• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Generic pwmlib implementation
4  *
5  * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6  * Copyright (C) 2011-2012 Avionic Design GmbH
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/module.h>
11 #include <linux/pwm.h>
12 #include <linux/radix-tree.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/debugfs.h>
19 #include <linux/seq_file.h>
20 
21 #include <dt-bindings/pwm/pwm.h>
22 
23 #define MAX_PWMS 1024
24 
25 static DEFINE_MUTEX(pwm_lookup_lock);
26 static LIST_HEAD(pwm_lookup_list);
27 static DEFINE_MUTEX(pwm_lock);
28 static LIST_HEAD(pwm_chips);
29 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
30 static RADIX_TREE(pwm_tree, GFP_KERNEL);
31 
pwm_to_device(unsigned int pwm)32 static struct pwm_device *pwm_to_device(unsigned int pwm)
33 {
34 	return radix_tree_lookup(&pwm_tree, pwm);
35 }
36 
alloc_pwms(int pwm,unsigned int count)37 static int alloc_pwms(int pwm, unsigned int count)
38 {
39 	unsigned int from = 0;
40 	unsigned int start;
41 
42 	if (pwm >= MAX_PWMS)
43 		return -EINVAL;
44 
45 	if (pwm >= 0)
46 		from = pwm;
47 
48 	start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, from,
49 					   count, 0);
50 
51 	if (pwm >= 0 && start != pwm)
52 		return -EEXIST;
53 
54 	if (start + count > MAX_PWMS)
55 		return -ENOSPC;
56 
57 	return start;
58 }
59 
free_pwms(struct pwm_chip * chip)60 static void free_pwms(struct pwm_chip *chip)
61 {
62 	unsigned int i;
63 
64 	for (i = 0; i < chip->npwm; i++) {
65 		struct pwm_device *pwm = &chip->pwms[i];
66 
67 		radix_tree_delete(&pwm_tree, pwm->pwm);
68 	}
69 
70 	bitmap_clear(allocated_pwms, chip->base, chip->npwm);
71 
72 	kfree(chip->pwms);
73 	chip->pwms = NULL;
74 }
75 
pwmchip_find_by_name(const char * name)76 static struct pwm_chip *pwmchip_find_by_name(const char *name)
77 {
78 	struct pwm_chip *chip;
79 
80 	if (!name)
81 		return NULL;
82 
83 	mutex_lock(&pwm_lock);
84 
85 	list_for_each_entry(chip, &pwm_chips, list) {
86 		const char *chip_name = dev_name(chip->dev);
87 
88 		if (chip_name && strcmp(chip_name, name) == 0) {
89 			mutex_unlock(&pwm_lock);
90 			return chip;
91 		}
92 	}
93 
94 	mutex_unlock(&pwm_lock);
95 
96 	return NULL;
97 }
98 
pwm_device_request(struct pwm_device * pwm,const char * label)99 static int pwm_device_request(struct pwm_device *pwm, const char *label)
100 {
101 	int err;
102 
103 	if (test_bit(PWMF_REQUESTED, &pwm->flags))
104 		return -EBUSY;
105 
106 	if (!try_module_get(pwm->chip->ops->owner))
107 		return -ENODEV;
108 
109 	if (pwm->chip->ops->request) {
110 		err = pwm->chip->ops->request(pwm->chip, pwm);
111 		if (err) {
112 			module_put(pwm->chip->ops->owner);
113 			return err;
114 		}
115 	}
116 
117 	set_bit(PWMF_REQUESTED, &pwm->flags);
118 	pwm->label = label;
119 
120 	return 0;
121 }
122 
123 struct pwm_device *
of_pwm_xlate_with_flags(struct pwm_chip * pc,const struct of_phandle_args * args)124 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
125 {
126 	struct pwm_device *pwm;
127 
128 	/* check, whether the driver supports a third cell for flags */
129 	if (pc->of_pwm_n_cells < 3)
130 		return ERR_PTR(-EINVAL);
131 
132 	/* flags in the third cell are optional */
133 	if (args->args_count < 2)
134 		return ERR_PTR(-EINVAL);
135 
136 	if (args->args[0] >= pc->npwm)
137 		return ERR_PTR(-EINVAL);
138 
139 	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
140 	if (IS_ERR(pwm))
141 		return pwm;
142 
143 	pwm->args.period = args->args[1];
144 	pwm->args.polarity = PWM_POLARITY_NORMAL;
145 
146 	if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
147 		pwm->args.polarity = PWM_POLARITY_INVERSED;
148 
149 	return pwm;
150 }
151 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
152 
153 static struct pwm_device *
of_pwm_simple_xlate(struct pwm_chip * pc,const struct of_phandle_args * args)154 of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
155 {
156 	struct pwm_device *pwm;
157 
158 	/* sanity check driver support */
159 	if (pc->of_pwm_n_cells < 2)
160 		return ERR_PTR(-EINVAL);
161 
162 	/* all cells are required */
163 	if (args->args_count != pc->of_pwm_n_cells)
164 		return ERR_PTR(-EINVAL);
165 
166 	if (args->args[0] >= pc->npwm)
167 		return ERR_PTR(-EINVAL);
168 
169 	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
170 	if (IS_ERR(pwm))
171 		return pwm;
172 
173 	pwm->args.period = args->args[1];
174 
175 	return pwm;
176 }
177 
of_pwmchip_add(struct pwm_chip * chip)178 static void of_pwmchip_add(struct pwm_chip *chip)
179 {
180 	if (!chip->dev || !chip->dev->of_node)
181 		return;
182 
183 	if (!chip->of_xlate) {
184 		chip->of_xlate = of_pwm_simple_xlate;
185 		chip->of_pwm_n_cells = 2;
186 	}
187 
188 	of_node_get(chip->dev->of_node);
189 }
190 
of_pwmchip_remove(struct pwm_chip * chip)191 static void of_pwmchip_remove(struct pwm_chip *chip)
192 {
193 	if (chip->dev)
194 		of_node_put(chip->dev->of_node);
195 }
196 
197 /**
198  * pwm_set_chip_data() - set private chip data for a PWM
199  * @pwm: PWM device
200  * @data: pointer to chip-specific data
201  *
202  * Returns: 0 on success or a negative error code on failure.
