1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
4 * All rights reserved.
5 *
6 * File: card.c
7 * Purpose: Provide functions to setup NIC operation mode
8 * Functions:
9 * vnt_set_rspinf - Set RSPINF
10 * vnt_update_ifs - Update slotTime,SIFS,DIFS, and EIFS
11 * vnt_update_top_rates - Update BasicTopRate
12 * vnt_add_basic_rate - Add to BasicRateSet
13 * vnt_ofdm_min_rate - Check if any OFDM rate is in BasicRateSet
14 * vnt_get_tsf_offset - Calculate TSFOffset
15 * vnt_get_current_tsf - Read Current NIC TSF counter
16 * vnt_get_next_tbtt - Calculate Next Beacon TSF counter
17 * vnt_reset_next_tbtt - Set NIC Beacon time
18 * vnt_update_next_tbtt - Sync. NIC Beacon time
19 * vnt_radio_power_off - Turn Off NIC Radio Power
20 * vnt_radio_power_on - Turn On NIC Radio Power
21 *
22 * Revision History:
23 * 06-10-2003 Bryan YC Fan: Re-write codes to support VT3253 spec.
24 * 08-26-2003 Kyle Hsu: Modify the definition type of dwIoBase.
25 * 09-01-2003 Bryan YC Fan: Add vnt_update_ifs().
26 *
27 */
28
29 #include "device.h"
30 #include "card.h"
31 #include "baseband.h"
32 #include "mac.h"
33 #include "desc.h"
34 #include "rf.h"
35 #include "power.h"
36 #include "key.h"
37 #include "usbpipe.h"
38
39 /* const u16 cw_rxbcntsf_off[MAX_RATE] =
40 * {17, 34, 96, 192, 34, 23, 17, 11, 8, 5, 4, 3};
41 */
42
43 static const u16 cw_rxbcntsf_off[MAX_RATE] = {
44 192, 96, 34, 17, 34, 23, 17, 11, 8, 5, 4, 3
45 };
46
47 /*
48 * Description: Set NIC media channel
49 *
50 * Parameters:
51 * In:
52 * pDevice - The adapter to be set
53 * connection_channel - Channel to be set
54 * Out:
55 * none
56 */
vnt_set_channel(struct vnt_private * priv,u32 connection_channel)57 void vnt_set_channel(struct vnt_private *priv, u32 connection_channel)
58 {
59 if (connection_channel > CB_MAX_CHANNEL || !connection_channel)
60 return;
61
62 /* clear NAV */
63 vnt_mac_reg_bits_on(priv, MAC_REG_MACCR, MACCR_CLRNAV);
64
65 /* Set Channel[7] = 0 to tell H/W channel is changing now. */
66 vnt_mac_reg_bits_off(priv, MAC_REG_CHANNEL, 0xb0);
67
68 vnt_control_out(priv, MESSAGE_TYPE_SELECT_CHANNEL,
69 connection_channel, 0, 0, NULL);
70
71 vnt_control_out_u8(priv, MESSAGE_REQUEST_MACREG, MAC_REG_CHANNEL,
72 (u8)(connection_channel | 0x80));
73 }
74
75 /*
76 * Description: Get CCK mode basic rate
77 *
78 * Parameters:
79 * In:
80 * priv - The adapter to be set
81 * rate_idx - Receiving data rate
82 * Out:
83 * none
84 *
85 * Return Value: response Control frame rate
86 *
87 */
vnt_get_cck_rate(struct vnt_private * priv,u16 rate_idx)88 static u16 vnt_get_cck_rate(struct vnt_private *priv, u16 rate_idx)
89 {
90 u16 ui = rate_idx;
91
92 while (ui > RATE_1M) {
93 if (priv->basic_rates & (1 << ui))
94 return ui;
95 ui--;
96 }
97
98 return RATE_1M;
99 }
100
101 /*
102 * Description: Get OFDM mode basic rate
103 *
104 * Parameters:
105 * In:
106 * priv - The adapter to be set
