• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * TTY driver for MIPS EJTAG Fast Debug Channels.
4  *
5  * Copyright (C) 2007-2015 Imagination Technologies Ltd
6  */
7 
8 #include <linux/atomic.h>
9 #include <linux/bitops.h>
10 #include <linux/completion.h>
11 #include <linux/console.h>
12 #include <linux/delay.h>
13 #include <linux/export.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/kernel.h>
17 #include <linux/kgdb.h>
18 #include <linux/kthread.h>
19 #include <linux/sched.h>
20 #include <linux/serial.h>
21 #include <linux/serial_core.h>
22 #include <linux/slab.h>
23 #include <linux/spinlock.h>
24 #include <linux/string.h>
25 #include <linux/timer.h>
26 #include <linux/tty.h>
27 #include <linux/tty_driver.h>
28 #include <linux/tty_flip.h>
29 #include <linux/uaccess.h>
30 
31 #include <asm/cdmm.h>
32 #include <asm/irq.h>
33 
34 /* Register offsets */
35 #define REG_FDACSR	0x00	/* FDC Access Control and Status Register */
36 #define REG_FDCFG	0x08	/* FDC Configuration Register */
37 #define REG_FDSTAT	0x10	/* FDC Status Register */
38 #define REG_FDRX	0x18	/* FDC Receive Register */
39 #define REG_FDTX(N)	(0x20+0x8*(N))	/* FDC Transmit Register n (0..15) */
40 
41 /* Register fields */
42 
43 #define REG_FDCFG_TXINTTHRES_SHIFT	18
44 #define REG_FDCFG_TXINTTHRES		(0x3 << REG_FDCFG_TXINTTHRES_SHIFT)
45 #define REG_FDCFG_TXINTTHRES_DISABLED	(0x0 << REG_FDCFG_TXINTTHRES_SHIFT)
46 #define REG_FDCFG_TXINTTHRES_EMPTY	(0x1 << REG_FDCFG_TXINTTHRES_SHIFT)
47 #define REG_FDCFG_TXINTTHRES_NOTFULL	(0x2 << REG_FDCFG_TXINTTHRES_SHIFT)
48 #define REG_FDCFG_TXINTTHRES_NEAREMPTY	(0x3 << REG_FDCFG_TXINTTHRES_SHIFT)
49 #define REG_FDCFG_RXINTTHRES_SHIFT	16
50 #define REG_FDCFG_RXINTTHRES		(0x3 << REG_FDCFG_RXINTTHRES_SHIFT)
51 #define REG_FDCFG_RXINTTHRES_DISABLED	(0x0 << REG_FDCFG_RXINTTHRES_SHIFT)
52 #define REG_FDCFG_RXINTTHRES_FULL	(0x1 << REG_FDCFG_RXINTTHRES_SHIFT)
53 #define REG_FDCFG_RXINTTHRES_NOTEMPTY	(0x2 << REG_FDCFG_RXINTTHRES_SHIFT)
54 #define REG_FDCFG_RXINTTHRES_NEARFULL	(0x3 << REG_FDCFG_RXINTTHRES_SHIFT)
55 #define REG_FDCFG_TXFIFOSIZE_SHIFT	8
56 #define REG_FDCFG_TXFIFOSIZE		(0xff << REG_FDCFG_TXFIFOSIZE_SHIFT)
57 #define REG_FDCFG_RXFIFOSIZE_SHIFT	0
58 #define REG_FDCFG_RXFIFOSIZE		(0xff << REG_FDCFG_RXFIFOSIZE_SHIFT)
59 
60 #define REG_FDSTAT_TXCOUNT_SHIFT	24
61 #define REG_FDSTAT_TXCOUNT		(0xff << REG_FDSTAT_TXCOUNT_SHIFT)
62 #define REG_FDSTAT_RXCOUNT_SHIFT	16
63 #define REG_FDSTAT_RXCOUNT		(0xff << REG_FDSTAT_RXCOUNT_SHIFT)
64 #define REG_FDSTAT_RXCHAN_SHIFT		4
65 #define REG_FDSTAT_RXCHAN		(0xf << REG_FDSTAT_RXCHAN_SHIFT)
66 #define REG_FDSTAT_RXE			BIT(3)	/* Rx Empty */
67 #define REG_FDSTAT_RXF			BIT(2)	/* Rx Full */
68 #define REG_FDSTAT_TXE			BIT(1)	/* Tx Empty */
69 #define REG_FDSTAT_TXF			BIT(0)	/* Tx Full */
70 
71 /* Default channel for the early console */
72 #define CONSOLE_CHANNEL      1
73 
74 #define NUM_TTY_CHANNELS     16
75 
76 #define RX_BUF_SIZE 1024
77 
78 /*
79  * When the IRQ is unavailable, the FDC state must be polled for incoming data
80  * and space becoming available in TX FIFO.
81  */
82 #define FDC_TTY_POLL (HZ / 50)
83 
84 struct mips_ejtag_fdc_tty;
85 
86 /**
87  * struct mips_ejtag_fdc_tty_port - Wrapper struct for FDC tty_port.
88  * @port:		TTY port data
89  * @driver:		TTY driver.
90  * @rx_lock:		Lock for rx_buf.
91  *			This protects between the hard interrupt and user
92  *			context. It's also held during read SWITCH operations.
93  * @rx_buf:		Read buffer.
94  * @xmit_lock:		Lock for xmit_*, and port.xmit_buf.
95  *			This protects between user context and kernel thread.
96  *			It is used from chars_in_buffer()/write_room() TTY
97  *			callbacks which are used during wait operations, so a
98  *			mutex is unsuitable.
99  * @xmit_cnt:		Size of xmit buffer contents.
100  * @xmit_head:		Head of xmit buffer where data is written.
101  * @xmit_tail:		Tail of xmit buffer where data is read.
102  * @xmit_empty:		Completion for xmit buffer being empty.
103  */
104 struct mips_ejtag_fdc_tty_port {
105 	struct tty_port			 port;
106 	struct mips_ejtag_fdc_tty	*driver;
107 	raw_spinlock_t			 rx_lock;
108 	void				*rx_buf;
109 	spinlock_t			 xmit_lock;
110 	unsigned int			 xmit_cnt;
111 	unsigned int			 xmit_head;
112 	unsigned int			 xmit_tail;
113 	struct completion		 xmit_empty;
114 };
115 
116 /**
117  * struct mips_ejtag_fdc_tty - Driver data for FDC as a whole.
118  * @dev:		FDC device (for dev_*() logging).
119  * @driver:		TTY driver.
120  * @cpu:		CPU number for this FDC.
121  * @fdc_name:		FDC name (not for base of channel names).
122  * @driver_name:	Base of driver name.
123  * @ports:		Per-channel data.
124  * @waitqueue:		Wait queue for waiting for TX data, or for space in TX
125  *			FIFO.
126  * @lock:		Lock to protect FDCFG (interrupt enable).
127  * @thread:		KThread for writing out data to FDC.
128  * @reg:		FDC registers.
129  * @tx_fifo:		TX FIFO size.
130  * @xmit_size:		Size of each port's xmit buffer.
131  * @xmit_total:		Total number of bytes (from all ports) to transmit.
132  * @xmit_next:		Next port number to transmit from (round robin).
