1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Xilinx USB peripheral controller driver
4 *
5 * Copyright (C) 2004 by Thomas Rathbone
6 * Copyright (C) 2005 by HP Labs
7 * Copyright (C) 2005 by David Brownell
8 * Copyright (C) 2010 - 2014 Xilinx, Inc.
9 *
10 * Some parts of this driver code is based on the driver for at91-series
11 * USB peripheral controller (at91_udc.c).
12 */
13
14 #include <linux/delay.h>
15 #include <linux/device.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/of_address.h>
21 #include <linux/of_device.h>
22 #include <linux/of_platform.h>
23 #include <linux/of_irq.h>
24 #include <linux/prefetch.h>
25 #include <linux/usb/ch9.h>
26 #include <linux/usb/gadget.h>
27
28 /* Register offsets for the USB device.*/
29 #define XUSB_EP0_CONFIG_OFFSET 0x0000 /* EP0 Config Reg Offset */
30 #define XUSB_SETUP_PKT_ADDR_OFFSET 0x0080 /* Setup Packet Address */
31 #define XUSB_ADDRESS_OFFSET 0x0100 /* Address Register */
32 #define XUSB_CONTROL_OFFSET 0x0104 /* Control Register */
33 #define XUSB_STATUS_OFFSET 0x0108 /* Status Register */
34 #define XUSB_FRAMENUM_OFFSET 0x010C /* Frame Number Register */
35 #define XUSB_IER_OFFSET 0x0110 /* Interrupt Enable Register */
36 #define XUSB_BUFFREADY_OFFSET 0x0114 /* Buffer Ready Register */
37 #define XUSB_TESTMODE_OFFSET 0x0118 /* Test Mode Register */
38 #define XUSB_DMA_RESET_OFFSET 0x0200 /* DMA Soft Reset Register */
39 #define XUSB_DMA_CONTROL_OFFSET 0x0204 /* DMA Control Register */
40 #define XUSB_DMA_DSAR_ADDR_OFFSET 0x0208 /* DMA source Address Reg */
41 #define XUSB_DMA_DDAR_ADDR_OFFSET 0x020C /* DMA destination Addr Reg */
42 #define XUSB_DMA_LENGTH_OFFSET 0x0210 /* DMA Length Register */
43 #define XUSB_DMA_STATUS_OFFSET 0x0214 /* DMA Status Register */
44
45 /* Endpoint Configuration Space offsets */
46 #define XUSB_EP_CFGSTATUS_OFFSET 0x00 /* Endpoint Config Status */
47 #define XUSB_EP_BUF0COUNT_OFFSET 0x08 /* Buffer 0 Count */
48 #define XUSB_EP_BUF1COUNT_OFFSET 0x0C /* Buffer 1 Count */
49
50 #define XUSB_CONTROL_USB_READY_MASK 0x80000000 /* USB ready Mask */
51 #define XUSB_CONTROL_USB_RMTWAKE_MASK 0x40000000 /* Remote wake up mask */
52
53 /* Interrupt register related masks.*/
54 #define XUSB_STATUS_GLOBAL_INTR_MASK 0x80000000 /* Global Intr Enable */
55 #define XUSB_STATUS_DMADONE_MASK 0x04000000 /* DMA done Mask */
56 #define XUSB_STATUS_DMAERR_MASK 0x02000000 /* DMA Error Mask */
57 #define XUSB_STATUS_DMABUSY_MASK 0x80000000 /* DMA Error Mask */
58 #define XUSB_STATUS_RESUME_MASK 0x01000000 /* USB Resume Mask */
59 #define XUSB_STATUS_RESET_MASK 0x00800000 /* USB Reset Mask */
60 #define XUSB_STATUS_SUSPEND_MASK 0x00400000 /* USB Suspend Mask */
61 #define XUSB_STATUS_DISCONNECT_MASK 0x00200000 /* USB Disconnect Mask */
62 #define XUSB_STATUS_FIFO_BUFF_RDY_MASK 0x00100000 /* FIFO Buff Ready Mask */
63 #define XUSB_STATUS_FIFO_BUFF_FREE_MASK 0x00080000 /* FIFO Buff Free Mask */
64 #define XUSB_STATUS_SETUP_PACKET_MASK 0x00040000 /* Setup packet received */
65 #define XUSB_STATUS_EP1_BUFF2_COMP_MASK 0x00000200 /* EP 1 Buff 2 Processed */
66 #define XUSB_STATUS_EP1_BUFF1_COMP_MASK 0x00000002 /* EP 1 Buff 1 Processed */
67 #define XUSB_STATUS_EP0_BUFF2_COMP_MASK 0x00000100 /* EP 0 Buff 2 Processed */
68 #define XUSB_STATUS_EP0_BUFF1_COMP_MASK 0x00000001 /* EP 0 Buff 1 Processed */
69 #define XUSB_STATUS_HIGH_SPEED_MASK 0x00010000 /* USB Speed Mask */
70 /* Suspend,Reset,Suspend and Disconnect Mask */
71 #define XUSB_STATUS_INTR_EVENT_MASK 0x01E00000
72 /* Buffers completion Mask */
73 #define XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK 0x0000FEFF
74 /* Mask for buffer 0 and buffer 1 completion for all Endpoints */
75 #define XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK 0x00000101
76 #define XUSB_STATUS_EP_BUFF2_SHIFT 8 /* EP buffer offset */
77
78 /* Endpoint Configuration Status Register */
79 #define XUSB_EP_CFG_VALID_MASK 0x80000000 /* Endpoint Valid bit */
80 #define XUSB_EP_CFG_STALL_MASK 0x40000000 /* Endpoint Stall bit */
81 #define XUSB_EP_CFG_DATA_TOGGLE_MASK 0x08000000 /* Endpoint Data toggle */
82
83 /* USB device specific global configuration constants.*/
84 #define XUSB_MAX_ENDPOINTS 8 /* Maximum End Points */
85 #define XUSB_EP_NUMBER_ZERO 0 /* End point Zero */
86 /* DPRAM is the source address for DMA transfer */
87 #define XUSB_DMA_READ_FROM_DPRAM 0x80000000
88 #define XUSB_DMA_DMASR_BUSY 0x80000000 /* DMA busy */
89 #define XUSB_DMA_DMASR_ERROR 0x40000000 /* DMA Error */
90 /*
91 * When this bit is set, the DMA buffer ready bit is set by hardware upon
92 * DMA transfer completion.
93 */
94 #define XUSB_DMA_BRR_CTRL 0x40000000 /* DMA bufready ctrl bit */
95 /* Phase States */
96 #define SETUP_PHASE 0x0000 /* Setup Phase */
97 #define DATA_PHASE 0x0001 /* Data Phase */
98 #define STATUS_PHASE 0x0002 /* Status Phase */
99
100 #define EP0_MAX_PACKET 64 /* Endpoint 0 maximum packet length */
101 #define STATUSBUFF_SIZE 2 /* Buffer size for GET_STATUS command */
102 #define EPNAME_SIZE 4 /* Buffer size for endpoint name */
103
104 /* container_of helper macros */
105 #define to_udc(g) container_of((g), struct xusb_udc, gadget)
106 #define to_xusb_ep(ep) container_of((ep), struct xusb_ep, ep_usb)
107 #define to_xusb_req(req) container_of((req), struct xusb_req, usb_req)
108
109 /**
110 * struct xusb_req - Xilinx USB device request structure
111 * @usb_req: Linux usb request structure
112 * @queue: usb device request queue
113 * @ep: pointer to xusb_endpoint structure
114 */
115 struct xusb_req {
116 struct usb_request usb_req;
117 struct list_head queue;
118 struct xusb_ep *ep;
119 };
120
121 /**
122 * struct xusb_ep - USB end point structure.
123 * @ep_usb: usb endpoint instance
124 * @queue: endpoint message queue
125 * @udc: xilinx usb peripheral driver instance pointer
126 * @desc: pointer to the usb endpoint descriptor
127 * @rambase: the endpoint buffer address
128 * @offset: the endpoint register offset value
129 * @name: name of the endpoint
130 * @epnumber: endpoint number
131 * @maxpacket: maximum packet size the endpoint can store
132 * @buffer0count: the size of the packet recieved in the first buffer
133 * @buffer1count: the size of the packet received in the second buffer
134 * @curbufnum: current buffer of endpoint that will be processed next
135 * @buffer0ready: the busy state of first buffer
136 * @buffer1ready: the busy state of second buffer
137 * @is_in: endpoint direction (IN or OUT)
138 * @is_iso: endpoint type(isochronous or non isochronous)
139 */
140 struct xusb_ep {
141 struct usb_ep ep_usb;
142 struct list_head queue;
143 struct xusb_udc *udc;
144 const struct usb_endpoint_descriptor *desc;
145 u32 rambase;
146 u32 offset;
147 char name[4];
148 u16 epnumber;
149 u16 maxpacket;
150 u16 buffer0count;
151 u16 buffer1count;
152 u8 curbufnum;
153 bool buffer0ready;
154 bool buffer1ready;
155 bool is_in;
156 bool is_iso;
157 };
158
159 /**
160 * struct xusb_udc - USB peripheral driver structure
161 * @gadget: USB gadget driver instance
162 * @ep: an array of endpoint structures
163 * @driver: pointer to the usb gadget driver instance
164 * @setup: usb_ctrlrequest structure for control requests
165 * @req: pointer to dummy request for get status command
166 * @dev: pointer to device structure in gadget
167 * @usb_state: device in suspended state or not
168 * @remote_wkp: remote wakeup enabled by host
169 * @setupseqtx: tx status
170 * @setupseqrx: rx status
171 * @addr: the usb device base address
172 * @lock: instance of spinlock
173 * @dma_enabled: flag indicating whether the dma is included in the system
174 * @read_fn: function pointer to read device registers
175 * @write_fn: function pointer to write to device registers
176 */
177 struct xusb_udc {
178 struct usb_gadget gadget;
179 struct xusb_ep ep[8];
180 struct usb_gadget_driver *driver;
181 struct usb_ctrlrequest setup;
182 struct xusb_req *req;
183 struct device *dev;
184 u32 usb_state;
185 u32 remote_wkp;
186 u32 setupseqtx;
187 u32 setupseqrx;
188 void __iomem *addr;
189 spinlock_t lock;
190 bool dma_enabled;
191
192 unsigned int (*read_fn)(void __iomem *);
193 void (*write_fn)(void __iomem *, u32, u32);
194 };
195
196 /* Endpoint buffer start addresses in the core */
197 static u32 rambase[8] = { 0x22, 0x1000, 0x1100, 0x1200, 0x1300, 0x1400, 0x1500,
198 0x1600 };
199
200 static const char driver_name[] = "xilinx-udc";
201 static const char ep0name[] = "ep0";
202
203 /* Control endpoint configuration.*/
204 static const struct usb_endpoint_descriptor config_bulk_out_desc = {
205 .bLength = USB_DT_ENDPOINT_SIZE,
206 .bDescriptorType = USB_DT_ENDPOINT,
207 .bEndpointAddress = USB_DIR_OUT,
208 .bmAttributes = USB_ENDPOINT_XFER_BULK,
209 .wMaxPacketSize = cpu_to_le16(EP0_MAX_PACKET),
210 };
211
212 /**
213 * xudc_write32 - little endian write to device registers
214 * @addr: base addr of device registers
215 * @offset: register offset
216 * @val: data to be written
217 */
xudc_write32(void __iomem * addr,u32 offset,u32 val)218 static void xudc_write32(void __iomem *addr, u32 offset, u32 val)
219 {
220 iowrite32(val, addr + offset);
221 }
222
223 /**
224 * xudc_read32 - little endian read from device registers
225 * @addr: addr of device register
226 * Return: value at addr
227 */
xudc_read32(void __iomem * addr)228 static unsigned int xudc_read32(void __iomem *addr)
229 {
230 return ioread32(addr);
231 }
232
233 /**
234 * xudc_write32_be - big endian write to device registers
235 * @addr: base addr of device registers
236 * @offset: register offset
237 * @val: data to be written
238 */
xudc_write32_be(void __iomem * addr,u32 offset,u32 val)239 static void xudc_write32_be(void __iomem *addr, u32 offset, u32 val)
240 {
241 iowrite32be(val, addr + offset);
242 }
243
244 /**
245 * xudc_read32_be - big endian read from device registers
246 * @addr: addr of device register
247 * Return: value at addr
248 */
xudc_read32_be(void __iomem * addr)249 static unsigned int xudc_read32_be(void __iomem *addr)
250 {
251 return ioread32be(addr);
252 }
253
254 /**
255 * xudc_wrstatus - Sets up the usb device status stages.
