• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/block_dev.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *  Copyright (C) 2001  Andrea Arcangeli <andrea@suse.de> SuSE
7  */
8 
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/fcntl.h>
12 #include <linux/slab.h>
13 #include <linux/kmod.h>
14 #include <linux/major.h>
15 #include <linux/device_cgroup.h>
16 #include <linux/highmem.h>
17 #include <linux/blkdev.h>
18 #include <linux/backing-dev.h>
19 #include <linux/module.h>
20 #include <linux/blkpg.h>
21 #include <linux/magic.h>
22 #include <linux/dax.h>
23 #include <linux/buffer_head.h>
24 #include <linux/swap.h>
25 #include <linux/pagevec.h>
26 #include <linux/writeback.h>
27 #include <linux/mpage.h>
28 #include <linux/mount.h>
29 #include <linux/pseudo_fs.h>
30 #include <linux/uio.h>
31 #include <linux/namei.h>
32 #include <linux/log2.h>
33 #include <linux/cleancache.h>
34 #include <linux/task_io_accounting_ops.h>
35 #include <linux/falloc.h>
36 #include <linux/uaccess.h>
37 #include "internal.h"
38 
39 struct bdev_inode {
40 	struct block_device bdev;
41 	struct inode vfs_inode;
42 };
43 
44 static const struct address_space_operations def_blk_aops;
45 
BDEV_I(struct inode * inode)46 static inline struct bdev_inode *BDEV_I(struct inode *inode)
47 {
48 	return container_of(inode, struct bdev_inode, vfs_inode);
49 }
50 
I_BDEV(struct inode * inode)51 struct block_device *I_BDEV(struct inode *inode)
52 {
53 	return &BDEV_I(inode)->bdev;
54 }
55 EXPORT_SYMBOL(I_BDEV);
56 
bdev_write_inode(struct block_device * bdev)57 static void bdev_write_inode(struct block_device *bdev)
58 {
59 	struct inode *inode = bdev->bd_inode;
60 	int ret;
61 
62 	spin_lock(&inode->i_lock);
63 	while (inode->i_state & I_DIRTY) {
64 		spin_unlock(&inode->i_lock);
65 		ret = write_inode_now(inode, true);
66 		if (ret) {
67 			char name[BDEVNAME_SIZE];
68 			pr_warn_ratelimited("VFS: Dirty inode writeback failed "
69 					    "for block device %s (err=%d).\n",
70 					    bdevname(bdev, name), ret);
71 		}
72 		spin_lock(&inode->i_lock);
73 	}
74 	spin_unlock(&inode->i_lock);
75 }
76 
77 /* Kill _all_ buffers and pagecache , dirty or not.. */
kill_bdev(struct block_device * bdev)78 void kill_bdev(struct block_device *bdev)
79 {
80 	struct address_space *mapping = bdev->bd_inode->i_mapping;
81 
82 	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
83 		return;
84 
85 	invalidate_bh_lrus();
86 	truncate_inode_pages(mapping, 0);
87 }
88 EXPORT_SYMBOL(kill_bdev);
89 
90 /* Invalidate clean unused buffers and pagecache. */
invalidate_bdev(struct block_device * bdev)91 void invalidate_bdev(struct block_device *bdev)
92 {
93 	struct address_space *mapping = bdev->bd_inode->i_mapping;
94 
95 	if (mapping->nrpages) {
96 		invalidate_bh_lrus();
97 		lru_add_drain_all();	/* make sure all lru add caches are flushed */
98 		invalidate_mapping_pages(mapping, 0, -1);
99 	}
100 	/* 99% of the time, we don't need to flush the cleancache on the bdev.
