1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Thunderbolt driver - switch/port utility functions
4 *
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6 * Copyright (C) 2018, Intel Corporation
7 */
8
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/nvmem-provider.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
17
18 #include "tb.h"
19
20 /* Switch NVM support */
21
22 #define NVM_DEVID 0x05
23 #define NVM_VERSION 0x08
24 #define NVM_CSS 0x10
25 #define NVM_FLASH_SIZE 0x45
26
27 #define NVM_MIN_SIZE SZ_32K
28 #define NVM_MAX_SIZE SZ_512K
29
30 static DEFINE_IDA(nvm_ida);
31
32 struct nvm_auth_status {
33 struct list_head list;
34 uuid_t uuid;
35 u32 status;
36 };
37
38 /*
39 * Hold NVM authentication failure status per switch This information
40 * needs to stay around even when the switch gets power cycled so we
41 * keep it separately.
42 */
43 static LIST_HEAD(nvm_auth_status_cache);
44 static DEFINE_MUTEX(nvm_auth_status_lock);
45
__nvm_get_auth_status(const struct tb_switch * sw)46 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
47 {
48 struct nvm_auth_status *st;
49
50 list_for_each_entry(st, &nvm_auth_status_cache, list) {
51 if (uuid_equal(&st->uuid, sw->uuid))
52 return st;
53 }
54
55 return NULL;
56 }
57
nvm_get_auth_status(const struct tb_switch * sw,u32 * status)58 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
59 {
60 struct nvm_auth_status *st;
61
62 mutex_lock(&nvm_auth_status_lock);
63 st = __nvm_get_auth_status(sw);
64 mutex_unlock(&nvm_auth_status_lock);
65
66 *status = st ? st->status : 0;
67 }
68
nvm_set_auth_status(const struct tb_switch * sw,u32 status)69 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
70 {
71 struct nvm_auth_status *st;
72
73 if (WARN_ON(!sw->uuid))
74 return;
75
76 mutex_lock(&nvm_auth_status_lock);
77 st = __nvm_get_auth_status(sw);
78
79 if (!st) {
80 st = kzalloc(sizeof(*st), GFP_KERNEL);
81 if (!st)
82 goto unlock;
83
84 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
85 INIT_LIST_HEAD(&st->list);
86 list_add_tail(&st->list, &nvm_auth_status_cache);
87 }
88
89 st->status = status;
90 unlock:
91 mutex_unlock(&nvm_auth_status_lock);
92 }
93
nvm_clear_auth_status(const struct tb_switch * sw)94 static void nvm_clear_auth_status(const struct tb_switch *sw)
95 {
96 struct nvm_auth_status *st;
97
98 mutex_lock(&nvm_auth_status_lock);
99 st = __nvm_get_auth_status(sw);
100 if (st) {
101 list_del(&st->list);
102 kfree(st);
103 }
104 mutex_unlock(&nvm_auth_status_lock);
105 }
106
nvm_validate_and_write(struct tb_switch * sw)107 static int nvm_validate_and_write(struct tb_switch *sw)
108 {
109 unsigned int image_size, hdr_size;
110 const u8 *buf = sw->nvm->buf;
111 u16 ds_size;
112 int ret;
113
114 if (!buf)
115 return -EINVAL;
116
117 image_size = sw->nvm->buf_data_size;
118 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
119 return -EINVAL;
120
121 /*
122 * FARB pointer must point inside the image and must at least
123 * contain parts of the digital section we will be reading here.
124 */
125 hdr_size = (*(u32 *)buf) & 0xffffff;
126 if (hdr_size + NVM_DEVID + 2 >= image_size)
127 return -EINVAL;
128
129 /* Digital section start should be aligned to 4k page */
130 if (!IS_ALIGNED(hdr_size, SZ_4K))
131 return -EINVAL;
132
133 /*
134 * Read digital section size and check that it also fits inside
135 * the image.
136 */
137 ds_size = *(u16 *)(buf + hdr_size);
138 if (ds_size >= image_size)
139 return -EINVAL;
140
141 if (!sw->safe_mode) {
142 u16 device_id;
143
144 /*
145 * Make sure the device ID in the image matches the one
146 * we read from the switch config space.
147 */
148 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
149 if (device_id != sw->config.device_id)
150 return -EINVAL;
151
152 if (sw->generation < 3) {
153 /* Write CSS headers first */
154 ret = dma_port_flash_write(sw->dma_port,
155 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
156 DMA_PORT_CSS_MAX_SIZE);
157 if (ret)
158 return ret;
159 }
160
161 /* Skip headers in the image */
162 buf += hdr_size;
163 image_size -= hdr_size;
164 }
165
166 return dma_port_flash_write(sw->dma_port, 0, buf, image_size);
167 }
168
nvm_authenticate_host(struct tb_switch * sw)169 static int nvm_authenticate_host(struct tb_switch *sw)
170 {
171 int ret = 0;
172
173 /*
174 * Root switch NVM upgrade requires that we disconnect the
175 * existing paths first (in case it is not in safe mode
176 * already).
177 */
178 if (!sw->safe_mode) {
179 u32 status;
180
181 ret = tb_domain_disconnect_all_paths(sw->tb);
182 if (ret)
183 return ret;
184 /*
185 * The host controller goes away pretty soon after this if
186 * everything goes well so getting timeout is expected.
187 */
188 ret = dma_port_flash_update_auth(sw->dma_port);
189 if (!ret || ret == -ETIMEDOUT)
190 return 0;
191
192 /*
193 * Any error from update auth operation requires power
194 * cycling of the host router.
195 */
196 tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
197 if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
198 nvm_set_auth_status(sw, status);
199 }
200
201 /*
202 * From safe mode we can get out by just power cycling the
203 * switch.
204 */
205 dma_port_power_cycle(sw->dma_port);
206 return ret;
207 }
208
nvm_authenticate_device(struct tb_switch * sw)209 static int nvm_authenticate_device(struct tb_switch *sw)
210 {
211 int ret, retries = 10;
212
213 ret = dma_port_flash_update_auth(sw->dma_port);
214 switch (ret) {
215 case 0:
216 case -ETIMEDOUT:
217 case -EACCES:
218 case -EINVAL:
219 /* Power cycle is required */
220 break;
221 default:
222 return ret;
223 }
224
225 /*
226 * Poll here for the authentication status. It takes some time
227 * for the device to respond (we get timeout for a while). Once
228 * we get response the device needs to be power cycled in order
229 * to the new NVM to be taken into use.
230 */
231 do {
232 u32 status;
233
234 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
235 if (ret < 0 && ret != -ETIMEDOUT)
236 return ret;
237 if (ret > 0) {
238 if (status) {
239 tb_sw_warn(sw, "failed to authenticate NVM\n");
240 nvm_set_auth_status(sw, status);
241 }
242
243 tb_sw_info(sw, "power cycling the switch now\n");
244 dma_port_power_cycle(sw->dma_port);
245 return 0;
246 }
247
248 msleep(500);
249 } while (--retries);
250
251 return -ETIMEDOUT;
252 }
253
tb_switch_nvm_read(void * priv,unsigned int offset,void * val,size_t bytes)254 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
255 size_t bytes)
256 {
257 struct tb_switch *sw = priv;
258 int ret;
259
260 pm_runtime_get_sync(&sw->dev);
261
262 if (!mutex_trylock(&sw->tb->lock)) {
263 ret = restart_syscall();
264 goto out;
265 }
266
267 ret = dma_port_flash_read(sw->dma_port, offset, val, bytes);
268 mutex_unlock(&sw->tb->lock);
269
270 out:
271 pm_runtime_mark_last_busy(&sw->dev);
272 pm_runtime_put_autosuspend(&sw->dev);
273
274 return ret;
275 }
276
tb_switch_nvm_write(void * priv,unsigned int offset,void * val,size_t bytes)277 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
278 size_t bytes)
279 {
280 struct tb_switch *sw = priv;
281 int ret = 0;
282
283 if (!mutex_trylock(&sw->tb->lock))
284 return restart_syscall();
285
286 /*
287 * Since writing the NVM image might require some special steps,
288 * for example when CSS headers are written, we cache the image
289 * locally here and handle the special cases when the user asks
290 * us to authenticate the image.