107 * rate_idx - Receiving data rate
108 * Out:
109 * none
110 *
111 * Return Value: response Control frame rate
112 *
113 */
vnt_get_ofdm_rate(struct vnt_private * priv,u16 rate_idx)114 static u16 vnt_get_ofdm_rate(struct vnt_private *priv, u16 rate_idx)
115 {
116 u16 ui = rate_idx;
117
118 dev_dbg(&priv->usb->dev, "%s basic rate: %d\n",
119 __func__, priv->basic_rates);
120
121 if (!vnt_ofdm_min_rate(priv)) {
122 dev_dbg(&priv->usb->dev, "%s (NO OFDM) %d\n",
123 __func__, rate_idx);
124 if (rate_idx > RATE_24M)
125 rate_idx = RATE_24M;
126 return rate_idx;
127 }
128
129 while (ui > RATE_11M) {
130 if (priv->basic_rates & (1 << ui)) {
131 dev_dbg(&priv->usb->dev, "%s rate: %d\n",
132 __func__, ui);
133 return ui;
134 }
135 ui--;
136 }
137
138 dev_dbg(&priv->usb->dev, "%s basic rate: 24M\n", __func__);
139
140 return RATE_24M;
141 }
142
143 /*
144 * Description: Calculate TxRate and RsvTime fields for RSPINF in OFDM mode.
145 *
146 * Parameters:
147 * In:
148 * rate - Tx Rate
149 * bb_type - Tx Packet type
150 * Out:
151 * tx_rate - pointer to RSPINF TxRate field
152 * rsv_time- pointer to RSPINF RsvTime field
153 *
154 * Return Value: none
155 *
156 */
vnt_calculate_ofdm_rate(u16 rate,u8 bb_type,u8 * tx_rate,u8 * rsv_time)157 static void vnt_calculate_ofdm_rate(u16 rate, u8 bb_type,
158 u8 *tx_rate, u8 *rsv_time)
159 {
160 switch (rate) {
161 case RATE_6M:
162 if (bb_type == BB_TYPE_11A) {
163 *tx_rate = 0x9b;
164 *rsv_time = 24;
165 } else {
166 *tx_rate = 0x8b;
167 *rsv_time = 30;
168 }
169 break;
170 case RATE_9M:
171 if (bb_type == BB_TYPE_11A) {
172 *tx_rate = 0x9f;
173 *rsv_time = 16;
174 } else {
175 *tx_rate = 0x8f;
176 *rsv_time = 22;
177 }
178 break;
179 case RATE_12M:
180 if (bb_type == BB_TYPE_11A) {
181 *tx_rate = 0x9a;
182 *rsv_time = 12;
183 } else {
184 *tx_rate = 0x8a;
185 *rsv_time = 18;
186 }
187 break;
188 case RATE_18M:
189 if (bb_type == BB_TYPE_11A) {
190 *tx_rate = 0x9e;
191 *rsv_time = 8;
192 } else {
193 *tx_rate = 0x8e;
194 *rsv_time = 14;
195 }
196 break;
197 case RATE_36M:
198 if (bb_type == BB_TYPE_11A) {
199 *tx_rate = 0x9d;
200 *rsv_time = 4;
201 } else {
202 *tx_rate = 0x8d;
203 *rsv_time = 10;
204 }
205 break;
206 case RATE_48M:
207 if (bb_type == BB_TYPE_11A) {
208 *tx_rate = 0x98;
209 *rsv_time = 4;
210 } else {
211 *tx_rate = 0x88;
212 *rsv_time = 10;
213 }
214 break;
215 case RATE_54M:
216 if (bb_type == BB_TYPE_11A) {
217 *tx_rate = 0x9c;
218 *rsv_time = 4;
219 } else {
220 *tx_rate = 0x8c;
221 *rsv_time = 10;
222 }
223 break;
224 case RATE_24M:
225 default:
226 if (bb_type == BB_TYPE_11A) {
227 *tx_rate = 0x99;
228 *rsv_time = 8;
229 } else {
230 *tx_rate = 0x89;
231 *rsv_time = 14;
232 }
233 break;
234 }
235 }
236
237 /*
238 * Description: Set RSPINF
239 *
240 * Parameters:
241 * In:
242 * pDevice - The adapter to be set
243 * Out:
244 * none
245 *
246 * Return Value: None.