101 	 * But, for the strange corners, lets be cautious
102 	 */
103 	cleancache_invalidate_inode(mapping);
104 }
105 EXPORT_SYMBOL(invalidate_bdev);
106 
set_init_blocksize(struct block_device * bdev)107 static void set_init_blocksize(struct block_device *bdev)
108 {
109 	unsigned bsize = bdev_logical_block_size(bdev);
110 	loff_t size = i_size_read(bdev->bd_inode);
111 
112 	while (bsize < PAGE_SIZE) {
113 		if (size & bsize)
114 			break;
115 		bsize <<= 1;
116 	}
117 	bdev->bd_block_size = bsize;
118 	bdev->bd_inode->i_blkbits = blksize_bits(bsize);
119 }
120 
set_blocksize(struct block_device * bdev,int size)121 int set_blocksize(struct block_device *bdev, int size)
122 {
123 	/* Size must be a power of two, and between 512 and PAGE_SIZE */
124 	if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
125 		return -EINVAL;
126 
127 	/* Size cannot be smaller than the size supported by the device */
128 	if (size < bdev_logical_block_size(bdev))
129 		return -EINVAL;
130 
131 	/* Don't change the size if it is same as current */
132 	if (bdev->bd_block_size != size) {
133 		sync_blockdev(bdev);
134 		bdev->bd_block_size = size;
135 		bdev->bd_inode->i_blkbits = blksize_bits(size);
136 		kill_bdev(bdev);
137 	}
138 	return 0;
139 }
140 
141 EXPORT_SYMBOL(set_blocksize);
142 
sb_set_blocksize(struct super_block * sb,int size)143 int sb_set_blocksize(struct super_block *sb, int size)
144 {
145 	if (set_blocksize(sb->s_bdev, size))
146 		return 0;
147 	/* If we get here, we know size is power of two
148 	 * and it's value is between 512 and PAGE_SIZE */
149 	sb->s_blocksize = size;
150 	sb->s_blocksize_bits = blksize_bits(size);
151 	return sb->s_blocksize;
152 }
153 
154 EXPORT_SYMBOL(sb_set_blocksize);
155 
sb_min_blocksize(struct super_block * sb,int size)156 int sb_min_blocksize(struct super_block *sb, int size)
157 {
158 	int minsize = bdev_logical_block_size(sb->s_bdev);
159 	if (size < minsize)
160 		size = minsize;
161 	return sb_set_blocksize(sb, size);
162 }
163 
164 EXPORT_SYMBOL(sb_min_blocksize);
165 
166 static int
blkdev_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)167 blkdev_get_block(struct inode *inode, sector_t iblock,
168 		struct buffer_head *bh, int create)
169 {
170 	bh->b_bdev = I_BDEV(inode);
171 	bh->b_blocknr = iblock;
172 	set_buffer_mapped(bh);
173 	return 0;
174 }
175 
bdev_file_inode(struct file * file)176 static struct inode *bdev_file_inode(struct file *file)
177 {
178 	return file->f_mapping->host;
179 }
180 
dio_bio_write_op(struct kiocb * iocb)181 static unsigned int dio_bio_write_op(struct kiocb *iocb)
182 {
183 	unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
184 
185 	/* avoid the need for a I/O completion work item */
186 	if (iocb->ki_flags & IOCB_DSYNC)
187 		op |= REQ_FUA;
188 	return op;
189 }
190 
191 #define DIO_INLINE_BIO_VECS 4
192 
blkdev_bio_end_io_simple(struct bio * bio)193 static void blkdev_bio_end_io_simple(struct bio *bio)
194 {
195 	struct task_struct *waiter = bio->bi_private;
196 
197 	WRITE_ONCE(bio->bi_private, NULL);
198 	blk_wake_io_task(waiter);
199 }
200 
201 static ssize_t
__blkdev_direct_IO_simple(struct kiocb * iocb,struct iov_iter * iter,int nr_pages)202 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
203 		int nr_pages)
204 {
205 	struct file *file = iocb->ki_filp;
206 	struct block_device *bdev = I_BDEV(bdev_file_inode(file));
207 	struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs;
208 	loff_t pos = iocb->ki_pos;
209 	bool should_dirty = false;
210 	struct bio bio;
211 	ssize_t ret;
212 	blk_qc_t qc;
213 
214 	if ((pos | iov_iter_alignment(iter)) &
215 	    (bdev_logical_block_size(bdev) - 1))
216 		return -EINVAL;
217 
218 	if (nr_pages <= DIO_INLINE_BIO_VECS)
219 		vecs = inline_vecs;
220 	else {
221 		vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec),
222 				     GFP_KERNEL);
223 		if (!vecs)
224 			return -ENOMEM;
225 	}
226 
227 	bio_init(&bio, vecs, nr_pages);
228 	bio_set_dev(&bio, bdev);
229 	bio.bi_iter.bi_sector = pos >> 9;
230 	bio.bi_write_hint = iocb->ki_hint;
231 	bio.bi_private = current;
232 	bio.bi_end_io = blkdev_bio_end_io_simple;
233 	bio.bi_ioprio = iocb->ki_ioprio;
234 
235 	ret = bio_iov_iter_get_pages(&bio, iter);
236 	if (unlikely(ret))
237 		goto out;
238 	ret = bio.bi_iter.bi_size;
239 
240 	if (iov_iter_rw(iter) == READ) {
241 		bio.bi_opf = REQ_OP_READ;
242 		if (iter_is_iovec(iter))
243 			should_dirty = true;
244 	} else {
245 		bio.bi_opf = dio_bio_write_op(iocb);
246 		task_io_account_write(ret);
247 	}
248 	if (iocb->ki_flags & IOCB_HIPRI)
249 		bio_set_polled(&bio, iocb);
250 
251 	qc = submit_bio(&bio);
252 	for (;;) {