256 * @udc: pointer to the usb device controller structure.
257 */
xudc_wrstatus(struct xusb_udc * udc)258 static void xudc_wrstatus(struct xusb_udc *udc)
259 {
260 struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO];
261 u32 epcfgreg;
262
263 epcfgreg = udc->read_fn(udc->addr + ep0->offset)|
264 XUSB_EP_CFG_DATA_TOGGLE_MASK;
265 udc->write_fn(udc->addr, ep0->offset, epcfgreg);
266 udc->write_fn(udc->addr, ep0->offset + XUSB_EP_BUF0COUNT_OFFSET, 0);
267 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
268 }
269
270 /**
271 * xudc_epconfig - Configures the given endpoint.
272 * @ep: pointer to the usb device endpoint structure.
273 * @udc: pointer to the usb peripheral controller structure.
274 *
275 * This function configures a specific endpoint with the given configuration
276 * data.
277 */
xudc_epconfig(struct xusb_ep * ep,struct xusb_udc * udc)278 static void xudc_epconfig(struct xusb_ep *ep, struct xusb_udc *udc)
279 {
280 u32 epcfgreg;
281
282 /*
283 * Configure the end point direction, type, Max Packet Size and the
284 * EP buffer location.
285 */
286 epcfgreg = ((ep->is_in << 29) | (ep->is_iso << 28) |
287 (ep->ep_usb.maxpacket << 15) | (ep->rambase));
288 udc->write_fn(udc->addr, ep->offset, epcfgreg);
289
290 /* Set the Buffer count and the Buffer ready bits.*/
291 udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF0COUNT_OFFSET,
292 ep->buffer0count);
293 udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF1COUNT_OFFSET,
294 ep->buffer1count);
295 if (ep->buffer0ready)
296 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
297 1 << ep->epnumber);
298 if (ep->buffer1ready)
299 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
300 1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT));
301 }
302
303 /**
304 * xudc_start_dma - Starts DMA transfer.
305 * @ep: pointer to the usb device endpoint structure.
306 * @src: DMA source address.
307 * @dst: DMA destination address.
308 * @length: number of bytes to transfer.
309 *
310 * Return: 0 on success, error code on failure
311 *
312 * This function starts DMA transfer by writing to DMA source,
313 * destination and lenth registers.
314 */
xudc_start_dma(struct xusb_ep * ep,dma_addr_t src,dma_addr_t dst,u32 length)315 static int xudc_start_dma(struct xusb_ep *ep, dma_addr_t src,
316 dma_addr_t dst, u32 length)
317 {
318 struct xusb_udc *udc = ep->udc;
319 int rc = 0;
320 u32 timeout = 500;
321 u32 reg;
322
323 /*
324 * Set the addresses in the DMA source and
325 * destination registers and then set the length
326 * into the DMA length register.
327 */
328 udc->write_fn(udc->addr, XUSB_DMA_DSAR_ADDR_OFFSET, src);
329 udc->write_fn(udc->addr, XUSB_DMA_DDAR_ADDR_OFFSET, dst);
330 udc->write_fn(udc->addr, XUSB_DMA_LENGTH_OFFSET, length);
331
332 /*
333 * Wait till DMA transaction is complete and
334 * check whether the DMA transaction was
335 * successful.
336 */
337 do {
338 reg = udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET);
339 if (!(reg & XUSB_DMA_DMASR_BUSY))
340 break;
341
342 /*
343 * We can't sleep here, because it's also called from
344 * interrupt context.
345 */
346 timeout--;
347 if (!timeout) {
348 dev_err(udc->dev, "DMA timeout\n");
349 return -ETIMEDOUT;
350 }
351 udelay(1);
352 } while (1);
353
354 if ((udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET) &
355 XUSB_DMA_DMASR_ERROR) == XUSB_DMA_DMASR_ERROR){
356 dev_err(udc->dev, "DMA Error\n");
357 rc = -EINVAL;
358 }
359
360 return rc;
361 }
362
363 /**
364 * xudc_dma_send - Sends IN data using DMA.
365 * @ep: pointer to the usb device endpoint structure.
366 * @req: pointer to the usb request structure.
367 * @buffer: pointer to data to be sent.
368 * @length: number of bytes to send.
369 *
370 * Return: 0 on success, -EAGAIN if no buffer is free and error
371 * code on failure.
372 *
373 * This function sends data using DMA.
374 */
xudc_dma_send(struct xusb_ep * ep,struct xusb_req * req,u8 * buffer,u32 length)375 static int xudc_dma_send(struct xusb_ep *ep, struct xusb_req *req,
376 u8 *buffer, u32 length)
377 {
378 u32 *eprambase;
379 dma_addr_t src;
380 dma_addr_t dst;
381 struct xusb_udc *udc = ep->udc;
382
383 src = req->usb_req.dma + req->usb_req.actual;
384 if (req->usb_req.length)
385 dma_sync_single_for_device(udc->dev, src,
386 length, DMA_TO_DEVICE);
387 if (!ep->curbufnum && !ep->buffer0ready) {
388 /* Get the Buffer address and copy the transmit data.*/
389 eprambase = (u32 __force *)(udc->addr + ep->rambase);
390 dst = virt_to_phys(eprambase);
391 udc->write_fn(udc->addr, ep->offset +
392 XUSB_EP_BUF0COUNT_OFFSET, length);
393 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
394 XUSB_DMA_BRR_CTRL | (1 << ep->epnumber));
395 ep->buffer0ready = 1;
396 ep->curbufnum = 1;
397 } else if (ep->curbufnum && !ep->buffer1ready) {
398 /* Get the Buffer address and copy the transmit data.*/
399 eprambase = (u32 __force *)(udc->addr + ep->rambase +
400 ep->ep_usb.maxpacket);
401 dst = virt_to_phys(eprambase);
402 udc->write_fn(udc->addr, ep->offset +
403 XUSB_EP_BUF1COUNT_OFFSET, length);
404 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
405 XUSB_DMA_BRR_CTRL | (1 << (ep->epnumber +
406 XUSB_STATUS_EP_BUFF2_SHIFT)));
407 ep->buffer1ready = 1;
408 ep->curbufnum = 0;
409 } else {
410 /* None of ping pong buffers are ready currently .*/
411 return -EAGAIN;
412 }
413
414 return xudc_start_dma(ep, src, dst, length);
415 }
416
417 /**
418 * xudc_dma_receive - Receives OUT data using DMA.
419 * @ep: pointer to the usb device endpoint structure.
420 * @req: pointer to the usb request structure.
421 * @buffer: pointer to storage buffer of received data.
422 * @length: number of bytes to receive.
423 *
424 * Return: 0 on success, -EAGAIN if no buffer is free and error
425 * code on failure.
426 *
427 * This function receives data using DMA.
428 */
xudc_dma_receive(struct xusb_ep * ep,struct xusb_req * req,u8 * buffer,u32 length)429 static int xudc_dma_receive(struct xusb_ep *ep, struct xusb_req *req,
430 u8 *buffer, u32 length)
431 {
432 u32 *eprambase;
433 dma_addr_t src;
434 dma_addr_t dst;
435 struct xusb_udc *udc = ep->udc;
436
437 dst = req->usb_req.dma + req->usb_req.actual;
438 if (!ep->curbufnum && !ep->buffer0ready) {
439 /* Get the Buffer address and copy the transmit data */
440 eprambase = (u32 __force *)(udc->addr + ep->rambase);
441 src = virt_to_phys(eprambase);
442 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
443 XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM |
444 (1 << ep->epnumber));
445 ep->buffer0ready = 1;
446 ep->curbufnum = 1;
447 } else if (ep->curbufnum && !ep->buffer1ready) {
448 /* Get the Buffer address and copy the transmit data */
449 eprambase = (u32 __force *)(udc->addr +
450 ep->rambase + ep->ep_usb.maxpacket);
451 src = virt_to_phys(eprambase);
452 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
453 XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM |
454 (1 << (ep->epnumber +
455 XUSB_STATUS_EP_BUFF2_SHIFT)));
456 ep->buffer1ready = 1;
457 ep->curbufnum = 0;
458 } else {
459 /* None of the ping-pong buffers are ready currently */
460 return -EAGAIN;
461 }
462
463 return xudc_start_dma(ep, src, dst, length);
464 }
465
466 /**
467 * xudc_eptxrx - Transmits or receives data to or from an endpoint.
468 * @ep: pointer to the usb endpoint configuration structure.
469 * @req: pointer to the usb request structure.
470 * @bufferptr: pointer to buffer containing the data to be sent.
471 * @bufferlen: The number of data bytes to be sent.
472 *
473 * Return: 0 on success, -EAGAIN if no buffer is free.
474 *
475 * This function copies the transmit/receive data to/from the end point buffer
476 * and enables the buffer for transmission/reception.
