1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * RTC Driver for X-Powers AC100
4 *
5 * Copyright (c) 2016 Chen-Yu Tsai
6 *
7 * Chen-Yu Tsai <wens@csie.org>
8 */
9
10 #include <linux/bcd.h>
11 #include <linux/clk-provider.h>
12 #include <linux/device.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel.h>
15 #include <linux/mfd/ac100.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/of.h>
19 #include <linux/platform_device.h>
20 #include <linux/regmap.h>
21 #include <linux/rtc.h>
22 #include <linux/types.h>
23
24 /* Control register */
25 #define AC100_RTC_CTRL_24HOUR BIT(0)
26
27 /* Clock output register bits */
28 #define AC100_CLKOUT_PRE_DIV_SHIFT 5
29 #define AC100_CLKOUT_PRE_DIV_WIDTH 3
30 #define AC100_CLKOUT_MUX_SHIFT 4
31 #define AC100_CLKOUT_MUX_WIDTH 1
32 #define AC100_CLKOUT_DIV_SHIFT 1
33 #define AC100_CLKOUT_DIV_WIDTH 3
34 #define AC100_CLKOUT_EN BIT(0)
35
36 /* RTC */
37 #define AC100_RTC_SEC_MASK GENMASK(6, 0)
38 #define AC100_RTC_MIN_MASK GENMASK(6, 0)
39 #define AC100_RTC_HOU_MASK GENMASK(5, 0)
40 #define AC100_RTC_WEE_MASK GENMASK(2, 0)
41 #define AC100_RTC_DAY_MASK GENMASK(5, 0)
42 #define AC100_RTC_MON_MASK GENMASK(4, 0)
43 #define AC100_RTC_YEA_MASK GENMASK(7, 0)
44 #define AC100_RTC_YEA_LEAP BIT(15)
45 #define AC100_RTC_UPD_TRIGGER BIT(15)
46
47 /* Alarm (wall clock) */
48 #define AC100_ALM_INT_ENABLE BIT(0)
49
50 #define AC100_ALM_SEC_MASK GENMASK(6, 0)
51 #define AC100_ALM_MIN_MASK GENMASK(6, 0)
52 #define AC100_ALM_HOU_MASK GENMASK(5, 0)
53 #define AC100_ALM_WEE_MASK GENMASK(2, 0)
54 #define AC100_ALM_DAY_MASK GENMASK(5, 0)
55 #define AC100_ALM_MON_MASK GENMASK(4, 0)
56 #define AC100_ALM_YEA_MASK GENMASK(7, 0)
57 #define AC100_ALM_ENABLE_FLAG BIT(15)
58 #define AC100_ALM_UPD_TRIGGER BIT(15)
59
60 /*
61 * The year parameter passed to the driver is usually an offset relative to
62 * the year 1900. This macro is used to convert this offset to another one
63 * relative to the minimum year allowed by the hardware.
64 *
65 * The year range is 1970 - 2069. This range is selected to match Allwinner's
66 * driver.