203  */
pwm_set_chip_data(struct pwm_device * pwm,void * data)204 int pwm_set_chip_data(struct pwm_device *pwm, void *data)
205 {
206 	if (!pwm)
207 		return -EINVAL;
208 
209 	pwm->chip_data = data;
210 
211 	return 0;
212 }
213 EXPORT_SYMBOL_GPL(pwm_set_chip_data);
214 
215 /**
216  * pwm_get_chip_data() - get private chip data for a PWM
217  * @pwm: PWM device
218  *
219  * Returns: A pointer to the chip-private data for the PWM device.
220  */
pwm_get_chip_data(struct pwm_device * pwm)221 void *pwm_get_chip_data(struct pwm_device *pwm)
222 {
223 	return pwm ? pwm->chip_data : NULL;
224 }
225 EXPORT_SYMBOL_GPL(pwm_get_chip_data);
226 
pwm_ops_check(const struct pwm_ops * ops)227 static bool pwm_ops_check(const struct pwm_ops *ops)
228 {
229 	/* driver supports legacy, non-atomic operation */
230 	if (ops->config && ops->enable && ops->disable)
231 		return true;
232 
233 	/* driver supports atomic operation */
234 	if (ops->apply)
235 		return true;
236 
237 	return false;
238 }
239 
240 /**
241  * pwmchip_add_with_polarity() - register a new PWM chip
242  * @chip: the PWM chip to add
243  * @polarity: initial polarity of PWM channels
244  *
245  * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
246  * will be used. The initial polarity for all channels is specified by the
247  * @polarity parameter.
248  *
249  * Returns: 0 on success or a negative error code on failure.
250  */
pwmchip_add_with_polarity(struct pwm_chip * chip,enum pwm_polarity polarity)251 int pwmchip_add_with_polarity(struct pwm_chip *chip,
252 			      enum pwm_polarity polarity)
253 {
254 	struct pwm_device *pwm;
255 	unsigned int i;
256 	int ret;
257 
258 	if (!chip || !chip->dev || !chip->ops || !chip->npwm)
259 		return -EINVAL;
260 
261 	if (!pwm_ops_check(chip->ops))
262 		return -EINVAL;
263 
264 	mutex_lock(&pwm_lock);
265 
266 	ret = alloc_pwms(chip->base, chip->npwm);
267 	if (ret < 0)
268 		goto out;
269 
270 	chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
271 	if (!chip->pwms) {
272 		ret = -ENOMEM;
273 		goto out;
274 	}
275 
276 	chip->base = ret;
277 
278 	for (i = 0; i < chip->npwm; i++) {
279 		pwm = &chip->pwms[i];
280 
281 		pwm->chip = chip;
282 		pwm->pwm = chip->base + i;
283 		pwm->hwpwm = i;
284 		pwm->state.polarity = polarity;
285 		pwm->state.output_type = PWM_OUTPUT_FIXED;
286 
287 		if (chip->ops->get_state)
288 			chip->ops->get_state(chip, pwm, &pwm->state);
289 
290 		radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
291 	}
292 
293 	bitmap_set(allocated_pwms, chip->base, chip->npwm);
294 
295 	INIT_LIST_HEAD(&chip->list);
296 	list_add(&chip->list, &pwm_chips);
297 
298 	ret = 0;
299 
300 	if (IS_ENABLED(CONFIG_OF))
301 		of_pwmchip_add(chip);
302 
303 out:
304 	mutex_unlock(&pwm_lock);
305 
306 	if (!ret)
307 		pwmchip_sysfs_export(chip);
308 
309 	return ret;
310 }
311 EXPORT_SYMBOL_GPL(pwmchip_add_with_polarity);
312 
313 /**
314  * pwmchip_add() - register a new PWM chip
315  * @chip: the PWM chip to add
316  *
317  * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
318  * will be used. The initial polarity for all channels is normal.
