• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015 MediaTek Inc.
4  * Author: Hanyi Wu <hanyi.wu@mediatek.com>
5  *         Sascha Hauer <s.hauer@pengutronix.de>
6  *         Dawei Chien <dawei.chien@mediatek.com>
7  *         Louis Yu <louis.yu@mediatek.com>
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/interrupt.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/nvmem-consumer.h>
16 #include <linux/of.h>
17 #include <linux/of_address.h>
18 #include <linux/of_device.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/io.h>
22 #include <linux/thermal.h>
23 #include <linux/reset.h>
24 #include <linux/types.h>
25 
26 /* AUXADC Registers */
27 #define AUXADC_CON1_SET_V	0x008
28 #define AUXADC_CON1_CLR_V	0x00c
29 #define AUXADC_CON2_V		0x010
30 #define AUXADC_DATA(channel)	(0x14 + (channel) * 4)
31 
32 #define APMIXED_SYS_TS_CON1	0x604
33 
34 /* Thermal Controller Registers */
35 #define TEMP_MONCTL0		0x000
36 #define TEMP_MONCTL1		0x004
37 #define TEMP_MONCTL2		0x008
38 #define TEMP_MONIDET0		0x014
39 #define TEMP_MONIDET1		0x018
40 #define TEMP_MSRCTL0		0x038
41 #define TEMP_AHBPOLL		0x040
42 #define TEMP_AHBTO		0x044
43 #define TEMP_ADCPNP0		0x048
44 #define TEMP_ADCPNP1		0x04c
45 #define TEMP_ADCPNP2		0x050
46 #define TEMP_ADCPNP3		0x0b4
47 
48 #define TEMP_ADCMUX		0x054
49 #define TEMP_ADCEN		0x060
50 #define TEMP_PNPMUXADDR		0x064
51 #define TEMP_ADCMUXADDR		0x068
52 #define TEMP_ADCENADDR		0x074
53 #define TEMP_ADCVALIDADDR	0x078
54 #define TEMP_ADCVOLTADDR	0x07c
55 #define TEMP_RDCTRL		0x080
56 #define TEMP_ADCVALIDMASK	0x084
57 #define TEMP_ADCVOLTAGESHIFT	0x088
58 #define TEMP_ADCWRITECTRL	0x08c
59 #define TEMP_MSR0		0x090
60 #define TEMP_MSR1		0x094
61 #define TEMP_MSR2		0x098
62 #define TEMP_MSR3		0x0B8
63 
64 #define TEMP_SPARE0		0x0f0
65 
66 #define TEMP_ADCPNP0_1          0x148
67 #define TEMP_ADCPNP1_1          0x14c
68 #define TEMP_ADCPNP2_1          0x150
69 #define TEMP_MSR0_1             0x190
70 #define TEMP_MSR1_1             0x194
71 #define TEMP_MSR2_1             0x198
72 #define TEMP_ADCPNP3_1          0x1b4
73 #define TEMP_MSR3_1             0x1B8
74 
75 #define PTPCORESEL		0x400
76 
77 #define TEMP_MONCTL1_PERIOD_UNIT(x)	((x) & 0x3ff)
78 
79 #define TEMP_MONCTL2_FILTER_INTERVAL(x)	(((x) & 0x3ff) << 16)
80 #define TEMP_MONCTL2_SENSOR_INTERVAL(x)	((x) & 0x3ff)
81 
82 #define TEMP_AHBPOLL_ADC_POLL_INTERVAL(x)	(x)
83 
84 #define TEMP_ADCWRITECTRL_ADC_PNP_WRITE		BIT(0)
85 #define TEMP_ADCWRITECTRL_ADC_MUX_WRITE		BIT(1)
86 
87 #define TEMP_ADCVALIDMASK_VALID_HIGH		BIT(5)
88 #define TEMP_ADCVALIDMASK_VALID_POS(bit)	(bit)
89 
90 /* MT8173 thermal sensors */
91 #define MT8173_TS1	0
92 #define MT8173_TS2	1
93 #define MT8173_TS3	2
94 #define MT8173_TS4	3
95 #define MT8173_TSABB	4
96 
97 /* AUXADC channel 11 is used for the temperature sensors */
98 #define MT8173_TEMP_AUXADC_CHANNEL	11
99 
100 /* The total number of temperature sensors in the MT8173 */
101 #define MT8173_NUM_SENSORS		5
102 
103 /* The number of banks in the MT8173 */
104 #define MT8173_NUM_ZONES		4
105 
106 /* The number of sensing points per bank */
107 #define MT8173_NUM_SENSORS_PER_ZONE	4
108 
109 /* The number of controller in the MT8173 */
110 #define MT8173_NUM_CONTROLLER		1
111 
112 /* The calibration coefficient of sensor  */
113 #define MT8173_CALIBRATION	165
114 
115 /*
116  * Layout of the fuses providing the calibration data
117  * These macros could be used for MT8183, MT8173, MT2701, and MT2712.
118  * MT8183 has 6 sensors and needs 6 VTS calibration data.
119  * MT8173 has 5 sensors and needs 5 VTS calibration data.
120  * MT2701 has 3 sensors and needs 3 VTS calibration data.
121  * MT2712 has 4 sensors and needs 4 VTS calibration data.
