• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2012 - 2014 Allwinner Tech
4  * Pan Nan <pannan@allwinnertech.com>
5  *
6  * Copyright (C) 2014 Maxime Ripard
7  * Maxime Ripard <maxime.ripard@free-electrons.com>
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/module.h>
16 #include <linux/of_device.h>
17 #include <linux/platform_device.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/reset.h>
20 
21 #include <linux/spi/spi.h>
22 
23 #define SUN6I_FIFO_DEPTH		128
24 #define SUN8I_FIFO_DEPTH		64
25 
26 #define SUN6I_GBL_CTL_REG		0x04
27 #define SUN6I_GBL_CTL_BUS_ENABLE		BIT(0)
28 #define SUN6I_GBL_CTL_MASTER			BIT(1)
29 #define SUN6I_GBL_CTL_TP			BIT(7)
30 #define SUN6I_GBL_CTL_RST			BIT(31)
31 
32 #define SUN6I_TFR_CTL_REG		0x08
33 #define SUN6I_TFR_CTL_CPHA			BIT(0)
34 #define SUN6I_TFR_CTL_CPOL			BIT(1)
35 #define SUN6I_TFR_CTL_SPOL			BIT(2)
36 #define SUN6I_TFR_CTL_CS_MASK			0x30
37 #define SUN6I_TFR_CTL_CS(cs)			(((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
38 #define SUN6I_TFR_CTL_CS_MANUAL			BIT(6)
39 #define SUN6I_TFR_CTL_CS_LEVEL			BIT(7)
40 #define SUN6I_TFR_CTL_DHB			BIT(8)
41 #define SUN6I_TFR_CTL_FBS			BIT(12)
42 #define SUN6I_TFR_CTL_XCH			BIT(31)
43 
44 #define SUN6I_INT_CTL_REG		0x10
45 #define SUN6I_INT_CTL_RF_RDY			BIT(0)
46 #define SUN6I_INT_CTL_TF_ERQ			BIT(4)
47 #define SUN6I_INT_CTL_RF_OVF			BIT(8)
48 #define SUN6I_INT_CTL_TC			BIT(12)
49 
50 #define SUN6I_INT_STA_REG		0x14
51 
52 #define SUN6I_FIFO_CTL_REG		0x18
53 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK	0xff
54 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS	0
55 #define SUN6I_FIFO_CTL_RF_RST			BIT(15)
56 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK	0xff
57 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS	16
58 #define SUN6I_FIFO_CTL_TF_RST			BIT(31)
59 
60 #define SUN6I_FIFO_STA_REG		0x1c
61 #define SUN6I_FIFO_STA_RF_CNT_MASK		0x7f
62 #define SUN6I_FIFO_STA_RF_CNT_BITS		0
63 #define SUN6I_FIFO_STA_TF_CNT_MASK		0x7f
64 #define SUN6I_FIFO_STA_TF_CNT_BITS		16
65 
66 #define SUN6I_CLK_CTL_REG		0x24
67 #define SUN6I_CLK_CTL_CDR2_MASK			0xff
68 #define SUN6I_CLK_CTL_CDR2(div)			(((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
69 #define SUN6I_CLK_CTL_CDR1_MASK			0xf
70 #define SUN6I_CLK_CTL_CDR1(div)			(((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
71 #define SUN6I_CLK_CTL_DRS			BIT(12)
72 
73 #define SUN6I_MAX_XFER_SIZE		0xffffff
74 
75 #define SUN6I_BURST_CNT_REG		0x30
76 #define SUN6I_BURST_CNT(cnt)			((cnt) & SUN6I_MAX_XFER_SIZE)
77 
78 #define SUN6I_XMIT_CNT_REG		0x34
79 #define SUN6I_XMIT_CNT(cnt)			((cnt) & SUN6I_MAX_XFER_SIZE)
80 
81 #define SUN6I_BURST_CTL_CNT_REG		0x38
82 #define SUN6I_BURST_CTL_CNT_STC(cnt)		((cnt) & SUN6I_MAX_XFER_SIZE)
83 
84 #define SUN6I_TXDATA_REG		0x200
85 #define SUN6I_RXDATA_REG		0x300
86 
87 struct sun6i_spi {
88 	struct spi_master	*master;
89 	void __iomem		*base_addr;
90 	struct clk		*hclk;
91 	struct clk		*mclk;
92 	struct reset_control	*rstc;
93 
94 	struct completion	done;
95 
96 	const u8		*tx_buf;
97 	u8			*rx_buf;
98 	int			len;
99 	unsigned long		fifo_depth;
100 };
101 
sun6i_spi_read(struct sun6i_spi * sspi,u32 reg)102 static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
103 {
104 	return readl(sspi->base_addr + reg);
105 }
106 
sun6i_spi_write(struct sun6i_spi * sspi,u32 reg,u32 value)107 static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
108 {
109 	writel(value, sspi->base_addr + reg);
110 }
111 
sun6i_spi_get_tx_fifo_count(struct sun6i_spi * sspi)112 static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
113 {
114 	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