319  *
320  * Returns: 0 on success or a negative error code on failure.
321  */
pwmchip_add(struct pwm_chip * chip)322 int pwmchip_add(struct pwm_chip *chip)
323 {
324 	return pwmchip_add_with_polarity(chip, PWM_POLARITY_NORMAL);
325 }
326 EXPORT_SYMBOL_GPL(pwmchip_add);
327 
328 /**
329  * pwmchip_remove() - remove a PWM chip
330  * @chip: the PWM chip to remove
331  *
332  * Removes a PWM chip. This function may return busy if the PWM chip provides
333  * a PWM device that is still requested.
334  *
335  * Returns: 0 on success or a negative error code on failure.
336  */
pwmchip_remove(struct pwm_chip * chip)337 int pwmchip_remove(struct pwm_chip *chip)
338 {
339 	unsigned int i;
340 	int ret = 0;
341 
342 	pwmchip_sysfs_unexport(chip);
343 
344 	mutex_lock(&pwm_lock);
345 
346 	for (i = 0; i < chip->npwm; i++) {
347 		struct pwm_device *pwm = &chip->pwms[i];
348 
349 		if (test_bit(PWMF_REQUESTED, &pwm->flags)) {
350 			ret = -EBUSY;
351 			goto out;
352 		}
353 	}
354 
355 	list_del_init(&chip->list);
356 
357 	if (IS_ENABLED(CONFIG_OF))
358 		of_pwmchip_remove(chip);
359 
360 	free_pwms(chip);
361 
362 out:
363 	mutex_unlock(&pwm_lock);
364 	return ret;
365 }
366 EXPORT_SYMBOL_GPL(pwmchip_remove);
367 
368 /**
369  * pwm_request() - request a PWM device
370  * @pwm: global PWM device index
371  * @label: PWM device label
372  *
373  * This function is deprecated, use pwm_get() instead.
374  *
375  * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
376  * failure.
377  */
pwm_request(int pwm,const char * label)378 struct pwm_device *pwm_request(int pwm, const char *label)
379 {
380 	struct pwm_device *dev;
381 	int err;
382 
383 	if (pwm < 0 || pwm >= MAX_PWMS)
384 		return ERR_PTR(-EINVAL);
385 
386 	mutex_lock(&pwm_lock);
387 
388 	dev = pwm_to_device(pwm);
389 	if (!dev) {
390 		dev = ERR_PTR(-EPROBE_DEFER);
391 		goto out;
392 	}
393 
394 	err = pwm_device_request(dev, label);
395 	if (err < 0)
396 		dev = ERR_PTR(err);
397 
398 out:
399 	mutex_unlock(&pwm_lock);
400 
401 	return dev;
402 }
403 EXPORT_SYMBOL_GPL(pwm_request);
404 
405 /**
406  * pwm_request_from_chip() - request a PWM device relative to a PWM chip
407  * @chip: PWM chip
408  * @index: per-chip index of the PWM to request
409  * @label: a literal description string of this PWM
410  *
411  * Returns: A pointer to the PWM device at the given index of the given PWM
412  * chip. A negative error code is returned if the index is not valid for the
413  * specified PWM chip or if the PWM device cannot be requested.
414  */
pwm_request_from_chip(struct pwm_chip * chip,unsigned int index,const char * label)415 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
416 					 unsigned int index,
417 					 const char *label)
418 {
419 	struct pwm_device *pwm;
420 	int err;
421 
422 	if (!chip || index >= chip->npwm)
423 		return ERR_PTR(-EINVAL);
424 
425 	mutex_lock(&pwm_lock);
426 	pwm = &chip->pwms[index];
427 
428 	err = pwm_device_request(pwm, label);
429 	if (err < 0)
430 		pwm = ERR_PTR(err);
431 
432 	mutex_unlock(&pwm_lock);
433 	return pwm;
434 }
435 EXPORT_SYMBOL_GPL(pwm_request_from_chip);
436 
437 /**
438  * pwm_free() - free a PWM device
439  * @pwm: PWM device
440  *
441  * This function is deprecated, use pwm_put() instead.
442  */
pwm_free(struct pwm_device * pwm)443 void pwm_free(struct pwm_device *pwm)
444 {
445 	pwm_put(pwm);
446 }
447 EXPORT_SYMBOL_GPL(pwm_free);
448 
449 /**
450  * pwm_apply_state() - atomically apply a new state to a PWM device
451  * @pwm: PWM device
452  * @state: new state to apply
453  */
pwm_apply_state(struct pwm_device * pwm,const struct pwm_state * state)454 int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
455 {
456 	struct pwm_chip *chip;
457 	int err;
458 
459 	if (!pwm || !state || !state->period ||
460 	    state->duty_cycle > state->period)
461 		return -EINVAL;
462 
463 	chip = pwm->chip;
464 
465 	if (state->period == pwm->state.period &&
466 	    state->duty_cycle == pwm->state.duty_cycle &&
467 	    state->polarity == pwm->state.polarity &&
468 	    state->enabled == pwm->state.enabled)
469 		return 0;
470 
471 	if (chip->ops->apply) {
472 		err = chip->ops->apply(chip, pwm, state);
473 		if (err)
474 			return err;
475 
476 		pwm->state = *state;
477 	} else {
478 		/*
479 		 * FIXME: restore the initial state in case of error.