253 		set_current_state(TASK_UNINTERRUPTIBLE);
254 		if (!READ_ONCE(bio.bi_private))
255 			break;
256 		if (!(iocb->ki_flags & IOCB_HIPRI) ||
257 		    !blk_poll(bdev_get_queue(bdev), qc, true))
258 			io_schedule();
259 	}
260 	__set_current_state(TASK_RUNNING);
261 
262 	bio_release_pages(&bio, should_dirty);
263 	if (unlikely(bio.bi_status))
264 		ret = blk_status_to_errno(bio.bi_status);
265 
266 out:
267 	if (vecs != inline_vecs)
268 		kfree(vecs);
269 
270 	bio_uninit(&bio);
271 
272 	return ret;
273 }
274 
275 struct blkdev_dio {
276 	union {
277 		struct kiocb		*iocb;
278 		struct task_struct	*waiter;
279 	};
280 	size_t			size;
281 	atomic_t		ref;
282 	bool			multi_bio : 1;
283 	bool			should_dirty : 1;
284 	bool			is_sync : 1;
285 	struct bio		bio;
286 };
287 
288 static struct bio_set blkdev_dio_pool;
289 
blkdev_iopoll(struct kiocb * kiocb,bool wait)290 static int blkdev_iopoll(struct kiocb *kiocb, bool wait)
291 {
292 	struct block_device *bdev = I_BDEV(kiocb->ki_filp->f_mapping->host);
293 	struct request_queue *q = bdev_get_queue(bdev);
294 
295 	return blk_poll(q, READ_ONCE(kiocb->ki_cookie), wait);
296 }
297 
blkdev_bio_end_io(struct bio * bio)298 static void blkdev_bio_end_io(struct bio *bio)
299 {
300 	struct blkdev_dio *dio = bio->bi_private;
301 	bool should_dirty = dio->should_dirty;
302 
303 	if (bio->bi_status && !dio->bio.bi_status)
304 		dio->bio.bi_status = bio->bi_status;
305 
306 	if (!dio->multi_bio || atomic_dec_and_test(&dio->ref)) {
307 		if (!dio->is_sync) {
308 			struct kiocb *iocb = dio->iocb;
309 			ssize_t ret;
310 
311 			if (likely(!dio->bio.bi_status)) {
312 				ret = dio->size;
313 				iocb->ki_pos += ret;
314 			} else {
315 				ret = blk_status_to_errno(dio->bio.bi_status);
316 			}
317 
318 			dio->iocb->ki_complete(iocb, ret, 0);
319 			if (dio->multi_bio)
320 				bio_put(&dio->bio);
321 		} else {
322 			struct task_struct *waiter = dio->waiter;
323 
324 			WRITE_ONCE(dio->waiter, NULL);
325 			blk_wake_io_task(waiter);
326 		}
327 	}
328 
329 	if (should_dirty) {
330 		bio_check_pages_dirty(bio);
331 	} else {
332 		bio_release_pages(bio, false);
333 		bio_put(bio);
334 	}
335 }
336 
337 static ssize_t
__blkdev_direct_IO(struct kiocb * iocb,struct iov_iter * iter,int nr_pages)338 __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
339 {
340 	struct file *file = iocb->ki_filp;
341 	struct inode *inode = bdev_file_inode(file);
342 	struct block_device *bdev = I_BDEV(inode);
343 	struct blk_plug plug;
344 	struct blkdev_dio *dio;
345 	struct bio *bio;
346 	bool is_poll = (iocb->ki_flags & IOCB_HIPRI) != 0;
347 	bool is_read = (iov_iter_rw(iter) == READ), is_sync;
348 	loff_t pos = iocb->ki_pos;
349 	blk_qc_t qc = BLK_QC_T_NONE;
350 	int ret = 0;
351 
352 	if ((pos | iov_iter_alignment(iter)) &
353 	    (bdev_logical_block_size(bdev) - 1))
354 		return -EINVAL;
355 
356 	bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool);
357 
358 	dio = container_of(bio, struct blkdev_dio, bio);
359 	dio->is_sync = is_sync = is_sync_kiocb(iocb);
360 	if (dio->is_sync) {
361 		dio->waiter = current;
362 		bio_get(bio);
363 	} else {
364 		dio->iocb = iocb;
365 	}
366 
367 	dio->size = 0;
368 	dio->multi_bio = false;
369 	dio->should_dirty = is_read && iter_is_iovec(iter);
370 
371 	/*
372 	 * Don't plug for HIPRI/polled IO, as those should go straight
373 	 * to issue
374 	 */
375 	if (!is_poll)
376 		blk_start_plug(&plug);
377 
378 	for (;;) {
379 		bio_set_dev(bio, bdev);
380 		bio->bi_iter.bi_sector = pos >> 9;
381 		bio->bi_write_hint = iocb->ki_hint;
382 		bio->bi_private = dio;
383 		bio->bi_end_io = blkdev_bio_end_io;
384 		bio->bi_ioprio = iocb->ki_ioprio;
385 
386 		ret = bio_iov_iter_get_pages(bio, iter);
387 		if (unlikely(ret)) {
388 			bio->bi_status = BLK_STS_IOERR;
389 			bio_endio(bio);
390 			break;
391 		}
392 
393 		if (is_read) {
394 			bio->bi_opf = REQ_OP_READ;
395 			if (dio->should_dirty)
396 				bio_set_pages_dirty(bio);
397 		} else {
398 			bio->bi_opf = dio_bio_write_op(iocb);
399 			task_io_account_write(bio->bi_iter.bi_size);
400 		}
401 
402 		dio->size += bio->bi_iter.bi_size;
403 		pos += bio->bi_iter.bi_size;
404 
405 		nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
406 		if (!nr_pages) {
407 			bool polled = false;
408 
409 			if (iocb->ki_flags & IOCB_HIPRI) {
410 				bio_set_polled(bio, iocb);
411 				polled = true;
412 			}
413 
414 			qc = submit_bio(bio);
415 
416 			if (polled)
417 				WRITE_ONCE(iocb->ki_cookie, qc);
418 			break;
419 		}
420 
421 		if (!dio->multi_bio) {
422 			/*
423 			 * AIO needs an extra reference to ensure the dio
424 			 * structure which is embedded into the first bio
425 			 * stays around.