115 
116 	reg >>= SUN6I_FIFO_STA_TF_CNT_BITS;
117 
118 	return reg & SUN6I_FIFO_STA_TF_CNT_MASK;
119 }
120 
sun6i_spi_enable_interrupt(struct sun6i_spi * sspi,u32 mask)121 static inline void sun6i_spi_enable_interrupt(struct sun6i_spi *sspi, u32 mask)
122 {
123 	u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
124 
125 	reg |= mask;
126 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
127 }
128 
sun6i_spi_disable_interrupt(struct sun6i_spi * sspi,u32 mask)129 static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
130 {
131 	u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
132 
133 	reg &= ~mask;
134 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
135 }
136 
sun6i_spi_drain_fifo(struct sun6i_spi * sspi,int len)137 static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi, int len)
138 {
139 	u32 reg, cnt;
140 	u8 byte;
141 
142 	/* See how much data is available */
143 	reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
144 	reg &= SUN6I_FIFO_STA_RF_CNT_MASK;
145 	cnt = reg >> SUN6I_FIFO_STA_RF_CNT_BITS;
146 
147 	if (len > cnt)
148 		len = cnt;
149 
150 	while (len--) {
151 		byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
152 		if (sspi->rx_buf)
153 			*sspi->rx_buf++ = byte;
154 	}
155 }
156 
sun6i_spi_fill_fifo(struct sun6i_spi * sspi,int len)157 static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi, int len)
158 {
159 	u32 cnt;
160 	u8 byte;
161 
162 	/* See how much data we can fit */
163 	cnt = sspi->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);
164 
165 	len = min3(len, (int)cnt, sspi->len);
166 
167 	while (len--) {
168 		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
169 		writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
170 		sspi->len--;
171 	}
172 }
173 
sun6i_spi_set_cs(struct spi_device * spi,bool enable)174 static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
175 {
176 	struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
177 	u32 reg;
178 
179 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
180 	reg &= ~SUN6I_TFR_CTL_CS_MASK;
181 	reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
182 
183 	if (enable)
184 		reg |= SUN6I_TFR_CTL_CS_LEVEL;
185 	else
186 		reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
187 
188 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
189 }
190 
sun6i_spi_max_transfer_size(struct spi_device * spi)191 static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
192 {
193 	return SUN6I_MAX_XFER_SIZE - 1;
194 }
195 
sun6i_spi_transfer_one(struct spi_master * master,struct spi_device * spi,struct spi_transfer * tfr)196 static int sun6i_spi_transfer_one(struct spi_master *master,
197 				  struct spi_device *spi,
198 				  struct spi_transfer *tfr)
199 {
200 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
201 	unsigned int mclk_rate, div, timeout;
202 	unsigned int start, end, tx_time;
203 	unsigned int trig_level;
204 	unsigned int tx_len = 0;
205 	int ret = 0;
206 	u32 reg;
207 
208 	if (tfr->len > SUN6I_MAX_XFER_SIZE)
209 		return -EINVAL;
210 
211 	reinit_completion(&sspi->done);
212 	sspi->tx_buf = tfr->tx_buf;
213 	sspi->rx_buf = tfr->rx_buf;
214 	sspi->len = tfr->len;
215 
216 	/* Clear pending interrupts */
217 	sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
218 
219 	/* Reset FIFO */
220 	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
221 			SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
222 
223 	/*
224 	 * Setup FIFO interrupt trigger level
225 	 * Here we choose 3/4 of the full fifo depth, as it's the hardcoded
226 	 * value used in old generation of Allwinner SPI controller.