480 		 */
481 		if (state->polarity != pwm->state.polarity) {
482 			if (!chip->ops->set_polarity)
483 				return -ENOTSUPP;
484 
485 			/*
486 			 * Changing the polarity of a running PWM is
487 			 * only allowed when the PWM driver implements
488 			 * ->apply().
489 			 */
490 			if (pwm->state.enabled) {
491 				chip->ops->disable(chip, pwm);
492 				pwm->state.enabled = false;
493 			}
494 
495 			err = chip->ops->set_polarity(chip, pwm,
496 						      state->polarity);
497 			if (err)
498 				return err;
499 
500 			pwm->state.polarity = state->polarity;
501 		}
502 
503 		if (state->period != pwm->state.period ||
504 		    state->duty_cycle != pwm->state.duty_cycle) {
505 			err = chip->ops->config(pwm->chip, pwm,
506 						state->duty_cycle,
507 						state->period);
508 			if (err)
509 				return err;
510 
511 			pwm->state.duty_cycle = state->duty_cycle;
512 			pwm->state.period = state->period;
513 		}
514 
515 		if (state->enabled != pwm->state.enabled) {
516 			if (state->enabled) {
517 				err = chip->ops->enable(chip, pwm);
518 				if (err)
519 					return err;
520 			} else {
521 				chip->ops->disable(chip, pwm);
522 			}
523 
524 			pwm->state.enabled = state->enabled;
525 		}
526 	}
527 
528 	return 0;
529 }
530 EXPORT_SYMBOL_GPL(pwm_apply_state);
531 
532 /**
533  * pwm_capture() - capture and report a PWM signal
534  * @pwm: PWM device
535  * @result: structure to fill with capture result
536  * @timeout: time to wait, in milliseconds, before giving up on capture
537  *
538  * Returns: 0 on success or a negative error code on failure.
539  */
pwm_capture(struct pwm_device * pwm,struct pwm_capture * result,unsigned long timeout)540 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
541 		unsigned long timeout)
542 {
543 	int err;
544 
545 	if (!pwm || !pwm->chip->ops)
546 		return -EINVAL;
547 
548 	if (!pwm->chip->ops->capture)
549 		return -ENOSYS;
550 
551 	mutex_lock(&pwm_lock);
552 	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
553 	mutex_unlock(&pwm_lock);
554 
555 	return err;
556 }
557 EXPORT_SYMBOL_GPL(pwm_capture);
558 
559 /**
560  * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
561  * @pwm: PWM device
562  *
563  * This function will adjust the PWM config to the PWM arguments provided
564  * by the DT or PWM lookup table. This is particularly useful to adapt
565  * the bootloader config to the Linux one.
566  */
pwm_adjust_config(struct pwm_device * pwm)567 int pwm_adjust_config(struct pwm_device *pwm)
568 {
569 	struct pwm_state state;
570 	struct pwm_args pargs;
571 
572 	pwm_get_args(pwm, &pargs);
573 	pwm_get_state(pwm, &state);
574 
575 	/*
576 	 * If the current period is zero it means that either the PWM driver
577 	 * does not support initial state retrieval or the PWM has not yet
578 	 * been configured.
579 	 *
580 	 * In either case, we setup the new period and polarity, and assign a
581 	 * duty cycle of 0.
582 	 */
583 	if (!state.period) {
584 		state.duty_cycle = 0;
585 		state.period = pargs.period;
586 		state.polarity = pargs.polarity;
587 
588 		return pwm_apply_state(pwm, &state);
589 	}
590 
591 	/*
592 	 * Adjust the PWM duty cycle/period based on the period value provided
593 	 * in PWM args.
594 	 */
595 	if (pargs.period != state.period) {
596 		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
597 
598 		do_div(dutycycle, state.period);
599 		state.duty_cycle = dutycycle;
600 		state.period = pargs.period;
601 	}
602 
603 	/*
604 	 * If the polarity changed, we should also change the duty cycle.
605 	 */
606 	if (pargs.polarity != state.polarity) {
607 		state.polarity = pargs.polarity;
608 		state.duty_cycle = state.period - state.duty_cycle;
609 	}
610 
611 	return pwm_apply_state(pwm, &state);
612 }
613 EXPORT_SYMBOL_GPL(pwm_adjust_config);
614 
of_node_to_pwmchip(struct device_node * np)615 static struct pwm_chip *of_node_to_pwmchip(struct device_node *np)
616 {
617 	struct pwm_chip *chip;
618 
619 	mutex_lock(&pwm_lock);
620 
621 	list_for_each_entry(chip, &pwm_chips, list)
622 		if (chip->dev && chip->dev->of_node == np) {
623 			mutex_unlock(&pwm_lock);
624 			return chip;
625 		}
626 
627 	mutex_unlock(&pwm_lock);
628 
629 	return ERR_PTR(-EPROBE_DEFER);
630 }
631 
pwm_device_link_add(struct device * dev,struct pwm_device * pwm)632 static struct device_link *pwm_device_link_add(struct device *dev,
633 					       struct pwm_device *pwm)
634 {
635 	struct device_link *dl;
636 
637 	if (!dev) {
638 		/*
639 		 * No device for the PWM consumer has been provided. It may
640 		 * impact the PM sequence ordering: the PWM supplier may get
641 		 * suspended before the consumer.