477 */
xudc_eptxrx(struct xusb_ep * ep,struct xusb_req * req,u8 * bufferptr,u32 bufferlen)478 static int xudc_eptxrx(struct xusb_ep *ep, struct xusb_req *req,
479 u8 *bufferptr, u32 bufferlen)
480 {
481 u32 *eprambase;
482 u32 bytestosend;
483 int rc = 0;
484 struct xusb_udc *udc = ep->udc;
485
486 bytestosend = bufferlen;
487 if (udc->dma_enabled) {
488 if (ep->is_in)
489 rc = xudc_dma_send(ep, req, bufferptr, bufferlen);
490 else
491 rc = xudc_dma_receive(ep, req, bufferptr, bufferlen);
492 return rc;
493 }
494 /* Put the transmit buffer into the correct ping-pong buffer.*/
495 if (!ep->curbufnum && !ep->buffer0ready) {
496 /* Get the Buffer address and copy the transmit data.*/
497 eprambase = (u32 __force *)(udc->addr + ep->rambase);
498 if (ep->is_in) {
499 memcpy(eprambase, bufferptr, bytestosend);
500 udc->write_fn(udc->addr, ep->offset +
501 XUSB_EP_BUF0COUNT_OFFSET, bufferlen);
502 } else {
503 memcpy(bufferptr, eprambase, bytestosend);
504 }
505 /*
506 * Enable the buffer for transmission.
507 */
508 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
509 1 << ep->epnumber);
510 ep->buffer0ready = 1;
511 ep->curbufnum = 1;
512 } else if (ep->curbufnum && !ep->buffer1ready) {
513 /* Get the Buffer address and copy the transmit data.*/
514 eprambase = (u32 __force *)(udc->addr + ep->rambase +
515 ep->ep_usb.maxpacket);
516 if (ep->is_in) {
517 memcpy(eprambase, bufferptr, bytestosend);
518 udc->write_fn(udc->addr, ep->offset +
519 XUSB_EP_BUF1COUNT_OFFSET, bufferlen);
520 } else {
521 memcpy(bufferptr, eprambase, bytestosend);
522 }
523 /*
524 * Enable the buffer for transmission.
525 */
526 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
527 1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT));
528 ep->buffer1ready = 1;
529 ep->curbufnum = 0;
530 } else {
531 /* None of the ping-pong buffers are ready currently */
532 return -EAGAIN;
533 }
534 return rc;
535 }
536
537 /**
538 * xudc_done - Exeutes the endpoint data transfer completion tasks.
539 * @ep: pointer to the usb device endpoint structure.
540 * @req: pointer to the usb request structure.
541 * @status: Status of the data transfer.
542 *
543 * Deletes the message from the queue and updates data transfer completion
544 * status.
545 */
xudc_done(struct xusb_ep * ep,struct xusb_req * req,int status)546 static void xudc_done(struct xusb_ep *ep, struct xusb_req *req, int status)
547 {
548 struct xusb_udc *udc = ep->udc;
549
550 list_del_init(&req->queue);
551
552 if (req->usb_req.status == -EINPROGRESS)
553 req->usb_req.status = status;
554 else
555 status = req->usb_req.status;
556
557 if (status && status != -ESHUTDOWN)
558 dev_dbg(udc->dev, "%s done %p, status %d\n",
559 ep->ep_usb.name, req, status);
560 /* unmap request if DMA is present*/
561 if (udc->dma_enabled && ep->epnumber && req->usb_req.length)
562 usb_gadget_unmap_request(&udc->gadget, &req->usb_req,
563 ep->is_in);
564
565 if (req->usb_req.complete) {
566 spin_unlock(&udc->lock);
567 req->usb_req.complete(&ep->ep_usb, &req->usb_req);
568 spin_lock(&udc->lock);
569 }
570 }
571
572 /**
573 * xudc_read_fifo - Reads the data from the given endpoint buffer.
574 * @ep: pointer to the usb device endpoint structure.
575 * @req: pointer to the usb request structure.
576 *
577 * Return: 0 if request is completed and -EAGAIN if not completed.
578 *
579 * Pulls OUT packet data from the endpoint buffer.
580 */
xudc_read_fifo(struct xusb_ep * ep,struct xusb_req * req)581 static int xudc_read_fifo(struct xusb_ep *ep, struct xusb_req *req)
582 {
583 u8 *buf;
584 u32 is_short, count, bufferspace;
585 u8 bufoffset;
586 u8 two_pkts = 0;
587 int ret;
588 int retval = -EAGAIN;
589 struct xusb_udc *udc = ep->udc;
590
591 if (ep->buffer0ready && ep->buffer1ready) {
592 dev_dbg(udc->dev, "Packet NOT ready!\n");
593 return retval;
594 }
595 top:
596 if (ep->curbufnum)
597 bufoffset = XUSB_EP_BUF1COUNT_OFFSET;
598 else
599 bufoffset = XUSB_EP_BUF0COUNT_OFFSET;
600
601 count = udc->read_fn(udc->addr + ep->offset + bufoffset);
602
603 if (!ep->buffer0ready && !ep->buffer1ready)
604 two_pkts = 1;
605
606 buf = req->usb_req.buf + req->usb_req.actual;
607 prefetchw(buf);
608 bufferspace = req->usb_req.length - req->usb_req.actual;
609 is_short = count < ep->ep_usb.maxpacket;
610
611 if (unlikely(!bufferspace)) {
612 /*
613 * This happens when the driver's buffer
614 * is smaller than what the host sent.
615 * discard the extra data.
616 */
617 if (req->usb_req.status != -EOVERFLOW)
618 dev_dbg(udc->dev, "%s overflow %d\n",
619 ep->ep_usb.name, count);
620 req->usb_req.status = -EOVERFLOW;
621 xudc_done(ep, req, -EOVERFLOW);
622 return 0;
623 }
624
625 ret = xudc_eptxrx(ep, req, buf, count);
626 switch (ret) {
627 case 0:
628 req->usb_req.actual += min(count, bufferspace);
629 dev_dbg(udc->dev, "read %s, %d bytes%s req %p %d/%d\n",
630 ep->ep_usb.name, count, is_short ? "/S" : "", req,
631 req->usb_req.actual, req->usb_req.length);
632 bufferspace -= count;
633 /* Completion */
634 if ((req->usb_req.actual == req->usb_req.length) || is_short) {
635 if (udc->dma_enabled && req->usb_req.length)
636 dma_sync_single_for_cpu(udc->dev,
637 req->usb_req.dma,
638 req->usb_req.actual,
639 DMA_FROM_DEVICE);
640 xudc_done(ep, req, 0);
641 return 0;
642 }
643 if (two_pkts) {
644 two_pkts = 0;
645 goto top;
646 }
647 break;
648 case -EAGAIN:
649 dev_dbg(udc->dev, "receive busy\n");
650 break;
651 case -EINVAL:
652 case -ETIMEDOUT:
653 /* DMA error, dequeue the request */
654 xudc_done(ep, req, -ECONNRESET);
655 retval = 0;
656 break;
657 }
658
659 return retval;
660 }
661
662 /**
663 * xudc_write_fifo - Writes data into the given endpoint buffer.
664 * @ep: pointer to the usb device endpoint structure.
665 * @req: pointer to the usb request structure.
666 *
667 * Return: 0 if request is completed and -EAGAIN if not completed.
668 *
669 * Loads endpoint buffer for an IN packet.
670 */
xudc_write_fifo(struct xusb_ep * ep,struct xusb_req * req)671 static int xudc_write_fifo(struct xusb_ep *ep, struct xusb_req *req)
672 {
673 u32 max;
674 u32 length;
675 int ret;
676 int retval = -EAGAIN;
677 struct xusb_udc *udc = ep->udc;
678 int is_last, is_short = 0;
679 u8 *buf;
680
681 max = le16_to_cpu(ep->desc->wMaxPacketSize);
682 buf = req->usb_req.buf + req->usb_req.actual;
683 prefetch(buf);
684 length = req->usb_req.length - req->usb_req.actual;
685 length = min(length, max);
686
687 ret = xudc_eptxrx(ep, req, buf, length);
688 switch (ret) {
689 case 0:
690 req->usb_req.actual += length;
691 if (unlikely(length != max)) {
692 is_last = is_short = 1;
693 } else {
694 if (likely(req->usb_req.length !=
695 req->usb_req.actual) || req->usb_req.zero)
696 is_last = 0;
697 else
698 is_last = 1;
699 }
700 dev_dbg(udc->dev, "%s: wrote %s %d bytes%s%s %d left %p\n",
701 __func__, ep->ep_usb.name, length, is_last ? "/L" : "",
702 is_short ? "/S" : "",
703 req->usb_req.length - req->usb_req.actual, req);
704 /* completion */
705 if (is_last) {
706 xudc_done(ep, req, 0);
707 retval = 0;
708 }
709 break;
710 case -EAGAIN:
711 dev_dbg(udc->dev, "Send busy\n");
712 break;
713 case -EINVAL:
714 case -ETIMEDOUT:
715 /* DMA error, dequeue the request */
716 xudc_done(ep, req, -ECONNRESET);
717 retval = 0;
718 break;
719 }
720
721 return retval;
722 }
723
724 /**
725 * xudc_nuke - Cleans up the data transfer message list.
726 * @ep: pointer to the usb device endpoint structure.
727 * @status: Status of the data transfer.
728 */
xudc_nuke(struct xusb_ep * ep,int status)729 static void xudc_nuke(struct xusb_ep *ep, int status)
730 {
731 struct xusb_req *req;
732
733 while (!list_empty(&ep->queue)) {
734 req = list_first_entry(&ep->queue, struct xusb_req, queue);
735 xudc_done(ep, req, status);
736 }
737 }
738
739 /**
740 * xudc_ep_set_halt - Stalls/unstalls the given endpoint.
741 * @_ep: pointer to the usb device endpoint structure.
742 * @value: value to indicate stall/unstall.