227 	 * (See spi-sun4i.c)
228 	 */
229 	trig_level = sspi->fifo_depth / 4 * 3;
230 	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
231 			(trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
232 			(trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS));
233 
234 	/*
235 	 * Setup the transfer control register: Chip Select,
236 	 * polarities, etc.
237 	 */
238 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
239 
240 	if (spi->mode & SPI_CPOL)
241 		reg |= SUN6I_TFR_CTL_CPOL;
242 	else
243 		reg &= ~SUN6I_TFR_CTL_CPOL;
244 
245 	if (spi->mode & SPI_CPHA)
246 		reg |= SUN6I_TFR_CTL_CPHA;
247 	else
248 		reg &= ~SUN6I_TFR_CTL_CPHA;
249 
250 	if (spi->mode & SPI_LSB_FIRST)
251 		reg |= SUN6I_TFR_CTL_FBS;
252 	else
253 		reg &= ~SUN6I_TFR_CTL_FBS;
254 
255 	/*
256 	 * If it's a TX only transfer, we don't want to fill the RX
257 	 * FIFO with bogus data
258 	 */
259 	if (sspi->rx_buf)
260 		reg &= ~SUN6I_TFR_CTL_DHB;
261 	else
262 		reg |= SUN6I_TFR_CTL_DHB;
263 
264 	/* We want to control the chip select manually */
265 	reg |= SUN6I_TFR_CTL_CS_MANUAL;
266 
267 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
268 
269 	/* Ensure that we have a parent clock fast enough */
270 	mclk_rate = clk_get_rate(sspi->mclk);
271 	if (mclk_rate < (2 * tfr->speed_hz)) {
272 		clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
273 		mclk_rate = clk_get_rate(sspi->mclk);
274 	}
275 
276 	/*
277 	 * Setup clock divider.
278 	 *
279 	 * We have two choices there. Either we can use the clock
280 	 * divide rate 1, which is calculated thanks to this formula:
281 	 * SPI_CLK = MOD_CLK / (2 ^ cdr)
282 	 * Or we can use CDR2, which is calculated with the formula:
283 	 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
284 	 * Wether we use the former or the latter is set through the
285 	 * DRS bit.
286 	 *
287 	 * First try CDR2, and if we can't reach the expected
288 	 * frequency, fall back to CDR1.
289 	 */
290 	div = mclk_rate / (2 * tfr->speed_hz);
291 	if (div <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
292 		if (div > 0)
293 			div--;
294 
295 		reg = SUN6I_CLK_CTL_CDR2(div) | SUN6I_CLK_CTL_DRS;
296 	} else {
297 		div = ilog2(mclk_rate) - ilog2(tfr->speed_hz);
298 		reg = SUN6I_CLK_CTL_CDR1(div);
299 	}
300 
301 	sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
302 
303 	/* Setup the transfer now... */
304 	if (sspi->tx_buf)
305 		tx_len = tfr->len;
306 
307 	/* Setup the counters */
308 	sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, SUN6I_BURST_CNT(tfr->len));
309 	sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, SUN6I_XMIT_CNT(tx_len));
310 	sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG,
311 			SUN6I_BURST_CTL_CNT_STC(tx_len));
312 
313 	/* Fill the TX FIFO */
314 	sun6i_spi_fill_fifo(sspi, sspi->fifo_depth);
315 
316 	/* Enable the interrupts */
317 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, SUN6I_INT_CTL_TC);
318 	sun6i_spi_enable_interrupt(sspi, SUN6I_INT_CTL_TC |
319 					 SUN6I_INT_CTL_RF_RDY);
320 	if (tx_len > sspi->fifo_depth)
321 		sun6i_spi_enable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
322 
323 	/* Start the transfer */
324 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
325 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
326 
327 	tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
328 	start = jiffies;
329 	timeout = wait_for_completion_timeout(&sspi->done,
330 					      msecs_to_jiffies(tx_time));
331 	end = jiffies;
332 	if (!timeout) {
333 		dev_warn(&master->dev,
