1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3 * PWM controller driver for Amlogic Meson SoCs.
4 *
5 * This PWM is only a set of Gates, Dividers and Counters:
6 * PWM output is achieved by calculating a clock that permits calculating
7 * two periods (low and high). The counter then has to be set to switch after
8 * N cycles for the first half period.
9 * The hardware has no "polarity" setting. This driver reverses the period
10 * cycles (the low length is inverted with the high length) for
11 * PWM_POLARITY_INVERSED. This means that .get_state cannot read the polarity
12 * from the hardware.
13 * Setting the duty cycle will disable and re-enable the PWM output.
14 * Disabling the PWM stops the output immediately (without waiting for the
15 * current period to complete first).
16 *
17 * The public S912 (GXM) datasheet contains some documentation for this PWM
18 * controller starting on page 543:
19 * https://dl.khadas.com/Hardware/VIM2/Datasheet/S912_Datasheet_V0.220170314publicversion-Wesion.pdf
20 * An updated version of this IP block is found in S922X (G12B) SoCs. The
21 * datasheet contains the description for this IP block revision starting at
22 * page 1084:
23 * https://dn.odroid.com/S922X/ODROID-N2/Datasheet/S922X_Public_Datasheet_V0.2.pdf
24 *
25 * Copyright (c) 2016 BayLibre, SAS.
26 * Author: Neil Armstrong <narmstrong@baylibre.com>
27 * Copyright (C) 2014 Amlogic, Inc.
28 */
29
30 #include <linux/bitfield.h>
31 #include <linux/bits.h>
32 #include <linux/clk.h>
33 #include <linux/clk-provider.h>
34 #include <linux/err.h>
35 #include <linux/io.h>
36 #include <linux/kernel.h>
37 #include <linux/math64.h>
38 #include <linux/module.h>
39 #include <linux/of.h>
40 #include <linux/of_device.h>
41 #include <linux/platform_device.h>
42 #include <linux/pwm.h>
43 #include <linux/slab.h>
44 #include <linux/spinlock.h>
45
46 #define REG_PWM_A 0x0
47 #define REG_PWM_B 0x4
48 #define PWM_LOW_MASK GENMASK(15, 0)
49 #define PWM_HIGH_MASK GENMASK(31, 16)
50
51 #define REG_MISC_AB 0x8
52 #define MISC_B_CLK_EN BIT(23)
53 #define MISC_A_CLK_EN BIT(15)
54 #define MISC_CLK_DIV_MASK 0x7f
55 #define MISC_B_CLK_DIV_SHIFT 16
56 #define MISC_A_CLK_DIV_SHIFT 8
57 #define MISC_B_CLK_SEL_SHIFT 6
58 #define MISC_A_CLK_SEL_SHIFT 4
59 #define MISC_CLK_SEL_MASK 0x3
60 #define MISC_B_EN BIT(1)
61 #define MISC_A_EN BIT(0)
62
63 #define MESON_NUM_PWMS 2
64
65 static struct meson_pwm_channel_data {
66 u8 reg_offset;
67 u8 clk_sel_shift;
68 u8 clk_div_shift;
69 u32 clk_en_mask;
70 u32 pwm_en_mask;
71 } meson_pwm_per_channel_data[MESON_NUM_PWMS] = {
72 {
73 .reg_offset = REG_PWM_A,
74 .clk_sel_shift = MISC_A_CLK_SEL_SHIFT,
75 .clk_div_shift = MISC_A_CLK_DIV_SHIFT,
76 .clk_en_mask = MISC_A_CLK_EN,
77 .pwm_en_mask = MISC_A_EN,
78 },
79 {
80 .reg_offset = REG_PWM_B,
81 .clk_sel_shift = MISC_B_CLK_SEL_SHIFT,
82 .clk_div_shift = MISC_B_CLK_DIV_SHIFT,
83 .clk_en_mask = MISC_B_CLK_EN,
84 .pwm_en_mask = MISC_B_EN,
85 }
86 };
87
88 struct meson_pwm_channel {
89 unsigned int hi;
90 unsigned int lo;
91 u8 pre_div;
92
93 struct clk *clk_parent;
94 struct clk_mux mux;
95 struct clk *clk;
96 };
97
98 struct meson_pwm_data {
99 const char * const *parent_names;
100 unsigned int num_parents;
101 };
102
103 struct meson_pwm {
104 struct pwm_chip chip;
105 const struct meson_pwm_data *data;
106 struct meson_pwm_channel channels[MESON_NUM_PWMS];
107 void __iomem *base;
108 /*
109 * Protects register (write) access to the REG_MISC_AB register
110 * that is shared between the two PWMs.