122  */
123 #define CALIB_BUF0_VALID		BIT(0)
124 #define CALIB_BUF1_ADC_GE(x)		(((x) >> 22) & 0x3ff)
125 #define CALIB_BUF0_VTS_TS1(x)		(((x) >> 17) & 0x1ff)
126 #define CALIB_BUF0_VTS_TS2(x)		(((x) >> 8) & 0x1ff)
127 #define CALIB_BUF1_VTS_TS3(x)		(((x) >> 0) & 0x1ff)
128 #define CALIB_BUF2_VTS_TS4(x)		(((x) >> 23) & 0x1ff)
129 #define CALIB_BUF2_VTS_TS5(x)		(((x) >> 5) & 0x1ff)
130 #define CALIB_BUF2_VTS_TSABB(x)		(((x) >> 14) & 0x1ff)
131 #define CALIB_BUF0_DEGC_CALI(x)		(((x) >> 1) & 0x3f)
132 #define CALIB_BUF0_O_SLOPE(x)		(((x) >> 26) & 0x3f)
133 #define CALIB_BUF0_O_SLOPE_SIGN(x)	(((x) >> 7) & 0x1)
134 #define CALIB_BUF1_ID(x)		(((x) >> 9) & 0x1)
135 
136 enum {
137 	VTS1,
138 	VTS2,
139 	VTS3,
140 	VTS4,
141 	VTS5,
142 	VTSABB,
143 	MAX_NUM_VTS,
144 };
145 
146 /* MT2701 thermal sensors */
147 #define MT2701_TS1	0
148 #define MT2701_TS2	1
149 #define MT2701_TSABB	2
150 
151 /* AUXADC channel 11 is used for the temperature sensors */
152 #define MT2701_TEMP_AUXADC_CHANNEL	11
153 
154 /* The total number of temperature sensors in the MT2701 */
155 #define MT2701_NUM_SENSORS	3
156 
157 /* The number of sensing points per bank */
158 #define MT2701_NUM_SENSORS_PER_ZONE	3
159 
160 /* The number of controller in the MT2701 */
161 #define MT2701_NUM_CONTROLLER		1
162 
163 /* The calibration coefficient of sensor  */
164 #define MT2701_CALIBRATION	165
165 
166 /* MT2712 thermal sensors */
167 #define MT2712_TS1	0
168 #define MT2712_TS2	1
169 #define MT2712_TS3	2
170 #define MT2712_TS4	3
171 
172 /* AUXADC channel 11 is used for the temperature sensors */
173 #define MT2712_TEMP_AUXADC_CHANNEL	11
174 
175 /* The total number of temperature sensors in the MT2712 */
176 #define MT2712_NUM_SENSORS	4
177 
178 /* The number of sensing points per bank */
179 #define MT2712_NUM_SENSORS_PER_ZONE	4
180 
181 /* The number of controller in the MT2712 */
182 #define MT2712_NUM_CONTROLLER		1
183 
184 /* The calibration coefficient of sensor  */
185 #define MT2712_CALIBRATION	165
186 
187 #define MT7622_TEMP_AUXADC_CHANNEL	11
188 #define MT7622_NUM_SENSORS		1
189 #define MT7622_NUM_ZONES		1
190 #define MT7622_NUM_SENSORS_PER_ZONE	1
191 #define MT7622_TS1	0
192 #define MT7622_NUM_CONTROLLER		1
193 
194 /* The maximum number of banks */
195 #define MAX_NUM_ZONES		8
196 
197 /* The calibration coefficient of sensor  */
198 #define MT7622_CALIBRATION	165
199 
200 /* MT8183 thermal sensors */
201 #define MT8183_TS1	0
202 #define MT8183_TS2	1
203 #define MT8183_TS3	2
204 #define MT8183_TS4	3
205 #define MT8183_TS5	4
206 #define MT8183_TSABB	5
207 
208 /* AUXADC channel  is used for the temperature sensors */
209 #define MT8183_TEMP_AUXADC_CHANNEL	11
210 
211 /* The total number of temperature sensors in the MT8183 */
212 #define MT8183_NUM_SENSORS	6
213 
214 /* The number of sensing points per bank */
215 #define MT8183_NUM_SENSORS_PER_ZONE	 6
216 
217 /* The number of controller in the MT8183 */
218 #define MT8183_NUM_CONTROLLER		2
219 
220 /* The calibration coefficient of sensor  */
221 #define MT8183_CALIBRATION	153
222 
223 struct mtk_thermal;
224 
225 struct thermal_bank_cfg {
226 	unsigned int num_sensors;
227 	const int *sensors;
228 };
229 
230 struct mtk_thermal_bank {
231 	struct mtk_thermal *mt;
232 	int id;
233 };
234 
235 struct mtk_thermal_data {
236 	s32 num_banks;
237 	s32 num_sensors;
238 	s32 auxadc_channel;
239 	const int *vts_index;
240 	const int *sensor_mux_values;
241 	const int *msr;
242 	const int *adcpnp;
243 	const int cali_val;
244 	const int num_controller;
245 	const int *controller_offset;
246 	bool need_switch_bank;
247 	struct thermal_bank_cfg bank_data[MAX_NUM_ZONES];
248 };
249 
250 struct mtk_thermal {
251 	struct device *dev;
252 	void __iomem *thermal_base;
253 
254 	struct clk *clk_peri_therm;
255 	struct clk *clk_auxadc;
256 	/* lock: for getting and putting banks */
257 	struct mutex lock;
258 
259 	/* Calibration values */
260 	s32 adc_ge;
261 	s32 degc_cali;
262 	s32 o_slope;