247 *
248 */
249
vnt_set_rspinf(struct vnt_private * priv,u8 bb_type)250 void vnt_set_rspinf(struct vnt_private *priv, u8 bb_type)
251 {
252 struct vnt_phy_field phy[4];
253 u8 tx_rate[9] = {0, 0, 0, 0, 0, 0, 0, 0, 0}; /* For OFDM */
254 u8 rsv_time[9] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
255 u8 data[34];
256 int i;
257
258 /*RSPINF_b_1*/
259 vnt_get_phy_field(priv, 14, vnt_get_cck_rate(priv, RATE_1M),
260 PK_TYPE_11B, &phy[0]);
261
262 /*RSPINF_b_2*/
263 vnt_get_phy_field(priv, 14, vnt_get_cck_rate(priv, RATE_2M),
264 PK_TYPE_11B, &phy[1]);
265
266 /*RSPINF_b_5*/
267 vnt_get_phy_field(priv, 14, vnt_get_cck_rate(priv, RATE_5M),
268 PK_TYPE_11B, &phy[2]);
269
270 /*RSPINF_b_11*/
271 vnt_get_phy_field(priv, 14, vnt_get_cck_rate(priv, RATE_11M),
272 PK_TYPE_11B, &phy[3]);
273
274 /*RSPINF_a_6*/
275 vnt_calculate_ofdm_rate(RATE_6M, bb_type, &tx_rate[0], &rsv_time[0]);
276
277 /*RSPINF_a_9*/
278 vnt_calculate_ofdm_rate(RATE_9M, bb_type, &tx_rate[1], &rsv_time[1]);
279
280 /*RSPINF_a_12*/
281 vnt_calculate_ofdm_rate(RATE_12M, bb_type, &tx_rate[2], &rsv_time[2]);
282
283 /*RSPINF_a_18*/
284 vnt_calculate_ofdm_rate(RATE_18M, bb_type, &tx_rate[3], &rsv_time[3]);
285
286 /*RSPINF_a_24*/
287 vnt_calculate_ofdm_rate(RATE_24M, bb_type, &tx_rate[4], &rsv_time[4]);
288
289 /*RSPINF_a_36*/
290 vnt_calculate_ofdm_rate(vnt_get_ofdm_rate(priv, RATE_36M),
291 bb_type, &tx_rate[5], &rsv_time[5]);
292
293 /*RSPINF_a_48*/
294 vnt_calculate_ofdm_rate(vnt_get_ofdm_rate(priv, RATE_48M),
295 bb_type, &tx_rate[6], &rsv_time[6]);
296
297 /*RSPINF_a_54*/
298 vnt_calculate_ofdm_rate(vnt_get_ofdm_rate(priv, RATE_54M),
299 bb_type, &tx_rate[7], &rsv_time[7]);
300
301 /*RSPINF_a_72*/
302 vnt_calculate_ofdm_rate(vnt_get_ofdm_rate(priv, RATE_54M),
303 bb_type, &tx_rate[8], &rsv_time[8]);
304
305 put_unaligned(phy[0].len, (u16 *)&data[0]);
306 data[2] = phy[0].signal;
307 data[3] = phy[0].service;
308
309 put_unaligned(phy[1].len, (u16 *)&data[4]);
310 data[6] = phy[1].signal;
311 data[7] = phy[1].service;
312
313 put_unaligned(phy[2].len, (u16 *)&data[8]);
314 data[10] = phy[2].signal;
315 data[11] = phy[2].service;
316
317 put_unaligned(phy[3].len, (u16 *)&data[12]);
318 data[14] = phy[3].signal;
319 data[15] = phy[3].service;
320
321 for (i = 0; i < 9; i++) {
322 data[16 + i * 2] = tx_rate[i];
323 data[16 + i * 2 + 1] = rsv_time[i];
324 }
325
326 vnt_control_out(priv, MESSAGE_TYPE_WRITE, MAC_REG_RSPINF_B_1,
327 MESSAGE_REQUEST_MACREG, 34, &data[0]);
328 }
329
330 /*
331 * Description: Update IFS
332 *
333 * Parameters:
334 * In:
335 * priv - The adapter to be set
336 * Out:
337 * none
338 *
339 * Return Value: None.