111 */
112 spinlock_t lock;
113 };
114
to_meson_pwm(struct pwm_chip * chip)115 static inline struct meson_pwm *to_meson_pwm(struct pwm_chip *chip)
116 {
117 return container_of(chip, struct meson_pwm, chip);
118 }
119
meson_pwm_request(struct pwm_chip * chip,struct pwm_device * pwm)120 static int meson_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
121 {
122 struct meson_pwm *meson = to_meson_pwm(chip);
123 struct meson_pwm_channel *channel;
124 struct device *dev = chip->dev;
125 int err;
126
127 channel = pwm_get_chip_data(pwm);
128 if (channel)
129 return 0;
130
131 channel = &meson->channels[pwm->hwpwm];
132
133 if (channel->clk_parent) {
134 err = clk_set_parent(channel->clk, channel->clk_parent);
135 if (err < 0) {
136 dev_err(dev, "failed to set parent %s for %s: %d\n",
137 __clk_get_name(channel->clk_parent),
138 __clk_get_name(channel->clk), err);
139 return err;
140 }
141 }
142
143 err = clk_prepare_enable(channel->clk);
144 if (err < 0) {
145 dev_err(dev, "failed to enable clock %s: %d\n",
146 __clk_get_name(channel->clk), err);
147 return err;
148 }
149
150 return pwm_set_chip_data(pwm, channel);
151 }
152
meson_pwm_free(struct pwm_chip * chip,struct pwm_device * pwm)153 static void meson_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
154 {
155 struct meson_pwm_channel *channel = pwm_get_chip_data(pwm);
156
157 if (channel)
158 clk_disable_unprepare(channel->clk);
159 }
160
meson_pwm_calc(struct meson_pwm * meson,struct pwm_device * pwm,const struct pwm_state * state)161 static int meson_pwm_calc(struct meson_pwm *meson, struct pwm_device *pwm,
162 const struct pwm_state *state)
163 {
164 struct meson_pwm_channel *channel = pwm_get_chip_data(pwm);
165 unsigned int duty, period, pre_div, cnt, duty_cnt;
166 unsigned long fin_freq = -1;
167
168 duty = state->duty_cycle;
169 period = state->period;
170
171 if (state->polarity == PWM_POLARITY_INVERSED)
172 duty = period - duty;
173
174 fin_freq = clk_get_rate(channel->clk);
175 if (fin_freq == 0) {
176 dev_err(meson->chip.dev, "invalid source clock frequency\n");
177 return -EINVAL;
178 }
179
180 dev_dbg(meson->chip.dev, "fin_freq: %lu Hz\n", fin_freq);
181
182 pre_div = div64_u64(fin_freq * (u64)period, NSEC_PER_SEC * 0xffffLL);
183 if (pre_div > MISC_CLK_DIV_MASK) {
184 dev_err(meson->chip.dev, "unable to get period pre_div\n");
185 return -EINVAL;
186 }
187
188 cnt = div64_u64(fin_freq * (u64)period, NSEC_PER_SEC * (pre_div + 1));
189 if (cnt > 0xffff) {
190 dev_err(meson->chip.dev, "unable to get period cnt\n");
191 return -EINVAL;
192 }
193
194 dev_dbg(meson->chip.dev, "period=%u pre_div=%u cnt=%u\n", period,
195 pre_div, cnt);
196
197 if (duty == period) {
198 channel->pre_div = pre_div;
199 channel->hi = cnt;
200 channel->lo = 0;
201 } else if (duty == 0) {
202 channel->pre_div = pre_div;
203 channel->hi = 0;
204 channel->lo = cnt;
205 } else {
206 /* Then check is we can have the duty with the same pre_div */
