1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2012 - 2014 Allwinner Tech
4 * Pan Nan <pannan@allwinnertech.com>
5 *
6 * Copyright (C) 2014 Maxime Ripard
7 * Maxime Ripard <maxime.ripard@free-electrons.com>
8 */
9
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/module.h>
16 #include <linux/of_device.h>
17 #include <linux/platform_device.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/reset.h>
20
21 #include <linux/spi/spi.h>
22
23 #define SUN6I_FIFO_DEPTH 128
24 #define SUN8I_FIFO_DEPTH 64
25
26 #define SUN6I_GBL_CTL_REG 0x04
27 #define SUN6I_GBL_CTL_BUS_ENABLE BIT(0)
28 #define SUN6I_GBL_CTL_MASTER BIT(1)
29 #define SUN6I_GBL_CTL_TP BIT(7)
30 #define SUN6I_GBL_CTL_RST BIT(31)
31
32 #define SUN6I_TFR_CTL_REG 0x08
33 #define SUN6I_TFR_CTL_CPHA BIT(0)
34 #define SUN6I_TFR_CTL_CPOL BIT(1)
35 #define SUN6I_TFR_CTL_SPOL BIT(2)
36 #define SUN6I_TFR_CTL_CS_MASK 0x30
37 #define SUN6I_TFR_CTL_CS(cs) (((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
38 #define SUN6I_TFR_CTL_CS_MANUAL BIT(6)
39 #define SUN6I_TFR_CTL_CS_LEVEL BIT(7)
40 #define SUN6I_TFR_CTL_DHB BIT(8)
41 #define SUN6I_TFR_CTL_FBS BIT(12)
42 #define SUN6I_TFR_CTL_XCH BIT(31)
43
44 #define SUN6I_INT_CTL_REG 0x10
45 #define SUN6I_INT_CTL_RF_RDY BIT(0)
46 #define SUN6I_INT_CTL_TF_ERQ BIT(4)
47 #define SUN6I_INT_CTL_RF_OVF BIT(8)
48 #define SUN6I_INT_CTL_TC BIT(12)
49
50 #define SUN6I_INT_STA_REG 0x14
51
52 #define SUN6I_FIFO_CTL_REG 0x18
53 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK 0xff
54 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS 0
55 #define SUN6I_FIFO_CTL_RF_RST BIT(15)
56 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK 0xff
57 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS 16
58 #define SUN6I_FIFO_CTL_TF_RST BIT(31)
59
60 #define SUN6I_FIFO_STA_REG 0x1c
61 #define SUN6I_FIFO_STA_RF_CNT_MASK 0x7f
62 #define SUN6I_FIFO_STA_RF_CNT_BITS 0
63 #define SUN6I_FIFO_STA_TF_CNT_MASK 0x7f
64 #define SUN6I_FIFO_STA_TF_CNT_BITS 16
65
66 #define SUN6I_CLK_CTL_REG 0x24
67 #define SUN6I_CLK_CTL_CDR2_MASK 0xff
68 #define SUN6I_CLK_CTL_CDR2(div) (((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
69 #define SUN6I_CLK_CTL_CDR1_MASK 0xf
70 #define SUN6I_CLK_CTL_CDR1(div) (((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
71 #define SUN6I_CLK_CTL_DRS BIT(12)
72
73 #define SUN6I_MAX_XFER_SIZE 0xffffff
74
75 #define SUN6I_BURST_CNT_REG 0x30
76 #define SUN6I_BURST_CNT(cnt) ((cnt) & SUN6I_MAX_XFER_SIZE)
77
78 #define SUN6I_XMIT_CNT_REG 0x34
79 #define SUN6I_XMIT_CNT(cnt) ((cnt) & SUN6I_MAX_XFER_SIZE)
80
81 #define SUN6I_BURST_CTL_CNT_REG 0x38
82 #define SUN6I_BURST_CTL_CNT_STC(cnt) ((cnt) & SUN6I_MAX_XFER_SIZE)
83
84 #define SUN6I_TXDATA_REG 0x200
85 #define SUN6I_RXDATA_REG 0x300
86
87 struct sun6i_spi {
88 struct spi_master *master;
89 void __iomem *base_addr;
90 struct clk *hclk;
91 struct clk *mclk;
92 struct reset_control *rstc;
93
94 struct completion done;
95
96 const u8 *tx_buf;
97 u8 *rx_buf;
98 int len;
99 unsigned long fifo_depth;
100 };
101
sun6i_spi_read(struct sun6i_spi * sspi,u32 reg)102 static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
103 {
104 return readl(sspi->base_addr + reg);
105 }
106
sun6i_spi_write(struct sun6i_spi * sspi,u32 reg,u32 value)107 static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
108 {
109 writel(value, sspi->base_addr + reg);
110 }
111
sun6i_spi_get_tx_fifo_count(struct sun6i_spi * sspi)112 static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
113 {
114 u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