340 *
341 */
vnt_update_ifs(struct vnt_private * priv)342 void vnt_update_ifs(struct vnt_private *priv)
343 {
344 u8 max_min = 0;
345 u8 data[4];
346
347 if (priv->packet_type == PK_TYPE_11A) {
348 priv->slot = C_SLOT_SHORT;
349 priv->sifs = C_SIFS_A;
350 priv->difs = C_SIFS_A + 2 * C_SLOT_SHORT;
351 max_min = 4;
352 } else {
353 priv->sifs = C_SIFS_BG;
354
355 if (priv->short_slot_time) {
356 priv->slot = C_SLOT_SHORT;
357 max_min = 4;
358 } else {
359 priv->slot = C_SLOT_LONG;
360 max_min = 5;
361 }
362
363 priv->difs = C_SIFS_BG + 2 * priv->slot;
364 }
365
366 priv->eifs = C_EIFS;
367
368 switch (priv->rf_type) {
369 case RF_VT3226D0:
370 if (priv->bb_type != BB_TYPE_11B) {
371 priv->sifs -= 1;
372 priv->difs -= 1;
373 break;
374 }
375 /* fall through */
376 case RF_AIROHA7230:
377 case RF_AL2230:
378 case RF_AL2230S:
379 if (priv->bb_type != BB_TYPE_11B)
380 break;
381 /* fall through */
382 case RF_RFMD2959:
383 case RF_VT3226:
384 case RF_VT3342A0:
385 priv->sifs -= 3;
386 priv->difs -= 3;
387 break;
388 case RF_MAXIM2829:
389 if (priv->bb_type == BB_TYPE_11A) {
390 priv->sifs -= 5;
391 priv->difs -= 5;
392 } else {
393 priv->sifs -= 2;
394 priv->difs -= 2;
395 }
396
397 break;
398 }
399
400 data[0] = (u8)priv->sifs;
401 data[1] = (u8)priv->difs;
402 data[2] = (u8)priv->eifs;
403 data[3] = (u8)priv->slot;
404
405 vnt_control_out(priv, MESSAGE_TYPE_WRITE, MAC_REG_SIFS,
406 MESSAGE_REQUEST_MACREG, 4, &data[0]);
407
408 max_min |= 0xa0;
409
410 vnt_control_out(priv, MESSAGE_TYPE_WRITE, MAC_REG_CWMAXMIN0,
411 MESSAGE_REQUEST_MACREG, 1, &max_min);
412 }
413
vnt_update_top_rates(struct vnt_private * priv)414 void vnt_update_top_rates(struct vnt_private *priv)
415 {
416 u8 top_ofdm = RATE_24M, top_cck = RATE_1M;
417 u8 i;
418
419 /*Determines the highest basic rate.*/
420 for (i = RATE_54M; i >= RATE_6M; i--) {
421 if (priv->basic_rates & (u16)(1 << i)) {
422 top_ofdm = i;
423 break;
424 }
425 }
426
427 priv->top_ofdm_basic_rate = top_ofdm;
428
429 for (i = RATE_11M;; i--) {
430 if (priv->basic_rates & (u16)(1 << i)) {
431 top_cck = i;
432 break;
433 }
434 if (i == RATE_1M)
435 break;
436 }
437
438 priv->top_cck_basic_rate = top_cck;
439 }
440
vnt_ofdm_min_rate(struct vnt_private * priv)441 int vnt_ofdm_min_rate(struct vnt_private *priv)
442 {
443 int ii;
444
445 for (ii = RATE_54M; ii >= RATE_6M; ii--) {
446 if ((priv->basic_rates) & ((u16)BIT(ii)))
447 return true;
448 }
449
450 return false;
451 }
452
vnt_get_pkt_type(struct vnt_private * priv)453 u8 vnt_get_pkt_type(struct vnt_private *priv)
454 {
455 if (priv->bb_type == BB_TYPE_11A || priv->bb_type == BB_TYPE_11B)
456 return (u8)priv->bb_type;
457 else if (vnt_ofdm_min_rate(priv))
458 return PK_TYPE_11GA;
459 return PK_TYPE_11GB;
460 }
461
462 /*
463 * Description: Calculate TSF offset of two TSF input
464 * Get TSF Offset from RxBCN's TSF and local TSF
465 *
466 * Parameters:
467 * In:
468 * rx_rate - rx rate.