207 duty_cnt = div64_u64(fin_freq * (u64)duty,
208 NSEC_PER_SEC * (pre_div + 1));
209 if (duty_cnt > 0xffff) {
210 dev_err(meson->chip.dev, "unable to get duty cycle\n");
211 return -EINVAL;
212 }
213
214 dev_dbg(meson->chip.dev, "duty=%u pre_div=%u duty_cnt=%u\n",
215 duty, pre_div, duty_cnt);
216
217 channel->pre_div = pre_div;
218 channel->hi = duty_cnt;
219 channel->lo = cnt - duty_cnt;
220 }
221
222 return 0;
223 }
224
meson_pwm_enable(struct meson_pwm * meson,struct pwm_device * pwm)225 static void meson_pwm_enable(struct meson_pwm *meson, struct pwm_device *pwm)
226 {
227 struct meson_pwm_channel *channel = pwm_get_chip_data(pwm);
228 struct meson_pwm_channel_data *channel_data;
229 unsigned long flags;
230 u32 value;
231
232 channel_data = &meson_pwm_per_channel_data[pwm->hwpwm];
233
234 spin_lock_irqsave(&meson->lock, flags);
235
236 value = readl(meson->base + REG_MISC_AB);
237 value &= ~(MISC_CLK_DIV_MASK << channel_data->clk_div_shift);
238 value |= channel->pre_div << channel_data->clk_div_shift;
239 value |= channel_data->clk_en_mask;
240 writel(value, meson->base + REG_MISC_AB);
241
242 value = FIELD_PREP(PWM_HIGH_MASK, channel->hi) |
243 FIELD_PREP(PWM_LOW_MASK, channel->lo);
244 writel(value, meson->base + channel_data->reg_offset);
245
246 value = readl(meson->base + REG_MISC_AB);
247 value |= channel_data->pwm_en_mask;
248 writel(value, meson->base + REG_MISC_AB);
249
250 spin_unlock_irqrestore(&meson->lock, flags);
251 }
252
meson_pwm_disable(struct meson_pwm * meson,struct pwm_device * pwm)253 static void meson_pwm_disable(struct meson_pwm *meson, struct pwm_device *pwm)
254 {
255 unsigned long flags;
256 u32 value;
257
258 spin_lock_irqsave(&meson->lock, flags);
259
260 value = readl(meson->base + REG_MISC_AB);
261 value &= ~meson_pwm_per_channel_data[pwm->hwpwm].pwm_en_mask;
262 writel(value, meson->base + REG_MISC_AB);
263
264 spin_unlock_irqrestore(&meson->lock, flags);
265 }
266
meson_pwm_apply(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_state * state)267 static int meson_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
268 const struct pwm_state *state)
269 {
270 struct meson_pwm_channel *channel = pwm_get_chip_data(pwm);
271 struct meson_pwm *meson = to_meson_pwm(chip);
272 int err = 0;
273
274 if (!state)
275 return -EINVAL;
276
277 if (!state->enabled) {
278 if (state->polarity == PWM_POLARITY_INVERSED) {
279 /*
280 * This IP block revision doesn't have an "always high"
281 * setting which we can use for "inverted disabled".
282 * Instead we achieve this using the same settings
283 * that we use a pre_div of 0 (to get the shortest
284 * possible duration for one "count") and
285 * "period == duty_cycle". This results in a signal
286 * which is LOW for one "count", while being HIGH for
287 * the rest of the (so the signal is HIGH for slightly
288 * less than 100% of the period, but this is the best
289 * we can achieve).