642 		 */
643 		dev_warn(pwm->chip->dev,
644 			 "No consumer device specified to create a link to\n");
645 		return NULL;
646 	}
647 
648 	dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
649 	if (!dl) {
650 		dev_err(dev, "failed to create device link to %s\n",
651 			dev_name(pwm->chip->dev));
652 		return ERR_PTR(-EINVAL);
653 	}
654 
655 	return dl;
656 }
657 
658 /**
659  * of_pwm_get() - request a PWM via the PWM framework
660  * @dev: device for PWM consumer
661  * @np: device node to get the PWM from
662  * @con_id: consumer name
663  *
664  * Returns the PWM device parsed from the phandle and index specified in the
665  * "pwms" property of a device tree node or a negative error-code on failure.
666  * Values parsed from the device tree are stored in the returned PWM device
667  * object.
668  *
669  * If con_id is NULL, the first PWM device listed in the "pwms" property will
670  * be requested. Otherwise the "pwm-names" property is used to do a reverse
671  * lookup of the PWM index. This also means that the "pwm-names" property
672  * becomes mandatory for devices that look up the PWM device via the con_id
673  * parameter.
674  *
675  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
676  * error code on failure.
677  */
of_pwm_get(struct device * dev,struct device_node * np,const char * con_id)678 struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
679 			      const char *con_id)
680 {
681 	struct pwm_device *pwm = NULL;
682 	struct of_phandle_args args;
683 	struct device_link *dl;
684 	struct pwm_chip *pc;
685 	int index = 0;
686 	int err;
687 
688 	if (con_id) {
689 		index = of_property_match_string(np, "pwm-names", con_id);
690 		if (index < 0)
691 			return ERR_PTR(index);
692 	}
693 
694 	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
695 					 &args);
696 	if (err) {
697 		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
698 		return ERR_PTR(err);
699 	}
700 
701 	pc = of_node_to_pwmchip(args.np);
702 	if (IS_ERR(pc)) {
703 		if (PTR_ERR(pc) != -EPROBE_DEFER)
704 			pr_err("%s(): PWM chip not found\n", __func__);
705 
706 		pwm = ERR_CAST(pc);
707 		goto put;
708 	}
709 
710 	pwm = pc->of_xlate(pc, &args);
711 	if (IS_ERR(pwm))
712 		goto put;
713 
714 	dl = pwm_device_link_add(dev, pwm);
715 	if (IS_ERR(dl)) {
716 		/* of_xlate ended up calling pwm_request_from_chip() */
717 		pwm_free(pwm);
718 		pwm = ERR_CAST(dl);
719 		goto put;
720 	}
721 
722 	/*
723 	 * If a consumer name was not given, try to look it up from the
724 	 * "pwm-names" property if it exists. Otherwise use the name of
725 	 * the user device node.
726 	 */
727 	if (!con_id) {
728 		err = of_property_read_string_index(np, "pwm-names", index,
729 						    &con_id);
730 		if (err < 0)
731 			con_id = np->name;
732 	}
733 
734 	pwm->label = con_id;
735 
736 put:
737 	of_node_put(args.np);
738 
739 	return pwm;
740 }
741 EXPORT_SYMBOL_GPL(of_pwm_get);
742 
743 #if IS_ENABLED(CONFIG_ACPI)
device_to_pwmchip(struct device * dev)744 static struct pwm_chip *device_to_pwmchip(struct device *dev)
745 {
746 	struct pwm_chip *chip;
747 
748 	mutex_lock(&pwm_lock);
749 
750 	list_for_each_entry(chip, &pwm_chips, list) {
751 		struct acpi_device *adev = ACPI_COMPANION(chip->dev);
752 
753 		if ((chip->dev == dev) || (adev && &adev->dev == dev)) {
754 			mutex_unlock(&pwm_lock);
755 			return chip;
756 		}
757 	}
758 
759 	mutex_unlock(&pwm_lock);
760 
761 	return ERR_PTR(-EPROBE_DEFER);
762 }
763 #endif
764 
765 /**
766  * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
767  * @fwnode: firmware node to get the "pwm" property from
768  *
769  * Returns the PWM device parsed from the fwnode and index specified in the
770  * "pwms" property or a negative error-code on failure.
771  * Values parsed from the device tree are stored in the returned PWM device
772  * object.
773  *
774  * This is analogous to of_pwm_get() except con_id is not yet supported.
775  * ACPI entries must look like
776  * Package () {"pwms", Package ()
777  *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
778  *
779  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
780  * error code on failure.