469 * tsf1 - Rx BCN's TSF
470 * tsf2 - Local TSF
471 * Out:
472 * none
473 *
474 * Return Value: TSF Offset value
475 *
476 */
vnt_get_tsf_offset(u8 rx_rate,u64 tsf1,u64 tsf2)477 u64 vnt_get_tsf_offset(u8 rx_rate, u64 tsf1, u64 tsf2)
478 {
479 return tsf1 - tsf2 - (u64)cw_rxbcntsf_off[rx_rate % MAX_RATE];
480 }
481
482 /*
483 * Description: Sync. TSF counter to BSS
484 * Get TSF offset and write to HW
485 *
486 * Parameters:
487 * In:
488 * priv - The adapter to be sync.
489 * time_stamp - Rx BCN's TSF
490 * local_tsf - Local TSF
491 * Out:
492 * none
493 *
494 * Return Value: none
495 *
496 */
vnt_adjust_tsf(struct vnt_private * priv,u8 rx_rate,u64 time_stamp,u64 local_tsf)497 void vnt_adjust_tsf(struct vnt_private *priv, u8 rx_rate,
498 u64 time_stamp, u64 local_tsf)
499 {
500 u64 tsf_offset = 0;
501 u8 data[8];
502
503 tsf_offset = vnt_get_tsf_offset(rx_rate, time_stamp, local_tsf);
504
505 data[0] = (u8)tsf_offset;
506 data[1] = (u8)(tsf_offset >> 8);
507 data[2] = (u8)(tsf_offset >> 16);
508 data[3] = (u8)(tsf_offset >> 24);
509 data[4] = (u8)(tsf_offset >> 32);
510 data[5] = (u8)(tsf_offset >> 40);
511 data[6] = (u8)(tsf_offset >> 48);
512 data[7] = (u8)(tsf_offset >> 56);
513
514 vnt_control_out(priv, MESSAGE_TYPE_SET_TSFTBTT,
515 MESSAGE_REQUEST_TSF, 0, 8, data);
516 }
517
518 /*
519 * Description: Read NIC TSF counter
520 * Get local TSF counter
521 *
522 * Parameters:
523 * In:
524 * priv - The adapter to be read
525 * Out:
526 * current_tsf - Current TSF counter
527 *
528 * Return Value: true if success; otherwise false
529 *
530 */
vnt_get_current_tsf(struct vnt_private * priv,u64 * current_tsf)531 bool vnt_get_current_tsf(struct vnt_private *priv, u64 *current_tsf)
532 {
533 *current_tsf = priv->current_tsf;
534
535 return true;
536 }
537
538 /*
539 * Description: Clear NIC TSF counter
540 * Clear local TSF counter
541 *
542 * Parameters:
543 * In:
544 * priv - The adapter to be read
545 *
546 * Return Value: true if success; otherwise false
547 *
548 */
vnt_clear_current_tsf(struct vnt_private * priv)549 bool vnt_clear_current_tsf(struct vnt_private *priv)
550 {
551 vnt_mac_reg_bits_on(priv, MAC_REG_TFTCTL, TFTCTL_TSFCNTRST);
552
553 priv->current_tsf = 0;
554
555 return true;
556 }
557
558 /*
559 * Description: Read NIC TSF counter
560 * Get NEXTTBTT from adjusted TSF and Beacon Interval
561 *
562 * Parameters:
563 * In:
564 * tsf - Current TSF counter
565 * beacon_interval - Beacon Interval
566 * Out:
567 * tsf - Current TSF counter
568 *
569 * Return Value: TSF value of next Beacon
570 *
571 */
vnt_get_next_tbtt(u64 tsf,u16 beacon_interval)572 u64 vnt_get_next_tbtt(u64 tsf, u16 beacon_interval)