291 */
292 if (!sw->nvm->buf) {
293 sw->nvm->buf = vmalloc(NVM_MAX_SIZE);
294 if (!sw->nvm->buf) {
295 ret = -ENOMEM;
296 goto unlock;
297 }
298 }
299
300 sw->nvm->buf_data_size = offset + bytes;
301 memcpy(sw->nvm->buf + offset, val, bytes);
302
303 unlock:
304 mutex_unlock(&sw->tb->lock);
305
306 return ret;
307 }
308
register_nvmem(struct tb_switch * sw,int id,size_t size,bool active)309 static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id,
310 size_t size, bool active)
311 {
312 struct nvmem_config config;
313
314 memset(&config, 0, sizeof(config));
315
316 if (active) {
317 config.name = "nvm_active";
318 config.reg_read = tb_switch_nvm_read;
319 config.read_only = true;
320 } else {
321 config.name = "nvm_non_active";
322 config.reg_write = tb_switch_nvm_write;
323 config.root_only = true;
324 }
325
326 config.id = id;
327 config.stride = 4;
328 config.word_size = 4;
329 config.size = size;
330 config.dev = &sw->dev;
331 config.owner = THIS_MODULE;
332 config.priv = sw;
333
334 return nvmem_register(&config);
335 }
336
tb_switch_nvm_add(struct tb_switch * sw)337 static int tb_switch_nvm_add(struct tb_switch *sw)
338 {
339 struct nvmem_device *nvm_dev;
340 struct tb_switch_nvm *nvm;
341 u32 val;
342 int ret;
343
344 if (!sw->dma_port)
345 return 0;
346
347 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
348 if (!nvm)
349 return -ENOMEM;
350
351 nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL);
352
353 /*
354 * If the switch is in safe-mode the only accessible portion of
355 * the NVM is the non-active one where userspace is expected to
356 * write new functional NVM.
357 */
358 if (!sw->safe_mode) {
359 u32 nvm_size, hdr_size;
360
361 ret = dma_port_flash_read(sw->dma_port, NVM_FLASH_SIZE, &val,
362 sizeof(val));
363 if (ret)
364 goto err_ida;
365
366 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
367 nvm_size = (SZ_1M << (val & 7)) / 8;
368 nvm_size = (nvm_size - hdr_size) / 2;
369
370 ret = dma_port_flash_read(sw->dma_port, NVM_VERSION, &val,
371 sizeof(val));
372 if (ret)
373 goto err_ida;
374
375 nvm->major = val >> 16;
376 nvm->minor = val >> 8;
377
378 nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true);
379 if (IS_ERR(nvm_dev)) {
380 ret = PTR_ERR(nvm_dev);
381 goto err_ida;
382 }
383 nvm->active = nvm_dev;
384 }
385
386 if (!sw->no_nvm_upgrade) {
387 nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false);
388 if (IS_ERR(nvm_dev)) {
389 ret = PTR_ERR(nvm_dev);
390 goto err_nvm_active;
391 }
392 nvm->non_active = nvm_dev;
393 }
394
395 sw->nvm = nvm;
396 return 0;
397
398 err_nvm_active:
399 if (nvm->active)
400 nvmem_unregister(nvm->active);
401 err_ida:
402 ida_simple_remove(&nvm_ida, nvm->id);
403 kfree(nvm);
404
405 return ret;
406 }
407
tb_switch_nvm_remove(struct tb_switch * sw)408 static void tb_switch_nvm_remove(struct tb_switch *sw)
409 {
410 struct tb_switch_nvm *nvm;
411
412 nvm = sw->nvm;
413 sw->nvm = NULL;
414
415 if (!nvm)
416 return;
417
418 /* Remove authentication status in case the switch is unplugged */
419 if (!nvm->authenticating)
420 nvm_clear_auth_status(sw);
421
422 if (nvm->non_active)
423 nvmem_unregister(nvm->non_active);
424 if (nvm->active)
425 nvmem_unregister(nvm->active);
426 ida_simple_remove(&nvm_ida, nvm->id);
427 vfree(nvm->buf);
428 kfree(nvm);
429 }
430
431 /* port utility functions */
432
tb_port_type(struct tb_regs_port_header * port)433 static const char *tb_port_type(struct tb_regs_port_header *port)
434 {
435 switch (port->type >> 16) {
436 case 0:
437 switch ((u8) port->type) {
438 case 0:
439 return "Inactive";
440 case 1:
441 return "Port";
442 case 2:
443 return "NHI";
444 default:
445 return "unknown";
446 }
447 case 0x2:
448 return "Ethernet";
449 case 0x8:
450 return "SATA";
451 case 0xe:
452 return "DP/HDMI";
453 case 0x10:
454 return "PCIe";
455 case 0x20:
456 return "USB";
457 default:
458 return "unknown";
459 }
460 }
461
tb_dump_port(struct tb * tb,struct tb_regs_port_header * port)462 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
463 {
464 tb_dbg(tb,
465 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
466 port->port_number, port->vendor_id, port->device_id,
467 port->revision, port->thunderbolt_version, tb_port_type(port),
468 port->type);
469 tb_dbg(tb, " Max hop id (in/out): %d/%d\n",
470 port->max_in_hop_id, port->max_out_hop_id);
471 tb_dbg(tb, " Max counters: %d\n", port->max_counters);
472 tb_dbg(tb, " NFC Credits: %#x\n", port->nfc_credits);
473 }
474
475 /**
476 * tb_port_state() - get connectedness state of a port
477 *
478 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
479 *
480 * Return: Returns an enum tb_port_state on success or an error code on failure.
481 */
tb_port_state(struct tb_port * port)482 static int tb_port_state(struct tb_port *port)
483 {
484 struct tb_cap_phy phy;
485 int res;
486 if (port->cap_phy == 0) {
487 tb_port_WARN(port, "does not have a PHY\n");
488 return -EINVAL;
489 }
490 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
491 if (res)
492 return res;
493 return phy.state;
494 }
495
496 /**
497 * tb_wait_for_port() - wait for a port to become ready
498 *
499 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
500 * wait_if_unplugged is set then we also wait if the port is in state
501 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
502 * switch resume). Otherwise we only wait if a device is registered but the link
503 * has not yet been established.
504 *
505 * Return: Returns an error code on failure. Returns 0 if the port is not
506 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
507 * if the port is connected and in state TB_PORT_UP.
508 */
tb_wait_for_port(struct tb_port * port,bool wait_if_unplugged)509 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
510 {
511 int retries = 10;
512 int state;
513 if (!port->cap_phy) {
514 tb_port_WARN(port, "does not have PHY\n");
515 return -EINVAL;
516 }
517 if (tb_is_upstream_port(port)) {
518 tb_port_WARN(port, "is the upstream port\n");
519 return -EINVAL;
520 }
521
522 while (retries--) {
523 state = tb_port_state(port);
524 if (state < 0)
525 return state;
526 if (state == TB_PORT_DISABLED) {
527 tb_port_dbg(port, "is disabled (state: 0)\n");
528 return 0;
529 }
530 if (state == TB_PORT_UNPLUGGED) {
531 if (wait_if_unplugged) {
532 /* used during resume */
533 tb_port_dbg(port,
534 "is unplugged (state: 7), retrying...\n");
535 msleep(100);
536 continue;
537 }
538 tb_port_dbg(port, "is unplugged (state: 7)\n");
539 return 0;
540 }
541 if (state == TB_PORT_UP) {
542 tb_port_dbg(port, "is connected, link is up (state: 2)\n");
543 return 1;
544 }
545
546 /*
547 * After plug-in the state is TB_PORT_CONNECTING. Give it some
548 * time.
549 */
550 tb_port_dbg(port,
551 "is connected, link is not up (state: %d), retrying...\n",
552 state);
553 msleep(100);
554 }
555 tb_port_warn(port,
556 "failed to reach state TB_PORT_UP. Ignoring port...\n");
557 return 0;
558 }
559
560 /**
561 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
562 *
563 * Change the number of NFC credits allocated to @port by @credits. To remove
564 * NFC credits pass a negative amount of credits.
565 *
566 * Return: Returns 0 on success or an error code on failure.