426 			 */
427 			if (!is_sync)
428 				bio_get(bio);
429 			dio->multi_bio = true;
430 			atomic_set(&dio->ref, 2);
431 		} else {
432 			atomic_inc(&dio->ref);
433 		}
434 
435 		submit_bio(bio);
436 		bio = bio_alloc(GFP_KERNEL, nr_pages);
437 	}
438 
439 	if (!is_poll)
440 		blk_finish_plug(&plug);
441 
442 	if (!is_sync)
443 		return -EIOCBQUEUED;
444 
445 	for (;;) {
446 		set_current_state(TASK_UNINTERRUPTIBLE);
447 		if (!READ_ONCE(dio->waiter))
448 			break;
449 
450 		if (!(iocb->ki_flags & IOCB_HIPRI) ||
451 		    !blk_poll(bdev_get_queue(bdev), qc, true))
452 			io_schedule();
453 	}
454 	__set_current_state(TASK_RUNNING);
455 
456 	if (!ret)
457 		ret = blk_status_to_errno(dio->bio.bi_status);
458 	if (likely(!ret))
459 		ret = dio->size;
460 
461 	bio_put(&dio->bio);
462 	return ret;
463 }
464 
465 static ssize_t
blkdev_direct_IO(struct kiocb * iocb,struct iov_iter * iter)466 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
467 {
468 	int nr_pages;
469 
470 	nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
471 	if (!nr_pages)
472 		return 0;
473 	if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
474 		return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
475 
476 	return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
477 }
478 
blkdev_init(void)479 static __init int blkdev_init(void)
480 {
481 	return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS);
482 }
483 module_init(blkdev_init);
484 
__sync_blockdev(struct block_device * bdev,int wait)485 int __sync_blockdev(struct block_device *bdev, int wait)
486 {
487 	if (!bdev)
488 		return 0;
489 	if (!wait)
490 		return filemap_flush(bdev->bd_inode->i_mapping);
491 	return filemap_write_and_wait(bdev->bd_inode->i_mapping);
492 }
493 
494 /*
495  * Write out and wait upon all the dirty data associated with a block
496  * device via its mapping.  Does not take the superblock lock.
497  */
sync_blockdev(struct block_device * bdev)498 int sync_blockdev(struct block_device *bdev)
499 {
500 	return __sync_blockdev(bdev, 1);
501 }
502 EXPORT_SYMBOL(sync_blockdev);
503 
504 /*
505  * Write out and wait upon all dirty data associated with this
506  * device.   Filesystem data as well as the underlying block
507  * device.  Takes the superblock lock.
508  */
fsync_bdev(struct block_device * bdev)509 int fsync_bdev(struct block_device *bdev)
510 {
511 	struct super_block *sb = get_super(bdev);
512 	if (sb) {
513 		int res = sync_filesystem(sb);
514 		drop_super(sb);
515 		return res;
516 	}
517 	return sync_blockdev(bdev);
518 }
519 EXPORT_SYMBOL(fsync_bdev);
520 
521 /**
522  * freeze_bdev  --  lock a filesystem and force it into a consistent state
523  * @bdev:	blockdevice to lock
524  *
525  * If a superblock is found on this device, we take the s_umount semaphore
526  * on it to make sure nobody unmounts until the snapshot creation is done.
527  * The reference counter (bd_fsfreeze_count) guarantees that only the last
528  * unfreeze process can unfreeze the frozen filesystem actually when multiple
529  * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
530  * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
531  * actually.
532  */
freeze_bdev(struct block_device * bdev)533 struct super_block *freeze_bdev(struct block_device *bdev)
534 {
535 	struct super_block *sb;
536 	int error = 0;
537 
538 	mutex_lock(&bdev->bd_fsfreeze_mutex);
539 	if (++bdev->bd_fsfreeze_count > 1) {
540 		/*
541 		 * We don't even need to grab a reference - the first call
542 		 * to freeze_bdev grab an active reference and only the last
543 		 * thaw_bdev drops it.