290 */
291 channel->pre_div = 0;
292 channel->hi = ~0;
293 channel->lo = 0;
294
295 meson_pwm_enable(meson, pwm);
296 } else {
297 meson_pwm_disable(meson, pwm);
298 }
299 } else {
300 err = meson_pwm_calc(meson, pwm, state);
301 if (err < 0)
302 return err;
303
304 meson_pwm_enable(meson, pwm);
305 }
306
307 return 0;
308 }
309
meson_pwm_cnt_to_ns(struct pwm_chip * chip,struct pwm_device * pwm,u32 cnt)310 static unsigned int meson_pwm_cnt_to_ns(struct pwm_chip *chip,
311 struct pwm_device *pwm, u32 cnt)
312 {
313 struct meson_pwm *meson = to_meson_pwm(chip);
314 struct meson_pwm_channel *channel;
315 unsigned long fin_freq;
316 u32 fin_ns;
317
318 /* to_meson_pwm() can only be used after .get_state() is called */
319 channel = &meson->channels[pwm->hwpwm];
320
321 fin_freq = clk_get_rate(channel->clk);
322 if (fin_freq == 0)
323 return 0;
324
325 fin_ns = div_u64(NSEC_PER_SEC, fin_freq);
326
327 return cnt * fin_ns * (channel->pre_div + 1);
328 }
329
meson_pwm_get_state(struct pwm_chip * chip,struct pwm_device * pwm,struct pwm_state * state)330 static void meson_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
331 struct pwm_state *state)
332 {
333 struct meson_pwm *meson = to_meson_pwm(chip);
334 struct meson_pwm_channel_data *channel_data;
335 struct meson_pwm_channel *channel;
336 u32 value, tmp;
337
338 if (!state)
339 return;
340
341 channel = &meson->channels[pwm->hwpwm];
342 channel_data = &meson_pwm_per_channel_data[pwm->hwpwm];
343
344 value = readl(meson->base + REG_MISC_AB);
345
346 tmp = channel_data->pwm_en_mask | channel_data->clk_en_mask;
347 state->enabled = (value & tmp) == tmp;
348
349 tmp = value >> channel_data->clk_div_shift;
350 channel->pre_div = FIELD_GET(MISC_CLK_DIV_MASK, tmp);
351
352 value = readl(meson->base + channel_data->reg_offset);
353
354 channel->lo = FIELD_GET(PWM_LOW_MASK, value);
355 channel->hi = FIELD_GET(PWM_HIGH_MASK, value);
356
357 if (channel->lo == 0) {
358 state->period = meson_pwm_cnt_to_ns(chip, pwm, channel->hi);
359 state->duty_cycle = state->period;
360 } else if (channel->lo >= channel->hi) {
361 state->period = meson_pwm_cnt_to_ns(chip, pwm,
362 channel->lo + channel->hi);
363 state->duty_cycle = meson_pwm_cnt_to_ns(chip, pwm,
364 channel->hi);
365 } else {
366 state->period = 0;
367 state->duty_cycle = 0;
368 }
369 }
370
371 static const struct pwm_ops meson_pwm_ops = {
372 .request = meson_pwm_request,
373 .free = meson_pwm_free,
374 .apply = meson_pwm_apply,
375 .get_state = meson_pwm_get_state,
376 .owner = THIS_MODULE,
377 };
378
379 static const char * const pwm_meson8b_parent_names[] = {
380 "xtal", "vid_pll", "fclk_div4", "fclk_div3"
381 };
382
383 static const struct meson_pwm_data pwm_meson8b_data = {
384 .parent_names = pwm_meson8b_parent_names,
385 .num_parents = ARRAY_SIZE(pwm_meson8b_parent_names),
386 };
387
388 static const char * const pwm_gxbb_parent_names[] = {
389 "xtal", "hdmi_pll", "fclk_div4", "fclk_div3"
390 };
391