263 	s32 vts[MAX_NUM_VTS];
264 
265 	const struct mtk_thermal_data *conf;
266 	struct mtk_thermal_bank banks[MAX_NUM_ZONES];
267 };
268 
269 /* MT8183 thermal sensor data */
270 static const int mt8183_bank_data[MT8183_NUM_SENSORS] = {
271 	MT8183_TS1, MT8183_TS2, MT8183_TS3, MT8183_TS4, MT8183_TS5, MT8183_TSABB
272 };
273 
274 static const int mt8183_msr[MT8183_NUM_SENSORS_PER_ZONE] = {
275 	TEMP_MSR0_1, TEMP_MSR1_1, TEMP_MSR2_1, TEMP_MSR1, TEMP_MSR0, TEMP_MSR3_1
276 };
277 
278 static const int mt8183_adcpnp[MT8183_NUM_SENSORS_PER_ZONE] = {
279 	TEMP_ADCPNP0_1, TEMP_ADCPNP1_1, TEMP_ADCPNP2_1,
280 	TEMP_ADCPNP1, TEMP_ADCPNP0, TEMP_ADCPNP3_1
281 };
282 
283 static const int mt8183_mux_values[MT8183_NUM_SENSORS] = { 0, 1, 2, 3, 4, 0 };
284 static const int mt8183_tc_offset[MT8183_NUM_CONTROLLER] = {0x0, 0x100};
285 
286 static const int mt8183_vts_index[MT8183_NUM_SENSORS] = {
287 	VTS1, VTS2, VTS3, VTS4, VTS5, VTSABB
288 };
289 
290 /* MT8173 thermal sensor data */
291 static const int mt8173_bank_data[MT8173_NUM_ZONES][3] = {
292 	{ MT8173_TS2, MT8173_TS3 },
293 	{ MT8173_TS2, MT8173_TS4 },
294 	{ MT8173_TS1, MT8173_TS2, MT8173_TSABB },
295 	{ MT8173_TS2 },
296 };
297 
298 static const int mt8173_msr[MT8173_NUM_SENSORS_PER_ZONE] = {
299 	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3
300 };
301 
302 static const int mt8173_adcpnp[MT8173_NUM_SENSORS_PER_ZONE] = {
303 	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3
304 };
305 
306 static const int mt8173_mux_values[MT8173_NUM_SENSORS] = { 0, 1, 2, 3, 16 };
307 static const int mt8173_tc_offset[MT8173_NUM_CONTROLLER] = { 0x0, };
308 
309 static const int mt8173_vts_index[MT8173_NUM_SENSORS] = {
310 	VTS1, VTS2, VTS3, VTS4, VTSABB
311 };
312 
313 /* MT2701 thermal sensor data */
314 static const int mt2701_bank_data[MT2701_NUM_SENSORS] = {
315 	MT2701_TS1, MT2701_TS2, MT2701_TSABB
316 };
317 
318 static const int mt2701_msr[MT2701_NUM_SENSORS_PER_ZONE] = {
319 	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2
320 };
321 
322 static const int mt2701_adcpnp[MT2701_NUM_SENSORS_PER_ZONE] = {
323 	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2
324 };
325 
326 static const int mt2701_mux_values[MT2701_NUM_SENSORS] = { 0, 1, 16 };
327 static const int mt2701_tc_offset[MT2701_NUM_CONTROLLER] = { 0x0, };
328 
329 static const int mt2701_vts_index[MT2701_NUM_SENSORS] = {
330 	VTS1, VTS2, VTS3
331 };
332 
333 /* MT2712 thermal sensor data */
334 static const int mt2712_bank_data[MT2712_NUM_SENSORS] = {
335 	MT2712_TS1, MT2712_TS2, MT2712_TS3, MT2712_TS4
336 };
337 
338 static const int mt2712_msr[MT2712_NUM_SENSORS_PER_ZONE] = {
339 	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3
340 };
341 
342 static const int mt2712_adcpnp[MT2712_NUM_SENSORS_PER_ZONE] = {
343 	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3
344 };
345 
346 static const int mt2712_mux_values[MT2712_NUM_SENSORS] = { 0, 1, 2, 3 };
347 static const int mt2712_tc_offset[MT2712_NUM_CONTROLLER] = { 0x0, };
348 
349 static const int mt2712_vts_index[MT2712_NUM_SENSORS] = {
350 	VTS1, VTS2, VTS3, VTS4
351 };
352 
353 /* MT7622 thermal sensor data */
354 static const int mt7622_bank_data[MT7622_NUM_SENSORS] = { MT7622_TS1, };
355 static const int mt7622_msr[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, };
356 static const int mt7622_adcpnp[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, };
357 static const int mt7622_mux_values[MT7622_NUM_SENSORS] = { 0, };
358 static const int mt7622_vts_index[MT7622_NUM_SENSORS] = { VTS1 };
359 static const int mt7622_tc_offset[MT7622_NUM_CONTROLLER] = { 0x0, };
360 
361 /**
362  * The MT8173 thermal controller has four banks. Each bank can read up to
363  * four temperature sensors simultaneously. The MT8173 has a total of 5
364  * temperature sensors. We use each bank to measure a certain area of the
365  * SoC. Since TS2 is located centrally in the SoC it is influenced by multiple
366  * areas, hence is used in different banks.