781  */
acpi_pwm_get(struct fwnode_handle * fwnode)782 static struct pwm_device *acpi_pwm_get(struct fwnode_handle *fwnode)
783 {
784 	struct pwm_device *pwm = ERR_PTR(-ENODEV);
785 #if IS_ENABLED(CONFIG_ACPI)
786 	struct fwnode_reference_args args;
787 	struct acpi_device *acpi;
788 	struct pwm_chip *chip;
789 	int ret;
790 
791 	memset(&args, 0, sizeof(args));
792 
793 	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
794 	if (ret < 0)
795 		return ERR_PTR(ret);
796 
797 	acpi = to_acpi_device_node(args.fwnode);
798 	if (!acpi)
799 		return ERR_PTR(-EINVAL);
800 
801 	if (args.nargs < 2)
802 		return ERR_PTR(-EPROTO);
803 
804 	chip = device_to_pwmchip(&acpi->dev);
805 	if (IS_ERR(chip))
806 		return ERR_CAST(chip);
807 
808 	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
809 	if (IS_ERR(pwm))
810 		return pwm;
811 
812 	pwm->args.period = args.args[1];
813 	pwm->args.polarity = PWM_POLARITY_NORMAL;
814 
815 	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
816 		pwm->args.polarity = PWM_POLARITY_INVERSED;
817 #endif
818 
819 	return pwm;
820 }
821 
822 /**
823  * pwm_add_table() - register PWM device consumers
824  * @table: array of consumers to register
825  * @num: number of consumers in table
826  */
pwm_add_table(struct pwm_lookup * table,size_t num)827 void pwm_add_table(struct pwm_lookup *table, size_t num)
828 {
829 	mutex_lock(&pwm_lookup_lock);
830 
831 	while (num--) {
832 		list_add_tail(&table->list, &pwm_lookup_list);
833 		table++;
834 	}
835 
836 	mutex_unlock(&pwm_lookup_lock);
837 }
838 
839 /**
840  * pwm_remove_table() - unregister PWM device consumers
841  * @table: array of consumers to unregister
842  * @num: number of consumers in table
843  */
pwm_remove_table(struct pwm_lookup * table,size_t num)844 void pwm_remove_table(struct pwm_lookup *table, size_t num)
845 {
846 	mutex_lock(&pwm_lookup_lock);
847 
848 	while (num--) {
849 		list_del(&table->list);
850 		table++;
851 	}
852 
853 	mutex_unlock(&pwm_lookup_lock);
854 }
855 
856 /**
857  * pwm_get() - look up and request a PWM device
858  * @dev: device for PWM consumer
859  * @con_id: consumer name
860  *
861  * Lookup is first attempted using DT. If the device was not instantiated from
862  * a device tree, a PWM chip and a relative index is looked up via a table
863  * supplied by board setup code (see pwm_add_table()).
864  *
865  * Once a PWM chip has been found the specified PWM device will be requested
866  * and is ready to be used.
867  *
868  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
869  * error code on failure.
870  */
pwm_get(struct device * dev,const char * con_id)871 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
872 {
873 	const char *dev_id = dev ? dev_name(dev) : NULL;
874 	struct pwm_device *pwm;
875 	struct pwm_chip *chip;
876 	struct device_link *dl;
877 	unsigned int best = 0;
878 	struct pwm_lookup *p, *chosen = NULL;
879 	unsigned int match;
880 	int err;
881 
882 	/* look up via DT first */
883 	if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node)
884 		return of_pwm_get(dev, dev->of_node, con_id);
885 
886 	/* then lookup via ACPI */
887 	if (dev && is_acpi_node(dev->fwnode)) {
888 		pwm = acpi_pwm_get(dev->fwnode);
889 		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
890 			return pwm;
891 	}
892 
893 	/*
894 	 * We look up the provider in the static table typically provided by
895 	 * board setup code. We first try to lookup the consumer device by
896 	 * name. If the consumer device was passed in as NULL or if no match
897 	 * was found, we try to find the consumer by directly looking it up
898 	 * by name.
899 	 *
900 	 * If a match is found, the provider PWM chip is looked up by name
901 	 * and a PWM device is requested using the PWM device per-chip index.
902 	 *
903 	 * The lookup algorithm was shamelessly taken from the clock
904 	 * framework:
905 	 *
906 	 * We do slightly fuzzy matching here:
907 	 *  An entry with a NULL ID is assumed to be a wildcard.
908 	 *  If an entry has a device ID, it must match
909 	 *  If an entry has a connection ID, it must match
910 	 * Then we take the most specific entry - with the following order
911 	 * of precedence: dev+con > dev only > con only.