67 */
68 #define AC100_YEAR_MIN 1970
69 #define AC100_YEAR_MAX 2069
70 #define AC100_YEAR_OFF (AC100_YEAR_MIN - 1900)
71
72 struct ac100_clkout {
73 struct clk_hw hw;
74 struct regmap *regmap;
75 u8 offset;
76 };
77
78 #define to_ac100_clkout(_hw) container_of(_hw, struct ac100_clkout, hw)
79
80 #define AC100_RTC_32K_NAME "ac100-rtc-32k"
81 #define AC100_RTC_32K_RATE 32768
82 #define AC100_CLKOUT_NUM 3
83
84 static const char * const ac100_clkout_names[AC100_CLKOUT_NUM] = {
85 "ac100-cko1-rtc",
86 "ac100-cko2-rtc",
87 "ac100-cko3-rtc",
88 };
89
90 struct ac100_rtc_dev {
91 struct rtc_device *rtc;
92 struct device *dev;
93 struct regmap *regmap;
94 int irq;
95 unsigned long alarm;
96
97 struct clk_hw *rtc_32k_clk;
98 struct ac100_clkout clks[AC100_CLKOUT_NUM];
99 struct clk_hw_onecell_data *clk_data;
100 };
101
102 /**
103 * Clock controls for 3 clock output pins
104 */
105
106 static const struct clk_div_table ac100_clkout_prediv[] = {
107 { .val = 0, .div = 1 },
108 { .val = 1, .div = 2 },
109 { .val = 2, .div = 4 },
110 { .val = 3, .div = 8 },
111 { .val = 4, .div = 16 },
112 { .val = 5, .div = 32 },
113 { .val = 6, .div = 64 },
114 { .val = 7, .div = 122 },
115 { },
116 };
117
118 /* Abuse the fact that one parent is 32768 Hz, and the other is 4 MHz */
ac100_clkout_recalc_rate(struct clk_hw * hw,unsigned long prate)119 static unsigned long ac100_clkout_recalc_rate(struct clk_hw *hw,
120 unsigned long prate)
121 {
122 struct ac100_clkout *clk = to_ac100_clkout(hw);
123 unsigned int reg, div;
124
125 regmap_read(clk->regmap, clk->offset, ®);
126
127 /* Handle pre-divider first */
128 if (prate != AC100_RTC_32K_RATE) {
129 div = (reg >> AC100_CLKOUT_PRE_DIV_SHIFT) &
130 ((1 << AC100_CLKOUT_PRE_DIV_WIDTH) - 1);
131 prate = divider_recalc_rate(hw, prate, div,
132 ac100_clkout_prediv, 0,
133 AC100_CLKOUT_PRE_DIV_WIDTH);
134 }
135
136 div = (reg >> AC100_CLKOUT_DIV_SHIFT) &
137 (BIT(AC100_CLKOUT_DIV_WIDTH) - 1);
138 return divider_recalc_rate(hw, prate, div, NULL,
139 CLK_DIVIDER_POWER_OF_TWO,
140 AC100_CLKOUT_DIV_WIDTH);
141 }
142
ac100_clkout_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long prate)143 static long ac100_clkout_round_rate(struct clk_hw *hw, unsigned long rate,
144 unsigned long prate)
145 {
146 unsigned long best_rate = 0, tmp_rate, tmp_prate;
147 int i;
148
149 if (prate == AC100_RTC_32K_RATE)
150 return divider_round_rate(hw, rate, &prate, NULL,
151 AC100_CLKOUT_DIV_WIDTH,
152 CLK_DIVIDER_POWER_OF_TWO);
153
154 for (i = 0; ac100_clkout_prediv[i].div; i++) {
155 tmp_prate = DIV_ROUND_UP(prate, ac100_clkout_prediv[i].val);
156 tmp_rate = divider_round_rate(hw, rate, &tmp_prate, NULL,
157 AC100_CLKOUT_DIV_WIDTH,
158 CLK_DIVIDER_POWER_OF_TWO);
159
160 if (tmp_rate > rate)
161 continue;
162 if (rate - tmp_rate < best_rate - tmp_rate)
163 best_rate = tmp_rate;
164 }
165
166 return best_rate;
167 }
168
ac100_clkout_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)169 static int ac100_clkout_determine_rate(struct clk_hw *hw,
170 struct clk_rate_request *req)
171 {
172 struct clk_hw *best_parent;
173 unsigned long best = 0;
174 int i, num_parents = clk_hw_get_num_parents(hw);
175
176 for (i = 0; i < num_parents; i++) {
177 struct clk_hw *parent = clk_hw_get_parent_by_index(hw, i);
178 unsigned long tmp, prate;
179
180 /*
181 * The clock has two parents, one is a fixed clock which is
182 * internally registered by the ac100 driver. The other parent
183 * is a clock from the codec side of the chip, which we
184 * properly declare and reference in the devicetree and is
185 * not implemented in any driver right now.
186 * If the clock core looks for the parent of that second
187 * missing clock, it can't find one that is registered and
188 * returns NULL.