367  *
368  * The thermal core only gets the maximum temperature of all banks, so
369  * the bank concept wouldn't be necessary here. However, the SVS (Smart
370  * Voltage Scaling) unit makes its decisions based on the same bank
371  * data, and this indeed needs the temperatures of the individual banks
372  * for making better decisions.
373  */
374 static const struct mtk_thermal_data mt8173_thermal_data = {
375 	.auxadc_channel = MT8173_TEMP_AUXADC_CHANNEL,
376 	.num_banks = MT8173_NUM_ZONES,
377 	.num_sensors = MT8173_NUM_SENSORS,
378 	.vts_index = mt8173_vts_index,
379 	.cali_val = MT8173_CALIBRATION,
380 	.num_controller = MT8173_NUM_CONTROLLER,
381 	.controller_offset = mt8173_tc_offset,
382 	.need_switch_bank = true,
383 	.bank_data = {
384 		{
385 			.num_sensors = 2,
386 			.sensors = mt8173_bank_data[0],
387 		}, {
388 			.num_sensors = 2,
389 			.sensors = mt8173_bank_data[1],
390 		}, {
391 			.num_sensors = 3,
392 			.sensors = mt8173_bank_data[2],
393 		}, {
394 			.num_sensors = 1,
395 			.sensors = mt8173_bank_data[3],
396 		},
397 	},
398 	.msr = mt8173_msr,
399 	.adcpnp = mt8173_adcpnp,
400 	.sensor_mux_values = mt8173_mux_values,
401 };
402 
403 /**
404  * The MT2701 thermal controller has one bank, which can read up to
405  * three temperature sensors simultaneously. The MT2701 has a total of 3
406  * temperature sensors.
407  *
408  * The thermal core only gets the maximum temperature of this one bank,
409  * so the bank concept wouldn't be necessary here. However, the SVS (Smart
410  * Voltage Scaling) unit makes its decisions based on the same bank
411  * data.
412  */
413 static const struct mtk_thermal_data mt2701_thermal_data = {
414 	.auxadc_channel = MT2701_TEMP_AUXADC_CHANNEL,
415 	.num_banks = 1,
416 	.num_sensors = MT2701_NUM_SENSORS,
417 	.vts_index = mt2701_vts_index,
418 	.cali_val = MT2701_CALIBRATION,
419 	.num_controller = MT2701_NUM_CONTROLLER,
420 	.controller_offset = mt2701_tc_offset,
421 	.need_switch_bank = true,
422 	.bank_data = {
423 		{
424 			.num_sensors = 3,
425 			.sensors = mt2701_bank_data,
426 		},
427 	},
428 	.msr = mt2701_msr,
429 	.adcpnp = mt2701_adcpnp,
430 	.sensor_mux_values = mt2701_mux_values,
431 };
432 
433 /**
434  * The MT2712 thermal controller has one bank, which can read up to
435  * four temperature sensors simultaneously. The MT2712 has a total of 4
436  * temperature sensors.
437  *
438  * The thermal core only gets the maximum temperature of this one bank,
439  * so the bank concept wouldn't be necessary here. However, the SVS (Smart
440  * Voltage Scaling) unit makes its decisions based on the same bank
441  * data.
442  */
443 static const struct mtk_thermal_data mt2712_thermal_data = {
444 	.auxadc_channel = MT2712_TEMP_AUXADC_CHANNEL,
445 	.num_banks = 1,
446 	.num_sensors = MT2712_NUM_SENSORS,
447 	.vts_index = mt2712_vts_index,
448 	.cali_val = MT2712_CALIBRATION,
449 	.num_controller = MT2712_NUM_CONTROLLER,
450 	.controller_offset = mt2712_tc_offset,
451 	.need_switch_bank = true,
452 	.bank_data = {
453 		{
454 			.num_sensors = 4,
455 			.sensors = mt2712_bank_data,
456 		},
457 	},
458 	.msr = mt2712_msr,
459 	.adcpnp = mt2712_adcpnp,
460 	.sensor_mux_values = mt2712_mux_values,
461 };
462 
463 /*
464  * MT7622 have only one sensing point which uses AUXADC Channel 11 for raw data
465  * access.
466  */
467 static const struct mtk_thermal_data mt7622_thermal_data = {
468 	.auxadc_channel = MT7622_TEMP_AUXADC_CHANNEL,
469 	.num_banks = MT7622_NUM_ZONES,
470 	.num_sensors = MT7622_NUM_SENSORS,
471 	.vts_index = mt7622_vts_index,
472 	.cali_val = MT7622_CALIBRATION,
473 	.num_controller = MT7622_NUM_CONTROLLER,
474 	.controller_offset = mt7622_tc_offset,
475 	.need_switch_bank = true,
476 	.bank_data = {
477 		{
478 			.num_sensors = 1,
479 			.sensors = mt7622_bank_data,
480 		},
481 	},
482 	.msr = mt7622_msr,
483 	.adcpnp = mt7622_adcpnp,
484 	.sensor_mux_values = mt7622_mux_values,
485 };
486 
487 /**
488  * The MT8183 thermal controller has one bank for the current SW framework.