392 static const struct meson_pwm_data pwm_gxbb_data = {
393 .parent_names = pwm_gxbb_parent_names,
394 .num_parents = ARRAY_SIZE(pwm_gxbb_parent_names),
395 };
396
397 /*
398 * Only the 2 first inputs of the GXBB AO PWMs are valid
399 * The last 2 are grounded
400 */
401 static const char * const pwm_gxbb_ao_parent_names[] = {
402 "xtal", "clk81"
403 };
404
405 static const struct meson_pwm_data pwm_gxbb_ao_data = {
406 .parent_names = pwm_gxbb_ao_parent_names,
407 .num_parents = ARRAY_SIZE(pwm_gxbb_ao_parent_names),
408 };
409
410 static const char * const pwm_axg_ee_parent_names[] = {
411 "xtal", "fclk_div5", "fclk_div4", "fclk_div3"
412 };
413
414 static const struct meson_pwm_data pwm_axg_ee_data = {
415 .parent_names = pwm_axg_ee_parent_names,
416 .num_parents = ARRAY_SIZE(pwm_axg_ee_parent_names),
417 };
418
419 static const char * const pwm_axg_ao_parent_names[] = {
420 "aoclk81", "xtal", "fclk_div4", "fclk_div5"
421 };
422
423 static const struct meson_pwm_data pwm_axg_ao_data = {
424 .parent_names = pwm_axg_ao_parent_names,
425 .num_parents = ARRAY_SIZE(pwm_axg_ao_parent_names),
426 };
427
428 static const char * const pwm_g12a_ao_ab_parent_names[] = {
429 "xtal", "aoclk81", "fclk_div4", "fclk_div5"
430 };
431
432 static const struct meson_pwm_data pwm_g12a_ao_ab_data = {
433 .parent_names = pwm_g12a_ao_ab_parent_names,
434 .num_parents = ARRAY_SIZE(pwm_g12a_ao_ab_parent_names),
435 };
436
437 static const char * const pwm_g12a_ao_cd_parent_names[] = {
438 "xtal", "aoclk81",
439 };
440
441 static const struct meson_pwm_data pwm_g12a_ao_cd_data = {
442 .parent_names = pwm_g12a_ao_cd_parent_names,
443 .num_parents = ARRAY_SIZE(pwm_g12a_ao_cd_parent_names),
444 };
445
446 static const char * const pwm_g12a_ee_parent_names[] = {
447 "xtal", "hdmi_pll", "fclk_div4", "fclk_div3"
448 };
449
450 static const struct meson_pwm_data pwm_g12a_ee_data = {
451 .parent_names = pwm_g12a_ee_parent_names,
452 .num_parents = ARRAY_SIZE(pwm_g12a_ee_parent_names),
453 };
454
455 static const struct of_device_id meson_pwm_matches[] = {
456 {
457 .compatible = "amlogic,meson8b-pwm",
458 .data = &pwm_meson8b_data
459 },
460 {
461 .compatible = "amlogic,meson-gxbb-pwm",
462 .data = &pwm_gxbb_data
463 },
464 {
465 .compatible = "amlogic,meson-gxbb-ao-pwm",
466 .data = &pwm_gxbb_ao_data
467 },
468 {
469 .compatible = "amlogic,meson-axg-ee-pwm",
470 .data = &pwm_axg_ee_data
471 },
472 {
473 .compatible = "amlogic,meson-axg-ao-pwm",
474 .data = &pwm_axg_ao_data
475 },
476 {
477 .compatible = "amlogic,meson-g12a-ee-pwm",
478 .data = &pwm_g12a_ee_data
479 },
480 {
481 .compatible = "amlogic,meson-g12a-ao-pwm-ab",
482 .data = &pwm_g12a_ao_ab_data
483 },
484 {
485 .compatible = "amlogic,meson-g12a-ao-pwm-cd",
486 .data = &pwm_g12a_ao_cd_data
487 },
488 {},
489 };
490 MODULE_DEVICE_TABLE(of, meson_pwm_matches);
491
meson_pwm_init_channels(struct meson_pwm * meson)492 static int meson_pwm_init_channels(struct meson_pwm *meson)
493 {