567 */
tb_port_add_nfc_credits(struct tb_port * port,int credits)568 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
569 {
570 u32 nfc_credits;
571
572 if (credits == 0 || port->sw->is_unplugged)
573 return 0;
574
575 nfc_credits = port->config.nfc_credits & TB_PORT_NFC_CREDITS_MASK;
576 nfc_credits += credits;
577
578 tb_port_dbg(port, "adding %d NFC credits to %lu",
579 credits, port->config.nfc_credits & TB_PORT_NFC_CREDITS_MASK);
580
581 port->config.nfc_credits &= ~TB_PORT_NFC_CREDITS_MASK;
582 port->config.nfc_credits |= nfc_credits;
583
584 return tb_port_write(port, &port->config.nfc_credits,
585 TB_CFG_PORT, 4, 1);
586 }
587
588 /**
589 * tb_port_set_initial_credits() - Set initial port link credits allocated
590 * @port: Port to set the initial credits
591 * @credits: Number of credits to to allocate
592 *
593 * Set initial credits value to be used for ingress shared buffering.
594 */
tb_port_set_initial_credits(struct tb_port * port,u32 credits)595 int tb_port_set_initial_credits(struct tb_port *port, u32 credits)
596 {
597 u32 data;
598 int ret;
599
600 ret = tb_port_read(port, &data, TB_CFG_PORT, 5, 1);
601 if (ret)
602 return ret;
603
604 data &= ~TB_PORT_LCA_MASK;
605 data |= (credits << TB_PORT_LCA_SHIFT) & TB_PORT_LCA_MASK;
606
607 return tb_port_write(port, &data, TB_CFG_PORT, 5, 1);
608 }
609
610 /**
611 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
612 *
613 * Return: Returns 0 on success or an error code on failure.
614 */
tb_port_clear_counter(struct tb_port * port,int counter)615 int tb_port_clear_counter(struct tb_port *port, int counter)
616 {
617 u32 zero[3] = { 0, 0, 0 };
618 tb_port_dbg(port, "clearing counter %d\n", counter);
619 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
620 }
621
622 /**
623 * tb_init_port() - initialize a port
624 *
625 * This is a helper method for tb_switch_alloc. Does not check or initialize
626 * any downstream switches.
627 *
628 * Return: Returns 0 on success or an error code on failure.
629 */
tb_init_port(struct tb_port * port)630 static int tb_init_port(struct tb_port *port)
631 {
632 int res;
633 int cap;
634
635 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
636 if (res) {
637 if (res == -ENODEV) {
638 tb_dbg(port->sw->tb, " Port %d: not implemented\n",
639 port->port);
640 return 0;
641 }
642 return res;
643 }
644
645 /* Port 0 is the switch itself and has no PHY. */
646 if (port->config.type == TB_TYPE_PORT && port->port != 0) {
647 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
648
649 if (cap > 0)
650 port->cap_phy = cap;
651 else
652 tb_port_WARN(port, "non switch port without a PHY\n");
653 } else if (port->port != 0) {
654 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
655 if (cap > 0)
656 port->cap_adap = cap;
657 }
658
659 tb_dump_port(port->sw->tb, &port->config);
660
661 /* Control port does not need HopID allocation */
662 if (port->port) {
663 ida_init(&port->in_hopids);
664 ida_init(&port->out_hopids);
665 }
666
667 return 0;
668
669 }
670
tb_port_alloc_hopid(struct tb_port * port,bool in,int min_hopid,int max_hopid)671 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
672 int max_hopid)
673 {
674 int port_max_hopid;
675 struct ida *ida;
676
677 if (in) {
678 port_max_hopid = port->config.max_in_hop_id;
679 ida = &port->in_hopids;
680 } else {
681 port_max_hopid = port->config.max_out_hop_id;
682 ida = &port->out_hopids;
683 }
684
685 /* HopIDs 0-7 are reserved */
686 if (min_hopid < TB_PATH_MIN_HOPID)
687 min_hopid = TB_PATH_MIN_HOPID;
688
689 if (max_hopid < 0 || max_hopid > port_max_hopid)
690 max_hopid = port_max_hopid;
691
692 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
693 }
694
695 /**
696 * tb_port_alloc_in_hopid() - Allocate input HopID from port
697 * @port: Port to allocate HopID for
698 * @min_hopid: Minimum acceptable input HopID
699 * @max_hopid: Maximum acceptable input HopID
700 *
701 * Return: HopID between @min_hopid and @max_hopid or negative errno in
702 * case of error.
703 */
tb_port_alloc_in_hopid(struct tb_port * port,int min_hopid,int max_hopid)704 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
705 {
706 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
707 }
708
709 /**
710 * tb_port_alloc_out_hopid() - Allocate output HopID from port
711 * @port: Port to allocate HopID for
712 * @min_hopid: Minimum acceptable output HopID
713 * @max_hopid: Maximum acceptable output HopID
714 *
715 * Return: HopID between @min_hopid and @max_hopid or negative errno in
716 * case of error.
717 */
tb_port_alloc_out_hopid(struct tb_port * port,int min_hopid,int max_hopid)718 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
719 {
720 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
721 }
722
723 /**
724 * tb_port_release_in_hopid() - Release allocated input HopID from port
725 * @port: Port whose HopID to release
726 * @hopid: HopID to release
727 */
tb_port_release_in_hopid(struct tb_port * port,int hopid)728 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
729 {
730 ida_simple_remove(&port->in_hopids, hopid);
731 }
732
733 /**
734 * tb_port_release_out_hopid() - Release allocated output HopID from port
735 * @port: Port whose HopID to release
736 * @hopid: HopID to release
737 */
tb_port_release_out_hopid(struct tb_port * port,int hopid)738 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
739 {
740 ida_simple_remove(&port->out_hopids, hopid);
741 }
742
743 /**
744 * tb_next_port_on_path() - Return next port for given port on a path
745 * @start: Start port of the walk
746 * @end: End port of the walk
747 * @prev: Previous port (%NULL if this is the first)
748 *
749 * This function can be used to walk from one port to another if they
750 * are connected through zero or more switches. If the @prev is dual
751 * link port, the function follows that link and returns another end on
752 * that same link.
753 *
754 * If the @end port has been reached, return %NULL.
755 *
756 * Domain tb->lock must be held when this function is called.
757 */
tb_next_port_on_path(struct tb_port * start,struct tb_port * end,struct tb_port * prev)758 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
759 struct tb_port *prev)
760 {
761 struct tb_port *next;
762
763 if (!prev)
764 return start;
765
766 if (prev->sw == end->sw) {
767 if (prev == end)
768 return NULL;
769 return end;
770 }
771
772 if (start->sw->config.depth < end->sw->config.depth) {
773 if (prev->remote &&
774 prev->remote->sw->config.depth > prev->sw->config.depth)
775 next = prev->remote;
776 else
777 next = tb_port_at(tb_route(end->sw), prev->sw);
778 } else {
779 if (tb_is_upstream_port(prev)) {
780 next = prev->remote;
781 } else {
782 next = tb_upstream_port(prev->sw);
783 /*
784 * Keep the same link if prev and next are both
785 * dual link ports.
786 */
787 if (next->dual_link_port &&
788 next->link_nr != prev->link_nr) {
789 next = next->dual_link_port;
790 }
791 }
792 }
793
794 return next;
795 }
796
797 /**
798 * tb_port_is_enabled() - Is the adapter port enabled
799 * @port: Port to check
800 */
tb_port_is_enabled(struct tb_port * port)801 bool tb_port_is_enabled(struct tb_port *port)
802 {
803 switch (port->config.type) {
804 case TB_TYPE_PCIE_UP:
805 case TB_TYPE_PCIE_DOWN:
806 return tb_pci_port_is_enabled(port);
807
808 case TB_TYPE_DP_HDMI_IN:
809 case TB_TYPE_DP_HDMI_OUT:
810 return tb_dp_port_is_enabled(port);
811
812 default:
813 return false;
814 }
815 }
816
817 /**
818 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
819 * @port: PCIe port to check
820 */
tb_pci_port_is_enabled(struct tb_port * port)821 bool tb_pci_port_is_enabled(struct tb_port *port)
822 {
823 u32 data;
824
825 if (tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap, 1))
826 return false;
827
828 return !!(data & TB_PCI_EN);
829 }
830
831 /**
832 * tb_pci_port_enable() - Enable PCIe adapter port
833 * @port: PCIe port to enable
834 * @enable: Enable/disable the PCIe adapter
835 */
tb_pci_port_enable(struct tb_port * port,bool enable)836 int tb_pci_port_enable(struct tb_port *port, bool enable)
837 {
838 u32 word = enable ? TB_PCI_EN : 0x0;
839 if (!port->cap_adap)
840 return -ENXIO;
841 return tb_port_write(port, &word, TB_CFG_PORT, port->cap_adap, 1);
842 }
843
844 /**
845 * tb_dp_port_hpd_is_active() - Is HPD already active
846 * @port: DP out port to check
847 *
848 * Checks if the DP OUT adapter port has HDP bit already set.