489  * The MT8183 has a total of 6 temperature sensors.
490  * There are two thermal controller to control the six sensor.
491  * The first one bind 2 sensor, and the other bind 4 sensors.
492  * The thermal core only gets the maximum temperature of all sensor, so
493  * the bank concept wouldn't be necessary here. However, the SVS (Smart
494  * Voltage Scaling) unit makes its decisions based on the same bank
495  * data, and this indeed needs the temperatures of the individual banks
496  * for making better decisions.
497  */
498 
499 static const struct mtk_thermal_data mt8183_thermal_data = {
500 	.auxadc_channel = MT8183_TEMP_AUXADC_CHANNEL,
501 	.num_banks = MT8183_NUM_SENSORS_PER_ZONE,
502 	.num_sensors = MT8183_NUM_SENSORS,
503 	.vts_index = mt8183_vts_index,
504 	.cali_val = MT8183_CALIBRATION,
505 	.num_controller = MT8183_NUM_CONTROLLER,
506 	.controller_offset = mt8183_tc_offset,
507 	.need_switch_bank = false,
508 	.bank_data = {
509 		{
510 			.num_sensors = 6,
511 			.sensors = mt8183_bank_data,
512 		},
513 	},
514 
515 	.msr = mt8183_msr,
516 	.adcpnp = mt8183_adcpnp,
517 	.sensor_mux_values = mt8183_mux_values,
518 };
519 
520 /**
521  * raw_to_mcelsius - convert a raw ADC value to mcelsius
522  * @mt:		The thermal controller
523  * @raw:	raw ADC value
524  *
525  * This converts the raw ADC value to mcelsius using the SoC specific
526  * calibration constants
527  */
raw_to_mcelsius(struct mtk_thermal * mt,int sensno,s32 raw)528 static int raw_to_mcelsius(struct mtk_thermal *mt, int sensno, s32 raw)
529 {
530 	s32 tmp;
531 
532 	raw &= 0xfff;
533 
534 	tmp = 203450520 << 3;
535 	tmp /= mt->conf->cali_val + mt->o_slope;
536 	tmp /= 10000 + mt->adc_ge;
537 	tmp *= raw - mt->vts[sensno] - 3350;
538 	tmp >>= 3;
539 
540 	return mt->degc_cali * 500 - tmp;
541 }
542 
543 /**
544  * mtk_thermal_get_bank - get bank
545  * @bank:	The bank
546  *
547  * The bank registers are banked, we have to select a bank in the
548  * PTPCORESEL register to access it.
549  */
mtk_thermal_get_bank(struct mtk_thermal_bank * bank)550 static void mtk_thermal_get_bank(struct mtk_thermal_bank *bank)
551 {
552 	struct mtk_thermal *mt = bank->mt;
553 	u32 val;
554 
555 	if (mt->conf->need_switch_bank) {
556 		mutex_lock(&mt->lock);
557 
558 		val = readl(mt->thermal_base + PTPCORESEL);
559 		val &= ~0xf;
560 		val |= bank->id;
561 		writel(val, mt->thermal_base + PTPCORESEL);
562 	}
563 }
564 
565 /**
566  * mtk_thermal_put_bank - release bank
567  * @bank:	The bank
568  *
569  * release a bank previously taken with mtk_thermal_get_bank,
570  */
mtk_thermal_put_bank(struct mtk_thermal_bank * bank)571 static void mtk_thermal_put_bank(struct mtk_thermal_bank *bank)
572 {
573 	struct mtk_thermal *mt = bank->mt;
574 
575 	if (mt->conf->need_switch_bank)
576 		mutex_unlock(&mt->lock);
577 }
578 
579 /**
580  * mtk_thermal_bank_temperature - get the temperature of a bank
581  * @bank:	The bank
582  *
583  * The temperature of a bank is considered the maximum temperature of
584  * the sensors associated to the bank.
585  */
mtk_thermal_bank_temperature(struct mtk_thermal_bank * bank)586 static int mtk_thermal_bank_temperature(struct mtk_thermal_bank *bank)
587 {
588 	struct mtk_thermal *mt = bank->mt;
589 	const struct mtk_thermal_data *conf = mt->conf;
590 	int i, temp = INT_MIN, max = INT_MIN;
591 	u32 raw;
592 
593 	for (i = 0; i < conf->bank_data[bank->id].num_sensors; i++) {
594 		raw = readl(mt->thermal_base +
595 			    conf->msr[conf->bank_data[bank->id].sensors[i]]);
596 
597 		temp = raw_to_mcelsius(mt,
598 				       conf->bank_data[bank->id].sensors[i],
599 				       raw);
600 
601 		/*
602 		 * The first read of a sensor often contains very high bogus
603 		 * temperature value. Filter these out so that the system does
604 		 * not immediately shut down.