133  * @xmit_full:		Indicates TX FIFO is full, we're waiting for space.
134  * @irq:		IRQ number (negative if no IRQ).
135  * @removing:		Indicates the device is being removed and @poll_timer
136  *			should not be restarted.
137  * @poll_timer:		Timer for polling for interrupt events when @irq < 0.
138  * @sysrq_pressed:	Whether the magic sysrq key combination has been
139  *			detected. See mips_ejtag_fdc_handle().
140  */
141 struct mips_ejtag_fdc_tty {
142 	struct device			*dev;
143 	struct tty_driver		*driver;
144 	unsigned int			 cpu;
145 	char				 fdc_name[16];
146 	char				 driver_name[16];
147 	struct mips_ejtag_fdc_tty_port	 ports[NUM_TTY_CHANNELS];
148 	wait_queue_head_t		 waitqueue;
149 	raw_spinlock_t			 lock;
150 	struct task_struct		*thread;
151 
152 	void __iomem			*reg;
153 	u8				 tx_fifo;
154 
155 	unsigned int			 xmit_size;
156 	atomic_t			 xmit_total;
157 	unsigned int			 xmit_next;
158 	bool				 xmit_full;
159 
160 	int				 irq;
161 	bool				 removing;
162 	struct timer_list		 poll_timer;
163 
164 #ifdef CONFIG_MAGIC_SYSRQ
165 	bool				 sysrq_pressed;
166 #endif
167 };
168 
169 /* Hardware access */
170 
mips_ejtag_fdc_write(struct mips_ejtag_fdc_tty * priv,unsigned int offs,unsigned int data)171 static inline void mips_ejtag_fdc_write(struct mips_ejtag_fdc_tty *priv,
172 					unsigned int offs, unsigned int data)
173 {
174 	__raw_writel(data, priv->reg + offs);
175 }
176 
mips_ejtag_fdc_read(struct mips_ejtag_fdc_tty * priv,unsigned int offs)177 static inline unsigned int mips_ejtag_fdc_read(struct mips_ejtag_fdc_tty *priv,
178 					       unsigned int offs)
179 {
180 	return __raw_readl(priv->reg + offs);
181 }
182 
183 /* Encoding of byte stream in FDC words */
184 
185 /**
186  * struct fdc_word - FDC word encoding some number of bytes of data.
187  * @word:		Raw FDC word.
188  * @bytes:		Number of bytes encoded by @word.
189  */
190 struct fdc_word {
191 	u32		word;
192 	unsigned int	bytes;
193 };
194 
195 /*
196  * This is a compact encoding which allows every 1 byte, 2 byte, and 3 byte
197  * sequence to be encoded in a single word, while allowing the majority of 4
198  * byte sequences (including all ASCII and common binary data) to be encoded in
199  * a single word too.
200  *    _______________________ _____________
201  *   |       FDC Word        |             |
202  *   |31-24|23-16|15-8 | 7-0 |    Bytes    |
203  *   |_____|_____|_____|_____|_____________|
204  *   |     |     |     |     |             |
205  *   |0x80 |0x80 |0x80 |  WW | WW          |
206  *   |0x81 |0x81 |  XX |  WW | WW XX       |
207  *   |0x82 |  YY |  XX |  WW | WW XX YY    |
208  *   |  ZZ |  YY |  XX |  WW | WW XX YY ZZ |
209  *   |_____|_____|_____|_____|_____________|
210  *
211  * Note that the 4-byte encoding can only be used where none of the other 3
212  * encodings match, otherwise it must fall back to the 3 byte encoding.
213  */
214 
215 /* ranges >= 1 && sizes[0] >= 1 */
mips_ejtag_fdc_encode(const char ** ptrs,unsigned int * sizes,unsigned int ranges)216 static struct fdc_word mips_ejtag_fdc_encode(const char **ptrs,
217 					     unsigned int *sizes,
218 					     unsigned int ranges)
219 {
220 	struct fdc_word word = { 0, 0 };
221 	const char **ptrs_end = ptrs + ranges;
222 
223 	for (; ptrs < ptrs_end; ++ptrs) {
224 		const char *ptr = *(ptrs++);
225 		const char *end = ptr + *(sizes++);
226 
227 		for (; ptr < end; ++ptr) {
228 			word.word |= (u8)*ptr << (8*word.bytes);
229 			++word.bytes;
230 			if (word.bytes == 4)
231 				goto done;
232 		}
233 	}
234 done:
235 	/* Choose the appropriate encoding */
236 	switch (word.bytes) {
237 	case 4:
238 		/* 4 byte encoding, but don't match the 1-3 byte encodings */
239 		if ((word.word >> 8) != 0x808080 &&
240 		    (word.word >> 16) != 0x8181 &&
241 		    (word.word >> 24) != 0x82)
242 			break;
243 		/* Fall back to a 3 byte encoding */
244 		word.bytes = 3;
245 		word.word &= 0x00ffffff;
246 	case 3:
247 		/* 3 byte encoding */
248 		word.word |= 0x82000000;
249 		break;
250 	case 2:
251 		/* 2 byte encoding */
252 		word.word |= 0x81810000;
253 		break;
254 	case 1:
255 		/* 1 byte encoding */
256 		word.word |= 0x80808000;
257 		break;
258 	}
259 	return word;
260 }
261 
mips_ejtag_fdc_decode(u32 word,char * buf)262 static unsigned int mips_ejtag_fdc_decode(u32 word, char *buf)
263 {
264 	buf[0] = (u8)word;
265 	word >>= 8;
266 	if (word == 0x808080)
267 		return 1;
268 	buf[1] = (u8)word;
269 	word >>= 8;
270 	if (word == 0x8181)
271 		return 2;
272 	buf[2] = (u8)word;
273 	word >>= 8;
274 	if (word == 0x82)
275 		return 3;
276 	buf[3] = (u8)word;
277 	return 4;
278 }
279 
280 /* Console operations */
281 
282 /**
283  * struct mips_ejtag_fdc_console - Wrapper struct for FDC consoles.
284  * @cons:		Console object.
285  * @tty_drv:		TTY driver associated with this console.
286  * @lock:		Lock to protect concurrent access to other fields.
287  *			This is raw because it may be used very early.
288  * @initialised:	Whether the console is initialised.
289  * @regs:		Registers base address for each CPU.
290  */
291 struct mips_ejtag_fdc_console {
292 	struct console		 cons;
293 	struct tty_driver	*tty_drv;
294 	raw_spinlock_t		 lock;
295 	bool			 initialised;
296 	void __iomem		*regs[NR_CPUS];
297 };
298 
299 /* Low level console write shared by early console and normal console */
mips_ejtag_fdc_console_write(struct console * c,const char * s,unsigned int count)300 static void mips_ejtag_fdc_console_write(struct console *c, const char *s,
301 					 unsigned int count)
302 {
303 	struct mips_ejtag_fdc_console *cons =
304 		container_of(c, struct mips_ejtag_fdc_console, cons);
305 	void __iomem *regs;
306 	struct fdc_word word;
307 	unsigned long flags;
308 	unsigned int i, buf_len, cpu;
309 	bool done_cr = false;
310 	char buf[4];
311 	const char *buf_ptr = buf;
312 	/* Number of bytes of input data encoded up to each byte in buf */
313 	u8 inc[4];
314 
315 	local_irq_save(flags);
316 	cpu = smp_processor_id();
317 	regs = cons->regs[cpu];
318 	/* First console output on this CPU? */
319 	if (!regs) {
320 		regs = mips_cdmm_early_probe(0xfd);
321 		cons->regs[cpu] = regs;
322 	}
323 	/* Already tried and failed to find FDC on this CPU? */
324 	if (IS_ERR(regs))
325 		goto out;
326 	while (count) {
327 		/*
328 		 * Copy the next few characters to a buffer so we can inject
329 		 * carriage returns before newlines.