544 		 */
545 		sb = get_super(bdev);
546 		if (sb)
547 			drop_super(sb);
548 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
549 		return sb;
550 	}
551 
552 	sb = get_active_super(bdev);
553 	if (!sb)
554 		goto out;
555 	if (sb->s_op->freeze_super)
556 		error = sb->s_op->freeze_super(sb);
557 	else
558 		error = freeze_super(sb);
559 	if (error) {
560 		deactivate_super(sb);
561 		bdev->bd_fsfreeze_count--;
562 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
563 		return ERR_PTR(error);
564 	}
565 	deactivate_super(sb);
566  out:
567 	sync_blockdev(bdev);
568 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
569 	return sb;	/* thaw_bdev releases s->s_umount */
570 }
571 EXPORT_SYMBOL(freeze_bdev);
572 
573 /**
574  * thaw_bdev  -- unlock filesystem
575  * @bdev:	blockdevice to unlock
576  * @sb:		associated superblock
577  *
578  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
579  */
thaw_bdev(struct block_device * bdev,struct super_block * sb)580 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
581 {
582 	int error = -EINVAL;
583 
584 	mutex_lock(&bdev->bd_fsfreeze_mutex);
585 	if (!bdev->bd_fsfreeze_count)
586 		goto out;
587 
588 	error = 0;
589 	if (--bdev->bd_fsfreeze_count > 0)
590 		goto out;
591 
592 	if (!sb)
593 		goto out;
594 
595 	if (sb->s_op->thaw_super)
596 		error = sb->s_op->thaw_super(sb);
597 	else
598 		error = thaw_super(sb);
599 	if (error)
600 		bdev->bd_fsfreeze_count++;
601 out:
602 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
603 	return error;
604 }
605 EXPORT_SYMBOL(thaw_bdev);
606 
blkdev_writepage(struct page * page,struct writeback_control * wbc)607 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
608 {
609 	return block_write_full_page(page, blkdev_get_block, wbc);
610 }
611 
blkdev_readpage(struct file * file,struct page * page)612 static int blkdev_readpage(struct file * file, struct page * page)
613 {
614 	return block_read_full_page(page, blkdev_get_block);
615 }
616 
blkdev_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)617 static int blkdev_readpages(struct file *file, struct address_space *mapping,
618 			struct list_head *pages, unsigned nr_pages)
619 {
620 	return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
621 }
622 
blkdev_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)623 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
624 			loff_t pos, unsigned len, unsigned flags,
625 			struct page **pagep, void **fsdata)
626 {
627 	return block_write_begin(mapping, pos, len, flags, pagep,
628 				 blkdev_get_block);
629 }
630 
blkdev_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)631 static int blkdev_write_end(struct file *file, struct address_space *mapping,
632 			loff_t pos, unsigned len, unsigned copied,
633 			struct page *page, void *fsdata)
634 {
635 	int ret;
636 	ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
637 
638 	unlock_page(page);
639 	put_page(page);
640 
641 	return ret;
642 }
643 
644 /*
645  * private llseek:
646  * for a block special file file_inode(file)->i_size is zero
647  * so we compute the size by hand (just as in block_read/write above)
648  */
block_llseek(struct file * file,loff_t offset,int whence)649 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
650 {
651 	struct inode *bd_inode = bdev_file_inode(file);
652 	loff_t retval;
653 
654 	inode_lock(bd_inode);
655 	retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
656 	inode_unlock(bd_inode);
657 	return retval;
658 }
659 
blkdev_fsync(struct file * filp,loff_t start,loff_t end,int datasync)660 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
661 {
662 	struct inode *bd_inode = bdev_file_inode(filp);
663 	struct block_device *bdev = I_BDEV(bd_inode);
664 	int error;
665 
666 	error = file_write_and_wait_range(filp, start, end);
667 	if (error)
668 		return error;
669 
670 	/*
671 	 * There is no need to serialise calls to blkdev_issue_flush with
672 	 * i_mutex and doing so causes performance issues with concurrent
673 	 * O_SYNC writers to a block device.
674 	 */
675 	error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
676 	if (error == -EOPNOTSUPP)
677 		error = 0;
678 
679 	return error;
680 }
681 EXPORT_SYMBOL(blkdev_fsync);
682 
683 /**
684  * bdev_read_page() - Start reading a page from a block device
685  * @bdev: The device to read the page from
686  * @sector: The offset on the device to read the page to (need not be aligned)
687  * @page: The page to read
688  *
689  * On entry, the page should be locked.  It will be unlocked when the page
690  * has been read.  If the block driver implements rw_page synchronously,
691  * that will be true on exit from this function, but it need not be.
692  *
693  * Errors returned by this function are usually "soft", eg out of memory, or
694  * queue full; callers should try a different route to read this page rather
695  * than propagate an error back up the stack.
696  *
697  * Return: negative errno if an error occurs, 0 if submission was successful.
698  */
bdev_read_page(struct block_device * bdev,sector_t sector,struct page * page)699 int bdev_read_page(struct block_device *bdev, sector_t sector,
700 			struct page *page)
701 {
702 	const struct block_device_operations *ops = bdev->bd_disk->fops;
703 	int result = -EOPNOTSUPP;
704 
705 	if (!ops->rw_page || bdev_get_integrity(bdev))
706 		return result;
707 
708 	result = blk_queue_enter(bdev->bd_queue, 0);
709 	if (result)
710 		return result;
711 	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
712 			      REQ_OP_READ);
713 	blk_queue_exit(bdev->bd_queue);
714 	return result;
715 }
716 EXPORT_SYMBOL_GPL(bdev_read_page);
717 
718 /**
719  * bdev_write_page() - Start writing a page to a block device
720  * @bdev: The device to write the page to
721  * @sector: The offset on the device to write the page to (need not be aligned)
722  * @page: The page to write
723  * @wbc: The writeback_control for the write
724  *
725  * On entry, the page should be locked and not currently under writeback.