605 		 */
606 		if (temp > 200000)
607 			temp = 0;
608 
609 		if (temp > max)
610 			max = temp;
611 	}
612 
613 	return max;
614 }
615 
mtk_read_temp(void * data,int * temperature)616 static int mtk_read_temp(void *data, int *temperature)
617 {
618 	struct mtk_thermal *mt = data;
619 	int i;
620 	int tempmax = INT_MIN;
621 
622 	for (i = 0; i < mt->conf->num_banks; i++) {
623 		struct mtk_thermal_bank *bank = &mt->banks[i];
624 
625 		mtk_thermal_get_bank(bank);
626 
627 		tempmax = max(tempmax, mtk_thermal_bank_temperature(bank));
628 
629 		mtk_thermal_put_bank(bank);
630 	}
631 
632 	*temperature = tempmax;
633 
634 	return 0;
635 }
636 
637 static const struct thermal_zone_of_device_ops mtk_thermal_ops = {
638 	.get_temp = mtk_read_temp,
639 };
640 
mtk_thermal_init_bank(struct mtk_thermal * mt,int num,u32 apmixed_phys_base,u32 auxadc_phys_base,int ctrl_id)641 static void mtk_thermal_init_bank(struct mtk_thermal *mt, int num,
642 				  u32 apmixed_phys_base, u32 auxadc_phys_base,
643 				  int ctrl_id)
644 {
645 	struct mtk_thermal_bank *bank = &mt->banks[num];
646 	const struct mtk_thermal_data *conf = mt->conf;
647 	int i;
648 
649 	int offset = mt->conf->controller_offset[ctrl_id];
650 	void __iomem *controller_base = mt->thermal_base + offset;
651 
652 	bank->id = num;
653 	bank->mt = mt;
654 
655 	mtk_thermal_get_bank(bank);
656 
657 	/* bus clock 66M counting unit is 12 * 15.15ns * 256 = 46.540us */
658 	writel(TEMP_MONCTL1_PERIOD_UNIT(12), controller_base + TEMP_MONCTL1);
659 
660 	/*
661 	 * filt interval is 1 * 46.540us = 46.54us,
662 	 * sen interval is 429 * 46.540us = 19.96ms
663 	 */
664 	writel(TEMP_MONCTL2_FILTER_INTERVAL(1) |
665 			TEMP_MONCTL2_SENSOR_INTERVAL(429),
666 			controller_base + TEMP_MONCTL2);
667 
668 	/* poll is set to 10u */
669 	writel(TEMP_AHBPOLL_ADC_POLL_INTERVAL(768),
670 	       controller_base + TEMP_AHBPOLL);
671 
672 	/* temperature sampling control, 1 sample */
673 	writel(0x0, controller_base + TEMP_MSRCTL0);
674 
675 	/* exceed this polling time, IRQ would be inserted */
676 	writel(0xffffffff, controller_base + TEMP_AHBTO);
677 
678 	/* number of interrupts per event, 1 is enough */
679 	writel(0x0, controller_base + TEMP_MONIDET0);
680 	writel(0x0, controller_base + TEMP_MONIDET1);
681 
682 	/*
683 	 * The MT8173 thermal controller does not have its own ADC. Instead it
684 	 * uses AHB bus accesses to control the AUXADC. To do this the thermal
685 	 * controller has to be programmed with the physical addresses of the
686 	 * AUXADC registers and with the various bit positions in the AUXADC.
687 	 * Also the thermal controller controls a mux in the APMIXEDSYS register
688 	 * space.
689 	 */
690 
691 	/*
692 	 * this value will be stored to TEMP_PNPMUXADDR (TEMP_SPARE0)
693 	 * automatically by hw
694 	 */
695 	writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCMUX);
696 
697 	/* AHB address for auxadc mux selection */
698 	writel(auxadc_phys_base + AUXADC_CON1_CLR_V,
699 	       controller_base + TEMP_ADCMUXADDR);
700 
701 	/* AHB address for pnp sensor mux selection */
702 	writel(apmixed_phys_base + APMIXED_SYS_TS_CON1,
703 	       controller_base + TEMP_PNPMUXADDR);
704 
705 	/* AHB value for auxadc enable */
706 	writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCEN);
707 
708 	/* AHB address for auxadc enable (channel 0 immediate mode selected) */
709 	writel(auxadc_phys_base + AUXADC_CON1_SET_V,
710 	       controller_base + TEMP_ADCENADDR);
711 
712 	/* AHB address for auxadc valid bit */
713 	writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel),
714 	       controller_base + TEMP_ADCVALIDADDR);
715 
716 	/* AHB address for auxadc voltage output */
717 	writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel),
718 	       controller_base + TEMP_ADCVOLTADDR);
719 
720 	/* read valid & voltage are at the same register */
721 	writel(0x0, controller_base + TEMP_RDCTRL);
722 
723 	/* indicate where the valid bit is */