330 		 */
331 		for (buf_len = 0, i = 0; buf_len < 4 && i < count; ++buf_len) {
332 			if (s[i] == '\n' && !done_cr) {
333 				buf[buf_len] = '\r';
334 				done_cr = true;
335 			} else {
336 				buf[buf_len] = s[i];
337 				done_cr = false;
338 				++i;
339 			}
340 			inc[buf_len] = i;
341 		}
342 		word = mips_ejtag_fdc_encode(&buf_ptr, &buf_len, 1);
343 		count -= inc[word.bytes - 1];
344 		s += inc[word.bytes - 1];
345 
346 		/* Busy wait until there's space in fifo */
347 		while (__raw_readl(regs + REG_FDSTAT) & REG_FDSTAT_TXF)
348 			;
349 		__raw_writel(word.word, regs + REG_FDTX(c->index));
350 	}
351 out:
352 	local_irq_restore(flags);
353 }
354 
mips_ejtag_fdc_console_device(struct console * c,int * index)355 static struct tty_driver *mips_ejtag_fdc_console_device(struct console *c,
356 							int *index)
357 {
358 	struct mips_ejtag_fdc_console *cons =
359 		container_of(c, struct mips_ejtag_fdc_console, cons);
360 
361 	*index = c->index;
362 	return cons->tty_drv;
363 }
364 
365 /* Initialise an FDC console (early or normal */
mips_ejtag_fdc_console_init(struct mips_ejtag_fdc_console * c)366 static int __init mips_ejtag_fdc_console_init(struct mips_ejtag_fdc_console *c)
367 {
368 	void __iomem *regs;
369 	unsigned long flags;
370 	int ret = 0;
371 
372 	raw_spin_lock_irqsave(&c->lock, flags);
373 	/* Don't init twice */
374 	if (c->initialised)
375 		goto out;
376 	/* Look for the FDC device */
377 	regs = mips_cdmm_early_probe(0xfd);
378 	if (IS_ERR(regs)) {
379 		ret = PTR_ERR(regs);
380 		goto out;
381 	}
382 
383 	c->initialised = true;
384 	c->regs[smp_processor_id()] = regs;
385 	register_console(&c->cons);
386 out:
387 	raw_spin_unlock_irqrestore(&c->lock, flags);
388 	return ret;
389 }
390 
391 static struct mips_ejtag_fdc_console mips_ejtag_fdc_con = {
392 	.cons	= {
393 		.name	= "fdc",
394 		.write	= mips_ejtag_fdc_console_write,
395 		.device	= mips_ejtag_fdc_console_device,
396 		.flags	= CON_PRINTBUFFER,
397 		.index	= -1,
398 	},
399 	.lock	= __RAW_SPIN_LOCK_UNLOCKED(mips_ejtag_fdc_con.lock),
400 };
401 
402 /* TTY RX/TX operations */
403 
404 /**
405  * mips_ejtag_fdc_put_chan() - Write out a block of channel data.
406  * @priv:	Pointer to driver private data.
407  * @chan:	Channel number.
408  *
409  * Write a single block of data out to the debug adapter. If the circular buffer
410  * is wrapped then only the first block is written.
411  *
412  * Returns:	The number of bytes that were written.
413  */
mips_ejtag_fdc_put_chan(struct mips_ejtag_fdc_tty * priv,unsigned int chan)414 static unsigned int mips_ejtag_fdc_put_chan(struct mips_ejtag_fdc_tty *priv,
415 					    unsigned int chan)
416 {
417 	struct mips_ejtag_fdc_tty_port *dport;
418 	struct tty_struct *tty;
419 	const char *ptrs[2];
420 	unsigned int sizes[2] = { 0 };
421 	struct fdc_word word = { .bytes = 0 };
422 	unsigned long flags;
423 
424 	dport = &priv->ports[chan];
425 	spin_lock(&dport->xmit_lock);
426 	if (dport->xmit_cnt) {
427 		ptrs[0] = dport->port.xmit_buf + dport->xmit_tail;
428 		sizes[0] = min_t(unsigned int,
429 				 priv->xmit_size - dport->xmit_tail,
430 				 dport->xmit_cnt);
431 		ptrs[1] = dport->port.xmit_buf;
432 		sizes[1] = dport->xmit_cnt - sizes[0];
433 		word = mips_ejtag_fdc_encode(ptrs, sizes, 1 + !!sizes[1]);
434 
435 		dev_dbg(priv->dev, "%s%u: out %08x: \"%*pE%*pE\"\n",
436 			priv->driver_name, chan, word.word,
437 			min_t(int, word.bytes, sizes[0]), ptrs[0],
438 			max_t(int, 0, word.bytes - sizes[0]), ptrs[1]);
439 
440 		local_irq_save(flags);
441 		/* Maybe we raced with the console and TX FIFO is full */
442 		if (mips_ejtag_fdc_read(priv, REG_FDSTAT) & REG_FDSTAT_TXF)
443 			word.bytes = 0;
444 		else
445 			mips_ejtag_fdc_write(priv, REG_FDTX(chan), word.word);
446 		local_irq_restore(flags);
447 
448 		dport->xmit_cnt -= word.bytes;
449 		if (!dport->xmit_cnt) {
450 			/* Reset pointers to avoid wraps */
451 			dport->xmit_head = 0;
452 			dport->xmit_tail = 0;
453 			complete(&dport->xmit_empty);
454 		} else {
455 			dport->xmit_tail += word.bytes;
456 			if (dport->xmit_tail >= priv->xmit_size)
457 				dport->xmit_tail -= priv->xmit_size;
458 		}
459 		atomic_sub(word.bytes, &priv->xmit_total);
460 	}
461 	spin_unlock(&dport->xmit_lock);
462 
463 	/* If we've made more data available, wake up tty */
464 	if (sizes[0] && word.bytes) {
465 		tty = tty_port_tty_get(&dport->port);
466 		if (tty) {
467 			tty_wakeup(tty);
468 			tty_kref_put(tty);
469 		}
470 	}
471 
472 	return word.bytes;
473 }
474 
475 /**
476  * mips_ejtag_fdc_put() - Kernel thread to write out channel data to FDC.
477  * @arg:	Driver pointer.
478  *
479  * This kernel thread runs while @priv->xmit_total != 0, and round robins the
480  * channels writing out blocks of buffered data to the FDC TX FIFO.