573 {
574 u32 beacon_int;
575
576 beacon_int = beacon_interval * 1024;
577
578 /* Next TBTT =
579 * ((local_current_TSF / beacon_interval) + 1) * beacon_interval
580 */
581 if (beacon_int) {
582 do_div(tsf, beacon_int);
583 tsf += 1;
584 tsf *= beacon_int;
585 }
586
587 return tsf;
588 }
589
590 /*
591 * Description: Set NIC TSF counter for first Beacon time
592 * Get NEXTTBTT from adjusted TSF and Beacon Interval
593 *
594 * Parameters:
595 * In:
596 * dwIoBase - IO Base
597 * beacon_interval - Beacon Interval
598 * Out:
599 * none
600 *
601 * Return Value: none
602 *
603 */
vnt_reset_next_tbtt(struct vnt_private * priv,u16 beacon_interval)604 void vnt_reset_next_tbtt(struct vnt_private *priv, u16 beacon_interval)
605 {
606 u64 next_tbtt = 0;
607 u8 data[8];
608
609 vnt_clear_current_tsf(priv);
610
611 next_tbtt = vnt_get_next_tbtt(next_tbtt, beacon_interval);
612
613 data[0] = (u8)next_tbtt;
614 data[1] = (u8)(next_tbtt >> 8);
615 data[2] = (u8)(next_tbtt >> 16);
616 data[3] = (u8)(next_tbtt >> 24);
617 data[4] = (u8)(next_tbtt >> 32);
618 data[5] = (u8)(next_tbtt >> 40);
619 data[6] = (u8)(next_tbtt >> 48);
620 data[7] = (u8)(next_tbtt >> 56);
621
622 vnt_control_out(priv, MESSAGE_TYPE_SET_TSFTBTT,
623 MESSAGE_REQUEST_TBTT, 0, 8, data);
624 }
625
626 /*
627 * Description: Sync NIC TSF counter for Beacon time
628 * Get NEXTTBTT and write to HW
629 *
630 * Parameters:
631 * In:
632 * priv - The adapter to be set
633 * tsf - Current TSF counter
634 * beacon_interval - Beacon Interval
635 * Out:
636 * none
637 *
638 * Return Value: none
639 *
640 */
vnt_update_next_tbtt(struct vnt_private * priv,u64 tsf,u16 beacon_interval)641 void vnt_update_next_tbtt(struct vnt_private *priv, u64 tsf,
642 u16 beacon_interval)
643 {
644 u8 data[8];
645
646 tsf = vnt_get_next_tbtt(tsf, beacon_interval);
647
648 data[0] = (u8)tsf;
649 data[1] = (u8)(tsf >> 8);
650 data[2] = (u8)(tsf >> 16);
651 data[3] = (u8)(tsf >> 24);
652 data[4] = (u8)(tsf >> 32);
653 data[5] = (u8)(tsf >> 40);
654 data[6] = (u8)(tsf >> 48);
655 data[7] = (u8)(tsf >> 56);
656
657 vnt_control_out(priv, MESSAGE_TYPE_SET_TSFTBTT,
658 MESSAGE_REQUEST_TBTT, 0, 8, data);
659
660 dev_dbg(&priv->usb->dev, "%s TBTT: %8llx\n", __func__, tsf);
661 }
662
663 /*
664 * Description: Turn off Radio power
665 *
666 * Parameters:
667 * In:
668 * priv - The adapter to be turned off
669 * Out:
670 * none
671 *
672 * Return Value: true if success; otherwise false
673 *
674 */
vnt_radio_power_off(struct vnt_private * priv)675 int vnt_radio_power_off(struct vnt_private *priv)
676 {
677 int ret = 0;
678
679 switch (priv->rf_type) {