724 	writel(TEMP_ADCVALIDMASK_VALID_HIGH | TEMP_ADCVALIDMASK_VALID_POS(12),
725 	       controller_base + TEMP_ADCVALIDMASK);
726 
727 	/* no shift */
728 	writel(0x0, controller_base + TEMP_ADCVOLTAGESHIFT);
729 
730 	/* enable auxadc mux write transaction */
731 	writel(TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
732 		controller_base + TEMP_ADCWRITECTRL);
733 
734 	for (i = 0; i < conf->bank_data[num].num_sensors; i++)
735 		writel(conf->sensor_mux_values[conf->bank_data[num].sensors[i]],
736 		       mt->thermal_base +
737 		       conf->adcpnp[conf->bank_data[num].sensors[i]]);
738 
739 	writel((1 << conf->bank_data[num].num_sensors) - 1,
740 	       controller_base + TEMP_MONCTL0);
741 
742 	writel(TEMP_ADCWRITECTRL_ADC_PNP_WRITE |
743 	       TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
744 	       controller_base + TEMP_ADCWRITECTRL);
745 
746 	mtk_thermal_put_bank(bank);
747 }
748 
of_get_phys_base(struct device_node * np)749 static u64 of_get_phys_base(struct device_node *np)
750 {
751 	u64 size64;
752 	const __be32 *regaddr_p;
753 
754 	regaddr_p = of_get_address(np, 0, &size64, NULL);
755 	if (!regaddr_p)
756 		return OF_BAD_ADDR;
757 
758 	return of_translate_address(np, regaddr_p);
759 }
760 
mtk_thermal_get_calibration_data(struct device * dev,struct mtk_thermal * mt)761 static int mtk_thermal_get_calibration_data(struct device *dev,
762 					    struct mtk_thermal *mt)
763 {
764 	struct nvmem_cell *cell;
765 	u32 *buf;
766 	size_t len;
767 	int i, ret = 0;
768 
769 	/* Start with default values */
770 	mt->adc_ge = 512;
771 	for (i = 0; i < mt->conf->num_sensors; i++)
772 		mt->vts[i] = 260;
773 	mt->degc_cali = 40;
774 	mt->o_slope = 0;
775 
776 	cell = nvmem_cell_get(dev, "calibration-data");
777 	if (IS_ERR(cell)) {
778 		if (PTR_ERR(cell) == -EPROBE_DEFER)
779 			return PTR_ERR(cell);
780 		return 0;
781 	}
782 
783 	buf = (u32 *)nvmem_cell_read(cell, &len);
784 
785 	nvmem_cell_put(cell);
786 
787 	if (IS_ERR(buf))
788 		return PTR_ERR(buf);
789 
790 	if (len < 3 * sizeof(u32)) {
791 		dev_warn(dev, "invalid calibration data\n");
792 		ret = -EINVAL;
793 		goto out;
794 	}
795 
796 	if (buf[0] & CALIB_BUF0_VALID) {
797 		mt->adc_ge = CALIB_BUF1_ADC_GE(buf[1]);
798 
799 		for (i = 0; i < mt->conf->num_sensors; i++) {
800 			switch (mt->conf->vts_index[i]) {
801 			case VTS1:
802 				mt->vts[VTS1] = CALIB_BUF0_VTS_TS1(buf[0]);
803 				break;
804 			case VTS2:
805 				mt->vts[VTS2] = CALIB_BUF0_VTS_TS2(buf[0]);
806 				break;
807 			case VTS3:
808 				mt->vts[VTS3] = CALIB_BUF1_VTS_TS3(buf[1]);
809 				break;
810 			case VTS4:
811 				mt->vts[VTS4] = CALIB_BUF2_VTS_TS4(buf[2]);
812 				break;
813 			case VTS5:
814 				mt->vts[VTS5] = CALIB_BUF2_VTS_TS5(buf[2]);
815 				break;
816 			case VTSABB:
817 				mt->vts[VTSABB] = CALIB_BUF2_VTS_TSABB(buf[2]);
818 				break;
819 			default:
820 				break;
821 			}
822 		}
823 
824 		mt->degc_cali = CALIB_BUF0_DEGC_CALI(buf[0]);
825 		if (CALIB_BUF1_ID(buf[1]) &
826 		    CALIB_BUF0_O_SLOPE_SIGN(buf[0]))
827 			mt->o_slope = -CALIB_BUF0_O_SLOPE(buf[0]);
828 		else
829 			mt->o_slope = CALIB_BUF0_O_SLOPE(buf[0]);
830 	} else {
831 		dev_info(dev, "Device not calibrated, using default calibration values\n");
832 	}
833 
834 out:
835 	kfree(buf);
836 
837 	return ret;
838 }
839 
840 static const struct of_device_id mtk_thermal_of_match[] = {
841 	{
842 		.compatible = "mediatek,mt8173-thermal",
843 		.data = (void *)&mt8173_thermal_data,
844 	},
845 	{
846 		.compatible = "mediatek,mt2701-thermal",
847 		.data = (void *)&mt2701_thermal_data,
848 	},
849 	{
850 		.compatible = "mediatek,mt2712-thermal",
851 		.data = (void *)&mt2712_thermal_data,
852 	},
853 	{
854 		.compatible = "mediatek,mt7622-thermal",
855 		.data = (void *)&mt7622_thermal_data,
856 	},
857 	{
858 		.compatible = "mediatek,mt8183-thermal",
859 		.data = (void *)&mt8183_thermal_data,
860 	}, {
861 	},
862 };
863 MODULE_DEVICE_TABLE(of, mtk_thermal_of_match);
864 