743 *
744 * Return: 0 for success and error value on failure
745 */
xudc_ep_set_halt(struct usb_ep * _ep,int value)746 static int xudc_ep_set_halt(struct usb_ep *_ep, int value)
747 {
748 struct xusb_ep *ep = to_xusb_ep(_ep);
749 struct xusb_udc *udc;
750 unsigned long flags;
751 u32 epcfgreg;
752
753 if (!_ep || (!ep->desc && ep->epnumber)) {
754 pr_debug("%s: bad ep or descriptor\n", __func__);
755 return -EINVAL;
756 }
757 udc = ep->udc;
758
759 if (ep->is_in && (!list_empty(&ep->queue)) && value) {
760 dev_dbg(udc->dev, "requests pending can't halt\n");
761 return -EAGAIN;
762 }
763
764 if (ep->buffer0ready || ep->buffer1ready) {
765 dev_dbg(udc->dev, "HW buffers busy can't halt\n");
766 return -EAGAIN;
767 }
768
769 spin_lock_irqsave(&udc->lock, flags);
770
771 if (value) {
772 /* Stall the device.*/
773 epcfgreg = udc->read_fn(udc->addr + ep->offset);
774 epcfgreg |= XUSB_EP_CFG_STALL_MASK;
775 udc->write_fn(udc->addr, ep->offset, epcfgreg);
776 } else {
777 /* Unstall the device.*/
778 epcfgreg = udc->read_fn(udc->addr + ep->offset);
779 epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
780 udc->write_fn(udc->addr, ep->offset, epcfgreg);
781 if (ep->epnumber) {
782 /* Reset the toggle bit.*/
783 epcfgreg = udc->read_fn(ep->udc->addr + ep->offset);
784 epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK;
785 udc->write_fn(udc->addr, ep->offset, epcfgreg);
786 }
787 }
788
789 spin_unlock_irqrestore(&udc->lock, flags);
790 return 0;
791 }
792
793 /**
794 * xudc_ep_enable - Enables the given endpoint.
795 * @ep: pointer to the xusb endpoint structure.
796 * @desc: pointer to usb endpoint descriptor.
797 *
798 * Return: 0 for success and error value on failure
799 */
__xudc_ep_enable(struct xusb_ep * ep,const struct usb_endpoint_descriptor * desc)800 static int __xudc_ep_enable(struct xusb_ep *ep,
801 const struct usb_endpoint_descriptor *desc)
802 {
803 struct xusb_udc *udc = ep->udc;
804 u32 tmp;
805 u32 epcfg;
806 u32 ier;
807 u16 maxpacket;
808
809 ep->is_in = ((desc->bEndpointAddress & USB_DIR_IN) != 0);
810 /* Bit 3...0:endpoint number */
811 ep->epnumber = (desc->bEndpointAddress & 0x0f);
812 ep->desc = desc;
813 ep->ep_usb.desc = desc;
814 tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
815 ep->ep_usb.maxpacket = maxpacket = le16_to_cpu(desc->wMaxPacketSize);
816
817 switch (tmp) {
818 case USB_ENDPOINT_XFER_CONTROL:
819 dev_dbg(udc->dev, "only one control endpoint\n");
820 /* NON- ISO */
821 ep->is_iso = 0;
822 return -EINVAL;
823 case USB_ENDPOINT_XFER_INT:
824 /* NON- ISO */
825 ep->is_iso = 0;
826 if (maxpacket > 64) {
827 dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket);
828 return -EINVAL;
829 }
830 break;
831 case USB_ENDPOINT_XFER_BULK:
832 /* NON- ISO */
833 ep->is_iso = 0;
834 if (!(is_power_of_2(maxpacket) && maxpacket >= 8 &&
835 maxpacket <= 512)) {
836 dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket);
837 return -EINVAL;
838 }
839 break;
840 case USB_ENDPOINT_XFER_ISOC:
841 /* ISO */
842 ep->is_iso = 1;
843 break;
844 }
845
846 ep->buffer0ready = 0;
847 ep->buffer1ready = 0;
848 ep->curbufnum = 0;
849 ep->rambase = rambase[ep->epnumber];
850 xudc_epconfig(ep, udc);
851
852 dev_dbg(udc->dev, "Enable Endpoint %d max pkt is %d\n",
853 ep->epnumber, maxpacket);
854
855 /* Enable the End point.*/
856 epcfg = udc->read_fn(udc->addr + ep->offset);
857 epcfg |= XUSB_EP_CFG_VALID_MASK;
858 udc->write_fn(udc->addr, ep->offset, epcfg);
859 if (ep->epnumber)
860 ep->rambase <<= 2;
861
862 /* Enable buffer completion interrupts for endpoint */
863 ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
864 ier |= (XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK << ep->epnumber);
865 udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
866
867 /* for OUT endpoint set buffers ready to receive */
868 if (ep->epnumber && !ep->is_in) {
869 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
870 1 << ep->epnumber);
871 ep->buffer0ready = 1;
872 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
873 (1 << (ep->epnumber +
874 XUSB_STATUS_EP_BUFF2_SHIFT)));
875 ep->buffer1ready = 1;
876 }
877
878 return 0;
879 }
880
881 /**
882 * xudc_ep_enable - Enables the given endpoint.
883 * @_ep: pointer to the usb endpoint structure.
884 * @desc: pointer to usb endpoint descriptor.
885 *
886 * Return: 0 for success and error value on failure
887 */
xudc_ep_enable(struct usb_ep * _ep,const struct usb_endpoint_descriptor * desc)888 static int xudc_ep_enable(struct usb_ep *_ep,
889 const struct usb_endpoint_descriptor *desc)
890 {
891 struct xusb_ep *ep;
892 struct xusb_udc *udc;
893 unsigned long flags;
894 int ret;
895
896 if (!_ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT) {
897 pr_debug("%s: bad ep or descriptor\n", __func__);
898 return -EINVAL;
899 }
900
901 ep = to_xusb_ep(_ep);
902 udc = ep->udc;
903
904 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
905 dev_dbg(udc->dev, "bogus device state\n");
906 return -ESHUTDOWN;
907 }
908
909 spin_lock_irqsave(&udc->lock, flags);
910 ret = __xudc_ep_enable(ep, desc);
911 spin_unlock_irqrestore(&udc->lock, flags);
912
913 return ret;
914 }
915
916 /**
917 * xudc_ep_disable - Disables the given endpoint.
918 * @_ep: pointer to the usb endpoint structure.
919 *
920 * Return: 0 for success and error value on failure
921 */
xudc_ep_disable(struct usb_ep * _ep)922 static int xudc_ep_disable(struct usb_ep *_ep)
923 {
924 struct xusb_ep *ep;
925 unsigned long flags;
926 u32 epcfg;
927 struct xusb_udc *udc;
928
929 if (!_ep) {
930 pr_debug("%s: invalid ep\n", __func__);
931 return -EINVAL;
932 }
933
934 ep = to_xusb_ep(_ep);
935 udc = ep->udc;
936
937 spin_lock_irqsave(&udc->lock, flags);
938
939 xudc_nuke(ep, -ESHUTDOWN);
940
941 /* Restore the endpoint's pristine config */
942 ep->desc = NULL;
943 ep->ep_usb.desc = NULL;
944
945 dev_dbg(udc->dev, "USB Ep %d disable\n ", ep->epnumber);
946 /* Disable the endpoint.*/
947 epcfg = udc->read_fn(udc->addr + ep->offset);
948 epcfg &= ~XUSB_EP_CFG_VALID_MASK;
949 udc->write_fn(udc->addr, ep->offset, epcfg);
950
951 spin_unlock_irqrestore(&udc->lock, flags);
952 return 0;
953 }
954
955 /**
956 * xudc_ep_alloc_request - Initializes the request queue.
957 * @_ep: pointer to the usb endpoint structure.
958 * @gfp_flags: Flags related to the request call.
959 *
960 * Return: pointer to request structure on success and a NULL on failure.
961 */
xudc_ep_alloc_request(struct usb_ep * _ep,gfp_t gfp_flags)962 static struct usb_request *xudc_ep_alloc_request(struct usb_ep *_ep,
963 gfp_t gfp_flags)
964 {
965 struct xusb_ep *ep = to_xusb_ep(_ep);
966 struct xusb_req *req;
967
968 req = kzalloc(sizeof(*req), gfp_flags);
969 if (!req)
970 return NULL;
971
972 req->ep = ep;
973 INIT_LIST_HEAD(&req->queue);
974 return &req->usb_req;
975 }
976
977 /**
978 * xudc_free_request - Releases the request from queue.
979 * @_ep: pointer to the usb device endpoint structure.
980 * @_req: pointer to the usb request structure.
981 */
xudc_free_request(struct usb_ep * _ep,struct usb_request * _req)982 static void xudc_free_request(struct usb_ep *_ep, struct usb_request *_req)
983 {
984 struct xusb_req *req = to_xusb_req(_req);
985
986 kfree(req);
987 }
988
989 /**
990 * xudc_ep0_queue - Adds the request to endpoint 0 queue.
991 * @ep0: pointer to the xusb endpoint 0 structure.
992 * @req: pointer to the xusb request structure.
993 *
994 * Return: 0 for success and error value on failure
995 */
__xudc_ep0_queue(struct xusb_ep * ep0,struct xusb_req * req)996 static int __xudc_ep0_queue(struct xusb_ep *ep0, struct xusb_req *req)
997 {
998 struct xusb_udc *udc = ep0->udc;
999 u32 length;
1000 u8 *corebuf;
1001
1002 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1003 dev_dbg(udc->dev, "%s, bogus device state\n", __func__);
1004 return -EINVAL;
1005 }
1006 if (!list_empty(&ep0->queue)) {
1007 dev_dbg(udc->dev, "%s:ep0 busy\n", __func__);
1008 return -EBUSY;
1009 }
1010
1011 req->usb_req.status = -EINPROGRESS;
1012 req->usb_req.actual = 0;
1013
1014 list_add_tail(&req->queue, &ep0->queue);
1015
1016 if (udc->setup.bRequestType & USB_DIR_IN) {
1017 prefetch(req->usb_req.buf);
1018 length = req->usb_req.length;
1019 corebuf = (void __force *) ((ep0->rambase << 2) +
1020 udc->addr);
1021 length = req->usb_req.actual = min_t(u32, length,
1022 EP0_MAX_PACKET);
1023 memcpy(corebuf, req->usb_req.buf, length);
1024 udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, length);
1025 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1026 } else {
1027 if (udc->setup.wLength) {
1028 /* Enable EP0 buffer to receive data */
1029 udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0);
1030 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1031 } else {
1032 xudc_wrstatus(udc);
1033 }
1034 }
1035
1036 return 0;
1037 }
1038
1039 /**
1040 * xudc_ep0_queue - Adds the request to endpoint 0 queue.
1041 * @_ep: pointer to the usb endpoint 0 structure.
1042 * @_req: pointer to the usb request structure.
1043 * @gfp_flags: Flags related to the request call.
1044 *
1045 * Return: 0 for success and error value on failure
1046 */
xudc_ep0_queue(struct usb_ep * _ep,struct usb_request * _req,gfp_t gfp_flags)1047 static int xudc_ep0_queue(struct usb_ep *_ep, struct usb_request *_req,
1048 gfp_t gfp_flags)
1049 {
1050 struct xusb_req *req = to_xusb_req(_req);
1051 struct xusb_ep *ep0 = to_xusb_ep(_ep);
1052 struct xusb_udc *udc = ep0->udc;
1053 unsigned long flags;
1054 int ret;
1055
1056 spin_lock_irqsave(&udc->lock, flags);
1057 ret = __xudc_ep0_queue(ep0, req);
1058 spin_unlock_irqrestore(&udc->lock, flags);
1059
1060 return ret;
1061 }
1062
1063 /**
1064 * xudc_ep_queue - Adds the request to endpoint queue.