849 */
tb_dp_port_hpd_is_active(struct tb_port * port)850 int tb_dp_port_hpd_is_active(struct tb_port *port)
851 {
852 u32 data;
853 int ret;
854
855 ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap + 2, 1);
856 if (ret)
857 return ret;
858
859 return !!(data & TB_DP_HDP);
860 }
861
862 /**
863 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
864 * @port: Port to clear HPD
865 *
866 * If the DP IN port has HDP set, this function can be used to clear it.
867 */
tb_dp_port_hpd_clear(struct tb_port * port)868 int tb_dp_port_hpd_clear(struct tb_port *port)
869 {
870 u32 data;
871 int ret;
872
873 ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap + 3, 1);
874 if (ret)
875 return ret;
876
877 data |= TB_DP_HPDC;
878 return tb_port_write(port, &data, TB_CFG_PORT, port->cap_adap + 3, 1);
879 }
880
881 /**
882 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
883 * @port: DP IN/OUT port to set hops
884 * @video: Video Hop ID
885 * @aux_tx: AUX TX Hop ID
886 * @aux_rx: AUX RX Hop ID
887 *
888 * Programs specified Hop IDs for DP IN/OUT port.
889 */
tb_dp_port_set_hops(struct tb_port * port,unsigned int video,unsigned int aux_tx,unsigned int aux_rx)890 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
891 unsigned int aux_tx, unsigned int aux_rx)
892 {
893 u32 data[2];
894 int ret;
895
896 ret = tb_port_read(port, data, TB_CFG_PORT, port->cap_adap,
897 ARRAY_SIZE(data));
898 if (ret)
899 return ret;
900
901 data[0] &= ~TB_DP_VIDEO_HOPID_MASK;
902 data[1] &= ~(TB_DP_AUX_RX_HOPID_MASK | TB_DP_AUX_TX_HOPID_MASK);
903
904 data[0] |= (video << TB_DP_VIDEO_HOPID_SHIFT) & TB_DP_VIDEO_HOPID_MASK;
905 data[1] |= aux_tx & TB_DP_AUX_TX_HOPID_MASK;
906 data[1] |= (aux_rx << TB_DP_AUX_RX_HOPID_SHIFT) & TB_DP_AUX_RX_HOPID_MASK;
907
908 return tb_port_write(port, data, TB_CFG_PORT, port->cap_adap,
909 ARRAY_SIZE(data));
910 }
911
912 /**
913 * tb_dp_port_is_enabled() - Is DP adapter port enabled
914 * @port: DP adapter port to check
915 */
tb_dp_port_is_enabled(struct tb_port * port)916 bool tb_dp_port_is_enabled(struct tb_port *port)
917 {
918 u32 data[2];
919
920 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap,
921 ARRAY_SIZE(data)))
922 return false;
923
924 return !!(data[0] & (TB_DP_VIDEO_EN | TB_DP_AUX_EN));
925 }
926
927 /**
928 * tb_dp_port_enable() - Enables/disables DP paths of a port
929 * @port: DP IN/OUT port
930 * @enable: Enable/disable DP path
931 *
932 * Once Hop IDs are programmed DP paths can be enabled or disabled by
933 * calling this function.
934 */
tb_dp_port_enable(struct tb_port * port,bool enable)935 int tb_dp_port_enable(struct tb_port *port, bool enable)
936 {
937 u32 data[2];
938 int ret;
939
940 ret = tb_port_read(port, data, TB_CFG_PORT, port->cap_adap,
941 ARRAY_SIZE(data));
942 if (ret)
943 return ret;
944
945 if (enable)
946 data[0] |= TB_DP_VIDEO_EN | TB_DP_AUX_EN;
947 else
948 data[0] &= ~(TB_DP_VIDEO_EN | TB_DP_AUX_EN);
949
950 return tb_port_write(port, data, TB_CFG_PORT, port->cap_adap,
951 ARRAY_SIZE(data));
952 }
953
954 /* switch utility functions */
955
tb_dump_switch(struct tb * tb,struct tb_regs_switch_header * sw)956 static void tb_dump_switch(struct tb *tb, struct tb_regs_switch_header *sw)
957 {
958 tb_dbg(tb, " Switch: %x:%x (Revision: %d, TB Version: %d)\n",
959 sw->vendor_id, sw->device_id, sw->revision,
960 sw->thunderbolt_version);
961 tb_dbg(tb, " Max Port Number: %d\n", sw->max_port_number);
962 tb_dbg(tb, " Config:\n");
963 tb_dbg(tb,
964 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
965 sw->upstream_port_number, sw->depth,
966 (((u64) sw->route_hi) << 32) | sw->route_lo,
967 sw->enabled, sw->plug_events_delay);
968 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n",
969 sw->__unknown1, sw->__unknown4);
970 }
971
972 /**
973 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
974 *
975 * Return: Returns 0 on success or an error code on failure.
976 */
tb_switch_reset(struct tb * tb,u64 route)977 int tb_switch_reset(struct tb *tb, u64 route)
978 {
979 struct tb_cfg_result res;
980 struct tb_regs_switch_header header = {
981 header.route_hi = route >> 32,
982 header.route_lo = route,
983 header.enabled = true,
984 };
985 tb_dbg(tb, "resetting switch at %llx\n", route);
986 res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route,
987 0, 2, 2, 2);
988 if (res.err)
989 return res.err;
990 res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT);
991 if (res.err > 0)
992 return -EIO;
993 return res.err;
994 }
995
996 /**
997 * tb_plug_events_active() - enable/disable plug events on a switch
998 *
999 * Also configures a sane plug_events_delay of 255ms.
1000 *
1001 * Return: Returns 0 on success or an error code on failure.
1002 */
tb_plug_events_active(struct tb_switch * sw,bool active)1003 static int tb_plug_events_active(struct tb_switch *sw, bool active)
1004 {
1005 u32 data;
1006 int res;
1007
1008 if (!sw->config.enabled)
1009 return 0;
1010
1011 sw->config.plug_events_delay = 0xff;
1012 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1013 if (res)
1014 return res;
1015
1016 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1017 if (res)
1018 return res;
1019
1020 if (active) {
1021 data = data & 0xFFFFFF83;
1022 switch (sw->config.device_id) {
1023 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1024 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1025 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1026 break;
1027 default:
1028 data |= 4;
1029 }
1030 } else {
1031 data = data | 0x7c;
1032 }
1033 return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1034 sw->cap_plug_events + 1, 1);
1035 }
1036
authorized_show(struct device * dev,struct device_attribute * attr,char * buf)1037 static ssize_t authorized_show(struct device *dev,
1038 struct device_attribute *attr,
1039 char *buf)
1040 {
1041 struct tb_switch *sw = tb_to_switch(dev);
1042
1043 return sprintf(buf, "%u\n", sw->authorized);
1044 }
1045
tb_switch_set_authorized(struct tb_switch * sw,unsigned int val)1046 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1047 {
1048 int ret = -EINVAL;
1049
1050 if (!mutex_trylock(&sw->tb->lock))
1051 return restart_syscall();
1052
1053 if (sw->authorized)
1054 goto unlock;
1055
1056 switch (val) {
1057 /* Approve switch */
1058 case 1:
1059 if (sw->key)
1060 ret = tb_domain_approve_switch_key(sw->tb, sw);
1061 else
1062 ret = tb_domain_approve_switch(sw->tb, sw);
1063 break;
1064
1065 /* Challenge switch */
1066 case 2:
1067 if (sw->key)
1068 ret = tb_domain_challenge_switch_key(sw->tb, sw);
1069 break;
1070
1071 default:
1072 break;
1073 }
1074
1075 if (!ret) {
1076 sw->authorized = val;
1077 /* Notify status change to the userspace */
1078 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1079 }
1080
1081 unlock:
1082 mutex_unlock(&sw->tb->lock);
1083 return ret;
1084 }
1085
authorized_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1086 static ssize_t authorized_store(struct device *dev,
1087 struct device_attribute *attr,
1088 const char *buf, size_t count)
1089 {
1090 struct tb_switch *sw = tb_to_switch(dev);
1091 unsigned int val;
1092 ssize_t ret;
1093
1094 ret = kstrtouint(buf, 0, &val);
1095 if (ret)
1096 return ret;
1097 if (val > 2)
1098 return -EINVAL;
1099
1100 pm_runtime_get_sync(&sw->dev);
1101 ret = tb_switch_set_authorized(sw, val);
1102 pm_runtime_mark_last_busy(&sw->dev);
1103 pm_runtime_put_autosuspend(&sw->dev);
1104
1105 return ret ? ret : count;
1106 }
1107 static DEVICE_ATTR_RW(authorized);
1108