680 case RF_AL2230:
681 case RF_AL2230S:
682 case RF_AIROHA7230:
683 case RF_VT3226:
684 case RF_VT3226D0:
685 case RF_VT3342A0:
686 ret = vnt_mac_reg_bits_off(priv, MAC_REG_SOFTPWRCTL,
687 (SOFTPWRCTL_SWPE2 | SOFTPWRCTL_SWPE3));
688 break;
689 }
690
691 if (ret)
692 goto end;
693
694 ret = vnt_mac_reg_bits_off(priv, MAC_REG_HOSTCR, HOSTCR_RXON);
695 if (ret)
696 goto end;
697
698 ret = vnt_set_deep_sleep(priv);
699 if (ret)
700 goto end;
701
702 ret = vnt_mac_reg_bits_on(priv, MAC_REG_GPIOCTL1, GPIO3_INTMD);
703
704 end:
705 return ret;
706 }
707
708 /*
709 * Description: Turn on Radio power
710 *
711 * Parameters:
712 * In:
713 * priv - The adapter to be turned on
714 * Out:
715 * none
716 *
717 * Return Value: true if success; otherwise false
718 *
719 */
vnt_radio_power_on(struct vnt_private * priv)720 int vnt_radio_power_on(struct vnt_private *priv)
721 {
722 int ret = 0;
723
724 vnt_exit_deep_sleep(priv);
725
726 vnt_mac_reg_bits_on(priv, MAC_REG_HOSTCR, HOSTCR_RXON);
727
728 switch (priv->rf_type) {
729 case RF_AL2230:
730 case RF_AL2230S:
731 case RF_AIROHA7230:
732 case RF_VT3226:
733 case RF_VT3226D0:
734 case RF_VT3342A0:
735 vnt_mac_reg_bits_on(priv, MAC_REG_SOFTPWRCTL,
736 (SOFTPWRCTL_SWPE2 | SOFTPWRCTL_SWPE3));
737 break;
738 }
739
740 vnt_mac_reg_bits_off(priv, MAC_REG_GPIOCTL1, GPIO3_INTMD);
741
742 return ret;
743 }
744
vnt_set_bss_mode(struct vnt_private * priv)745 void vnt_set_bss_mode(struct vnt_private *priv)
746 {
747 if (priv->rf_type == RF_AIROHA7230 && priv->bb_type == BB_TYPE_11A)
748 vnt_mac_set_bb_type(priv, BB_TYPE_11G);
749 else
750 vnt_mac_set_bb_type(priv, priv->bb_type);
751
752 priv->packet_type = vnt_get_pkt_type(priv);
753
754 if (priv->bb_type == BB_TYPE_11A)
755 vnt_control_out_u8(priv, MESSAGE_REQUEST_BBREG, 0x88, 0x03);
756 else if (priv->bb_type == BB_TYPE_11B)
757 vnt_control_out_u8(priv, MESSAGE_REQUEST_BBREG, 0x88, 0x02);
758 else if (priv->bb_type == BB_TYPE_11G)
759 vnt_control_out_u8(priv, MESSAGE_REQUEST_BBREG, 0x88, 0x08);
760
761 vnt_update_ifs(priv);
762 vnt_set_rspinf(priv, (u8)priv->bb_type);
763
764 if (priv->bb_type == BB_TYPE_11A) {
765 if (priv->rf_type == RF_AIROHA7230) {
766 priv->bb_vga[0] = 0x20;
767
768 vnt_control_out_u8(priv, MESSAGE_REQUEST_BBREG,
769 0xe7, priv->bb_vga[0]);
770 }
771
772 priv->bb_vga[2] = 0x10;
773 priv->bb_vga[3] = 0x10;
774 } else {
775 if (priv->rf_type == RF_AIROHA7230) {
776 priv->bb_vga[0] = 0x1c;
777
778 vnt_control_out_u8(priv, MESSAGE_REQUEST_BBREG,
779 0xe7, priv->bb_vga[0]);
780 }
781
782 priv->bb_vga[2] = 0x0;
783 priv->bb_vga[3] = 0x0;
784 }
785
786 vnt_set_vga_gain_offset(priv, priv->bb_vga[0]);
787 }
788