189 * So we end up in a situation where clk_hw_get_num_parents
190 * returns the amount of clocks we can be parented to, but
191 * clk_hw_get_parent_by_index will not return the orphan
192 * clocks.
193 * Thus we need to check if the parent exists before
194 * we get the parent rate, so we could use the RTC
195 * without waiting for the codec to be supported.
196 */
197 if (!parent)
198 continue;
199
200 prate = clk_hw_get_rate(parent);
201
202 tmp = ac100_clkout_round_rate(hw, req->rate, prate);
203
204 if (tmp > req->rate)
205 continue;
206 if (req->rate - tmp < req->rate - best) {
207 best = tmp;
208 best_parent = parent;
209 }
210 }
211
212 if (!best)
213 return -EINVAL;
214
215 req->best_parent_hw = best_parent;
216 req->best_parent_rate = best;
217 req->rate = best;
218
219 return 0;
220 }
221
ac100_clkout_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long prate)222 static int ac100_clkout_set_rate(struct clk_hw *hw, unsigned long rate,
223 unsigned long prate)
224 {
225 struct ac100_clkout *clk = to_ac100_clkout(hw);
226 int div = 0, pre_div = 0;
227
228 do {
229 div = divider_get_val(rate * ac100_clkout_prediv[pre_div].div,
230 prate, NULL, AC100_CLKOUT_DIV_WIDTH,
231 CLK_DIVIDER_POWER_OF_TWO);
232 if (div >= 0)
233 break;
234 } while (prate != AC100_RTC_32K_RATE &&
235 ac100_clkout_prediv[++pre_div].div);
236
237 if (div < 0)
238 return div;
239
240 pre_div = ac100_clkout_prediv[pre_div].val;
241
242 regmap_update_bits(clk->regmap, clk->offset,
243 ((1 << AC100_CLKOUT_DIV_WIDTH) - 1) << AC100_CLKOUT_DIV_SHIFT |
244 ((1 << AC100_CLKOUT_PRE_DIV_WIDTH) - 1) << AC100_CLKOUT_PRE_DIV_SHIFT,
245 (div - 1) << AC100_CLKOUT_DIV_SHIFT |
246 (pre_div - 1) << AC100_CLKOUT_PRE_DIV_SHIFT);
247
248 return 0;
249 }
250
ac100_clkout_prepare(struct clk_hw * hw)251 static int ac100_clkout_prepare(struct clk_hw *hw)
252 {
253 struct ac100_clkout *clk = to_ac100_clkout(hw);
254
255 return regmap_update_bits(clk->regmap, clk->offset, AC100_CLKOUT_EN,
256 AC100_CLKOUT_EN);
257 }
258
ac100_clkout_unprepare(struct clk_hw * hw)259 static void ac100_clkout_unprepare(struct clk_hw *hw)
260 {
261 struct ac100_clkout *clk = to_ac100_clkout(hw);
262
263 regmap_update_bits(clk->regmap, clk->offset, AC100_CLKOUT_EN, 0);
264 }
265
ac100_clkout_is_prepared(struct clk_hw * hw)266 static int ac100_clkout_is_prepared(struct clk_hw *hw)
267 {
268 struct ac100_clkout *clk = to_ac100_clkout(hw);
269 unsigned int reg;
270
271 regmap_read(clk->regmap, clk->offset, ®);
272
273 return reg & AC100_CLKOUT_EN;
274 }
275
ac100_clkout_get_parent(struct clk_hw * hw)276 static u8 ac100_clkout_get_parent(struct clk_hw *hw)
277 {
278 struct ac100_clkout *clk = to_ac100_clkout(hw);
279 unsigned int reg;
280
281 regmap_read(clk->regmap, clk->offset, ®);
282
283 return (reg >> AC100_CLKOUT_MUX_SHIFT) & 0x1;
284 }