334 			 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
335 			 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
336 			 jiffies_to_msecs(end - start), tx_time);
337 		ret = -ETIMEDOUT;
338 		goto out;
339 	}
340 
341 out:
342 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
343 
344 	return ret;
345 }
346 
sun6i_spi_handler(int irq,void * dev_id)347 static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
348 {
349 	struct sun6i_spi *sspi = dev_id;
350 	u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
351 
352 	/* Transfer complete */
353 	if (status & SUN6I_INT_CTL_TC) {
354 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
355 		sun6i_spi_drain_fifo(sspi, sspi->fifo_depth);
356 		complete(&sspi->done);
357 		return IRQ_HANDLED;
358 	}
359 
360 	/* Receive FIFO 3/4 full */
361 	if (status & SUN6I_INT_CTL_RF_RDY) {
362 		sun6i_spi_drain_fifo(sspi, SUN6I_FIFO_DEPTH);
363 		/* Only clear the interrupt _after_ draining the FIFO */
364 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
365 		return IRQ_HANDLED;
366 	}
367 
368 	/* Transmit FIFO 3/4 empty */
369 	if (status & SUN6I_INT_CTL_TF_ERQ) {
370 		sun6i_spi_fill_fifo(sspi, SUN6I_FIFO_DEPTH);
371 
372 		if (!sspi->len)
373 			/* nothing left to transmit */
374 			sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
375 
376 		/* Only clear the interrupt _after_ re-seeding the FIFO */
377 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ);
378 
379 		return IRQ_HANDLED;
380 	}
381 
382 	return IRQ_NONE;
383 }
384 
sun6i_spi_runtime_resume(struct device * dev)385 static int sun6i_spi_runtime_resume(struct device *dev)
386 {
387 	struct spi_master *master = dev_get_drvdata(dev);
388 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
389 	int ret;
390 
391 	ret = clk_prepare_enable(sspi->hclk);
392 	if (ret) {
393 		dev_err(dev, "Couldn't enable AHB clock\n");
394 		goto out;
395 	}
396 
397 	ret = clk_prepare_enable(sspi->mclk);
398 	if (ret) {
399 		dev_err(dev, "Couldn't enable module clock\n");
400 		goto err;
401 	}
402 
403 	ret = reset_control_deassert(sspi->rstc);
404 	if (ret) {
405 		dev_err(dev, "Couldn't deassert the device from reset\n");
406 		goto err2;
407 	}
408 
409 	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
410 			SUN6I_GBL_CTL_BUS_ENABLE | SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
411 
412 	return 0;
413 
414 err2:
415 	clk_disable_unprepare(sspi->mclk);
416 err:
417 	clk_disable_unprepare(sspi->hclk);
418 out:
419 	return ret;
420 }
421 
sun6i_spi_runtime_suspend(struct device * dev)422 static int sun6i_spi_runtime_suspend(struct device *dev)
423 {
424 	struct spi_master *master = dev_get_drvdata(dev);
425 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
426 
427 	reset_control_assert(sspi->rstc);
428 	clk_disable_unprepare(sspi->mclk);
429 	clk_disable_unprepare(sspi->hclk);
430 
431 	return 0;
432 }
433 
sun6i_spi_probe(struct platform_device * pdev)434 static int sun6i_spi_probe(struct platform_device *pdev)
435 {
436 	struct spi_master *master;
437 	struct sun6i_spi *sspi;
438 	int ret = 0, irq;
439 
440 	master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
441 	if (!master) {
442 		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
443 		return -ENOMEM;
444 	}
445 
446 	platform_set_drvdata(pdev, master);
447 	sspi = spi_master_get_devdata(master);
448 
449 	sspi->base_addr = devm_platform_ioremap_resource(pdev, 0);
450 	if (IS_ERR(sspi->base_addr)) {
451 		ret = PTR_ERR(sspi->base_addr);
452 		goto err_free_master;
453 	}
454 