726  * On exit, if the write started successfully, the page will be unlocked and
727  * under writeback.  If the write failed already (eg the driver failed to
728  * queue the page to the device), the page will still be locked.  If the
729  * caller is a ->writepage implementation, it will need to unlock the page.
730  *
731  * Errors returned by this function are usually "soft", eg out of memory, or
732  * queue full; callers should try a different route to write this page rather
733  * than propagate an error back up the stack.
734  *
735  * Return: negative errno if an error occurs, 0 if submission was successful.
736  */
bdev_write_page(struct block_device * bdev,sector_t sector,struct page * page,struct writeback_control * wbc)737 int bdev_write_page(struct block_device *bdev, sector_t sector,
738 			struct page *page, struct writeback_control *wbc)
739 {
740 	int result;
741 	const struct block_device_operations *ops = bdev->bd_disk->fops;
742 
743 	if (!ops->rw_page || bdev_get_integrity(bdev))
744 		return -EOPNOTSUPP;
745 	result = blk_queue_enter(bdev->bd_queue, 0);
746 	if (result)
747 		return result;
748 
749 	set_page_writeback(page);
750 	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
751 			      REQ_OP_WRITE);
752 	if (result) {
753 		end_page_writeback(page);
754 	} else {
755 		clean_page_buffers(page);
756 		unlock_page(page);
757 	}
758 	blk_queue_exit(bdev->bd_queue);
759 	return result;
760 }
761 EXPORT_SYMBOL_GPL(bdev_write_page);
762 
763 /*
764  * pseudo-fs
765  */
766 
767 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
768 static struct kmem_cache * bdev_cachep __read_mostly;
769 
bdev_alloc_inode(struct super_block * sb)770 static struct inode *bdev_alloc_inode(struct super_block *sb)
771 {
772 	struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
773 	if (!ei)
774 		return NULL;
775 	return &ei->vfs_inode;
776 }
777 
bdev_free_inode(struct inode * inode)778 static void bdev_free_inode(struct inode *inode)
779 {
780 	kmem_cache_free(bdev_cachep, BDEV_I(inode));
781 }
782 
init_once(void * foo)783 static void init_once(void *foo)
784 {
785 	struct bdev_inode *ei = (struct bdev_inode *) foo;
786 	struct block_device *bdev = &ei->bdev;
787 
788 	memset(bdev, 0, sizeof(*bdev));
789 	mutex_init(&bdev->bd_mutex);
790 	INIT_LIST_HEAD(&bdev->bd_list);
791 #ifdef CONFIG_SYSFS
792 	INIT_LIST_HEAD(&bdev->bd_holder_disks);
793 #endif
794 	bdev->bd_bdi = &noop_backing_dev_info;
795 	inode_init_once(&ei->vfs_inode);
796 	/* Initialize mutex for freeze. */
797 	mutex_init(&bdev->bd_fsfreeze_mutex);
798 }
799 
bdev_evict_inode(struct inode * inode)800 static void bdev_evict_inode(struct inode *inode)
801 {
802 	struct block_device *bdev = &BDEV_I(inode)->bdev;
803 	truncate_inode_pages_final(&inode->i_data);
804 	invalidate_inode_buffers(inode); /* is it needed here? */
805 	clear_inode(inode);
806 	spin_lock(&bdev_lock);
807 	list_del_init(&bdev->bd_list);
808 	spin_unlock(&bdev_lock);
809 	/* Detach inode from wb early as bdi_put() may free bdi->wb */
810 	inode_detach_wb(inode);
811 	if (bdev->bd_bdi != &noop_backing_dev_info) {
812 		bdi_put(bdev->bd_bdi);
813 		bdev->bd_bdi = &noop_backing_dev_info;
814 	}
815 }
816 
817 static const struct super_operations bdev_sops = {
818 	.statfs = simple_statfs,
819 	.alloc_inode = bdev_alloc_inode,
820 	.free_inode = bdev_free_inode,
821 	.drop_inode = generic_delete_inode,
822 	.evict_inode = bdev_evict_inode,
823 };
824 
bd_init_fs_context(struct fs_context * fc)825 static int bd_init_fs_context(struct fs_context *fc)
826 {
827 	struct pseudo_fs_context *ctx = init_pseudo(fc, BDEVFS_MAGIC);
828 	if (!ctx)
829 		return -ENOMEM;
830 	fc->s_iflags |= SB_I_CGROUPWB;
831 	ctx->ops = &bdev_sops;
832 	return 0;
833 }
834 
835 static struct file_system_type bd_type = {
836 	.name		= "bdev",
837 	.init_fs_context = bd_init_fs_context,
838 	.kill_sb	= kill_anon_super,
839 };
840 
841 struct super_block *blockdev_superblock __read_mostly;
842 EXPORT_SYMBOL_GPL(blockdev_superblock);
843 
bdev_cache_init(void)844 void __init bdev_cache_init(void)
845 {
846 	int err;
847 	static struct vfsmount *bd_mnt;
848 
849 	bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
850 			0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
851 				SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
852 			init_once);
853 	err = register_filesystem(&bd_type);
854 	if (err)
855 		panic("Cannot register bdev pseudo-fs");
856 	bd_mnt = kern_mount(&bd_type);
857 	if (IS_ERR(bd_mnt))
858 		panic("Cannot create bdev pseudo-fs");
859 	blockdev_superblock = bd_mnt->mnt_sb;   /* For writeback */
860 }
861 
862 /*
863  * Most likely _very_ bad one - but then it's hardly critical for small
864  * /dev and can be fixed when somebody will need really large one.