115
116 reg >>= SUN6I_FIFO_STA_TF_CNT_BITS;
117
118 return reg & SUN6I_FIFO_STA_TF_CNT_MASK;
119 }
120
sun6i_spi_enable_interrupt(struct sun6i_spi * sspi,u32 mask)121 static inline void sun6i_spi_enable_interrupt(struct sun6i_spi *sspi, u32 mask)
122 {
123 u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
124
125 reg |= mask;
126 sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
127 }
128
sun6i_spi_disable_interrupt(struct sun6i_spi * sspi,u32 mask)129 static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
130 {
131 u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
132
133 reg &= ~mask;
134 sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
135 }
136
sun6i_spi_drain_fifo(struct sun6i_spi * sspi,int len)137 static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi, int len)
138 {
139 u32 reg, cnt;
140 u8 byte;
141
142 /* See how much data is available */
143 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
144 reg &= SUN6I_FIFO_STA_RF_CNT_MASK;
145 cnt = reg >> SUN6I_FIFO_STA_RF_CNT_BITS;
146
147 if (len > cnt)
148 len = cnt;
149
150 while (len--) {
151 byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
152 if (sspi->rx_buf)
153 *sspi->rx_buf++ = byte;
154 }
155 }
156
sun6i_spi_fill_fifo(struct sun6i_spi * sspi,int len)157 static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi, int len)
158 {
159 u32 cnt;
160 u8 byte;
161
162 /* See how much data we can fit */
163 cnt = sspi->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);
164
165 len = min3(len, (int)cnt, sspi->len);
166
167 while (len--) {
168 byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
169 writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
170 sspi->len--;
171 }
172 }
173
sun6i_spi_set_cs(struct spi_device * spi,bool enable)174 static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
175 {
176 struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
177 u32 reg;
178
179 reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
180 reg &= ~SUN6I_TFR_CTL_CS_MASK;
181 reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
182
183 if (enable)
184 reg |= SUN6I_TFR_CTL_CS_LEVEL;
185 else
186 reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
187
188 sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
189 }
190
sun6i_spi_max_transfer_size(struct spi_device * spi)191 static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
192 {
193 return SUN6I_MAX_XFER_SIZE - 1;
194 }
195
sun6i_spi_transfer_one(struct spi_master * master,struct spi_device * spi,struct spi_transfer * tfr)196 static int sun6i_spi_transfer_one(struct spi_master *master,
197 struct spi_device *spi,
198 struct spi_transfer *tfr)
199 {
200 struct sun6i_spi *sspi = spi_master_get_devdata(master);
201 unsigned int mclk_rate, div, timeout;
202 unsigned int start, end, tx_time;
203 unsigned int trig_level;
204 unsigned int tx_len = 0;
205 int ret = 0;
206 u32 reg;
207
208 if (tfr->len > SUN6I_MAX_XFER_SIZE)
209 return -EINVAL;
210
211 reinit_completion(&sspi->done);
212 sspi->tx_buf = tfr->tx_buf;
213 sspi->rx_buf = tfr->rx_buf;
214 sspi->len = tfr->len;
215
216 /* Clear pending interrupts */
217 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
218
219 /* Reset FIFO */
220 sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
221 SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
222
223 /*
224 * Setup FIFO interrupt trigger level
225 * Here we choose 3/4 of the full fifo depth, as it's the hardcoded
226 * value used in old generation of Allwinner SPI controller.