boot_show(struct device * dev,struct device_attribute * attr,char * buf)1109 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1110 char *buf)
1111 {
1112 struct tb_switch *sw = tb_to_switch(dev);
1113
1114 return sprintf(buf, "%u\n", sw->boot);
1115 }
1116 static DEVICE_ATTR_RO(boot);
1117
device_show(struct device * dev,struct device_attribute * attr,char * buf)1118 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1119 char *buf)
1120 {
1121 struct tb_switch *sw = tb_to_switch(dev);
1122
1123 return sprintf(buf, "%#x\n", sw->device);
1124 }
1125 static DEVICE_ATTR_RO(device);
1126
1127 static ssize_t
device_name_show(struct device * dev,struct device_attribute * attr,char * buf)1128 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1129 {
1130 struct tb_switch *sw = tb_to_switch(dev);
1131
1132 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1133 }
1134 static DEVICE_ATTR_RO(device_name);
1135
key_show(struct device * dev,struct device_attribute * attr,char * buf)1136 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1137 char *buf)
1138 {
1139 struct tb_switch *sw = tb_to_switch(dev);
1140 ssize_t ret;
1141
1142 if (!mutex_trylock(&sw->tb->lock))
1143 return restart_syscall();
1144
1145 if (sw->key)
1146 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1147 else
1148 ret = sprintf(buf, "\n");
1149
1150 mutex_unlock(&sw->tb->lock);
1151 return ret;
1152 }
1153
key_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1154 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1155 const char *buf, size_t count)
1156 {
1157 struct tb_switch *sw = tb_to_switch(dev);
1158 u8 key[TB_SWITCH_KEY_SIZE];
1159 ssize_t ret = count;
1160 bool clear = false;
1161
1162 if (!strcmp(buf, "\n"))
1163 clear = true;
1164 else if (hex2bin(key, buf, sizeof(key)))
1165 return -EINVAL;
1166
1167 if (!mutex_trylock(&sw->tb->lock))
1168 return restart_syscall();
1169
1170 if (sw->authorized) {
1171 ret = -EBUSY;
1172 } else {
1173 kfree(sw->key);
1174 if (clear) {
1175 sw->key = NULL;
1176 } else {
1177 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1178 if (!sw->key)
1179 ret = -ENOMEM;
1180 }
1181 }
1182
1183 mutex_unlock(&sw->tb->lock);
1184 return ret;
1185 }
1186 static DEVICE_ATTR(key, 0600, key_show, key_store);
1187
nvm_authenticate_start(struct tb_switch * sw)1188 static void nvm_authenticate_start(struct tb_switch *sw)
1189 {
1190 struct pci_dev *root_port;
1191
1192 /*
1193 * During host router NVM upgrade we should not allow root port to
1194 * go into D3cold because some root ports cannot trigger PME
1195 * itself. To be on the safe side keep the root port in D0 during
1196 * the whole upgrade process.
1197 */
1198 root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
1199 if (root_port)
1200 pm_runtime_get_noresume(&root_port->dev);
1201 }
1202
nvm_authenticate_complete(struct tb_switch * sw)1203 static void nvm_authenticate_complete(struct tb_switch *sw)
1204 {
1205 struct pci_dev *root_port;
1206
1207 root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
1208 if (root_port)
1209 pm_runtime_put(&root_port->dev);
1210 }
1211
nvm_authenticate_show(struct device * dev,struct device_attribute * attr,char * buf)1212 static ssize_t nvm_authenticate_show(struct device *dev,
1213 struct device_attribute *attr, char *buf)
1214 {
1215 struct tb_switch *sw = tb_to_switch(dev);
1216 u32 status;
1217
1218 nvm_get_auth_status(sw, &status);
1219 return sprintf(buf, "%#x\n", status);
1220 }
1221
nvm_authenticate_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1222 static ssize_t nvm_authenticate_store(struct device *dev,
1223 struct device_attribute *attr, const char *buf, size_t count)
1224 {
1225 struct tb_switch *sw = tb_to_switch(dev);
1226 bool val;
1227 int ret;
1228
1229 pm_runtime_get_sync(&sw->dev);
1230
1231 if (!mutex_trylock(&sw->tb->lock)) {
1232 ret = restart_syscall();
1233 goto exit_rpm;
1234 }
1235
1236 /* If NVMem devices are not yet added */
1237 if (!sw->nvm) {
1238 ret = -EAGAIN;
1239 goto exit_unlock;
1240 }
1241
1242 ret = kstrtobool(buf, &val);
1243 if (ret)
1244 goto exit_unlock;
1245
1246 /* Always clear the authentication status */
1247 nvm_clear_auth_status(sw);
1248
1249 if (val) {
1250 if (!sw->nvm->buf) {
1251 ret = -EINVAL;
1252 goto exit_unlock;
1253 }
1254
1255 ret = nvm_validate_and_write(sw);
1256 if (ret)
1257 goto exit_unlock;
1258
1259 sw->nvm->authenticating = true;
1260
1261 if (!tb_route(sw)) {
1262 /*
1263 * Keep root port from suspending as long as the
1264 * NVM upgrade process is running.
1265 */
1266 nvm_authenticate_start(sw);
1267 ret = nvm_authenticate_host(sw);
1268 } else {
1269 ret = nvm_authenticate_device(sw);
1270 }
1271 }
1272
1273 exit_unlock:
1274 mutex_unlock(&sw->tb->lock);
1275 exit_rpm:
1276 pm_runtime_mark_last_busy(&sw->dev);
1277 pm_runtime_put_autosuspend(&sw->dev);
1278
1279 if (ret)
1280 return ret;
1281 return count;
1282 }
1283 static DEVICE_ATTR_RW(nvm_authenticate);
1284
nvm_version_show(struct device * dev,struct device_attribute * attr,char * buf)1285 static ssize_t nvm_version_show(struct device *dev,
1286 struct device_attribute *attr, char *buf)
1287 {
1288 struct tb_switch *sw = tb_to_switch(dev);
1289 int ret;
1290
1291 if (!mutex_trylock(&sw->tb->lock))
1292 return restart_syscall();
1293
1294 if (sw->safe_mode)
1295 ret = -ENODATA;
1296 else if (!sw->nvm)
1297 ret = -EAGAIN;
1298 else
1299 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1300
1301 mutex_unlock(&sw->tb->lock);
1302
1303 return ret;
1304 }
1305 static DEVICE_ATTR_RO(nvm_version);
1306
vendor_show(struct device * dev,struct device_attribute * attr,char * buf)1307 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1308 char *buf)
1309 {
1310 struct tb_switch *sw = tb_to_switch(dev);
1311
1312 return sprintf(buf, "%#x\n", sw->vendor);
1313 }
1314 static DEVICE_ATTR_RO(vendor);
1315
1316 static ssize_t
vendor_name_show(struct device * dev,struct device_attribute * attr,char * buf)1317 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1318 {
1319 struct tb_switch *sw = tb_to_switch(dev);
1320
1321 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1322 }
1323 static DEVICE_ATTR_RO(vendor_name);
1324
unique_id_show(struct device * dev,struct device_attribute * attr,char * buf)1325 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1326 char *buf)
1327 {
1328 struct tb_switch *sw = tb_to_switch(dev);
1329
1330 return sprintf(buf, "%pUb\n", sw->uuid);
1331 }
1332 static DEVICE_ATTR_RO(unique_id);
1333
1334 static struct attribute *switch_attrs[] = {
1335 &dev_attr_authorized.attr,
1336 &dev_attr_boot.attr,
1337 &dev_attr_device.attr,
1338 &dev_attr_device_name.attr,
1339 &dev_attr_key.attr,
1340 &dev_attr_nvm_authenticate.attr,
1341 &dev_attr_nvm_version.attr,
1342 &dev_attr_vendor.attr,
1343 &dev_attr_vendor_name.attr,
1344 &dev_attr_unique_id.attr,
1345 NULL,
1346 };
1347
switch_attr_is_visible(struct kobject * kobj,struct attribute * attr,int n)1348 static umode_t switch_attr_is_visible(struct kobject *kobj,
1349 struct attribute *attr, int n)
1350 {
1351 struct device *dev = container_of(kobj, struct device, kobj);
1352 struct tb_switch *sw = tb_to_switch(dev);
1353
1354 if (attr == &dev_attr_device.attr) {
1355 if (!sw->device)
1356 return 0;
1357 } else if (attr == &dev_attr_device_name.attr) {
1358 if (!sw->device_name)
1359 return 0;
1360 } else if (attr == &dev_attr_vendor.attr) {
1361 if (!sw->vendor)
1362 return 0;
1363 } else if (attr == &dev_attr_vendor_name.attr) {
1364 if (!sw->vendor_name)
1365 return 0;