481  */
mips_ejtag_fdc_put(void * arg)482 static int mips_ejtag_fdc_put(void *arg)
483 {
484 	struct mips_ejtag_fdc_tty *priv = arg;
485 	struct mips_ejtag_fdc_tty_port *dport;
486 	unsigned int ret;
487 	u32 cfg;
488 
489 	__set_current_state(TASK_RUNNING);
490 	while (!kthread_should_stop()) {
491 		/* Wait for data to actually write */
492 		wait_event_interruptible(priv->waitqueue,
493 					 atomic_read(&priv->xmit_total) ||
494 					 kthread_should_stop());
495 		if (kthread_should_stop())
496 			break;
497 
498 		/* Wait for TX FIFO space to write data */
499 		raw_spin_lock_irq(&priv->lock);
500 		if (mips_ejtag_fdc_read(priv, REG_FDSTAT) & REG_FDSTAT_TXF) {
501 			priv->xmit_full = true;
502 			if (priv->irq >= 0) {
503 				/* Enable TX interrupt */
504 				cfg = mips_ejtag_fdc_read(priv, REG_FDCFG);
505 				cfg &= ~REG_FDCFG_TXINTTHRES;
506 				cfg |= REG_FDCFG_TXINTTHRES_NOTFULL;
507 				mips_ejtag_fdc_write(priv, REG_FDCFG, cfg);
508 			}
509 		}
510 		raw_spin_unlock_irq(&priv->lock);
511 		wait_event_interruptible(priv->waitqueue,
512 					 !(mips_ejtag_fdc_read(priv, REG_FDSTAT)
513 					   & REG_FDSTAT_TXF) ||
514 					 kthread_should_stop());
515 		if (kthread_should_stop())
516 			break;
517 
518 		/* Find next channel with data to output */
519 		for (;;) {
520 			dport = &priv->ports[priv->xmit_next];
521 			spin_lock(&dport->xmit_lock);
522 			ret = dport->xmit_cnt;
523 			spin_unlock(&dport->xmit_lock);
524 			if (ret)
525 				break;
526 			/* Round robin */
527 			++priv->xmit_next;
528 			if (priv->xmit_next >= NUM_TTY_CHANNELS)
529 				priv->xmit_next = 0;
530 		}
531 
532 		/* Try writing data to the chosen channel */
533 		ret = mips_ejtag_fdc_put_chan(priv, priv->xmit_next);
534 
535 		/*
536 		 * If anything was output, move on to the next channel so as not
537 		 * to starve other channels.
538 		 */
539 		if (ret) {
540 			++priv->xmit_next;
541 			if (priv->xmit_next >= NUM_TTY_CHANNELS)
542 				priv->xmit_next = 0;
543 		}
544 	}
545 
546 	return 0;
547 }
548 
549 /**
550  * mips_ejtag_fdc_handle() - Handle FDC events.
551  * @priv:	Pointer to driver private data.
552  *
553  * Handle FDC events, such as new incoming data which needs draining out of the
554  * RX FIFO and feeding into the appropriate TTY ports, and space becoming
555  * available in the TX FIFO which would allow more data to be written out.
556  */
mips_ejtag_fdc_handle(struct mips_ejtag_fdc_tty * priv)557 static void mips_ejtag_fdc_handle(struct mips_ejtag_fdc_tty *priv)
558 {
559 	struct mips_ejtag_fdc_tty_port *dport;
560 	unsigned int stat, channel, data, cfg, i, flipped;
561 	int len;
562 	char buf[4];
563 
564 	for (;;) {
565 		/* Find which channel the next FDC word is destined for */
566 		stat = mips_ejtag_fdc_read(priv, REG_FDSTAT);
567 		if (stat & REG_FDSTAT_RXE)
568 			break;
569 		channel = (stat & REG_FDSTAT_RXCHAN) >> REG_FDSTAT_RXCHAN_SHIFT;
570 		dport = &priv->ports[channel];
571 
572 		/* Read out the FDC word, decode it, and pass to tty layer */
573 		raw_spin_lock(&dport->rx_lock);
574 		data = mips_ejtag_fdc_read(priv, REG_FDRX);
575 
576 		len = mips_ejtag_fdc_decode(data, buf);
577 		dev_dbg(priv->dev, "%s%u: in  %08x: \"%*pE\"\n",
578 			priv->driver_name, channel, data, len, buf);
579 
580 		flipped = 0;
581 		for (i = 0; i < len; ++i) {
582 #ifdef CONFIG_MAGIC_SYSRQ
583 #ifdef CONFIG_MIPS_EJTAG_FDC_KGDB
584 			/* Support just Ctrl+C with KGDB channel */
585 			if (channel == CONFIG_MIPS_EJTAG_FDC_KGDB_CHAN) {
586 				if (buf[i] == '\x03') { /* ^C */
587 					handle_sysrq('g');
588 					continue;
589 				}
590 			}
591 #endif
592 			/* Support Ctrl+O for console channel */
593 			if (channel == mips_ejtag_fdc_con.cons.index) {
594 				if (buf[i] == '\x0f') {	/* ^O */
595 					priv->sysrq_pressed =
596 						!priv->sysrq_pressed;
597 					if (priv->sysrq_pressed)
598 						continue;
599 				} else if (priv->sysrq_pressed) {
600 					handle_sysrq(buf[i]);
601 					priv->sysrq_pressed = false;
602 					continue;
603 				}
604 			}
605 #endif /* CONFIG_MAGIC_SYSRQ */
606 
607 			/* Check the port isn't being shut down */
608 			if (!dport->rx_buf)
609 				continue;
610 
611 			flipped += tty_insert_flip_char(&dport->port, buf[i],
612 							TTY_NORMAL);
613 		}
614 		if (flipped)
615 			tty_flip_buffer_push(&dport->port);
616 
617 		raw_spin_unlock(&dport->rx_lock);
618 	}
619 
620 	/* If TX FIFO no longer full we may be able to write more data */
621 	raw_spin_lock(&priv->lock);
622 	if (priv->xmit_full && !(stat & REG_FDSTAT_TXF)) {
623 		priv->xmit_full = false;
624 
625 		/* Disable TX interrupt */
626 		cfg = mips_ejtag_fdc_read(priv, REG_FDCFG);
627 		cfg &= ~REG_FDCFG_TXINTTHRES;
628 		cfg |= REG_FDCFG_TXINTTHRES_DISABLED;
629 		mips_ejtag_fdc_write(priv, REG_FDCFG, cfg);
630 
631 		/* Wait the kthread so it can try writing more data */
632 		wake_up_interruptible(&priv->waitqueue);
633 	}
634 	raw_spin_unlock(&priv->lock);
635 }
636 
637 /**
638  * mips_ejtag_fdc_isr() - Interrupt handler.
639  * @irq:	IRQ number.
640  * @dev_id:	Pointer to driver private data.
641  *
642  * This is the interrupt handler, used when interrupts are enabled.
643  *
644  * It simply triggers the common FDC handler code.
645  *
646  * Returns:	IRQ_HANDLED if an FDC interrupt was pending.
647  *		IRQ_NONE otherwise.
648  */
mips_ejtag_fdc_isr(int irq,void * dev_id)649 static irqreturn_t mips_ejtag_fdc_isr(int irq, void *dev_id)
650 {
651 	struct mips_ejtag_fdc_tty *priv = dev_id;
652 
653 	/*
654 	 * We're not using proper per-cpu IRQs, so we must be careful not to
655 	 * handle IRQs on CPUs we're not interested in.
656 	 *
657 	 * Ideally proper per-cpu IRQ handlers could be used, but that doesn't
658 	 * fit well with the whole sharing of the main CPU IRQ lines. When we
659 	 * have something with a GIC that routes the FDC IRQs (i.e. no sharing
660 	 * between handlers) then support could be added more easily.
