do_get_mac() is the internal callback for the call from
393 * pcmcia_get_mac_from_cis() to pcmcia_loop_tuple(). We check whether the
394 * tuple contains a proper LAN_NODE_ID of length 6, and copy the data
395 * to struct net_device->dev_addr[i].
396 */
pcmcia_do_get_mac(struct pcmcia_device * p_dev,tuple_t * tuple,void * priv)397 static int pcmcia_do_get_mac(struct pcmcia_device *p_dev, tuple_t *tuple,
398 void *priv)
399 {
400 struct net_device *dev = priv;
401 int i;
402
403 if (tuple->TupleData[0] != CISTPL_FUNCE_LAN_NODE_ID)
404 return -EINVAL;
405 if (tuple->TupleDataLen < ETH_ALEN + 2) {
406 dev_warn(&p_dev->dev, "Invalid CIS tuple length for "
407 "LAN_NODE_ID\n");
408 return -EINVAL;
409 }
410
411 if (tuple->TupleData[1] != ETH_ALEN) {
412 dev_warn(&p_dev->dev, "Invalid header for LAN_NODE_ID\n");
413 return -EINVAL;
414 }
415 for (i = 0; i < 6; i++)
416 dev->dev_addr[i] = tuple->TupleData[i+2];
417 return 0;
418 }
419
420 /**
421 * pcmcia_get_mac_from_cis() - read out MAC address from CISTPL_FUNCE
422 * @p_dev: the struct pcmcia_device for which we want the address.
423 * @dev: a properly prepared struct net_device to store the info to.
424 *
425 * pcmcia_get_mac_from_cis() reads out the hardware MAC address from
426 * CISTPL_FUNCE and stores it into struct net_device *dev->dev_addr which
427 * must be set up properly by the driver (see examples!).
428 */
pcmcia_get_mac_from_cis(struct pcmcia_device * p_dev,struct net_device * dev)429 int pcmcia_get_mac_from_cis(struct pcmcia_device *p_dev, struct net_device *dev)
430 {
431 return pcmcia_loop_tuple(p_dev, CISTPL_FUNCE, pcmcia_do_get_mac, dev);
432 }
433 EXPORT_SYMBOL(pcmcia_get_mac_from_cis);
434
435