285
ac100_clkout_set_parent(struct clk_hw * hw,u8 index)286 static int ac100_clkout_set_parent(struct clk_hw *hw, u8 index)
287 {
288 struct ac100_clkout *clk = to_ac100_clkout(hw);
289
290 return regmap_update_bits(clk->regmap, clk->offset,
291 BIT(AC100_CLKOUT_MUX_SHIFT),
292 index ? BIT(AC100_CLKOUT_MUX_SHIFT) : 0);
293 }
294
295 static const struct clk_ops ac100_clkout_ops = {
296 .prepare = ac100_clkout_prepare,
297 .unprepare = ac100_clkout_unprepare,
298 .is_prepared = ac100_clkout_is_prepared,
299 .recalc_rate = ac100_clkout_recalc_rate,
300 .determine_rate = ac100_clkout_determine_rate,
301 .get_parent = ac100_clkout_get_parent,
302 .set_parent = ac100_clkout_set_parent,
303 .set_rate = ac100_clkout_set_rate,
304 };
305
ac100_rtc_register_clks(struct ac100_rtc_dev * chip)306 static int ac100_rtc_register_clks(struct ac100_rtc_dev *chip)
307 {
308 struct device_node *np = chip->dev->of_node;
309 const char *parents[2] = {AC100_RTC_32K_NAME};
310 int i, ret;
311
312 chip->clk_data = devm_kzalloc(chip->dev,
313 struct_size(chip->clk_data, hws,
314 AC100_CLKOUT_NUM),
315 GFP_KERNEL);
316 if (!chip->clk_data)
317 return -ENOMEM;
318
319 chip->rtc_32k_clk = clk_hw_register_fixed_rate(chip->dev,
320 AC100_RTC_32K_NAME,
321 NULL, 0,
322 AC100_RTC_32K_RATE);
323 if (IS_ERR(chip->rtc_32k_clk)) {
324 ret = PTR_ERR(chip->rtc_32k_clk);
325 dev_err(chip->dev, "Failed to register RTC-32k clock: %d\n",
326 ret);
327 return ret;
328 }
329
330 parents[1] = of_clk_get_parent_name(np, 0);
331 if (!parents[1]) {
332 dev_err(chip->dev, "Failed to get ADDA 4M clock\n");
333 return -EINVAL;
334 }
335
336 for (i = 0; i < AC100_CLKOUT_NUM; i++) {
337 struct ac100_clkout *clk = &chip->clks[i];
338 struct clk_init_data init = {
339 .name = ac100_clkout_names[i],
340 .ops = &ac100_clkout_ops,
341 .parent_names = parents,
342 .num_parents = ARRAY_SIZE(parents),
343 .flags = 0,
344 };
345
346 of_property_read_string_index(np, "clock-output-names",
347 i, &init.name);
348 clk->regmap = chip->regmap;
349 clk->offset = AC100_CLKOUT_CTRL1 + i;
350 clk->hw.init = &init;
351
352 ret = devm_clk_hw_register(chip->dev, &clk->hw);
353 if (ret) {
354 dev_err(chip->dev, "Failed to register clk '%s': %d\n",
355 init.name, ret);
356 goto err_unregister_rtc_32k;
357 }
358
359 chip->clk_data->hws[i] = &clk->hw;
360 }
361
362 chip->clk_data->num = i;
363 ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get, chip->clk_data);
364 if (ret)
365 goto err_unregister_rtc_32k;
366
367 return 0;
368
369 err_unregister_rtc_32k:
370 clk_unregister_fixed_rate(chip->rtc_32k_clk->clk);
371
372 return ret;
373 }
374
ac100_rtc_unregister_clks(struct ac100_rtc_dev * chip)375 static void ac100_rtc_unregister_clks(struct ac100_rtc_dev *chip)
376 {
377 of_clk_del_provider(chip->dev->of_node);
378 clk_unregister_fixed_rate(chip->rtc_32k_clk->clk);