661 	 */
662 	if (smp_processor_id() != priv->cpu)
663 		return IRQ_NONE;
664 
665 	/* If no FDC interrupt pending, it wasn't for us */
666 	if (!(read_c0_cause() & CAUSEF_FDCI))
667 		return IRQ_NONE;
668 
669 	mips_ejtag_fdc_handle(priv);
670 	return IRQ_HANDLED;
671 }
672 
673 /**
674  * mips_ejtag_fdc_tty_timer() - Poll FDC for incoming data.
675  * @opaque:	Pointer to driver private data.
676  *
677  * This is the timer handler for when interrupts are disabled and polling the
678  * FDC state is required.
679  *
680  * It simply triggers the common FDC handler code and arranges for further
681  * polling.
682  */
mips_ejtag_fdc_tty_timer(struct timer_list * t)683 static void mips_ejtag_fdc_tty_timer(struct timer_list *t)
684 {
685 	struct mips_ejtag_fdc_tty *priv = from_timer(priv, t, poll_timer);
686 
687 	mips_ejtag_fdc_handle(priv);
688 	if (!priv->removing)
689 		mod_timer(&priv->poll_timer, jiffies + FDC_TTY_POLL);
690 }
691 
692 /* TTY Port operations */
693 
mips_ejtag_fdc_tty_port_activate(struct tty_port * port,struct tty_struct * tty)694 static int mips_ejtag_fdc_tty_port_activate(struct tty_port *port,
695 					    struct tty_struct *tty)
696 {
697 	struct mips_ejtag_fdc_tty_port *dport =
698 		container_of(port, struct mips_ejtag_fdc_tty_port, port);
699 	void *rx_buf;
700 
701 	/* Allocate the buffer we use for writing data */
702 	if (tty_port_alloc_xmit_buf(port) < 0)
703 		goto err;
704 
705 	/* Allocate the buffer we use for reading data */
706 	rx_buf = kzalloc(RX_BUF_SIZE, GFP_KERNEL);
707 	if (!rx_buf)
708 		goto err_free_xmit;
709 
710 	raw_spin_lock_irq(&dport->rx_lock);
711 	dport->rx_buf = rx_buf;
712 	raw_spin_unlock_irq(&dport->rx_lock);
713 
714 	return 0;
715 err_free_xmit:
716 	tty_port_free_xmit_buf(port);
717 err:
718 	return -ENOMEM;
719 }
720 
mips_ejtag_fdc_tty_port_shutdown(struct tty_port * port)721 static void mips_ejtag_fdc_tty_port_shutdown(struct tty_port *port)
722 {
723 	struct mips_ejtag_fdc_tty_port *dport =
724 		container_of(port, struct mips_ejtag_fdc_tty_port, port);
725 	struct mips_ejtag_fdc_tty *priv = dport->driver;
726 	void *rx_buf;
727 	unsigned int count;
728 
729 	spin_lock(&dport->xmit_lock);
730 	count = dport->xmit_cnt;
731 	spin_unlock(&dport->xmit_lock);
732 	if (count) {
733 		/*
734 		 * There's still data to write out, so wake and wait for the
735 		 * writer thread to drain the buffer.
736 		 */
737 		wake_up_interruptible(&priv->waitqueue);
738 		wait_for_completion(&dport->xmit_empty);
739 	}
740 
741 	/* Null the read buffer (timer could still be running!) */
742 	raw_spin_lock_irq(&dport->rx_lock);
743 	rx_buf = dport->rx_buf;
744 	dport->rx_buf = NULL;
745 	raw_spin_unlock_irq(&dport->rx_lock);
746 	/* Free the read buffer */
747 	kfree(rx_buf);
748 
749 	/* Free the write buffer */
750 	tty_port_free_xmit_buf(port);
751 }
752 
753 static const struct tty_port_operations mips_ejtag_fdc_tty_port_ops = {
754 	.activate	= mips_ejtag_fdc_tty_port_activate,
755 	.shutdown	= mips_ejtag_fdc_tty_port_shutdown,
756 };
757 
758 /* TTY operations */
759 
mips_ejtag_fdc_tty_install(struct tty_driver * driver,struct tty_struct * tty)760 static int mips_ejtag_fdc_tty_install(struct tty_driver *driver,
761 				      struct tty_struct *tty)
762 {
763 	struct mips_ejtag_fdc_tty *priv = driver->driver_state;
764 
765 	tty->driver_data = &priv->ports[tty->index];
766 	return tty_port_install(&priv->ports[tty->index].port, driver, tty);
767 }
768 
mips_ejtag_fdc_tty_open(struct tty_struct * tty,struct file * filp)769 static int mips_ejtag_fdc_tty_open(struct tty_struct *tty, struct file *filp)
770 {
771 	return tty_port_open(tty->port, tty, filp);
772 }
773 
mips_ejtag_fdc_tty_close(struct tty_struct * tty,struct file * filp)774 static void mips_ejtag_fdc_tty_close(struct tty_struct *tty, struct file *filp)
775 {
776 	return tty_port_close(tty->port, tty, filp);
777 }
778 
mips_ejtag_fdc_tty_hangup(struct tty_struct * tty)779 static void mips_ejtag_fdc_tty_hangup(struct tty_struct *tty)
780 {
781 	struct mips_ejtag_fdc_tty_port *dport = tty->driver_data;
782 	struct mips_ejtag_fdc_tty *priv = dport->driver;
783 
784 	/* Drop any data in the xmit buffer */
785 	spin_lock(&dport->xmit_lock);
786 	if (dport->xmit_cnt) {
787 		atomic_sub(dport->xmit_cnt, &priv->xmit_total);
788 		dport->xmit_cnt = 0;
789 		dport->xmit_head = 0;
790 		dport->xmit_tail = 0;
791 		complete(&dport->xmit_empty);
792 	}
793 	spin_unlock(&dport->xmit_lock);
794 
795 	tty_port_hangup(tty->port);
796 }
797 
mips_ejtag_fdc_tty_write(struct tty_struct * tty,const unsigned char * buf,int total)798 static int mips_ejtag_fdc_tty_write(struct tty_struct *tty,
799 				    const unsigned char *buf, int total)
800 {
801 	int count, block;
802 	struct mips_ejtag_fdc_tty_port *dport = tty->driver_data;
803 	struct mips_ejtag_fdc_tty *priv = dport->driver;
804 
805 	/*
806 	 * Write to output buffer.
807 	 *
808 	 * The reason that we asynchronously write the buffer is because if we
809 	 * were to write the buffer synchronously then because the channels are
810 	 * per-CPU the buffer would be written to the channel of whatever CPU
811 	 * we're running on.
812 	 *
813 	 * What we actually want to happen is have all input and output done on
814 	 * one CPU.