227 * (See spi-sun4i.c)
228 */
229 trig_level = sspi->fifo_depth / 4 * 3;
230 sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
231 (trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
232 (trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS));
233
234 /*
235 * Setup the transfer control register: Chip Select,
236 * polarities, etc.
237 */
238 reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
239
240 if (spi->mode & SPI_CPOL)
241 reg |= SUN6I_TFR_CTL_CPOL;
242 else
243 reg &= ~SUN6I_TFR_CTL_CPOL;
244
245 if (spi->mode & SPI_CPHA)
246 reg |= SUN6I_TFR_CTL_CPHA;
247 else
248 reg &= ~SUN6I_TFR_CTL_CPHA;
249
250 if (spi->mode & SPI_LSB_FIRST)
251 reg |= SUN6I_TFR_CTL_FBS;
252 else
253 reg &= ~SUN6I_TFR_CTL_FBS;
254
255 /*
256 * If it's a TX only transfer, we don't want to fill the RX
257 * FIFO with bogus data
258 */
259 if (sspi->rx_buf)
260 reg &= ~SUN6I_TFR_CTL_DHB;
261 else
262 reg |= SUN6I_TFR_CTL_DHB;
263
264 /* We want to control the chip select manually */
265 reg |= SUN6I_TFR_CTL_CS_MANUAL;
266
267 sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
268
269 /* Ensure that we have a parent clock fast enough */
270 mclk_rate = clk_get_rate(sspi->mclk);
271 if (mclk_rate < (2 * tfr->speed_hz)) {
272 clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
273 mclk_rate = clk_get_rate(sspi->mclk);
274 }
275
276 /*
277 * Setup clock divider.
278 *
279 * We have two choices there. Either we can use the clock
280 * divide rate 1, which is calculated thanks to this formula:
281 * SPI_CLK = MOD_CLK / (2 ^ cdr)
282 * Or we can use CDR2, which is calculated with the formula:
283 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
284 * Wether we use the former or the latter is set through the
285 * DRS bit.
286 *
287 * First try CDR2, and if we can't reach the expected
288 * frequency, fall back to CDR1.
289 */
290 div = mclk_rate / (2 * tfr->speed_hz);
291 if (div <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
292 if (div > 0)
293 div--;
294
295 reg = SUN6I_CLK_CTL_CDR2(div) | SUN6I_CLK_CTL_DRS;
296 } else {
297 div = ilog2(mclk_rate) - ilog2(tfr->speed_hz);
298 reg = SUN6I_CLK_CTL_CDR1(div);
299 }
300
301 sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
302
303 /* Setup the transfer now... */
304 if (sspi->tx_buf)
305 tx_len = tfr->len;
306
307 /* Setup the counters */
308 sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, SUN6I_BURST_CNT(tfr->len));
309 sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, SUN6I_XMIT_CNT(tx_len));
310 sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG,
311 SUN6I_BURST_CTL_CNT_STC(tx_len));
312
313 /* Fill the TX FIFO */
314 sun6i_spi_fill_fifo(sspi, sspi->fifo_depth);
315
316 /* Enable the interrupts */
317 sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, SUN6I_INT_CTL_TC);
318 sun6i_spi_enable_interrupt(sspi, SUN6I_INT_CTL_TC |
319 SUN6I_INT_CTL_RF_RDY);
320 if (tx_len > sspi->fifo_depth)
321 sun6i_spi_enable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
322
323 /* Start the transfer */
324 reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
325 sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
326
327 tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
328 start = jiffies;
329 timeout = wait_for_completion_timeout(&sspi->done,
330 msecs_to_jiffies(tx_time));
331 end = jiffies;
332 if (!timeout) {
333 dev_warn(&master->dev,