865  * Keep in mind that it will be fed through icache hash function too.
866  */
hash(dev_t dev)867 static inline unsigned long hash(dev_t dev)
868 {
869 	return MAJOR(dev)+MINOR(dev);
870 }
871 
bdev_test(struct inode * inode,void * data)872 static int bdev_test(struct inode *inode, void *data)
873 {
874 	return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
875 }
876 
bdev_set(struct inode * inode,void * data)877 static int bdev_set(struct inode *inode, void *data)
878 {
879 	BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
880 	return 0;
881 }
882 
883 static LIST_HEAD(all_bdevs);
884 
885 /*
886  * If there is a bdev inode for this device, unhash it so that it gets evicted
887  * as soon as last inode reference is dropped.
888  */
bdev_unhash_inode(dev_t dev)889 void bdev_unhash_inode(dev_t dev)
890 {
891 	struct inode *inode;
892 
893 	inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev);
894 	if (inode) {
895 		remove_inode_hash(inode);
896 		iput(inode);
897 	}
898 }
899 
bdget(dev_t dev)900 struct block_device *bdget(dev_t dev)
901 {
902 	struct block_device *bdev;
903 	struct inode *inode;
904 
905 	inode = iget5_locked(blockdev_superblock, hash(dev),
906 			bdev_test, bdev_set, &dev);
907 
908 	if (!inode)
909 		return NULL;
910 
911 	bdev = &BDEV_I(inode)->bdev;
912 
913 	if (inode->i_state & I_NEW) {
914 		bdev->bd_contains = NULL;
915 		bdev->bd_super = NULL;
916 		bdev->bd_inode = inode;
917 		bdev->bd_block_size = i_blocksize(inode);
918 		bdev->bd_part_count = 0;
919 		bdev->bd_invalidated = 0;
920 		inode->i_mode = S_IFBLK;
921 		inode->i_rdev = dev;
922 		inode->i_bdev = bdev;
923 		inode->i_data.a_ops = &def_blk_aops;
924 		mapping_set_gfp_mask(&inode->i_data, GFP_USER);
925 		spin_lock(&bdev_lock);
926 		list_add(&bdev->bd_list, &all_bdevs);
927 		spin_unlock(&bdev_lock);
928 		unlock_new_inode(inode);
929 	}
930 	return bdev;
931 }
932 
933 EXPORT_SYMBOL(bdget);
934 
935 /**
936  * bdgrab -- Grab a reference to an already referenced block device
937  * @bdev:	Block device to grab a reference to.
938  */
bdgrab(struct block_device * bdev)939 struct block_device *bdgrab(struct block_device *bdev)
940 {
941 	ihold(bdev->bd_inode);
942 	return bdev;
943 }
944 EXPORT_SYMBOL(bdgrab);
945 
nr_blockdev_pages(void)946 long nr_blockdev_pages(void)
947 {
948 	struct block_device *bdev;
949 	long ret = 0;
950 	spin_lock(&bdev_lock);
951 	list_for_each_entry(bdev, &all_bdevs, bd_list) {
952 		ret += bdev->bd_inode->i_mapping->nrpages;
953 	}
954 	spin_unlock(&bdev_lock);
955 	return ret;
956 }
957 
bdput(struct block_device * bdev)958 void bdput(struct block_device *bdev)
959 {
960 	iput(bdev->bd_inode);
961 }
962 
963 EXPORT_SYMBOL(bdput);
964 
bd_acquire(struct inode * inode)965 static struct block_device *bd_acquire(struct inode *inode)
966 {
967 	struct block_device *bdev;
968 
969 	spin_lock(&bdev_lock);
970 	bdev = inode->i_bdev;
971 	if (bdev && !inode_unhashed(bdev->bd_inode)) {
972 		bdgrab(bdev);
973 		spin_unlock(&bdev_lock);
974 		return bdev;
975 	}
976 	spin_unlock(&bdev_lock);
977 
978 	/*
979 	 * i_bdev references block device inode that was already shut down
980 	 * (corresponding device got removed).  Remove the reference and look
981 	 * up block device inode again just in case new device got
982 	 * reestablished under the same device number.
983 	 */
984 	if (bdev)
985 		bd_forget(inode);
986 
987 	bdev = bdget(inode->i_rdev);
988 	if (bdev) {
989 		spin_lock(&bdev_lock);
990 		if (!inode->i_bdev) {
991 			/*
992 			 * We take an additional reference to bd_inode,
993 			 * and it's released in clear_inode() of inode.
994 			 * So, we can access it via ->i_mapping always
995 			 * without igrab().