1366 } else if (attr == &dev_attr_key.attr) {
1367 if (tb_route(sw) &&
1368 sw->tb->security_level == TB_SECURITY_SECURE &&
1369 sw->security_level == TB_SECURITY_SECURE)
1370 return attr->mode;
1371 return 0;
1372 } else if (attr == &dev_attr_nvm_authenticate.attr) {
1373 if (sw->dma_port && !sw->no_nvm_upgrade)
1374 return attr->mode;
1375 return 0;
1376 } else if (attr == &dev_attr_nvm_version.attr) {
1377 if (sw->dma_port)
1378 return attr->mode;
1379 return 0;
1380 } else if (attr == &dev_attr_boot.attr) {
1381 if (tb_route(sw))
1382 return attr->mode;
1383 return 0;
1384 }
1385
1386 return sw->safe_mode ? 0 : attr->mode;
1387 }
1388
1389 static struct attribute_group switch_group = {
1390 .is_visible = switch_attr_is_visible,
1391 .attrs = switch_attrs,
1392 };
1393
1394 static const struct attribute_group *switch_groups[] = {
1395 &switch_group,
1396 NULL,
1397 };
1398
tb_switch_release(struct device * dev)1399 static void tb_switch_release(struct device *dev)
1400 {
1401 struct tb_switch *sw = tb_to_switch(dev);
1402 int i;
1403
1404 dma_port_free(sw->dma_port);
1405
1406 for (i = 1; i <= sw->config.max_port_number; i++) {
1407 if (!sw->ports[i].disabled) {
1408 ida_destroy(&sw->ports[i].in_hopids);
1409 ida_destroy(&sw->ports[i].out_hopids);
1410 }
1411 }
1412
1413 kfree(sw->uuid);
1414 kfree(sw->device_name);
1415 kfree(sw->vendor_name);
1416 kfree(sw->ports);
1417 kfree(sw->drom);
1418 kfree(sw->key);
1419 kfree(sw);
1420 }
1421
1422 /*
1423 * Currently only need to provide the callbacks. Everything else is handled
1424 * in the connection manager.
1425 */
tb_switch_runtime_suspend(struct device * dev)1426 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1427 {
1428 struct tb_switch *sw = tb_to_switch(dev);
1429 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1430
1431 if (cm_ops->runtime_suspend_switch)
1432 return cm_ops->runtime_suspend_switch(sw);
1433
1434 return 0;
1435 }
1436
tb_switch_runtime_resume(struct device * dev)1437 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1438 {
1439 struct tb_switch *sw = tb_to_switch(dev);
1440 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1441
1442 if (cm_ops->runtime_resume_switch)
1443 return cm_ops->runtime_resume_switch(sw);
1444 return 0;
1445 }
1446
1447 static const struct dev_pm_ops tb_switch_pm_ops = {
1448 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1449 NULL)
1450 };
1451
1452 struct device_type tb_switch_type = {
1453 .name = "thunderbolt_device",
1454 .release = tb_switch_release,
1455 .pm = &tb_switch_pm_ops,
1456 };
1457
tb_switch_get_generation(struct tb_switch * sw)1458 static int tb_switch_get_generation(struct tb_switch *sw)
1459 {
1460 switch (sw->config.device_id) {
1461 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1462 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1463 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1464 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1465 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1466 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1467 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1468 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1469 return 1;
1470
1471 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1472 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1473 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1474 return 2;
1475
1476 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1477 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1478 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1479 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1480 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1481 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1482 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1483 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
1484 case PCI_DEVICE_ID_INTEL_ICL_NHI0:
1485 case PCI_DEVICE_ID_INTEL_ICL_NHI1:
1486 return 3;
1487
1488 default:
1489 /*
1490 * For unknown switches assume generation to be 1 to be
1491 * on the safe side.
1492 */
1493 tb_sw_warn(sw, "unsupported switch device id %#x\n",
1494 sw->config.device_id);
1495 return 1;
1496 }
1497 }
1498
1499 /**
1500 * tb_switch_alloc() - allocate a switch
1501 * @tb: Pointer to the owning domain
1502 * @parent: Parent device for this switch
1503 * @route: Route string for this switch
1504 *
1505 * Allocates and initializes a switch. Will not upload configuration to
1506 * the switch. For that you need to call tb_switch_configure()
1507 * separately. The returned switch should be released by calling
1508 * tb_switch_put().
1509 *
1510 * Return: Pointer to the allocated switch or ERR_PTR() in case of
1511 * failure.
1512 */
tb_switch_alloc(struct tb * tb,struct device * parent,u64 route)1513 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1514 u64 route)
1515 {
1516 struct tb_switch *sw;
1517 int upstream_port;
1518 int i, ret, depth;
1519
1520 /* Make sure we do not exceed maximum topology limit */
1521 depth = tb_route_length(route);
1522 if (depth > TB_SWITCH_MAX_DEPTH)
1523 return ERR_PTR(-EADDRNOTAVAIL);
1524
1525 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1526 if (upstream_port < 0)
1527 return ERR_PTR(upstream_port);
1528
1529 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1530 if (!sw)
1531 return ERR_PTR(-ENOMEM);
1532
1533 sw->tb = tb;
1534 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
1535 if (ret)
1536 goto err_free_sw_ports;
1537
1538 tb_dbg(tb, "current switch config:\n");
1539 tb_dump_switch(tb, &sw->config);
1540
1541 /* configure switch */
1542 sw->config.upstream_port_number = upstream_port;
1543 sw->config.depth = depth;
1544 sw->config.route_hi = upper_32_bits(route);
1545 sw->config.route_lo = lower_32_bits(route);
1546 sw->config.enabled = 0;
1547
1548 /* initialize ports */
1549 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1550 GFP_KERNEL);
1551 if (!sw->ports) {
1552 ret = -ENOMEM;
1553 goto err_free_sw_ports;
1554 }
1555
1556 for (i = 0; i <= sw->config.max_port_number; i++) {
1557 /* minimum setup for tb_find_cap and tb_drom_read to work */
1558 sw->ports[i].sw = sw;
1559 sw->ports[i].port = i;
1560 }
1561
1562 sw->generation = tb_switch_get_generation(sw);
1563
1564 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
1565 if (ret < 0) {
1566 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
1567 goto err_free_sw_ports;
1568 }
1569 sw->cap_plug_events = ret;
1570
1571 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1572 if (ret > 0)
1573 sw->cap_lc = ret;
1574
1575 /* Root switch is always authorized */
1576 if (!route)
1577 sw->authorized = true;
1578
1579 device_initialize(&sw->dev);
1580 sw->dev.parent = parent;
1581 sw->dev.bus = &tb_bus_type;
1582 sw->dev.type = &tb_switch_type;
1583 sw->dev.groups = switch_groups;
1584 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1585
1586 return sw;
1587
1588 err_free_sw_ports:
1589 kfree(sw->ports);
1590 kfree(sw);
1591
1592 return ERR_PTR(ret);
1593 }
1594
1595 /**
1596 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1597 * @tb: Pointer to the owning domain
1598 * @parent: Parent device for this switch
1599 * @route: Route string for this switch
1600 *
1601 * This creates a switch in safe mode. This means the switch pretty much
1602 * lacks all capabilities except DMA configuration port before it is
1603 * flashed with a valid NVM firmware.
1604 *
1605 * The returned switch must be released by calling tb_switch_put().