379 }
380
381 /**
382 * RTC related bits
383 */
ac100_rtc_get_time(struct device * dev,struct rtc_time * rtc_tm)384 static int ac100_rtc_get_time(struct device *dev, struct rtc_time *rtc_tm)
385 {
386 struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
387 struct regmap *regmap = chip->regmap;
388 u16 reg[7];
389 int ret;
390
391 ret = regmap_bulk_read(regmap, AC100_RTC_SEC, reg, 7);
392 if (ret)
393 return ret;
394
395 rtc_tm->tm_sec = bcd2bin(reg[0] & AC100_RTC_SEC_MASK);
396 rtc_tm->tm_min = bcd2bin(reg[1] & AC100_RTC_MIN_MASK);
397 rtc_tm->tm_hour = bcd2bin(reg[2] & AC100_RTC_HOU_MASK);
398 rtc_tm->tm_wday = bcd2bin(reg[3] & AC100_RTC_WEE_MASK);
399 rtc_tm->tm_mday = bcd2bin(reg[4] & AC100_RTC_DAY_MASK);
400 rtc_tm->tm_mon = bcd2bin(reg[5] & AC100_RTC_MON_MASK) - 1;
401 rtc_tm->tm_year = bcd2bin(reg[6] & AC100_RTC_YEA_MASK) +
402 AC100_YEAR_OFF;
403
404 return 0;
405 }
406
ac100_rtc_set_time(struct device * dev,struct rtc_time * rtc_tm)407 static int ac100_rtc_set_time(struct device *dev, struct rtc_time *rtc_tm)
408 {
409 struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
410 struct regmap *regmap = chip->regmap;
411 int year;
412 u16 reg[8];
413
414 /* our RTC has a limited year range... */
415 year = rtc_tm->tm_year - AC100_YEAR_OFF;
416 if (year < 0 || year > (AC100_YEAR_MAX - 1900)) {
417 dev_err(dev, "rtc only supports year in range %d - %d\n",
418 AC100_YEAR_MIN, AC100_YEAR_MAX);
419 return -EINVAL;
420 }
421
422 /* convert to BCD */
423 reg[0] = bin2bcd(rtc_tm->tm_sec) & AC100_RTC_SEC_MASK;
424 reg[1] = bin2bcd(rtc_tm->tm_min) & AC100_RTC_MIN_MASK;
425 reg[2] = bin2bcd(rtc_tm->tm_hour) & AC100_RTC_HOU_MASK;
426 reg[3] = bin2bcd(rtc_tm->tm_wday) & AC100_RTC_WEE_MASK;
427 reg[4] = bin2bcd(rtc_tm->tm_mday) & AC100_RTC_DAY_MASK;
428 reg[5] = bin2bcd(rtc_tm->tm_mon + 1) & AC100_RTC_MON_MASK;
429 reg[6] = bin2bcd(year) & AC100_RTC_YEA_MASK;
430 /* trigger write */
431 reg[7] = AC100_RTC_UPD_TRIGGER;
432
433 /* Is it a leap year? */
434 if (is_leap_year(year + AC100_YEAR_OFF + 1900))
435 reg[6] |= AC100_RTC_YEA_LEAP;
436
437 return regmap_bulk_write(regmap, AC100_RTC_SEC, reg, 8);
438 }
439
ac100_rtc_alarm_irq_enable(struct device * dev,unsigned int en)440 static int ac100_rtc_alarm_irq_enable(struct device *dev, unsigned int en)
441 {
442 struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
443 struct regmap *regmap = chip->regmap;
444 unsigned int val;
445
446 val = en ? AC100_ALM_INT_ENABLE : 0;
447
448 return regmap_write(regmap, AC100_ALM_INT_ENA, val);
449 }
450
ac100_rtc_get_alarm(struct device * dev,struct rtc_wkalrm * alrm)451 static int ac100_rtc_get_alarm(struct device *dev, struct rtc_wkalrm *alrm)
452 {
453 struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
454 struct regmap *regmap = chip->regmap;