815 	 */
816 	spin_lock(&dport->xmit_lock);
817 	/* Work out how many bytes we can write to the xmit buffer */
818 	total = min(total, (int)(priv->xmit_size - dport->xmit_cnt));
819 	atomic_add(total, &priv->xmit_total);
820 	dport->xmit_cnt += total;
821 	/* Write the actual bytes (may need splitting if it wraps) */
822 	for (count = total; count; count -= block) {
823 		block = min(count, (int)(priv->xmit_size - dport->xmit_head));
824 		memcpy(dport->port.xmit_buf + dport->xmit_head, buf, block);
825 		dport->xmit_head += block;
826 		if (dport->xmit_head >= priv->xmit_size)
827 			dport->xmit_head -= priv->xmit_size;
828 		buf += block;
829 	}
830 	count = dport->xmit_cnt;
831 	/* Xmit buffer no longer empty? */
832 	if (count)
833 		reinit_completion(&dport->xmit_empty);
834 	spin_unlock(&dport->xmit_lock);
835 
836 	/* Wake up the kthread */
837 	if (total)
838 		wake_up_interruptible(&priv->waitqueue);
839 	return total;
840 }
841 
mips_ejtag_fdc_tty_write_room(struct tty_struct * tty)842 static int mips_ejtag_fdc_tty_write_room(struct tty_struct *tty)
843 {
844 	struct mips_ejtag_fdc_tty_port *dport = tty->driver_data;
845 	struct mips_ejtag_fdc_tty *priv = dport->driver;
846 	int room;
847 
848 	/* Report the space in the xmit buffer */
849 	spin_lock(&dport->xmit_lock);
850 	room = priv->xmit_size - dport->xmit_cnt;
851 	spin_unlock(&dport->xmit_lock);
852 
853 	return room;
854 }
855 
mips_ejtag_fdc_tty_chars_in_buffer(struct tty_struct * tty)856 static int mips_ejtag_fdc_tty_chars_in_buffer(struct tty_struct *tty)
857 {
858 	struct mips_ejtag_fdc_tty_port *dport = tty->driver_data;
859 	int chars;
860 
861 	/* Report the number of bytes in the xmit buffer */
862 	spin_lock(&dport->xmit_lock);
863 	chars = dport->xmit_cnt;
864 	spin_unlock(&dport->xmit_lock);
865 
866 	return chars;
867 }
868 
869 static const struct tty_operations mips_ejtag_fdc_tty_ops = {
870 	.install		= mips_ejtag_fdc_tty_install,
871 	.open			= mips_ejtag_fdc_tty_open,
872 	.close			= mips_ejtag_fdc_tty_close,
873 	.hangup			= mips_ejtag_fdc_tty_hangup,
874 	.write			= mips_ejtag_fdc_tty_write,
875 	.write_room		= mips_ejtag_fdc_tty_write_room,
876 	.chars_in_buffer	= mips_ejtag_fdc_tty_chars_in_buffer,
877 };
878 
get_c0_fdc_int(void)879 int __weak get_c0_fdc_int(void)
880 {
881 	return -1;
882 }
883 
mips_ejtag_fdc_tty_probe(struct mips_cdmm_device * dev)884 static int mips_ejtag_fdc_tty_probe(struct mips_cdmm_device *dev)
885 {
886 	int ret, nport;
887 	struct mips_ejtag_fdc_tty_port *dport;
888 	struct mips_ejtag_fdc_tty *priv;
889 	struct tty_driver *driver;
890 	unsigned int cfg, tx_fifo;
891 
892 	priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL);
893 	if (!priv)
894 		return -ENOMEM;
895 	priv->cpu = dev->cpu;
896 	priv->dev = &dev->dev;
897 	mips_cdmm_set_drvdata(dev, priv);
898 	atomic_set(&priv->xmit_total, 0);
899 	raw_spin_lock_init(&priv->lock);
900 
901 	priv->reg = devm_ioremap_nocache(priv->dev, dev->res.start,
902 					 resource_size(&dev->res));
903 	if (!priv->reg) {
904 		dev_err(priv->dev, "ioremap failed for resource %pR\n",
905 			&dev->res);
906 		return -ENOMEM;
907 	}
908 
909 	cfg = mips_ejtag_fdc_read(priv, REG_FDCFG);
910 	tx_fifo = (cfg & REG_FDCFG_TXFIFOSIZE) >> REG_FDCFG_TXFIFOSIZE_SHIFT;
911 	/* Disable interrupts */
912 	cfg &= ~(REG_FDCFG_TXINTTHRES | REG_FDCFG_RXINTTHRES);
913 	cfg |= REG_FDCFG_TXINTTHRES_DISABLED;
914 	cfg |= REG_FDCFG_RXINTTHRES_DISABLED;
915 	mips_ejtag_fdc_write(priv, REG_FDCFG, cfg);
916 
917 	/* Make each port's xmit FIFO big enough to fill FDC TX FIFO */
918 	priv->xmit_size = min(tx_fifo * 4, (unsigned int)SERIAL_XMIT_SIZE);
919 
920 	driver = tty_alloc_driver(NUM_TTY_CHANNELS, TTY_DRIVER_REAL_RAW);
921 	if (IS_ERR(driver))
922 		return PTR_ERR(driver);
923 	priv->driver = driver;
924 
925 	driver->driver_name = "ejtag_fdc";
926 	snprintf(priv->fdc_name, sizeof(priv->fdc_name), "ttyFDC%u", dev->cpu);
927 	snprintf(priv->driver_name, sizeof(priv->driver_name), "%sc",
928 		 priv->fdc_name);
929 	driver->name = priv->driver_name;
930 	driver->major = 0; /* Auto-allocate */
931 	driver->minor_start = 0;
932 	driver->type = TTY_DRIVER_TYPE_SERIAL;
933 	driver->subtype = SERIAL_TYPE_NORMAL;
934 	driver->init_termios = tty_std_termios;
935 	driver->init_termios.c_cflag |= CLOCAL;
936 	driver->driver_state = priv;
937 
938 	tty_set_operations(driver, &mips_ejtag_fdc_tty_ops);
939 	for (nport = 0; nport < NUM_TTY_CHANNELS; nport++) {
940 		dport = &priv->ports[nport];
941 		dport->driver = priv;
942 		tty_port_init(&dport->port);
943 		dport->port.ops = &mips_ejtag_fdc_tty_port_ops;
944 		raw_spin_lock_init(&dport->rx_lock);
945 		spin_lock_init(&dport->xmit_lock);
946 		/* The xmit buffer starts empty, i.e. completely written */
947 		init_completion(&dport->xmit_empty);
948 		complete(&dport->xmit_empty);
949 	}
950 
951 	/* Set up the console */
952 	mips_ejtag_fdc_con.regs[dev->cpu] = priv->reg;
953 	if (dev->cpu == 0)
954 		mips_ejtag_fdc_con.tty_drv = driver;
955 
956 	init_waitqueue_head(&priv->waitqueue);
957 	priv->thread = kthread_create(mips_ejtag_fdc_put, priv, priv->fdc_name);
958 	if (IS_ERR(priv->thread)) {
959 		ret = PTR_ERR(priv->thread);
960 		dev_err(priv->dev, "Couldn't create kthread (%d)\n", ret);
961 		goto err_destroy_ports;
962 	}
963 	/*
964 	 * Bind the writer thread to the right CPU so it can't migrate.
965 	 * The channels are per-CPU and we want all channel I/O to be on a
966 	 * single predictable CPU.