494 struct device *dev = meson->chip.dev;
495 struct clk_init_data init;
496 unsigned int i;
497 char name[255];
498 int err;
499
500 for (i = 0; i < meson->chip.npwm; i++) {
501 struct meson_pwm_channel *channel = &meson->channels[i];
502
503 snprintf(name, sizeof(name), "%s#mux%u", dev_name(dev), i);
504
505 init.name = name;
506 init.ops = &clk_mux_ops;
507 init.flags = 0;
508 init.parent_names = meson->data->parent_names;
509 init.num_parents = meson->data->num_parents;
510
511 channel->mux.reg = meson->base + REG_MISC_AB;
512 channel->mux.shift =
513 meson_pwm_per_channel_data[i].clk_sel_shift;
514 channel->mux.mask = MISC_CLK_SEL_MASK;
515 channel->mux.flags = 0;
516 channel->mux.lock = &meson->lock;
517 channel->mux.table = NULL;
518 channel->mux.hw.init = &init;
519
520 channel->clk = devm_clk_register(dev, &channel->mux.hw);
521 if (IS_ERR(channel->clk)) {
522 err = PTR_ERR(channel->clk);
523 dev_err(dev, "failed to register %s: %d\n", name, err);
524 return err;
525 }
526
527 snprintf(name, sizeof(name), "clkin%u", i);
528
529 channel->clk_parent = devm_clk_get_optional(dev, name);
530 if (IS_ERR(channel->clk_parent))
531 return PTR_ERR(channel->clk_parent);
532 }
533
534 return 0;
535 }
536
meson_pwm_probe(struct platform_device * pdev)537 static int meson_pwm_probe(struct platform_device *pdev)
538 {
539 struct meson_pwm *meson;
540 struct resource *regs;
541 int err;
542
543 meson = devm_kzalloc(&pdev->dev, sizeof(*meson), GFP_KERNEL);
544 if (!meson)
545 return -ENOMEM;
546
547 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
548 meson->base = devm_ioremap_resource(&pdev->dev, regs);
549 if (IS_ERR(meson->base))
550 return PTR_ERR(meson->base);
551
552 spin_lock_init(&meson->lock);
553 meson->chip.dev = &pdev->dev;
554 meson->chip.ops = &meson_pwm_ops;
555 meson->chip.base = -1;
556 meson->chip.npwm = MESON_NUM_PWMS;
557 meson->chip.of_xlate = of_pwm_xlate_with_flags;
558 meson->chip.of_pwm_n_cells = 3;
559
560 meson->data = of_device_get_match_data(&pdev->dev);
561
562 err = meson_pwm_init_channels(meson);
563 if (err < 0)
564 return err;
565
566 err = pwmchip_add(&meson->chip);
567 if (err < 0) {
568 dev_err(&pdev->dev, "failed to register PWM chip: %d\n", err);
569 return err;
570 }
571
572 platform_set_drvdata(pdev, meson);
573
574 return 0;
575 }
576
meson_pwm_remove(struct platform_device * pdev)577 static int meson_pwm_remove(struct platform_device *pdev)
578 {
579 struct meson_pwm *meson = platform_get_drvdata(pdev);
580
581 return pwmchip_remove(&meson->chip);
582 }
583
584 static struct platform_driver meson_pwm_driver = {
585 .driver = {
586 .name = "meson-pwm",
587 .of_match_table = meson_pwm_matches,
588 },
589 .probe = meson_pwm_probe,
590 .remove = meson_pwm_remove,
591 };
592 module_platform_driver(meson_pwm_driver);
593
594 MODULE_DESCRIPTION("Amlogic Meson PWM Generator driver");
595 MODULE_AUTHOR("Neil Armstrong <narmstrong@baylibre.com>");
596 MODULE_LICENSE("Dual BSD/GPL");
597