1606 *
1607 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
1608 */
1609 struct tb_switch *
tb_switch_alloc_safe_mode(struct tb * tb,struct device * parent,u64 route)1610 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
1611 {
1612 struct tb_switch *sw;
1613
1614 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1615 if (!sw)
1616 return ERR_PTR(-ENOMEM);
1617
1618 sw->tb = tb;
1619 sw->config.depth = tb_route_length(route);
1620 sw->config.route_hi = upper_32_bits(route);
1621 sw->config.route_lo = lower_32_bits(route);
1622 sw->safe_mode = true;
1623
1624 device_initialize(&sw->dev);
1625 sw->dev.parent = parent;
1626 sw->dev.bus = &tb_bus_type;
1627 sw->dev.type = &tb_switch_type;
1628 sw->dev.groups = switch_groups;
1629 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1630
1631 return sw;
1632 }
1633
1634 /**
1635 * tb_switch_configure() - Uploads configuration to the switch
1636 * @sw: Switch to configure
1637 *
1638 * Call this function before the switch is added to the system. It will
1639 * upload configuration to the switch and makes it available for the
1640 * connection manager to use.
1641 *
1642 * Return: %0 in case of success and negative errno in case of failure
1643 */
tb_switch_configure(struct tb_switch * sw)1644 int tb_switch_configure(struct tb_switch *sw)
1645 {
1646 struct tb *tb = sw->tb;
1647 u64 route;
1648 int ret;
1649
1650 route = tb_route(sw);
1651 tb_dbg(tb, "initializing Switch at %#llx (depth: %d, up port: %d)\n",
1652 route, tb_route_length(route), sw->config.upstream_port_number);
1653
1654 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
1655 tb_sw_warn(sw, "unknown switch vendor id %#x\n",
1656 sw->config.vendor_id);
1657
1658 sw->config.enabled = 1;
1659
1660 /* upload configuration */
1661 ret = tb_sw_write(sw, 1 + (u32 *)&sw->config, TB_CFG_SWITCH, 1, 3);
1662 if (ret)
1663 return ret;
1664
1665 ret = tb_lc_configure_link(sw);
1666 if (ret)
1667 return ret;
1668
1669 return tb_plug_events_active(sw, true);
1670 }
1671
tb_switch_set_uuid(struct tb_switch * sw)1672 static int tb_switch_set_uuid(struct tb_switch *sw)
1673 {
1674 u32 uuid[4];
1675 int ret;
1676
1677 if (sw->uuid)
1678 return 0;
1679
1680 /*
1681 * The newer controllers include fused UUID as part of link
1682 * controller specific registers
1683 */
1684 ret = tb_lc_read_uuid(sw, uuid);
1685 if (ret) {
1686 /*
1687 * ICM generates UUID based on UID and fills the upper
1688 * two words with ones. This is not strictly following
1689 * UUID format but we want to be compatible with it so
1690 * we do the same here.
1691 */
1692 uuid[0] = sw->uid & 0xffffffff;
1693 uuid[1] = (sw->uid >> 32) & 0xffffffff;
1694 uuid[2] = 0xffffffff;
1695 uuid[3] = 0xffffffff;
1696 }
1697
1698 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
1699 if (!sw->uuid)
1700 return -ENOMEM;
1701 return 0;
1702 }
1703
tb_switch_add_dma_port(struct tb_switch * sw)1704 static int tb_switch_add_dma_port(struct tb_switch *sw)
1705 {
1706 u32 status;
1707 int ret;
1708
1709 switch (sw->generation) {
1710 case 2:
1711 /* Only root switch can be upgraded */
1712 if (tb_route(sw))
1713 return 0;
1714
1715 /* fallthrough */
1716 case 3:
1717 ret = tb_switch_set_uuid(sw);
1718 if (ret)
1719 return ret;
1720 break;
1721
1722 default:
1723 /*
1724 * DMA port is the only thing available when the switch
1725 * is in safe mode.
1726 */
1727 if (!sw->safe_mode)
1728 return 0;
1729 break;
1730 }
1731
1732 /* Root switch DMA port requires running firmware */
1733 if (!tb_route(sw) && sw->config.enabled)
1734 return 0;
1735
1736 sw->dma_port = dma_port_alloc(sw);
1737 if (!sw->dma_port)
1738 return 0;
1739
1740 if (sw->no_nvm_upgrade)
1741 return 0;
1742
1743 /*
1744 * If there is status already set then authentication failed
1745 * when the dma_port_flash_update_auth() returned. Power cycling
1746 * is not needed (it was done already) so only thing we do here
1747 * is to unblock runtime PM of the root port.
1748 */
1749 nvm_get_auth_status(sw, &status);
1750 if (status) {
1751 if (!tb_route(sw))
1752 nvm_authenticate_complete(sw);
1753 return 0;
1754 }
1755
1756 /*
1757 * Check status of the previous flash authentication. If there
1758 * is one we need to power cycle the switch in any case to make
1759 * it functional again.
1760 */
1761 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
1762 if (ret <= 0)
1763 return ret;
1764
1765 /* Now we can allow root port to suspend again */
1766 if (!tb_route(sw))
1767 nvm_authenticate_complete(sw);
1768
1769 if (status) {
1770 tb_sw_info(sw, "switch flash authentication failed\n");
1771 nvm_set_auth_status(sw, status);
1772 }
1773
1774 tb_sw_info(sw, "power cycling the switch now\n");
1775 dma_port_power_cycle(sw->dma_port);
1776
1777 /*
1778 * We return error here which causes the switch adding failure.
1779 * It should appear back after power cycle is complete.
1780 */
1781 return -ESHUTDOWN;
1782 }
1783
1784 /**
1785 * tb_switch_add() - Add a switch to the domain
1786 * @sw: Switch to add
1787 *
1788 * This is the last step in adding switch to the domain. It will read
1789 * identification information from DROM and initializes ports so that
1790 * they can be used to connect other switches. The switch will be
1791 * exposed to the userspace when this function successfully returns. To
1792 * remove and release the switch, call tb_switch_remove().
1793 *
1794 * Return: %0 in case of success and negative errno in case of failure
1795 */
tb_switch_add(struct tb_switch * sw)1796 int tb_switch_add(struct tb_switch *sw)
1797 {
1798 int i, ret;
1799
1800 /*
1801 * Initialize DMA control port now before we read DROM. Recent
1802 * host controllers have more complete DROM on NVM that includes
1803 * vendor and model identification strings which we then expose
1804 * to the userspace. NVM can be accessed through DMA
1805 * configuration based mailbox.
1806 */
1807 ret = tb_switch_add_dma_port(sw);
1808 if (ret)
1809 return ret;
1810
1811 if (!sw->safe_mode) {
1812 /* read drom */
1813 ret = tb_drom_read(sw);
1814 if (ret) {
1815 tb_sw_warn(sw, "tb_eeprom_read_rom failed\n");
1816 return ret;
1817 }
1818 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
1819
1820 ret = tb_switch_set_uuid(sw);
1821 if (ret)
1822 return ret;
1823
1824 for (i = 0; i <= sw->config.max_port_number; i++) {
1825 if (sw->ports[i].disabled) {
1826 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
1827 continue;
1828 }
1829 ret = tb_init_port(&sw->ports[i]);
1830 if (ret)
1831 return ret;
1832 }
1833 }
1834
1835 ret = device_add(&sw->dev);
1836 if (ret)
1837 return ret;
1838
1839 if (tb_route(sw)) {
1840 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
1841 sw->vendor, sw->device);
1842 if (sw->vendor_name && sw->device_name)
1843 dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
1844 sw->device_name);
1845 }
1846
1847 ret = tb_switch_nvm_add(sw);
1848 if (ret) {
1849 device_del(&sw->dev);
1850 return ret;
1851 }
1852
1853 pm_runtime_set_active(&sw->dev);
1854 if (sw->rpm) {
1855 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
1856 pm_runtime_use_autosuspend(&sw->dev);
1857 pm_runtime_mark_last_busy(&sw->dev);
1858 pm_runtime_enable(&sw->dev);
1859 pm_request_autosuspend(&sw->dev);
1860 }
1861
1862 return 0;
1863 }
1864
1865 /**
1866 * tb_switch_remove() - Remove and release a switch
1867 * @sw: Switch to remove
1868 *
1869 * This will remove the switch from the domain and release it after last
1870 * reference count drops to zero. If there are switches connected below
1871 * this switch, they will be removed as well.