967 	 */
968 	kthread_bind(priv->thread, dev->cpu);
969 	wake_up_process(priv->thread);
970 
971 	/* Look for an FDC IRQ */
972 	priv->irq = get_c0_fdc_int();
973 
974 	/* Try requesting the IRQ */
975 	if (priv->irq >= 0) {
976 		/*
977 		 * IRQF_SHARED, IRQF_COND_SUSPEND: The FDC IRQ may be shared with
978 		 * other local interrupts such as the timer which sets
979 		 * IRQF_TIMER (including IRQF_NO_SUSPEND).
980 		 *
981 		 * IRQF_NO_THREAD: The FDC IRQ isn't individually maskable so it
982 		 * cannot be deferred and handled by a thread on RT kernels. For
983 		 * this reason any spinlocks used from the ISR are raw.
984 		 */
985 		ret = devm_request_irq(priv->dev, priv->irq, mips_ejtag_fdc_isr,
986 				       IRQF_PERCPU | IRQF_SHARED |
987 				       IRQF_NO_THREAD | IRQF_COND_SUSPEND,
988 				       priv->fdc_name, priv);
989 		if (ret)
990 			priv->irq = -1;
991 	}
992 	if (priv->irq >= 0) {
993 		/* IRQ is usable, enable RX interrupt */
994 		raw_spin_lock_irq(&priv->lock);
995 		cfg = mips_ejtag_fdc_read(priv, REG_FDCFG);
996 		cfg &= ~REG_FDCFG_RXINTTHRES;
997 		cfg |= REG_FDCFG_RXINTTHRES_NOTEMPTY;
998 		mips_ejtag_fdc_write(priv, REG_FDCFG, cfg);
999 		raw_spin_unlock_irq(&priv->lock);
1000 	} else {
1001 		/* If we didn't get an usable IRQ, poll instead */
1002 		timer_setup(&priv->poll_timer, mips_ejtag_fdc_tty_timer,
1003 			    TIMER_PINNED);
1004 		priv->poll_timer.expires = jiffies + FDC_TTY_POLL;
1005 		/*
1006 		 * Always attach the timer to the right CPU. The channels are
1007 		 * per-CPU so all polling should be from a single CPU.
1008 		 */
1009 		add_timer_on(&priv->poll_timer, dev->cpu);
1010 
1011 		dev_info(priv->dev, "No usable IRQ, polling enabled\n");
1012 	}
1013 
1014 	ret = tty_register_driver(driver);
1015 	if (ret < 0) {
1016 		dev_err(priv->dev, "Couldn't install tty driver (%d)\n", ret);
1017 		goto err_stop_irq;
1018 	}
1019 
1020 	return 0;
1021 
1022 err_stop_irq:
1023 	if (priv->irq >= 0) {
1024 		raw_spin_lock_irq(&priv->lock);
1025 		cfg = mips_ejtag_fdc_read(priv, REG_FDCFG);
1026 		/* Disable interrupts */
1027 		cfg &= ~(REG_FDCFG_TXINTTHRES | REG_FDCFG_RXINTTHRES);
1028 		cfg |= REG_FDCFG_TXINTTHRES_DISABLED;
1029 		cfg |= REG_FDCFG_RXINTTHRES_DISABLED;
1030 		mips_ejtag_fdc_write(priv, REG_FDCFG, cfg);
1031 		raw_spin_unlock_irq(&priv->lock);
1032 	} else {
1033 		priv->removing = true;
1034 		del_timer_sync(&priv->poll_timer);
1035 	}
1036 	kthread_stop(priv->thread);
1037 err_destroy_ports:
1038 	if (dev->cpu == 0)
1039 		mips_ejtag_fdc_con.tty_drv = NULL;
1040 	for (nport = 0; nport < NUM_TTY_CHANNELS; nport++) {
1041 		dport = &priv->ports[nport];
1042 		tty_port_destroy(&dport->port);
1043 	}
1044 	put_tty_driver(priv->driver);
1045 	return ret;
1046 }
1047 
mips_ejtag_fdc_tty_cpu_down(struct mips_cdmm_device * dev)1048 static int mips_ejtag_fdc_tty_cpu_down(struct mips_cdmm_device *dev)
1049 {
1050 	struct mips_ejtag_fdc_tty *priv = mips_cdmm_get_drvdata(dev);
1051 	unsigned int cfg;
1052 
1053 	if (priv->irq >= 0) {
1054 		raw_spin_lock_irq(&priv->lock);
1055 		cfg = mips_ejtag_fdc_read(priv, REG_FDCFG);
1056 		/* Disable interrupts */
1057 		cfg &= ~(REG_FDCFG_TXINTTHRES | REG_FDCFG_RXINTTHRES);
1058 		cfg |= REG_FDCFG_TXINTTHRES_DISABLED;
1059 		cfg |= REG_FDCFG_RXINTTHRES_DISABLED;
1060 		mips_ejtag_fdc_write(priv, REG_FDCFG, cfg);
1061 		raw_spin_unlock_irq(&priv->lock);
1062 	} else {
1063 		priv->removing = true;
1064 		del_timer_sync(&priv->poll_timer);
1065 	}
1066 	kthread_stop(priv->thread);
1067 
1068 	return 0;
1069 }
1070 
mips_ejtag_fdc_tty_cpu_up(struct mips_cdmm_device * dev)1071 static int mips_ejtag_fdc_tty_cpu_up(struct mips_cdmm_device *dev)
1072 {
1073 	struct mips_ejtag_fdc_tty *priv = mips_cdmm_get_drvdata(dev);
1074 	unsigned int cfg;
1075 	int ret = 0;
1076 
1077 	if (priv->irq >= 0) {
1078 		/*
1079 		 * IRQ is usable, enable RX interrupt
1080 		 * This must be before kthread is restarted, as kthread may
1081 		 * enable TX interrupt.