912 	 */
913 	mutex_lock(&pwm_lookup_lock);
914 
915 	list_for_each_entry(p, &pwm_lookup_list, list) {
916 		match = 0;
917 
918 		if (p->dev_id) {
919 			if (!dev_id || strcmp(p->dev_id, dev_id))
920 				continue;
921 
922 			match += 2;
923 		}
924 
925 		if (p->con_id) {
926 			if (!con_id || strcmp(p->con_id, con_id))
927 				continue;
928 
929 			match += 1;
930 		}
931 
932 		if (match > best) {
933 			chosen = p;
934 
935 			if (match != 3)
936 				best = match;
937 			else
938 				break;
939 		}
940 	}
941 
942 	mutex_unlock(&pwm_lookup_lock);
943 
944 	if (!chosen)
945 		return ERR_PTR(-ENODEV);
946 
947 	chip = pwmchip_find_by_name(chosen->provider);
948 
949 	/*
950 	 * If the lookup entry specifies a module, load the module and retry
951 	 * the PWM chip lookup. This can be used to work around driver load
952 	 * ordering issues if driver's can't be made to properly support the
953 	 * deferred probe mechanism.
954 	 */
955 	if (!chip && chosen->module) {
956 		err = request_module(chosen->module);
957 		if (err == 0)
958 			chip = pwmchip_find_by_name(chosen->provider);
959 	}
960 
961 	if (!chip)
962 		return ERR_PTR(-EPROBE_DEFER);
963 
964 	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
965 	if (IS_ERR(pwm))
966 		return pwm;
967 
968 	dl = pwm_device_link_add(dev, pwm);
969 	if (IS_ERR(dl)) {
970 		pwm_free(pwm);
971 		return ERR_CAST(dl);
972 	}
973 
974 	pwm->args.period = chosen->period;
975 	pwm->args.polarity = chosen->polarity;
976 
977 	return pwm;
978 }
979 EXPORT_SYMBOL_GPL(pwm_get);
980 
981 /**
982  * pwm_put() - release a PWM device
983  * @pwm: PWM device
984  */
pwm_put(struct pwm_device * pwm)985 void pwm_put(struct pwm_device *pwm)
986 {
987 	if (!pwm)
988 		return;
989 
990 	mutex_lock(&pwm_lock);
991 
992 	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
993 		pr_warn("PWM device already freed\n");
994 		goto out;
995 	}
996 
997 	if (pwm->chip->ops->free)
998 		pwm->chip->ops->free(pwm->chip, pwm);
999 
1000 	pwm_set_chip_data(pwm, NULL);
1001 	pwm->label = NULL;
1002 
1003 	module_put(pwm->chip->ops->owner);
1004 out:
1005 	mutex_unlock(&pwm_lock);
1006 }
1007 EXPORT_SYMBOL_GPL(pwm_put);
1008 
devm_pwm_release(struct device * dev,void * res)1009 static void devm_pwm_release(struct device *dev, void *res)
1010 {
1011 	pwm_put(*(struct pwm_device **)res);
1012 }
1013 
1014 /**
1015  * devm_pwm_get() - resource managed pwm_get()
1016  * @dev: device for PWM consumer
1017  * @con_id: consumer name
1018  *
1019  * This function performs like pwm_get() but the acquired PWM device will
1020  * automatically be released on driver detach.
1021  *
1022  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1023  * error code on failure.
1024  */
devm_pwm_get(struct device * dev,const char * con_id)1025 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1026 {
1027 	struct pwm_device **ptr, *pwm;
1028 
1029 	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1030 	if (!ptr)
1031 		return ERR_PTR(-ENOMEM);
1032 
1033 	pwm = pwm_get(dev, con_id);
1034 	if (!IS_ERR(pwm)) {
1035 		*ptr = pwm;
1036 		devres_add(dev, ptr);
1037 	} else {
1038 		devres_free(ptr);
1039 	}
1040 
1041 	return pwm;
1042 }
1043 EXPORT_SYMBOL_GPL(devm_pwm_get);
1044 
1045 /**
1046  * devm_of_pwm_get() - resource managed of_pwm_get()
1047  * @dev: device for PWM consumer
1048  * @np: device node to get the PWM from
1049  * @con_id: consumer name
1050  *
1051  * This function performs like of_pwm_get() but the acquired PWM device will
1052  * automatically be released on driver detach.
1053  *
1054  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1055  * error code on failure.
1056  */
devm_of_pwm_get(struct device * dev,struct device_node * np,const char * con_id)1057 struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
1058 				   const char *con_id)
1059 {
1060 	struct pwm_device **ptr, *pwm;
1061 
1062 	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1063 	if (!ptr)
1064 		return ERR_PTR(-ENOMEM);
1065 
1066 	pwm = of_pwm_get(dev, np, con_id);
1067 	if (!IS_ERR(pwm)) {
1068 		*ptr = pwm;
1069 		devres_add(dev, ptr);
1070 	} else {
1071 		devres_free(ptr);
1072 	}
1073 
1074 	return pwm;
1075 }
1076 EXPORT_SYMBOL_GPL(devm_of_pwm_get);
1077 
1078 /**
1079  * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1080  * @dev: device for PWM consumer
1081  * @fwnode: firmware node to get the PWM from
1082  * @con_id: consumer name
1083  *
1084  * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1085  * acpi_pwm_get() for a detailed description.
1086  *
1087  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1088  * error code on failure.