455 struct rtc_time *alrm_tm = &alrm->time;
456 u16 reg[7];
457 unsigned int val;
458 int ret;
459
460 ret = regmap_read(regmap, AC100_ALM_INT_ENA, &val);
461 if (ret)
462 return ret;
463
464 alrm->enabled = !!(val & AC100_ALM_INT_ENABLE);
465
466 ret = regmap_bulk_read(regmap, AC100_ALM_SEC, reg, 7);
467 if (ret)
468 return ret;
469
470 alrm_tm->tm_sec = bcd2bin(reg[0] & AC100_ALM_SEC_MASK);
471 alrm_tm->tm_min = bcd2bin(reg[1] & AC100_ALM_MIN_MASK);
472 alrm_tm->tm_hour = bcd2bin(reg[2] & AC100_ALM_HOU_MASK);
473 alrm_tm->tm_wday = bcd2bin(reg[3] & AC100_ALM_WEE_MASK);
474 alrm_tm->tm_mday = bcd2bin(reg[4] & AC100_ALM_DAY_MASK);
475 alrm_tm->tm_mon = bcd2bin(reg[5] & AC100_ALM_MON_MASK) - 1;
476 alrm_tm->tm_year = bcd2bin(reg[6] & AC100_ALM_YEA_MASK) +
477 AC100_YEAR_OFF;
478
479 return 0;
480 }
481
ac100_rtc_set_alarm(struct device * dev,struct rtc_wkalrm * alrm)482 static int ac100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
483 {
484 struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
485 struct regmap *regmap = chip->regmap;
486 struct rtc_time *alrm_tm = &alrm->time;
487 u16 reg[8];
488 int year;
489 int ret;
490
491 /* our alarm has a limited year range... */
492 year = alrm_tm->tm_year - AC100_YEAR_OFF;
493 if (year < 0 || year > (AC100_YEAR_MAX - 1900)) {
494 dev_err(dev, "alarm only supports year in range %d - %d\n",
495 AC100_YEAR_MIN, AC100_YEAR_MAX);
496 return -EINVAL;
497 }
498
499 /* convert to BCD */
500 reg[0] = (bin2bcd(alrm_tm->tm_sec) & AC100_ALM_SEC_MASK) |
501 AC100_ALM_ENABLE_FLAG;
502 reg[1] = (bin2bcd(alrm_tm->tm_min) & AC100_ALM_MIN_MASK) |
503 AC100_ALM_ENABLE_FLAG;
504 reg[2] = (bin2bcd(alrm_tm->tm_hour) & AC100_ALM_HOU_MASK) |
505 AC100_ALM_ENABLE_FLAG;
506 /* Do not enable weekday alarm */
507 reg[3] = bin2bcd(alrm_tm->tm_wday) & AC100_ALM_WEE_MASK;
508 reg[4] = (bin2bcd(alrm_tm->tm_mday) & AC100_ALM_DAY_MASK) |
509 AC100_ALM_ENABLE_FLAG;
510 reg[5] = (bin2bcd(alrm_tm->tm_mon + 1) & AC100_ALM_MON_MASK) |
511 AC100_ALM_ENABLE_FLAG;
512 reg[6] = (bin2bcd(year) & AC100_ALM_YEA_MASK) |
513 AC100_ALM_ENABLE_FLAG;
514 /* trigger write */
515 reg[7] = AC100_ALM_UPD_TRIGGER;
516
517 ret = regmap_bulk_write(regmap, AC100_ALM_SEC, reg, 8);
518 if (ret)
519 return ret;
520
521 return ac100_rtc_alarm_irq_enable(dev, alrm->enabled);
522 }
523
ac100_rtc_irq(int irq,void * data)524 static irqreturn_t ac100_rtc_irq(int irq, void *data)
525 {
526 struct ac100_rtc_dev *chip = data;
527 struct regmap *regmap = chip->regmap;
528 unsigned int val = 0;
529 int ret;
530
531 mutex_lock(&chip->rtc->ops_lock);
532
533 /* read status */
534 ret = regmap_read(regmap, AC100_ALM_INT_STA, &val);
535 if (ret)
536 goto out;
537
538 if (val & AC100_ALM_INT_ENABLE) {
539 /* signal rtc framework */
540 rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF);
541