334 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
335 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
336 jiffies_to_msecs(end - start), tx_time);
337 ret = -ETIMEDOUT;
338 goto out;
339 }
340
341 out:
342 sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
343
344 return ret;
345 }
346
sun6i_spi_handler(int irq,void * dev_id)347 static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
348 {
349 struct sun6i_spi *sspi = dev_id;
350 u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
351
352 /* Transfer complete */
353 if (status & SUN6I_INT_CTL_TC) {
354 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
355 sun6i_spi_drain_fifo(sspi, sspi->fifo_depth);
356 complete(&sspi->done);
357 return IRQ_HANDLED;
358 }
359
360 /* Receive FIFO 3/4 full */
361 if (status & SUN6I_INT_CTL_RF_RDY) {
362 sun6i_spi_drain_fifo(sspi, SUN6I_FIFO_DEPTH);
363 /* Only clear the interrupt _after_ draining the FIFO */
364 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
365 return IRQ_HANDLED;
366 }
367
368 /* Transmit FIFO 3/4 empty */
369 if (status & SUN6I_INT_CTL_TF_ERQ) {
370 sun6i_spi_fill_fifo(sspi, SUN6I_FIFO_DEPTH);
371
372 if (!sspi->len)
373 /* nothing left to transmit */
374 sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
375
376 /* Only clear the interrupt _after_ re-seeding the FIFO */
377 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ);
378
379 return IRQ_HANDLED;
380 }
381
382 return IRQ_NONE;
383 }
384
sun6i_spi_runtime_resume(struct device * dev)385 static int sun6i_spi_runtime_resume(struct device *dev)
386 {
387 struct spi_master *master = dev_get_drvdata(dev);
388 struct sun6i_spi *sspi = spi_master_get_devdata(master);
389 int ret;
390
391 ret = clk_prepare_enable(sspi->hclk);
392 if (ret) {
393 dev_err(dev, "Couldn't enable AHB clock\n");
394 goto out;
395 }
396
397 ret = clk_prepare_enable(sspi->mclk);
398 if (ret) {
399 dev_err(dev, "Couldn't enable module clock\n");
400 goto err;
401 }
402
403 ret = reset_control_deassert(sspi->rstc);
404 if (ret) {
405 dev_err(dev, "Couldn't deassert the device from reset\n");
406 goto err2;
407 }
408
409 sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
410 SUN6I_GBL_CTL_BUS_ENABLE | SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
411
412 return 0;
413
414 err2:
415 clk_disable_unprepare(sspi->mclk);
416 err:
417 clk_disable_unprepare(sspi->hclk);
418 out:
419 return ret;
420 }
421
sun6i_spi_runtime_suspend(struct device * dev)422 static int sun6i_spi_runtime_suspend(struct device *dev)
423 {
424 struct spi_master *master = dev_get_drvdata(dev);
425 struct sun6i_spi *sspi = spi_master_get_devdata(master);
426
427 reset_control_assert(sspi->rstc);
428 clk_disable_unprepare(sspi->mclk);
429 clk_disable_unprepare(sspi->hclk);
430
431 return 0;
432 }
433
sun6i_spi_probe(struct platform_device * pdev)434 static int sun6i_spi_probe(struct platform_device *pdev)
435 {
436 struct spi_master *master;
437 struct sun6i_spi *sspi;
438 int ret = 0, irq;
439
440 master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
441 if (!master) {
442 dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
443 return -ENOMEM;
444 }
445
446 platform_set_drvdata(pdev, master);
447 sspi = spi_master_get_devdata(master);
448
449 sspi->base_addr = devm_platform_ioremap_resource(pdev, 0);
450 if (IS_ERR(sspi->base_addr)) {
451 ret = PTR_ERR(sspi->base_addr);
452 goto err_free_master;
453 }
454