1872 */
tb_switch_remove(struct tb_switch * sw)1873 void tb_switch_remove(struct tb_switch *sw)
1874 {
1875 int i;
1876
1877 if (sw->rpm) {
1878 pm_runtime_get_sync(&sw->dev);
1879 pm_runtime_disable(&sw->dev);
1880 }
1881
1882 /* port 0 is the switch itself and never has a remote */
1883 for (i = 1; i <= sw->config.max_port_number; i++) {
1884 if (tb_port_has_remote(&sw->ports[i])) {
1885 tb_switch_remove(sw->ports[i].remote->sw);
1886 sw->ports[i].remote = NULL;
1887 } else if (sw->ports[i].xdomain) {
1888 tb_xdomain_remove(sw->ports[i].xdomain);
1889 sw->ports[i].xdomain = NULL;
1890 }
1891 }
1892
1893 if (!sw->is_unplugged)
1894 tb_plug_events_active(sw, false);
1895 tb_lc_unconfigure_link(sw);
1896
1897 tb_switch_nvm_remove(sw);
1898
1899 if (tb_route(sw))
1900 dev_info(&sw->dev, "device disconnected\n");
1901 device_unregister(&sw->dev);
1902 }
1903
1904 /**
1905 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
1906 */
tb_sw_set_unplugged(struct tb_switch * sw)1907 void tb_sw_set_unplugged(struct tb_switch *sw)
1908 {
1909 int i;
1910 if (sw == sw->tb->root_switch) {
1911 tb_sw_WARN(sw, "cannot unplug root switch\n");
1912 return;
1913 }
1914 if (sw->is_unplugged) {
1915 tb_sw_WARN(sw, "is_unplugged already set\n");
1916 return;
1917 }
1918 sw->is_unplugged = true;
1919 for (i = 0; i <= sw->config.max_port_number; i++) {
1920 if (tb_port_has_remote(&sw->ports[i]))
1921 tb_sw_set_unplugged(sw->ports[i].remote->sw);
1922 else if (sw->ports[i].xdomain)
1923 sw->ports[i].xdomain->is_unplugged = true;
1924 }
1925 }
1926
tb_switch_resume(struct tb_switch * sw)1927 int tb_switch_resume(struct tb_switch *sw)
1928 {
1929 int i, err;
1930 tb_sw_dbg(sw, "resuming switch\n");
1931
1932 /*
1933 * Check for UID of the connected switches except for root
1934 * switch which we assume cannot be removed.
1935 */
1936 if (tb_route(sw)) {
1937 u64 uid;
1938
1939 /*
1940 * Check first that we can still read the switch config
1941 * space. It may be that there is now another domain
1942 * connected.
1943 */
1944 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
1945 if (err < 0) {
1946 tb_sw_info(sw, "switch not present anymore\n");
1947 return err;
1948 }
1949
1950 err = tb_drom_read_uid_only(sw, &uid);
1951 if (err) {
1952 tb_sw_warn(sw, "uid read failed\n");
1953 return err;
1954 }
1955 if (sw->uid != uid) {
1956 tb_sw_info(sw,
1957 "changed while suspended (uid %#llx -> %#llx)\n",
1958 sw->uid, uid);
1959 return -ENODEV;
1960 }
1961 }
1962
1963 /* upload configuration */
1964 err = tb_sw_write(sw, 1 + (u32 *) &sw->config, TB_CFG_SWITCH, 1, 3);
1965 if (err)
1966 return err;
1967
1968 err = tb_lc_configure_link(sw);
1969 if (err)
1970 return err;
1971
1972 err = tb_plug_events_active(sw, true);
1973 if (err)
1974 return err;
1975
1976 /* check for surviving downstream switches */
1977 for (i = 1; i <= sw->config.max_port_number; i++) {
1978 struct tb_port *port = &sw->ports[i];
1979
1980 if (!tb_port_has_remote(port) && !port->xdomain)
1981 continue;
1982
1983 if (tb_wait_for_port(port, true) <= 0) {
1984 tb_port_warn(port,
1985 "lost during suspend, disconnecting\n");
1986 if (tb_port_has_remote(port))
1987 tb_sw_set_unplugged(port->remote->sw);
1988 else if (port->xdomain)
1989 port->xdomain->is_unplugged = true;
1990 } else if (tb_port_has_remote(port)) {
1991 if (tb_switch_resume(port->remote->sw)) {
1992 tb_port_warn(port,
1993 "lost during suspend, disconnecting\n");
1994 tb_sw_set_unplugged(port->remote->sw);
1995 }
1996 }
1997 }
1998 return 0;
1999 }
2000
tb_switch_suspend(struct tb_switch * sw)2001 void tb_switch_suspend(struct tb_switch *sw)
2002 {
2003 int i, err;
2004 err = tb_plug_events_active(sw, false);
2005 if (err)
2006 return;
2007
2008 for (i = 1; i <= sw->config.max_port_number; i++) {
2009 if (tb_port_has_remote(&sw->ports[i]))
2010 tb_switch_suspend(sw->ports[i].remote->sw);
2011 }
2012
2013 tb_lc_set_sleep(sw);
2014 }
2015
2016 struct tb_sw_lookup {
2017 struct tb *tb;
2018 u8 link;
2019 u8 depth;
2020 const uuid_t *uuid;
2021 u64 route;
2022 };
2023
tb_switch_match(struct device * dev,const void * data)2024 static int tb_switch_match(struct device *dev, const void *data)
2025 {
2026 struct tb_switch *sw = tb_to_switch(dev);
2027 const struct tb_sw_lookup *lookup = data;
2028
2029 if (!sw)
2030 return 0;
2031 if (sw->tb != lookup->tb)
2032 return 0;
2033
2034 if (lookup->uuid)
2035 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
2036
2037 if (lookup->route) {
2038 return sw->config.route_lo == lower_32_bits(lookup->route) &&
2039 sw->config.route_hi == upper_32_bits(lookup->route);
2040 }
2041
2042 /* Root switch is matched only by depth */
2043 if (!lookup->depth)
2044 return !sw->depth;
2045
2046 return sw->link == lookup->link && sw->depth == lookup->depth;
2047 }
2048
2049 /**
2050 * tb_switch_find_by_link_depth() - Find switch by link and depth
2051 * @tb: Domain the switch belongs
2052 * @link: Link number the switch is connected
2053 * @depth: Depth of the switch in link
2054 *
2055 * Returned switch has reference count increased so the caller needs to
2056 * call tb_switch_put() when done with the switch.
2057 */
tb_switch_find_by_link_depth(struct tb * tb,u8 link,u8 depth)2058 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
2059 {
2060 struct tb_sw_lookup lookup;
2061 struct device *dev;
2062
2063 memset(&lookup, 0, sizeof(lookup));
2064 lookup.tb = tb;
2065 lookup.link = link;
2066 lookup.depth = depth;
2067
2068 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2069 if (dev)
2070 return tb_to_switch(dev);
2071
2072 return NULL;
2073 }
2074
2075 /**
2076 * tb_switch_find_by_uuid() - Find switch by UUID
2077 * @tb: Domain the switch belongs
2078 * @uuid: UUID to look for
2079 *
2080 * Returned switch has reference count increased so the caller needs to
2081 * call tb_switch_put() when done with the switch.
2082 */
tb_switch_find_by_uuid(struct tb * tb,const uuid_t * uuid)2083 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
2084 {
2085 struct tb_sw_lookup lookup;
2086 struct device *dev;
2087
2088 memset(&lookup, 0, sizeof(lookup));
2089 lookup.tb = tb;
2090 lookup.uuid = uuid;
2091
2092 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2093 if (dev)
2094 return tb_to_switch(dev);
2095
2096 return NULL;
2097 }
2098
2099 /**
2100 * tb_switch_find_by_route() - Find switch by route string
2101 * @tb: Domain the switch belongs
2102 * @route: Route string to look for
2103 *
2104 * Returned switch has reference count increased so the caller needs to
2105 * call tb_switch_put() when done with the switch.
2106 */
tb_switch_find_by_route(struct tb * tb,u64 route)2107 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
2108 {
2109 struct tb_sw_lookup lookup;
2110 struct device *dev;
2111
2112 if (!route)
2113 return tb_switch_get(tb->root_switch);
2114
2115 memset(&lookup, 0, sizeof(lookup));
2116 lookup.tb = tb;
2117 lookup.route = route;
2118
2119 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2120 if (dev)
2121 return tb_to_switch(dev);
2122
2123 return NULL;
2124 }
2125
tb_switch_exit(void)2126 void tb_switch_exit(void)
2127 {
2128 ida_destroy(&nvm_ida);
2129 }
2130