455 	irq = platform_get_irq(pdev, 0);
456 	if (irq < 0) {
457 		ret = -ENXIO;
458 		goto err_free_master;
459 	}
460 
461 	ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
462 			       0, "sun6i-spi", sspi);
463 	if (ret) {
464 		dev_err(&pdev->dev, "Cannot request IRQ\n");
465 		goto err_free_master;
466 	}
467 
468 	sspi->master = master;
469 	sspi->fifo_depth = (unsigned long)of_device_get_match_data(&pdev->dev);
470 
471 	master->max_speed_hz = 100 * 1000 * 1000;
472 	master->min_speed_hz = 3 * 1000;
473 	master->set_cs = sun6i_spi_set_cs;
474 	master->transfer_one = sun6i_spi_transfer_one;
475 	master->num_chipselect = 4;
476 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
477 	master->bits_per_word_mask = SPI_BPW_MASK(8);
478 	master->dev.of_node = pdev->dev.of_node;
479 	master->auto_runtime_pm = true;
480 	master->max_transfer_size = sun6i_spi_max_transfer_size;
481 
482 	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
483 	if (IS_ERR(sspi->hclk)) {
484 		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
485 		ret = PTR_ERR(sspi->hclk);
486 		goto err_free_master;
487 	}
488 
489 	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
490 	if (IS_ERR(sspi->mclk)) {
491 		dev_err(&pdev->dev, "Unable to acquire module clock\n");
492 		ret = PTR_ERR(sspi->mclk);
493 		goto err_free_master;
494 	}
495 
496 	init_completion(&sspi->done);
497 
498 	sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
499 	if (IS_ERR(sspi->rstc)) {
500 		dev_err(&pdev->dev, "Couldn't get reset controller\n");
501 		ret = PTR_ERR(sspi->rstc);
502 		goto err_free_master;
503 	}
504 
505 	/*
506 	 * This wake-up/shutdown pattern is to be able to have the
507 	 * device woken up, even if runtime_pm is disabled
508 	 */
509 	ret = sun6i_spi_runtime_resume(&pdev->dev);
510 	if (ret) {
511 		dev_err(&pdev->dev, "Couldn't resume the device\n");
512 		goto err_free_master;
513 	}
514 
515 	pm_runtime_set_active(&pdev->dev);
516 	pm_runtime_enable(&pdev->dev);
517 	pm_runtime_idle(&pdev->dev);
518 
519 	ret = devm_spi_register_master(&pdev->dev, master);
520 	if (ret) {
521 		dev_err(&pdev->dev, "cannot register SPI master\n");
522 		goto err_pm_disable;
523 	}
524 
525 	return 0;
526 
527 err_pm_disable:
528 	pm_runtime_disable(&pdev->dev);
529 	sun6i_spi_runtime_suspend(&pdev->dev);
530 err_free_master:
531 	spi_master_put(master);
532 	return ret;
533 }
534 
sun6i_spi_remove(struct platform_device * pdev)535 static int sun6i_spi_remove(struct platform_device *pdev)
536 {
537 	pm_runtime_force_suspend(&pdev->dev);
538 
539 	return 0;
540 }
541 
542 static const struct of_device_id sun6i_spi_match[] = {
543 	{ .compatible = "allwinner,sun6i-a31-spi", .data = (void *)SUN6I_FIFO_DEPTH },
544 	{ .compatible = "allwinner,sun8i-h3-spi",  .data = (void *)SUN8I_FIFO_DEPTH },
545 	{}
546 };
547 MODULE_DEVICE_TABLE(of, sun6i_spi_match);
548 
549 static const struct dev_pm_ops sun6i_spi_pm_ops = {
550 	.runtime_resume		= sun6i_spi_runtime_resume,
551 	.runtime_suspend	= sun6i_spi_runtime_suspend,
552 };
553 
554 static struct platform_driver sun6i_spi_driver = {
555 	.probe	= sun6i_spi_probe,
556 	.remove	= sun6i_spi_remove,
557 	.driver	= {
558 		.name		= "sun6i-spi",
559 		.of_match_table	= sun6i_spi_match,
560 		.pm		= &sun6i_spi_pm_ops,
561 	},
562 };
563 module_platform_driver(sun6i_spi_driver);
564 
565 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
566 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
567 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
568 MODULE_LICENSE("GPL");
569