1065 * @_ep: pointer to the usb endpoint structure.
1066 * @_req: pointer to the usb request structure.
1067 * @gfp_flags: Flags related to the request call.
1068 *
1069 * Return: 0 for success and error value on failure
1070 */
xudc_ep_queue(struct usb_ep * _ep,struct usb_request * _req,gfp_t gfp_flags)1071 static int xudc_ep_queue(struct usb_ep *_ep, struct usb_request *_req,
1072 gfp_t gfp_flags)
1073 {
1074 struct xusb_req *req = to_xusb_req(_req);
1075 struct xusb_ep *ep = to_xusb_ep(_ep);
1076 struct xusb_udc *udc = ep->udc;
1077 int ret;
1078 unsigned long flags;
1079
1080 if (!ep->desc) {
1081 dev_dbg(udc->dev, "%s: queuing request to disabled %s\n",
1082 __func__, ep->name);
1083 return -ESHUTDOWN;
1084 }
1085
1086 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1087 dev_dbg(udc->dev, "%s, bogus device state\n", __func__);
1088 return -EINVAL;
1089 }
1090
1091 spin_lock_irqsave(&udc->lock, flags);
1092
1093 _req->status = -EINPROGRESS;
1094 _req->actual = 0;
1095
1096 if (udc->dma_enabled) {
1097 ret = usb_gadget_map_request(&udc->gadget, &req->usb_req,
1098 ep->is_in);
1099 if (ret) {
1100 dev_dbg(udc->dev, "gadget_map failed ep%d\n",
1101 ep->epnumber);
1102 spin_unlock_irqrestore(&udc->lock, flags);
1103 return -EAGAIN;
1104 }
1105 }
1106
1107 if (list_empty(&ep->queue)) {
1108 if (ep->is_in) {
1109 dev_dbg(udc->dev, "xudc_write_fifo from ep_queue\n");
1110 if (!xudc_write_fifo(ep, req))
1111 req = NULL;
1112 } else {
1113 dev_dbg(udc->dev, "xudc_read_fifo from ep_queue\n");
1114 if (!xudc_read_fifo(ep, req))
1115 req = NULL;
1116 }
1117 }
1118
1119 if (req != NULL)
1120 list_add_tail(&req->queue, &ep->queue);
1121
1122 spin_unlock_irqrestore(&udc->lock, flags);
1123 return 0;
1124 }
1125
1126 /**
1127 * xudc_ep_dequeue - Removes the request from the queue.
1128 * @_ep: pointer to the usb device endpoint structure.
1129 * @_req: pointer to the usb request structure.
1130 *
1131 * Return: 0 for success and error value on failure
1132 */
xudc_ep_dequeue(struct usb_ep * _ep,struct usb_request * _req)1133 static int xudc_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1134 {
1135 struct xusb_ep *ep = to_xusb_ep(_ep);
1136 struct xusb_req *req = to_xusb_req(_req);
1137 struct xusb_udc *udc = ep->udc;
1138 unsigned long flags;
1139
1140 spin_lock_irqsave(&udc->lock, flags);
1141 /* Make sure it's actually queued on this endpoint */
1142 list_for_each_entry(req, &ep->queue, queue) {
1143 if (&req->usb_req == _req)
1144 break;
1145 }
1146 if (&req->usb_req != _req) {
1147 spin_unlock_irqrestore(&udc->lock, flags);
1148 return -EINVAL;
1149 }
1150 xudc_done(ep, req, -ECONNRESET);
1151 spin_unlock_irqrestore(&udc->lock, flags);
1152
1153 return 0;
1154 }
1155
1156 /**
1157 * xudc_ep0_enable - Enables the given endpoint.
1158 * @ep: pointer to the usb endpoint structure.
1159 * @desc: pointer to usb endpoint descriptor.
1160 *
1161 * Return: error always.
1162 *
1163 * endpoint 0 enable should not be called by gadget layer.
1164 */
xudc_ep0_enable(struct usb_ep * ep,const struct usb_endpoint_descriptor * desc)1165 static int xudc_ep0_enable(struct usb_ep *ep,
1166 const struct usb_endpoint_descriptor *desc)
1167 {
1168 return -EINVAL;
1169 }
1170
1171 /**
1172 * xudc_ep0_disable - Disables the given endpoint.
1173 * @ep: pointer to the usb endpoint structure.
1174 *
1175 * Return: error always.
1176 *
1177 * endpoint 0 disable should not be called by gadget layer.
1178 */
xudc_ep0_disable(struct usb_ep * ep)1179 static int xudc_ep0_disable(struct usb_ep *ep)
1180 {
1181 return -EINVAL;
1182 }
1183
1184 static const struct usb_ep_ops xusb_ep0_ops = {
1185 .enable = xudc_ep0_enable,
1186 .disable = xudc_ep0_disable,
1187 .alloc_request = xudc_ep_alloc_request,
1188 .free_request = xudc_free_request,
1189 .queue = xudc_ep0_queue,
1190 .dequeue = xudc_ep_dequeue,
1191 .set_halt = xudc_ep_set_halt,
1192 };
1193
1194 static const struct usb_ep_ops xusb_ep_ops = {
1195 .enable = xudc_ep_enable,
1196 .disable = xudc_ep_disable,
1197 .alloc_request = xudc_ep_alloc_request,
1198 .free_request = xudc_free_request,
1199 .queue = xudc_ep_queue,
1200 .dequeue = xudc_ep_dequeue,
1201 .set_halt = xudc_ep_set_halt,
1202 };
1203
1204 /**
1205 * xudc_get_frame - Reads the current usb frame number.
1206 * @gadget: pointer to the usb gadget structure.
1207 *
1208 * Return: current frame number for success and error value on failure.
1209 */
xudc_get_frame(struct usb_gadget * gadget)1210 static int xudc_get_frame(struct usb_gadget *gadget)
1211 {
1212 struct xusb_udc *udc;
1213 int frame;
1214
1215 if (!gadget)
1216 return -ENODEV;
1217
1218 udc = to_udc(gadget);
1219 frame = udc->read_fn(udc->addr + XUSB_FRAMENUM_OFFSET);
1220 return frame;
1221 }
1222
1223 /**
1224 * xudc_wakeup - Send remote wakeup signal to host
1225 * @gadget: pointer to the usb gadget structure.
1226 *
1227 * Return: 0 on success and error on failure
1228 */
xudc_wakeup(struct usb_gadget * gadget)1229 static int xudc_wakeup(struct usb_gadget *gadget)
1230 {
1231 struct xusb_udc *udc = to_udc(gadget);
1232 u32 crtlreg;
1233 int status = -EINVAL;
1234 unsigned long flags;
1235
1236 spin_lock_irqsave(&udc->lock, flags);
1237
1238 /* Remote wake up not enabled by host */
1239 if (!udc->remote_wkp)
1240 goto done;
1241
1242 crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET);
1243 crtlreg |= XUSB_CONTROL_USB_RMTWAKE_MASK;
1244 /* set remote wake up bit */
1245 udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1246 /*
1247 * wait for a while and reset remote wake up bit since this bit
1248 * is not cleared by HW after sending remote wakeup to host.
1249 */
1250 mdelay(2);
1251
1252 crtlreg &= ~XUSB_CONTROL_USB_RMTWAKE_MASK;
1253 udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1254 status = 0;
1255 done:
1256 spin_unlock_irqrestore(&udc->lock, flags);
1257 return status;
1258 }
1259
1260 /**
1261 * xudc_pullup - start/stop USB traffic
1262 * @gadget: pointer to the usb gadget structure.
1263 * @is_on: flag to start or stop
1264 *
1265 * Return: 0 always
1266 *
1267 * This function starts/stops SIE engine of IP based on is_on.
1268 */
xudc_pullup(struct usb_gadget * gadget,int is_on)1269 static int xudc_pullup(struct usb_gadget *gadget, int is_on)
1270 {
1271 struct xusb_udc *udc = to_udc(gadget);
1272 unsigned long flags;
1273 u32 crtlreg;
1274
1275 spin_lock_irqsave(&udc->lock, flags);
1276
1277 crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET);
1278 if (is_on)
1279 crtlreg |= XUSB_CONTROL_USB_READY_MASK;
1280 else
1281 crtlreg &= ~XUSB_CONTROL_USB_READY_MASK;
1282
1283 udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1284
1285 spin_unlock_irqrestore(&udc->lock, flags);
1286
1287 return 0;
1288 }
1289
1290 /**
1291 * xudc_eps_init - initialize endpoints.
1292 * @udc: pointer to the usb device controller structure.
1293 */
xudc_eps_init(struct xusb_udc * udc)1294 static void xudc_eps_init(struct xusb_udc *udc)
1295 {
1296 u32 ep_number;
1297
1298 INIT_LIST_HEAD(&udc->gadget.ep_list);
1299
1300 for (ep_number = 0; ep_number < XUSB_MAX_ENDPOINTS; ep_number++) {
1301 struct xusb_ep *ep = &udc->ep[ep_number];
1302
1303 if (ep_number) {
1304 list_add_tail(&ep->ep_usb.ep_list,
1305 &udc->gadget.ep_list);
1306 usb_ep_set_maxpacket_limit(&ep->ep_usb,
1307 (unsigned short) ~0);
1308 snprintf(ep->name, EPNAME_SIZE, "ep%d", ep_number);
1309 ep->ep_usb.name = ep->name;
1310 ep->ep_usb.ops = &xusb_ep_ops;
1311
1312 ep->ep_usb.caps.type_iso = true;
1313 ep->ep_usb.caps.type_bulk = true;
1314 ep->ep_usb.caps.type_int = true;
1315 } else {
1316 ep->ep_usb.name = ep0name;
1317 usb_ep_set_maxpacket_limit(&ep->ep_usb, EP0_MAX_PACKET);
1318 ep->ep_usb.ops = &xusb_ep0_ops;
1319
1320 ep->ep_usb.caps.type_control = true;
1321 }
1322
1323 ep->ep_usb.caps.dir_in = true;
1324 ep->ep_usb.caps.dir_out = true;
1325
1326 ep->udc = udc;
1327 ep->epnumber = ep_number;
1328 ep->desc = NULL;
1329 /*
1330 * The configuration register address offset between
1331 * each endpoint is 0x10.
1332 */
1333 ep->offset = XUSB_EP0_CONFIG_OFFSET + (ep_number * 0x10);
1334 ep->is_in = 0;
1335 ep->is_iso = 0;
1336 ep->maxpacket = 0;
1337 xudc_epconfig(ep, udc);
1338
1339 /* Initialize one queue per endpoint */
1340 INIT_LIST_HEAD(&ep->queue);
1341 }
1342 }
1343
1344 /**
1345 * xudc_stop_activity - Stops any further activity on the device.