mtk_thermal_probe(struct platform_device * pdev)865 static int mtk_thermal_probe(struct platform_device *pdev)
866 {
867 	int ret, i, ctrl_id;
868 	struct device_node *auxadc, *apmixedsys, *np = pdev->dev.of_node;
869 	struct mtk_thermal *mt;
870 	struct resource *res;
871 	u64 auxadc_phys_base, apmixed_phys_base;
872 	struct thermal_zone_device *tzdev;
873 
874 	mt = devm_kzalloc(&pdev->dev, sizeof(*mt), GFP_KERNEL);
875 	if (!mt)
876 		return -ENOMEM;
877 
878 	mt->conf = of_device_get_match_data(&pdev->dev);
879 
880 	mt->clk_peri_therm = devm_clk_get(&pdev->dev, "therm");
881 	if (IS_ERR(mt->clk_peri_therm))
882 		return PTR_ERR(mt->clk_peri_therm);
883 
884 	mt->clk_auxadc = devm_clk_get(&pdev->dev, "auxadc");
885 	if (IS_ERR(mt->clk_auxadc))
886 		return PTR_ERR(mt->clk_auxadc);
887 
888 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
889 	mt->thermal_base = devm_ioremap_resource(&pdev->dev, res);
890 	if (IS_ERR(mt->thermal_base))
891 		return PTR_ERR(mt->thermal_base);
892 
893 	ret = mtk_thermal_get_calibration_data(&pdev->dev, mt);
894 	if (ret)
895 		return ret;
896 
897 	mutex_init(&mt->lock);
898 
899 	mt->dev = &pdev->dev;
900 
901 	auxadc = of_parse_phandle(np, "mediatek,auxadc", 0);
902 	if (!auxadc) {
903 		dev_err(&pdev->dev, "missing auxadc node\n");
904 		return -ENODEV;
905 	}
906 
907 	auxadc_phys_base = of_get_phys_base(auxadc);
908 
909 	of_node_put(auxadc);
910 
911 	if (auxadc_phys_base == OF_BAD_ADDR) {
912 		dev_err(&pdev->dev, "Can't get auxadc phys address\n");
913 		return -EINVAL;
914 	}
915 
916 	apmixedsys = of_parse_phandle(np, "mediatek,apmixedsys", 0);
917 	if (!apmixedsys) {
918 		dev_err(&pdev->dev, "missing apmixedsys node\n");
919 		return -ENODEV;
920 	}
921 
922 	apmixed_phys_base = of_get_phys_base(apmixedsys);
923 
924 	of_node_put(apmixedsys);
925 
926 	if (apmixed_phys_base == OF_BAD_ADDR) {
927 		dev_err(&pdev->dev, "Can't get auxadc phys address\n");
928 		return -EINVAL;
929 	}
930 
931 	ret = device_reset(&pdev->dev);
932 	if (ret)
933 		return ret;
934 
935 	ret = clk_prepare_enable(mt->clk_auxadc);
936 	if (ret) {
937 		dev_err(&pdev->dev, "Can't enable auxadc clk: %d\n", ret);
938 		return ret;
939 	}
940 
941 	ret = clk_prepare_enable(mt->clk_peri_therm);
942 	if (ret) {
943 		dev_err(&pdev->dev, "Can't enable peri clk: %d\n", ret);
944 		goto err_disable_clk_auxadc;
945 	}
946 
947 	for (ctrl_id = 0; ctrl_id < mt->conf->num_controller ; ctrl_id++)
948 		for (i = 0; i < mt->conf->num_banks; i++)
949 			mtk_thermal_init_bank(mt, i, apmixed_phys_base,
950 					      auxadc_phys_base, ctrl_id);
951 
952 	platform_set_drvdata(pdev, mt);
953 
954 	tzdev = devm_thermal_zone_of_sensor_register(&pdev->dev, 0, mt,
955 						     &mtk_thermal_ops);
956 	if (IS_ERR(tzdev)) {
957 		ret = PTR_ERR(tzdev);
958 		goto err_disable_clk_peri_therm;
959 	}
960 
961 	return 0;
962 
963 err_disable_clk_peri_therm:
964 	clk_disable_unprepare(mt->clk_peri_therm);
965 err_disable_clk_auxadc:
966 	clk_disable_unprepare(mt->clk_auxadc);
967 
968 	return ret;
969 }
970 
mtk_thermal_remove(struct platform_device * pdev)971 static int mtk_thermal_remove(struct platform_device *pdev)
972 {
973 	struct mtk_thermal *mt = platform_get_drvdata(pdev);
974 
975 	clk_disable_unprepare(mt->clk_peri_therm);
976 	clk_disable_unprepare(mt->clk_auxadc);
977 
978 	return 0;
979 }
980 
981 static struct platform_driver mtk_thermal_driver = {
982 	.probe = mtk_thermal_probe,
983 	.remove = mtk_thermal_remove,
984 	.driver = {
985 		.name = "mtk-thermal",
986 		.of_match_table = mtk_thermal_of_match,
987 	},
988 };
989 
990 module_platform_driver(mtk_thermal_driver);
991 
992 MODULE_AUTHOR("Michael Kao <michael.kao@mediatek.com>");
993 MODULE_AUTHOR("Louis Yu <louis.yu@mediatek.com>");
994 MODULE_AUTHOR("Dawei Chien <dawei.chien@mediatek.com>");
995 MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>");
996 MODULE_AUTHOR("Hanyi Wu <hanyi.wu@mediatek.com>");
997 MODULE_DESCRIPTION("Mediatek thermal driver");
998 MODULE_LICENSE("GPL v2");
999