1082 		 */
1083 		raw_spin_lock_irq(&priv->lock);
1084 		cfg = mips_ejtag_fdc_read(priv, REG_FDCFG);
1085 		cfg &= ~(REG_FDCFG_TXINTTHRES | REG_FDCFG_RXINTTHRES);
1086 		cfg |= REG_FDCFG_TXINTTHRES_DISABLED;
1087 		cfg |= REG_FDCFG_RXINTTHRES_NOTEMPTY;
1088 		mips_ejtag_fdc_write(priv, REG_FDCFG, cfg);
1089 		raw_spin_unlock_irq(&priv->lock);
1090 	} else {
1091 		/* Restart poll timer */
1092 		priv->removing = false;
1093 		add_timer_on(&priv->poll_timer, dev->cpu);
1094 	}
1095 
1096 	/* Restart the kthread */
1097 	priv->thread = kthread_create(mips_ejtag_fdc_put, priv, priv->fdc_name);
1098 	if (IS_ERR(priv->thread)) {
1099 		ret = PTR_ERR(priv->thread);
1100 		dev_err(priv->dev, "Couldn't re-create kthread (%d)\n", ret);
1101 		goto out;
1102 	}
1103 	/* Bind it back to the right CPU and set it off */
1104 	kthread_bind(priv->thread, dev->cpu);
1105 	wake_up_process(priv->thread);
1106 out:
1107 	return ret;
1108 }
1109 
1110 static const struct mips_cdmm_device_id mips_ejtag_fdc_tty_ids[] = {
1111 	{ .type = 0xfd },
1112 	{ }
1113 };
1114 
1115 static struct mips_cdmm_driver mips_ejtag_fdc_tty_driver = {
1116 	.drv		= {
1117 		.name	= "mips_ejtag_fdc",
1118 	},
1119 	.probe		= mips_ejtag_fdc_tty_probe,
1120 	.cpu_down	= mips_ejtag_fdc_tty_cpu_down,
1121 	.cpu_up		= mips_ejtag_fdc_tty_cpu_up,
1122 	.id_table	= mips_ejtag_fdc_tty_ids,
1123 };
1124 builtin_mips_cdmm_driver(mips_ejtag_fdc_tty_driver);
1125 
mips_ejtag_fdc_init_console(void)1126 static int __init mips_ejtag_fdc_init_console(void)
1127 {
1128 	return mips_ejtag_fdc_console_init(&mips_ejtag_fdc_con);
1129 }
1130 console_initcall(mips_ejtag_fdc_init_console);
1131 
1132 #ifdef CONFIG_MIPS_EJTAG_FDC_EARLYCON
1133 static struct mips_ejtag_fdc_console mips_ejtag_fdc_earlycon = {
1134 	.cons	= {
1135 		.name	= "early_fdc",
1136 		.write	= mips_ejtag_fdc_console_write,
1137 		.flags	= CON_PRINTBUFFER | CON_BOOT,
1138 		.index	= CONSOLE_CHANNEL,
1139 	},
1140 	.lock	= __RAW_SPIN_LOCK_UNLOCKED(mips_ejtag_fdc_earlycon.lock),
1141 };
1142 
setup_early_fdc_console(void)1143 int __init setup_early_fdc_console(void)
1144 {
1145 	return mips_ejtag_fdc_console_init(&mips_ejtag_fdc_earlycon);
1146 }
1147 #endif
1148 
1149 #ifdef CONFIG_MIPS_EJTAG_FDC_KGDB
1150 
1151 /* read buffer to allow decompaction */
1152 static unsigned int kgdbfdc_rbuflen;
1153 static unsigned int kgdbfdc_rpos;
1154 static char kgdbfdc_rbuf[4];
1155 
1156 /* write buffer to allow compaction */
1157 static unsigned int kgdbfdc_wbuflen;
1158 static char kgdbfdc_wbuf[4];
1159 
kgdbfdc_setup(void)1160 static void __iomem *kgdbfdc_setup(void)
1161 {
1162 	void __iomem *regs;
1163 	unsigned int cpu;
1164 
1165 	/* Find address, piggy backing off console percpu regs */
1166 	cpu = smp_processor_id();
1167 	regs = mips_ejtag_fdc_con.regs[cpu];
1168 	/* First console output on this CPU? */
1169 	if (!regs) {
1170 		regs = mips_cdmm_early_probe(0xfd);
1171 		mips_ejtag_fdc_con.regs[cpu] = regs;
1172 	}
1173 	/* Already tried and failed to find FDC on this CPU? */
1174 	if (IS_ERR(regs))
1175 		return regs;
1176 
1177 	return regs;
1178 }
1179 
1180 /* read a character from the read buffer, filling from FDC RX FIFO */
kgdbfdc_read_char(void)1181 static int kgdbfdc_read_char(void)
1182 {
1183 	unsigned int stat, channel, data;
1184 	void __iomem *regs;
1185 
1186 	/* No more data, try and read another FDC word from RX FIFO */
1187 	if (kgdbfdc_rpos >= kgdbfdc_rbuflen) {
1188 		kgdbfdc_rpos = 0;
1189 		kgdbfdc_rbuflen = 0;
1190 
1191 		regs = kgdbfdc_setup();
1192 		if (IS_ERR(regs))
1193 			return NO_POLL_CHAR;
1194 
1195 		/* Read next word from KGDB channel */
1196 		do {
1197 			stat = __raw_readl(regs + REG_FDSTAT);
1198 
1199 			/* No data waiting? */
1200 			if (stat & REG_FDSTAT_RXE)
1201 				return NO_POLL_CHAR;
1202 
1203 			/* Read next word */
1204 			channel = (stat & REG_FDSTAT_RXCHAN) >>
1205 					REG_FDSTAT_RXCHAN_SHIFT;
1206 			data = __raw_readl(regs + REG_FDRX);
1207 		} while (channel != CONFIG_MIPS_EJTAG_FDC_KGDB_CHAN);
1208 
1209 		/* Decode into rbuf */
1210 		kgdbfdc_rbuflen = mips_ejtag_fdc_decode(data, kgdbfdc_rbuf);
1211 	}
1212 	pr_devel("kgdbfdc r %c\n", kgdbfdc_rbuf[kgdbfdc_rpos]);
1213 	return kgdbfdc_rbuf[kgdbfdc_rpos++];
1214 }
1215 
1216 /* push an FDC word from write buffer to TX FIFO */
kgdbfdc_push_one(void)1217 static void kgdbfdc_push_one(void)
1218 {
1219 	const char *bufs[1] = { kgdbfdc_wbuf };
1220 	struct fdc_word word;
1221 	void __iomem *regs;
1222 	unsigned int i;
1223 
1224 	/* Construct a word from any data in buffer */
1225 	word = mips_ejtag_fdc_encode(bufs, &kgdbfdc_wbuflen, 1);
1226 	/* Relocate any remaining data to beginnning of buffer */
1227 	kgdbfdc_wbuflen -= word.bytes;
1228 	for (i = 0; i < kgdbfdc_wbuflen; ++i)
1229 		kgdbfdc_wbuf[i] = kgdbfdc_wbuf[i + word.bytes];
1230 
1231 	regs = kgdbfdc_setup();
1232 	if (IS_ERR(regs))
1233 		return;
1234 
1235 	/* Busy wait until there's space in fifo */
1236 	while (__raw_readl(regs + REG_FDSTAT) & REG_FDSTAT_TXF)
1237 		;
1238 	__raw_writel(word.word,
1239 		     regs + REG_FDTX(CONFIG_MIPS_EJTAG_FDC_KGDB_CHAN));
1240 }
1241 
1242 /* flush the whole write buffer to the TX FIFO */
kgdbfdc_flush(void)1243 static void kgdbfdc_flush(void)
1244 {
1245 	while (kgdbfdc_wbuflen)
1246 		kgdbfdc_push_one();
1247 }
1248 
1249 /* write a character into the write buffer, writing out if full */
kgdbfdc_write_char(u8 chr)1250 static void kgdbfdc_write_char(u8 chr)
1251 {
1252 	pr_devel("kgdbfdc w %c\n", chr);
1253 	kgdbfdc_wbuf[kgdbfdc_wbuflen++] = chr;
1254 	if (kgdbfdc_wbuflen >= sizeof(kgdbfdc_wbuf))
1255 		kgdbfdc_push_one();
1256 }
1257 
1258 static struct kgdb_io kgdbfdc_io_ops = {
1259 	.name		= "kgdbfdc",
1260 	.read_char	= kgdbfdc_read_char,
1261 	.write_char	= kgdbfdc_write_char,
1262 	.flush		= kgdbfdc_flush,
1263 };
1264 
kgdbfdc_init(void)1265 static int __init kgdbfdc_init(void)
1266 {
1267 	kgdb_register_io_module(&kgdbfdc_io_ops);
1268 	return 0;
1269 }
1270 early_initcall(kgdbfdc_init);
1271 #endif
1272