455 irq = platform_get_irq(pdev, 0);
456 if (irq < 0) {
457 ret = -ENXIO;
458 goto err_free_master;
459 }
460
461 ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
462 0, "sun6i-spi", sspi);
463 if (ret) {
464 dev_err(&pdev->dev, "Cannot request IRQ\n");
465 goto err_free_master;
466 }
467
468 sspi->master = master;
469 sspi->fifo_depth = (unsigned long)of_device_get_match_data(&pdev->dev);
470
471 master->max_speed_hz = 100 * 1000 * 1000;
472 master->min_speed_hz = 3 * 1000;
473 master->set_cs = sun6i_spi_set_cs;
474 master->transfer_one = sun6i_spi_transfer_one;
475 master->num_chipselect = 4;
476 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
477 master->bits_per_word_mask = SPI_BPW_MASK(8);
478 master->dev.of_node = pdev->dev.of_node;
479 master->auto_runtime_pm = true;
480 master->max_transfer_size = sun6i_spi_max_transfer_size;
481
482 sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
483 if (IS_ERR(sspi->hclk)) {
484 dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
485 ret = PTR_ERR(sspi->hclk);
486 goto err_free_master;
487 }
488
489 sspi->mclk = devm_clk_get(&pdev->dev, "mod");
490 if (IS_ERR(sspi->mclk)) {
491 dev_err(&pdev->dev, "Unable to acquire module clock\n");
492 ret = PTR_ERR(sspi->mclk);
493 goto err_free_master;
494 }
495
496 init_completion(&sspi->done);
497
498 sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
499 if (IS_ERR(sspi->rstc)) {
500 dev_err(&pdev->dev, "Couldn't get reset controller\n");
501 ret = PTR_ERR(sspi->rstc);
502 goto err_free_master;
503 }
504
505 /*
506 * This wake-up/shutdown pattern is to be able to have the
507 * device woken up, even if runtime_pm is disabled
508 */
509 ret = sun6i_spi_runtime_resume(&pdev->dev);
510 if (ret) {
511 dev_err(&pdev->dev, "Couldn't resume the device\n");
512 goto err_free_master;
513 }
514
515 pm_runtime_set_active(&pdev->dev);
516 pm_runtime_enable(&pdev->dev);
517 pm_runtime_idle(&pdev->dev);
518
519 ret = devm_spi_register_master(&pdev->dev, master);
520 if (ret) {
521 dev_err(&pdev->dev, "cannot register SPI master\n");
522 goto err_pm_disable;
523 }
524
525 return 0;
526
527 err_pm_disable:
528 pm_runtime_disable(&pdev->dev);
529 sun6i_spi_runtime_suspend(&pdev->dev);
530 err_free_master:
531 spi_master_put(master);
532 return ret;
533 }
534
sun6i_spi_remove(struct platform_device * pdev)535 static int sun6i_spi_remove(struct platform_device *pdev)
536 {
537 pm_runtime_force_suspend(&pdev->dev);
538
539 return 0;
540 }
541
542 static const struct of_device_id sun6i_spi_match[] = {
543 { .compatible = "allwinner,sun6i-a31-spi", .data = (void *)SUN6I_FIFO_DEPTH },
544 { .compatible = "allwinner,sun8i-h3-spi", .data = (void *)SUN8I_FIFO_DEPTH },
545 {}
546 };
547 MODULE_DEVICE_TABLE(of, sun6i_spi_match);
548
549 static const struct dev_pm_ops sun6i_spi_pm_ops = {
550 .runtime_resume = sun6i_spi_runtime_resume,
551 .runtime_suspend = sun6i_spi_runtime_suspend,
552 };
553
554 static struct platform_driver sun6i_spi_driver = {
555 .probe = sun6i_spi_probe,
556 .remove = sun6i_spi_remove,
557 .driver = {
558 .name = "sun6i-spi",
559 .of_match_table = sun6i_spi_match,
560 .pm = &sun6i_spi_pm_ops,
561 },
562 };
563 module_platform_driver(sun6i_spi_driver);
564
565 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
566 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
567 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
568 MODULE_LICENSE("GPL");
569