1346 * @udc: pointer to the usb device controller structure.
1347 */
xudc_stop_activity(struct xusb_udc * udc)1348 static void xudc_stop_activity(struct xusb_udc *udc)
1349 {
1350 int i;
1351 struct xusb_ep *ep;
1352
1353 for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) {
1354 ep = &udc->ep[i];
1355 xudc_nuke(ep, -ESHUTDOWN);
1356 }
1357 }
1358
1359 /**
1360 * xudc_start - Starts the device.
1361 * @gadget: pointer to the usb gadget structure
1362 * @driver: pointer to gadget driver structure
1363 *
1364 * Return: zero on success and error on failure
1365 */
xudc_start(struct usb_gadget * gadget,struct usb_gadget_driver * driver)1366 static int xudc_start(struct usb_gadget *gadget,
1367 struct usb_gadget_driver *driver)
1368 {
1369 struct xusb_udc *udc = to_udc(gadget);
1370 struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO];
1371 const struct usb_endpoint_descriptor *desc = &config_bulk_out_desc;
1372 unsigned long flags;
1373 int ret = 0;
1374
1375 spin_lock_irqsave(&udc->lock, flags);
1376
1377 if (udc->driver) {
1378 dev_err(udc->dev, "%s is already bound to %s\n",
1379 udc->gadget.name, udc->driver->driver.name);
1380 ret = -EBUSY;
1381 goto err;
1382 }
1383
1384 /* hook up the driver */
1385 udc->driver = driver;
1386 udc->gadget.speed = driver->max_speed;
1387
1388 /* Enable the control endpoint. */
1389 ret = __xudc_ep_enable(ep0, desc);
1390
1391 /* Set device address and remote wakeup to 0 */
1392 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1393 udc->remote_wkp = 0;
1394 err:
1395 spin_unlock_irqrestore(&udc->lock, flags);
1396 return ret;
1397 }
1398
1399 /**
1400 * xudc_stop - stops the device.
1401 * @gadget: pointer to the usb gadget structure
1402 * @driver: pointer to usb gadget driver structure
1403 *
1404 * Return: zero always
1405 */
xudc_stop(struct usb_gadget * gadget)1406 static int xudc_stop(struct usb_gadget *gadget)
1407 {
1408 struct xusb_udc *udc = to_udc(gadget);
1409 unsigned long flags;
1410
1411 spin_lock_irqsave(&udc->lock, flags);
1412
1413 udc->gadget.speed = USB_SPEED_UNKNOWN;
1414 udc->driver = NULL;
1415
1416 /* Set device address and remote wakeup to 0 */
1417 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1418 udc->remote_wkp = 0;
1419
1420 xudc_stop_activity(udc);
1421
1422 spin_unlock_irqrestore(&udc->lock, flags);
1423
1424 return 0;
1425 }
1426
1427 static const struct usb_gadget_ops xusb_udc_ops = {
1428 .get_frame = xudc_get_frame,
1429 .wakeup = xudc_wakeup,
1430 .pullup = xudc_pullup,
1431 .udc_start = xudc_start,
1432 .udc_stop = xudc_stop,
1433 };
1434
1435 /**
1436 * xudc_clear_stall_all_ep - clears stall of every endpoint.
1437 * @udc: pointer to the udc structure.
1438 */
xudc_clear_stall_all_ep(struct xusb_udc * udc)1439 static void xudc_clear_stall_all_ep(struct xusb_udc *udc)
1440 {
1441 struct xusb_ep *ep;
1442 u32 epcfgreg;
1443 int i;
1444
1445 for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) {
1446 ep = &udc->ep[i];
1447 epcfgreg = udc->read_fn(udc->addr + ep->offset);
1448 epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
1449 udc->write_fn(udc->addr, ep->offset, epcfgreg);
1450 if (ep->epnumber) {
1451 /* Reset the toggle bit.*/
1452 epcfgreg = udc->read_fn(udc->addr + ep->offset);
1453 epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK;
1454 udc->write_fn(udc->addr, ep->offset, epcfgreg);
1455 }
1456 }
1457 }
1458
1459 /**
1460 * xudc_startup_handler - The usb device controller interrupt handler.
1461 * @udc: pointer to the udc structure.
1462 * @intrstatus: The mask value containing the interrupt sources.
1463 *
1464 * This function handles the RESET,SUSPEND,RESUME and DISCONNECT interrupts.
1465 */
xudc_startup_handler(struct xusb_udc * udc,u32 intrstatus)1466 static void xudc_startup_handler(struct xusb_udc *udc, u32 intrstatus)
1467 {
1468 u32 intrreg;
1469
1470 if (intrstatus & XUSB_STATUS_RESET_MASK) {
1471
1472 dev_dbg(udc->dev, "Reset\n");
1473
1474 if (intrstatus & XUSB_STATUS_HIGH_SPEED_MASK)
1475 udc->gadget.speed = USB_SPEED_HIGH;
1476 else
1477 udc->gadget.speed = USB_SPEED_FULL;
1478
1479 xudc_stop_activity(udc);
1480 xudc_clear_stall_all_ep(udc);
1481 udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0);
1482
1483 /* Set device address and remote wakeup to 0 */
1484 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1485 udc->remote_wkp = 0;
1486
1487 /* Enable the suspend, resume and disconnect */
1488 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1489 intrreg |= XUSB_STATUS_SUSPEND_MASK | XUSB_STATUS_RESUME_MASK |
1490 XUSB_STATUS_DISCONNECT_MASK;
1491 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1492 }
1493 if (intrstatus & XUSB_STATUS_SUSPEND_MASK) {
1494
1495 dev_dbg(udc->dev, "Suspend\n");
1496
1497 /* Enable the reset, resume and disconnect */
1498 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1499 intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK |
1500 XUSB_STATUS_DISCONNECT_MASK;
1501 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1502
1503 udc->usb_state = USB_STATE_SUSPENDED;
1504
1505 if (udc->driver->suspend) {
1506 spin_unlock(&udc->lock);
1507 udc->driver->suspend(&udc->gadget);
1508 spin_lock(&udc->lock);
1509 }
1510 }
1511 if (intrstatus & XUSB_STATUS_RESUME_MASK) {
1512 bool condition = (udc->usb_state != USB_STATE_SUSPENDED);
1513
1514 dev_WARN_ONCE(udc->dev, condition,
1515 "Resume IRQ while not suspended\n");
1516
1517 dev_dbg(udc->dev, "Resume\n");
1518
1519 /* Enable the reset, suspend and disconnect */
1520 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1521 intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_SUSPEND_MASK |
1522 XUSB_STATUS_DISCONNECT_MASK;
1523 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1524
1525 udc->usb_state = 0;
1526
1527 if (udc->driver->resume) {
1528 spin_unlock(&udc->lock);
1529 udc->driver->resume(&udc->gadget);
1530 spin_lock(&udc->lock);
1531 }
1532 }
1533 if (intrstatus & XUSB_STATUS_DISCONNECT_MASK) {
1534
1535 dev_dbg(udc->dev, "Disconnect\n");
1536
1537 /* Enable the reset, resume and suspend */
1538 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1539 intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK |
1540 XUSB_STATUS_SUSPEND_MASK;
1541 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1542
1543 if (udc->driver && udc->driver->disconnect) {
1544 spin_unlock(&udc->lock);
1545 udc->driver->disconnect(&udc->gadget);
1546 spin_lock(&udc->lock);
1547 }
1548 }
1549 }
1550
1551 /**
1552 * xudc_ep0_stall - Stall endpoint zero.
1553 * @udc: pointer to the udc structure.
1554 *
1555 * This function stalls endpoint zero.
1556 */
xudc_ep0_stall(struct xusb_udc * udc)1557 static void xudc_ep0_stall(struct xusb_udc *udc)
1558 {
1559 u32 epcfgreg;
1560 struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO];
1561
1562 epcfgreg = udc->read_fn(udc->addr + ep0->offset);
1563 epcfgreg |= XUSB_EP_CFG_STALL_MASK;
1564 udc->write_fn(udc->addr, ep0->offset, epcfgreg);
1565 }
1566
1567 /**
1568 * xudc_setaddress - executes SET_ADDRESS command
1569 * @udc: pointer to the udc structure.
1570 *
1571 * This function executes USB SET_ADDRESS command
1572 */
xudc_setaddress(struct xusb_udc * udc)1573 static void xudc_setaddress(struct xusb_udc *udc)
1574 {
1575 struct xusb_ep *ep0 = &udc->ep[0];
1576 struct xusb_req *req = udc->req;
1577 int ret;
1578
1579 req->usb_req.length = 0;
1580 ret = __xudc_ep0_queue(ep0, req);
1581 if (ret == 0)
1582 return;
1583
1584 dev_err(udc->dev, "Can't respond to SET ADDRESS request\n");
1585 xudc_ep0_stall(udc);
1586 }
1587
1588 /**
1589 * xudc_getstatus - executes GET_STATUS command
1590 * @udc: pointer to the udc structure.
1591 *
1592 * This function executes USB GET_STATUS command
1593 */
xudc_getstatus(struct xusb_udc * udc)1594 static void xudc_getstatus(struct xusb_udc *udc)
1595 {
1596 struct xusb_ep *ep0 = &udc->ep[0];
1597 struct xusb_req *req = udc->req;
1598 struct xusb_ep *target_ep;
1599 u16 status = 0;
1600 u32 epcfgreg;
1601 int epnum;
1602 u32 halt;
1603 int ret;
1604
1605 switch (udc->setup.bRequestType & USB_RECIP_MASK) {
1606 case USB_RECIP_DEVICE:
1607 /* Get device status */
1608 status = 1 << USB_DEVICE_SELF_POWERED;
1609 if (udc->remote_wkp)
1610 status |= (1 << USB_DEVICE_REMOTE_WAKEUP);
1611 break;
1612 case USB_RECIP_INTERFACE:
1613 break;
1614 case USB_RECIP_ENDPOINT:
1615 epnum = udc->setup.wIndex & USB_ENDPOINT_NUMBER_MASK;
1616 target_ep = &udc->ep[epnum];
1617 epcfgreg = udc->read_fn(udc->addr + target_ep->offset);
1618 halt = epcfgreg & XUSB_EP_CFG_STALL_MASK;
1619 if (udc->setup.wIndex & USB_DIR_IN) {
1620 if (!target_ep->is_in)
1621 goto stall;
1622 } else {
1623 if (target_ep->is_in)
1624 goto stall;
1625 }
1626 if (halt)
1627 status = 1 << USB_ENDPOINT_HALT;
1628 break;
1629 default:
1630 goto stall;
1631 }
1632
1633 req->usb_req.length = 2;
1634 *(u16 *)req->usb_req.buf = cpu_to_le16(status);
1635 ret = __xudc_ep0_queue(ep0, req);
1636 if (ret == 0)
1637 return;
1638 stall:
1639 dev_err(udc->dev, "Can't respond to getstatus request\n");
1640 xudc_ep0_stall(udc);
1641 }
1642
1643 /**
1644 * xudc_set_clear_feature - Executes the set feature and clear feature commands.