1089  */
devm_fwnode_pwm_get(struct device * dev,struct fwnode_handle * fwnode,const char * con_id)1090 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1091 				       struct fwnode_handle *fwnode,
1092 				       const char *con_id)
1093 {
1094 	struct pwm_device **ptr, *pwm = ERR_PTR(-ENODEV);
1095 
1096 	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1097 	if (!ptr)
1098 		return ERR_PTR(-ENOMEM);
1099 
1100 	if (is_of_node(fwnode))
1101 		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1102 	else if (is_acpi_node(fwnode))
1103 		pwm = acpi_pwm_get(fwnode);
1104 
1105 	if (!IS_ERR(pwm)) {
1106 		*ptr = pwm;
1107 		devres_add(dev, ptr);
1108 	} else {
1109 		devres_free(ptr);
1110 	}
1111 
1112 	return pwm;
1113 }
1114 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1115 
devm_pwm_match(struct device * dev,void * res,void * data)1116 static int devm_pwm_match(struct device *dev, void *res, void *data)
1117 {
1118 	struct pwm_device **p = res;
1119 
1120 	if (WARN_ON(!p || !*p))
1121 		return 0;
1122 
1123 	return *p == data;
1124 }
1125 
1126 /**
1127  * devm_pwm_put() - resource managed pwm_put()
1128  * @dev: device for PWM consumer
1129  * @pwm: PWM device
1130  *
1131  * Release a PWM previously allocated using devm_pwm_get(). Calling this
1132  * function is usually not needed because devm-allocated resources are
1133  * automatically released on driver detach.
1134  */
devm_pwm_put(struct device * dev,struct pwm_device * pwm)1135 void devm_pwm_put(struct device *dev, struct pwm_device *pwm)
1136 {
1137 	WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm));
1138 }
1139 EXPORT_SYMBOL_GPL(devm_pwm_put);
1140 
1141 #ifdef CONFIG_DEBUG_FS
pwm_dbg_show(struct pwm_chip * chip,struct seq_file * s)1142 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1143 {
1144 	unsigned int i;
1145 
1146 	for (i = 0; i < chip->npwm; i++) {
1147 		struct pwm_device *pwm = &chip->pwms[i];
1148 		struct pwm_state state;
1149 
1150 		pwm_get_state(pwm, &state);
1151 
1152 		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1153 
1154 		if (test_bit(PWMF_REQUESTED, &pwm->flags))
1155 			seq_puts(s, " requested");
1156 
1157 		if (state.enabled)
1158 			seq_puts(s, " enabled");
1159 
1160 		seq_printf(s, " period: %llu ns", state.period);
1161 		seq_printf(s, " duty: %llu ns", state.duty_cycle);
1162 		seq_printf(s, " polarity: %s",
1163 			   state.polarity ? "inverse" : "normal");
1164 
1165 		seq_puts(s, "\n");
1166 	}
1167 }
1168 
pwm_seq_start(struct seq_file * s,loff_t * pos)1169 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1170 {
1171 	mutex_lock(&pwm_lock);
1172 	s->private = "";
1173 
1174 	return seq_list_start(&pwm_chips, *pos);
1175 }
1176 
pwm_seq_next(struct seq_file * s,void * v,loff_t * pos)1177 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1178 {
1179 	s->private = "\n";
1180 
1181 	return seq_list_next(v, &pwm_chips, pos);
1182 }
1183 
pwm_seq_stop(struct seq_file * s,void * v)1184 static void pwm_seq_stop(struct seq_file *s, void *v)
1185 {
1186 	mutex_unlock(&pwm_lock);
1187 }
1188 
pwm_seq_show(struct seq_file * s,void * v)1189 static int pwm_seq_show(struct seq_file *s, void *v)
1190 {
1191 	struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1192 
1193 	seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1194 		   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1195 		   dev_name(chip->dev), chip->npwm,
1196 		   (chip->npwm != 1) ? "s" : "");
1197 
1198 	pwm_dbg_show(chip, s);
1199 
1200 	return 0;
1201 }
1202 
1203 static const struct seq_operations pwm_seq_ops = {
1204 	.start = pwm_seq_start,
1205 	.next = pwm_seq_next,
1206 	.stop = pwm_seq_stop,
1207 	.show = pwm_seq_show,
1208 };
1209 
pwm_seq_open(struct inode * inode,struct file * file)1210 static int pwm_seq_open(struct inode *inode, struct file *file)
1211 {
1212 	return seq_open(file, &pwm_seq_ops);
1213 }
1214 
1215 static const struct file_operations pwm_debugfs_ops = {
1216 	.owner = THIS_MODULE,
1217 	.open = pwm_seq_open,
1218 	.read = seq_read,
1219 	.llseek = seq_lseek,
1220 	.release = seq_release,
1221 };
1222 
pwm_debugfs_init(void)1223 static int __init pwm_debugfs_init(void)
1224 {
1225 	debugfs_create_file("pwm", S_IFREG | S_IRUGO, NULL, NULL,
1226 			    &pwm_debugfs_ops);
1227 
1228 	return 0;
1229 }
1230 subsys_initcall(pwm_debugfs_init);
1231 #endif /* CONFIG_DEBUG_FS */
1232