542 /* clear status */
543 ret = regmap_write(regmap, AC100_ALM_INT_STA, val);
544 if (ret)
545 goto out;
546
547 /* disable interrupt */
548 ret = ac100_rtc_alarm_irq_enable(chip->dev, 0);
549 if (ret)
550 goto out;
551 }
552
553 out:
554 mutex_unlock(&chip->rtc->ops_lock);
555 return IRQ_HANDLED;
556 }
557
558 static const struct rtc_class_ops ac100_rtc_ops = {
559 .read_time = ac100_rtc_get_time,
560 .set_time = ac100_rtc_set_time,
561 .read_alarm = ac100_rtc_get_alarm,
562 .set_alarm = ac100_rtc_set_alarm,
563 .alarm_irq_enable = ac100_rtc_alarm_irq_enable,
564 };
565
ac100_rtc_probe(struct platform_device * pdev)566 static int ac100_rtc_probe(struct platform_device *pdev)
567 {
568 struct ac100_dev *ac100 = dev_get_drvdata(pdev->dev.parent);
569 struct ac100_rtc_dev *chip;
570 int ret;
571
572 chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
573 if (!chip)
574 return -ENOMEM;
575
576 platform_set_drvdata(pdev, chip);
577 chip->dev = &pdev->dev;
578 chip->regmap = ac100->regmap;
579
580 chip->irq = platform_get_irq(pdev, 0);
581 if (chip->irq < 0)
582 return chip->irq;
583
584 chip->rtc = devm_rtc_allocate_device(&pdev->dev);
585 if (IS_ERR(chip->rtc))
586 return PTR_ERR(chip->rtc);
587
588 chip->rtc->ops = &ac100_rtc_ops;
589
590 ret = devm_request_threaded_irq(&pdev->dev, chip->irq, NULL,
591 ac100_rtc_irq,
592 IRQF_SHARED | IRQF_ONESHOT,
593 dev_name(&pdev->dev), chip);
594 if (ret) {
595 dev_err(&pdev->dev, "Could not request IRQ\n");
596 return ret;
597 }
598
599 /* always use 24 hour mode */
600 regmap_write_bits(chip->regmap, AC100_RTC_CTRL, AC100_RTC_CTRL_24HOUR,
601 AC100_RTC_CTRL_24HOUR);
602
603 /* disable counter alarm interrupt */
604 regmap_write(chip->regmap, AC100_ALM_INT_ENA, 0);
605
606 /* clear counter alarm pending interrupts */
607 regmap_write(chip->regmap, AC100_ALM_INT_STA, AC100_ALM_INT_ENABLE);
608
609 ret = ac100_rtc_register_clks(chip);
610 if (ret)
611 return ret;
612
613 return rtc_register_device(chip->rtc);
614 }
615
ac100_rtc_remove(struct platform_device * pdev)616 static int ac100_rtc_remove(struct platform_device *pdev)
617 {
618 struct ac100_rtc_dev *chip = platform_get_drvdata(pdev);
619
620 ac100_rtc_unregister_clks(chip);
621
622 return 0;
623 }
624
625 static const struct of_device_id ac100_rtc_match[] = {
626 { .compatible = "x-powers,ac100-rtc" },
627 { },
628 };
629 MODULE_DEVICE_TABLE(of, ac100_rtc_match);
630
631 static struct platform_driver ac100_rtc_driver = {
632 .probe = ac100_rtc_probe,
633 .remove = ac100_rtc_remove,
634 .driver = {
635 .name = "ac100-rtc",
636 .of_match_table = of_match_ptr(ac100_rtc_match),
637 },
638 };
639 module_platform_driver(ac100_rtc_driver);
640
641 MODULE_DESCRIPTION("X-Powers AC100 RTC driver");
642 MODULE_AUTHOR("Chen-Yu Tsai <wens@csie.org>");
643 MODULE_LICENSE("GPL v2");
644