1645 * @udc: pointer to the usb device controller structure.
1646 *
1647 * Processes the SET_FEATURE and CLEAR_FEATURE commands.
1648 */
xudc_set_clear_feature(struct xusb_udc * udc)1649 static void xudc_set_clear_feature(struct xusb_udc *udc)
1650 {
1651 struct xusb_ep *ep0 = &udc->ep[0];
1652 struct xusb_req *req = udc->req;
1653 struct xusb_ep *target_ep;
1654 u8 endpoint;
1655 u8 outinbit;
1656 u32 epcfgreg;
1657 int flag = (udc->setup.bRequest == USB_REQ_SET_FEATURE ? 1 : 0);
1658 int ret;
1659
1660 switch (udc->setup.bRequestType) {
1661 case USB_RECIP_DEVICE:
1662 switch (udc->setup.wValue) {
1663 case USB_DEVICE_TEST_MODE:
1664 /*
1665 * The Test Mode will be executed
1666 * after the status phase.
1667 */
1668 break;
1669 case USB_DEVICE_REMOTE_WAKEUP:
1670 if (flag)
1671 udc->remote_wkp = 1;
1672 else
1673 udc->remote_wkp = 0;
1674 break;
1675 default:
1676 xudc_ep0_stall(udc);
1677 break;
1678 }
1679 break;
1680 case USB_RECIP_ENDPOINT:
1681 if (!udc->setup.wValue) {
1682 endpoint = udc->setup.wIndex & USB_ENDPOINT_NUMBER_MASK;
1683 target_ep = &udc->ep[endpoint];
1684 outinbit = udc->setup.wIndex & USB_ENDPOINT_DIR_MASK;
1685 outinbit = outinbit >> 7;
1686
1687 /* Make sure direction matches.*/
1688 if (outinbit != target_ep->is_in) {
1689 xudc_ep0_stall(udc);
1690 return;
1691 }
1692 epcfgreg = udc->read_fn(udc->addr + target_ep->offset);
1693 if (!endpoint) {
1694 /* Clear the stall.*/
1695 epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
1696 udc->write_fn(udc->addr,
1697 target_ep->offset, epcfgreg);
1698 } else {
1699 if (flag) {
1700 epcfgreg |= XUSB_EP_CFG_STALL_MASK;
1701 udc->write_fn(udc->addr,
1702 target_ep->offset,
1703 epcfgreg);
1704 } else {
1705 /* Unstall the endpoint.*/
1706 epcfgreg &= ~(XUSB_EP_CFG_STALL_MASK |
1707 XUSB_EP_CFG_DATA_TOGGLE_MASK);
1708 udc->write_fn(udc->addr,
1709 target_ep->offset,
1710 epcfgreg);
1711 }
1712 }
1713 }
1714 break;
1715 default:
1716 xudc_ep0_stall(udc);
1717 return;
1718 }
1719
1720 req->usb_req.length = 0;
1721 ret = __xudc_ep0_queue(ep0, req);
1722 if (ret == 0)
1723 return;
1724
1725 dev_err(udc->dev, "Can't respond to SET/CLEAR FEATURE\n");
1726 xudc_ep0_stall(udc);
1727 }
1728
1729 /**
1730 * xudc_handle_setup - Processes the setup packet.
1731 * @udc: pointer to the usb device controller structure.
1732 *
1733 * Process setup packet and delegate to gadget layer.
1734 */
xudc_handle_setup(struct xusb_udc * udc)1735 static void xudc_handle_setup(struct xusb_udc *udc)
1736 {
1737 struct xusb_ep *ep0 = &udc->ep[0];
1738 struct usb_ctrlrequest setup;
1739 u32 *ep0rambase;
1740
1741 /* Load up the chapter 9 command buffer.*/
1742 ep0rambase = (u32 __force *) (udc->addr + XUSB_SETUP_PKT_ADDR_OFFSET);
1743 memcpy(&setup, ep0rambase, 8);
1744
1745 udc->setup = setup;
1746 udc->setup.wValue = cpu_to_le16(setup.wValue);
1747 udc->setup.wIndex = cpu_to_le16(setup.wIndex);
1748 udc->setup.wLength = cpu_to_le16(setup.wLength);
1749
1750 /* Clear previous requests */
1751 xudc_nuke(ep0, -ECONNRESET);
1752
1753 if (udc->setup.bRequestType & USB_DIR_IN) {
1754 /* Execute the get command.*/
1755 udc->setupseqrx = STATUS_PHASE;
1756 udc->setupseqtx = DATA_PHASE;
1757 } else {
1758 /* Execute the put command.*/
1759 udc->setupseqrx = DATA_PHASE;
1760 udc->setupseqtx = STATUS_PHASE;
1761 }
1762
1763 switch (udc->setup.bRequest) {
1764 case USB_REQ_GET_STATUS:
1765 /* Data+Status phase form udc */
1766 if ((udc->setup.bRequestType &
1767 (USB_DIR_IN | USB_TYPE_MASK)) !=
1768 (USB_DIR_IN | USB_TYPE_STANDARD))
1769 break;
1770 xudc_getstatus(udc);
1771 return;
1772 case USB_REQ_SET_ADDRESS:
1773 /* Status phase from udc */
1774 if (udc->setup.bRequestType != (USB_DIR_OUT |
1775 USB_TYPE_STANDARD | USB_RECIP_DEVICE))
1776 break;
1777 xudc_setaddress(udc);
1778 return;
1779 case USB_REQ_CLEAR_FEATURE:
1780 case USB_REQ_SET_FEATURE:
1781 /* Requests with no data phase, status phase from udc */
1782 if ((udc->setup.bRequestType & USB_TYPE_MASK)
1783 != USB_TYPE_STANDARD)
1784 break;
1785 xudc_set_clear_feature(udc);
1786 return;
1787 default:
1788 break;
1789 }
1790
1791 spin_unlock(&udc->lock);
1792 if (udc->driver->setup(&udc->gadget, &setup) < 0)
1793 xudc_ep0_stall(udc);
1794 spin_lock(&udc->lock);
1795 }
1796
1797 /**
1798 * xudc_ep0_out - Processes the endpoint 0 OUT token.
1799 * @udc: pointer to the usb device controller structure.
1800 */
xudc_ep0_out(struct xusb_udc * udc)1801 static void xudc_ep0_out(struct xusb_udc *udc)
1802 {
1803 struct xusb_ep *ep0 = &udc->ep[0];
1804 struct xusb_req *req;
1805 u8 *ep0rambase;
1806 unsigned int bytes_to_rx;
1807 void *buffer;
1808
1809 req = list_first_entry(&ep0->queue, struct xusb_req, queue);
1810
1811 switch (udc->setupseqrx) {
1812 case STATUS_PHASE:
1813 /*
1814 * This resets both state machines for the next
1815 * Setup packet.
1816 */
1817 udc->setupseqrx = SETUP_PHASE;
1818 udc->setupseqtx = SETUP_PHASE;
1819 req->usb_req.actual = req->usb_req.length;
1820 xudc_done(ep0, req, 0);
1821 break;
1822 case DATA_PHASE:
1823 bytes_to_rx = udc->read_fn(udc->addr +
1824 XUSB_EP_BUF0COUNT_OFFSET);
1825 /* Copy the data to be received from the DPRAM. */
1826 ep0rambase = (u8 __force *) (udc->addr +
1827 (ep0->rambase << 2));
1828 buffer = req->usb_req.buf + req->usb_req.actual;
1829 req->usb_req.actual = req->usb_req.actual + bytes_to_rx;
1830 memcpy(buffer, ep0rambase, bytes_to_rx);
1831
1832 if (req->usb_req.length == req->usb_req.actual) {
1833 /* Data transfer completed get ready for Status stage */
1834 xudc_wrstatus(udc);
1835 } else {
1836 /* Enable EP0 buffer to receive data */
1837 udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0);
1838 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1839 }
1840 break;
1841 default:
1842 break;
1843 }
1844 }
1845
1846 /**
1847 * xudc_ep0_in - Processes the endpoint 0 IN token.
1848 * @udc: pointer to the usb device controller structure.
1849 */
xudc_ep0_in(struct xusb_udc * udc)1850 static void xudc_ep0_in(struct xusb_udc *udc)
1851 {
1852 struct xusb_ep *ep0 = &udc->ep[0];
1853 struct xusb_req *req;
1854 unsigned int bytes_to_tx;
1855 void *buffer;
1856 u32 epcfgreg;
1857 u16 count = 0;
1858 u16 length;
1859 u8 *ep0rambase;
1860 u8 test_mode = udc->setup.wIndex >> 8;
1861
1862 req = list_first_entry(&ep0->queue, struct xusb_req, queue);
1863 bytes_to_tx = req->usb_req.length - req->usb_req.actual;
1864
1865 switch (udc->setupseqtx) {
1866 case STATUS_PHASE:
1867 switch (udc->setup.bRequest) {
1868 case USB_REQ_SET_ADDRESS:
1869 /* Set the address of the device.*/
1870 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET,
1871 udc->setup.wValue);
1872 break;
1873 case USB_REQ_SET_FEATURE:
1874 if (udc->setup.bRequestType ==
1875 USB_RECIP_DEVICE) {
1876 if (udc->setup.wValue ==
1877 USB_DEVICE_TEST_MODE)
1878 udc->write_fn(udc->addr,
1879 XUSB_TESTMODE_OFFSET,
1880 test_mode);
1881 }
1882 break;
1883 }
1884 req->usb_req.actual = req->usb_req.length;
1885 xudc_done(ep0, req, 0);
1886 break;
1887 case DATA_PHASE:
1888 if (!bytes_to_tx) {
1889 /*
1890 * We're done with data transfer, next
1891 * will be zero length OUT with data toggle of
1892 * 1. Setup data_toggle.
1893 */
1894 epcfgreg = udc->read_fn(udc->addr + ep0->offset);
1895 epcfgreg |= XUSB_EP_CFG_DATA_TOGGLE_MASK;
1896 udc->write_fn(udc->addr, ep0->offset, epcfgreg);
1897 udc->setupseqtx = STATUS_PHASE;
1898 } else {
1899 length = count = min_t(u32, bytes_to_tx,
1900 EP0_MAX_PACKET);
1901 /* Copy the data to be transmitted into the DPRAM. */
1902 ep0rambase = (u8 __force *) (udc->addr +
1903 (ep0->rambase << 2));
1904 buffer = req->usb_req.buf + req->usb_req.actual;
1905 req->usb_req.actual = req->usb_req.actual + length;
1906 memcpy(ep0rambase, buffer, length);
1907 }
1908 udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, count);
1909 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1910 break;
1911 default:
1912 break;
1913 }
1914 }
1915
1916 /**
1917 * xudc_ctrl_ep_handler - Endpoint 0 interrupt handler.
1918 * @udc: pointer to the udc structure.
1919 * @intrstatus: It's the mask value for the interrupt sources on endpoint 0.
1920 *
1921 * Processes the commands received during enumeration phase.
1922 */
xudc_ctrl_ep_handler(struct xusb_udc * udc,u32 intrstatus)1923 static void xudc_ctrl_ep_handler(struct xusb_udc *udc, u32 intrstatus)
1924 {
1925
1926 if (intrstatus & XUSB_STATUS_SETUP_PACKET_MASK) {
1927 xudc_handle_setup(udc);
1928 } else {
1929 if (intrstatus & XUSB_STATUS_FIFO_BUFF_RDY_MASK)
1930 xudc_ep0_out(udc);
1931 else if (intrstatus & XUSB_STATUS_FIFO_BUFF_FREE_MASK)
1932 xudc_ep0_in(udc);
1933 }
1934 }
1935
1936 /**
1937 * xudc_nonctrl_ep_handler - Non control endpoint interrupt handler.
1938 * @udc: pointer to the udc structure.
1939 * @epnum: End point number for which the interrupt is to be processed
1940 * @intrstatus: mask value for interrupt sources of endpoints other
1941 * than endpoint 0.
1942 *
1943 * Processes the buffer completion interrupts.
1944 */
xudc_nonctrl_ep_handler(struct xusb_udc * udc,u8 epnum,u32 intrstatus)1945 static void xudc_nonctrl_ep_handler(struct xusb_udc *udc, u8 epnum,
1946 u32 intrstatus)
1947 {
1948
1949 struct xusb_req *req;
1950 struct xusb_ep *ep;
1951
1952 ep = &udc->ep[epnum];
1953 /* Process the End point interrupts.*/
1954 if (intrstatus & (XUSB_STATUS_EP0_BUFF1_COMP_MASK << epnum))
1955 ep->buffer0ready = 0;
1956 if (intrstatus & (XUSB_STATUS_EP0_BUFF2_COMP_MASK << epnum))
1957 ep->buffer1ready = 0;
1958
1959 if (list_empty(&ep->queue))
1960 return;
1961
1962 req = list_first_entry(&ep->queue, struct xusb_req, queue);
1963
1964 if (ep->is_in)
1965 xudc_write_fifo(ep, req);
1966 else
1967 xudc_read_fifo(ep, req);
1968 }
1969
1970 /**
1971 * xudc_irq - The main interrupt handler.
1972 * @irq: The interrupt number.
1973 * @_udc: pointer to the usb device controller structure.
1974 *
1975 * Return: IRQ_HANDLED after the interrupt is handled.
1976 */
xudc_irq(int irq,void * _udc)1977 static irqreturn_t xudc_irq(int irq, void *_udc)
1978 {
1979 struct xusb_udc *udc = _udc;
1980 u32 intrstatus;
1981 u32 ier;
1982 u8 index;
1983 u32 bufintr;
1984 unsigned long flags;
1985
1986 spin_lock_irqsave(&udc->lock, flags);
1987
1988 /*
1989 * Event interrupts are level sensitive hence first disable
1990 * IER, read ISR and figure out active interrupts.
1991 */
1992 ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1993 ier &= ~XUSB_STATUS_INTR_EVENT_MASK;
1994 udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
1995
1996 /* Read the Interrupt Status Register.*/
1997 intrstatus = udc->read_fn(udc->addr + XUSB_STATUS_OFFSET);
1998
1999 /* Call the handler for the event interrupt.*/
2000 if (intrstatus & XUSB_STATUS_INTR_EVENT_MASK) {
2001 /*
2002 * Check if there is any action to be done for :
2003 * - USB Reset received {XUSB_STATUS_RESET_MASK}
2004 * - USB Suspend received {XUSB_STATUS_SUSPEND_MASK}
2005 * - USB Resume received {XUSB_STATUS_RESUME_MASK}
2006 * - USB Disconnect received {XUSB_STATUS_DISCONNECT_MASK}
2007 */
2008 xudc_startup_handler(udc, intrstatus);
2009 }
2010
2011 /* Check the buffer completion interrupts */
2012 if (intrstatus & XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK) {
2013 /* Enable Reset, Suspend, Resume and Disconnect */
2014 ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
2015 ier |= XUSB_STATUS_INTR_EVENT_MASK;
2016 udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
2017
2018 if (intrstatus & XUSB_STATUS_EP0_BUFF1_COMP_MASK)
2019 xudc_ctrl_ep_handler(udc, intrstatus);
2020
2021 for (index = 1; index < 8; index++) {
2022 bufintr = ((intrstatus &
2023 (XUSB_STATUS_EP1_BUFF1_COMP_MASK <<
2024 (index - 1))) || (intrstatus &
2025 (XUSB_STATUS_EP1_BUFF2_COMP_MASK <<
2026 (index - 1))));
2027 if (bufintr) {
2028 xudc_nonctrl_ep_handler(udc, index,
2029 intrstatus);
2030 }
2031 }
2032 }
2033
2034 spin_unlock_irqrestore(&udc->lock, flags);
2035 return IRQ_HANDLED;
2036 }
2037
2038 /**
2039 * xudc_probe - The device probe function for driver initialization.
2040 * @pdev: pointer to the platform device structure.
2041 *
2042 * Return: 0 for success and error value on failure
2043 */
xudc_probe(struct platform_device * pdev)2044 static int xudc_probe(struct platform_device *pdev)
2045 {
2046 struct device_node *np = pdev->dev.of_node;
2047 struct resource *res;
2048 struct xusb_udc *udc;
2049 int irq;
2050 int ret;
2051 u32 ier;
2052 u8 *buff;
2053
2054 udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL);
2055 if (!udc)
2056 return -ENOMEM;
2057
2058 /* Create a dummy request for GET_STATUS, SET_ADDRESS */
2059 udc->req = devm_kzalloc(&pdev->dev, sizeof(struct xusb_req),
2060 GFP_KERNEL);
2061 if (!udc->req)
2062 return -ENOMEM;
2063
2064 buff = devm_kzalloc(&pdev->dev, STATUSBUFF_SIZE, GFP_KERNEL);
2065 if (!buff)
2066 return -ENOMEM;
2067
2068 udc->req->usb_req.buf = buff;
2069
2070 /* Map the registers */
2071 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2072 udc->addr = devm_ioremap_resource(&pdev->dev, res);
2073 if (IS_ERR(udc->addr))
2074 return PTR_ERR(udc->addr);
2075
2076 irq = platform_get_irq(pdev, 0);
2077 if (irq < 0)
2078 return irq;
2079 ret = devm_request_irq(&pdev->dev, irq, xudc_irq, 0,
2080 dev_name(&pdev->dev), udc);
2081 if (ret < 0) {
2082 dev_dbg(&pdev->dev, "unable to request irq %d", irq);
2083 goto fail;
2084 }
2085
2086 udc->dma_enabled = of_property_read_bool(np, "xlnx,has-builtin-dma");
2087
2088 /* Setup gadget structure */
2089 udc->gadget.ops = &xusb_udc_ops;
2090 udc->gadget.max_speed = USB_SPEED_HIGH;
2091 udc->gadget.speed = USB_SPEED_UNKNOWN;
2092 udc->gadget.ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO].ep_usb;
2093 udc->gadget.name = driver_name;
2094
2095 spin_lock_init(&udc->lock);
2096
2097 /* Check for IP endianness */
2098 udc->write_fn = xudc_write32_be;
2099 udc->read_fn = xudc_read32_be;
2100 udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, TEST_J);
2101 if ((udc->read_fn(udc->addr + XUSB_TESTMODE_OFFSET))
2102 != TEST_J) {
2103 udc->write_fn = xudc_write32;
2104 udc->read_fn = xudc_read32;
2105 }
2106 udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0);
2107
2108 xudc_eps_init(udc);
2109
2110 /* Set device address to 0.*/
2111 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
2112
2113 ret = usb_add_gadget_udc(&pdev->dev, &udc->gadget);
2114 if (ret)
2115 goto fail;
2116
2117 udc->dev = &udc->gadget.dev;
2118
2119 /* Enable the interrupts.*/
2120 ier = XUSB_STATUS_GLOBAL_INTR_MASK | XUSB_STATUS_INTR_EVENT_MASK |
2121 XUSB_STATUS_FIFO_BUFF_RDY_MASK | XUSB_STATUS_FIFO_BUFF_FREE_MASK |
2122 XUSB_STATUS_SETUP_PACKET_MASK |
2123 XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK;
2124
2125 udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
2126
2127 platform_set_drvdata(pdev, udc);
2128
2129 dev_vdbg(&pdev->dev, "%s at 0x%08X mapped to %p %s\n",
2130 driver_name, (u32)res->start, udc->addr,
2131 udc->dma_enabled ? "with DMA" : "without DMA");
2132
2133 return 0;
2134 fail:
2135 dev_err(&pdev->dev, "probe failed, %d\n", ret);
2136 return ret;
2137 }
2138
2139 /**
2140 * xudc_remove - Releases the resources allocated during the initialization.
2141 * @pdev: pointer to the platform device structure.
2142 *
2143 * Return: 0 always
2144 */
xudc_remove(struct platform_device * pdev)2145 static int xudc_remove(struct platform_device *pdev)
2146 {
2147 struct xusb_udc *udc = platform_get_drvdata(pdev);
2148
2149 usb_del_gadget_udc(&udc->gadget);
2150
2151 return 0;
2152 }
2153
2154 /* Match table for of_platform binding */
2155 static const struct of_device_id usb_of_match[] = {
2156 { .compatible = "xlnx,usb2-device-4.00.a", },
2157 { /* end of list */ },
2158 };
2159 MODULE_DEVICE_TABLE(of, usb_of_match);
2160
2161 static struct platform_driver xudc_driver = {
2162 .driver = {
2163 .name = driver_name,
2164 .of_match_table = usb_of_match,
2165 },
2166 .probe = xudc_probe,
2167 .remove = xudc_remove,
2168 };
2169
2170 module_platform_driver(xudc_driver);
2171
2172 MODULE_DESCRIPTION("Xilinx udc driver");
2173 MODULE_AUTHOR("Xilinx, Inc");
2174 MODULE_LICENSE("GPL");
2175