996 			 */
997 			bdgrab(bdev);
998 			inode->i_bdev = bdev;
999 			inode->i_mapping = bdev->bd_inode->i_mapping;
1000 		}
1001 		spin_unlock(&bdev_lock);
1002 	}
1003 	return bdev;
1004 }
1005 
1006 /* Call when you free inode */
1007 
bd_forget(struct inode * inode)1008 void bd_forget(struct inode *inode)
1009 {
1010 	struct block_device *bdev = NULL;
1011 
1012 	spin_lock(&bdev_lock);
1013 	if (!sb_is_blkdev_sb(inode->i_sb))
1014 		bdev = inode->i_bdev;
1015 	inode->i_bdev = NULL;
1016 	inode->i_mapping = &inode->i_data;
1017 	spin_unlock(&bdev_lock);
1018 
1019 	if (bdev)
1020 		bdput(bdev);
1021 }
1022 
1023 /**
1024  * bd_may_claim - test whether a block device can be claimed
1025  * @bdev: block device of interest
1026  * @whole: whole block device containing @bdev, may equal @bdev
1027  * @holder: holder trying to claim @bdev
1028  *
1029  * Test whether @bdev can be claimed by @holder.
1030  *
1031  * CONTEXT:
1032  * spin_lock(&bdev_lock).
1033  *
1034  * RETURNS:
1035  * %true if @bdev can be claimed, %false otherwise.
1036  */
bd_may_claim(struct block_device * bdev,struct block_device * whole,void * holder)1037 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1038 			 void *holder)
1039 {
1040 	if (bdev->bd_holder == holder)
1041 		return true;	 /* already a holder */
1042 	else if (bdev->bd_holder != NULL)
1043 		return false; 	 /* held by someone else */
1044 	else if (whole == bdev)
1045 		return true;  	 /* is a whole device which isn't held */
1046 
1047 	else if (whole->bd_holder == bd_may_claim)
1048 		return true; 	 /* is a partition of a device that is being partitioned */
1049 	else if (whole->bd_holder != NULL)
1050 		return false;	 /* is a partition of a held device */
1051 	else
1052 		return true;	 /* is a partition of an un-held device */
1053 }
1054 
1055 /**
1056  * bd_prepare_to_claim - prepare to claim a block device
1057  * @bdev: block device of interest
1058  * @whole: the whole device containing @bdev, may equal @bdev
1059  * @holder: holder trying to claim @bdev
1060  *
1061  * Prepare to claim @bdev.  This function fails if @bdev is already
1062  * claimed by another holder and waits if another claiming is in
1063  * progress.  This function doesn't actually claim.  On successful
1064  * return, the caller has ownership of bd_claiming and bd_holder[s].
1065  *
1066  * CONTEXT:
1067  * spin_lock(&bdev_lock).  Might release bdev_lock, sleep and regrab
1068  * it multiple times.
1069  *
1070  * RETURNS:
1071  * 0 if @bdev can be claimed, -EBUSY otherwise.
1072  */
bd_prepare_to_claim(struct block_device * bdev,struct block_device * whole,void * holder)1073 static int bd_prepare_to_claim(struct block_device *bdev,
1074 			       struct block_device *whole, void *holder)
1075 {
1076 retry:
1077 	/* if someone else claimed, fail */
1078 	if (!bd_may_claim(bdev, whole, holder))
1079 		return -EBUSY;
1080 
1081 	/* if claiming is already in progress, wait for it to finish */
1082 	if (whole->bd_claiming) {
1083 		wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1084 		DEFINE_WAIT(wait);
1085 
1086 		prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1087 		spin_unlock(&bdev_lock);
1088 		schedule();
1089 		finish_wait(wq, &wait);
1090 		spin_lock(&bdev_lock);
1091 		goto retry;
1092 	}
1093 
1094 	/* yay, all mine */
1095 	return 0;
1096 }
1097 
bdev_get_gendisk(struct block_device * bdev,int * partno)1098 static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno)
1099 {
1100 	struct gendisk *disk = get_gendisk(bdev->bd_dev, partno);
1101 
1102 	if (!disk)
1103 		return NULL;
1104 	/*
1105 	 * Now that we hold gendisk reference we make sure bdev we looked up is
1106 	 * not stale. If it is, it means device got removed and created before
1107 	 * we looked up gendisk and we fail open in such case. Associating
1108 	 * unhashed bdev with newly created gendisk could lead to two bdevs
1109 	 * (and thus two independent caches) being associated with one device
1110 	 * which is bad.
1111 	 */
1112 	if (inode_unhashed(bdev->bd_inode)) {
1113 		put_disk_and_module(disk);
1114 		return NULL;
1115 	}
1116 	return disk;
1117 }
1118 
1119 /**
1120  * bd_start_claiming - start claiming a block device
1121  * @bdev: block device of interest
1122  * @holder: holder trying to claim @bdev
1123  *
1124  * @bdev is about to be opened exclusively.  Check @bdev can be opened
1125  * exclusively and mark that an exclusive open is in progress.  Each
1126  * successful call to this function must be matched with a call to
1127  * either bd_finish_claiming() or bd_abort_claiming() (which do not
1128  * fail).
1129  *
1130  * This function is used to gain exclusive access to the block device
1131  * without actually causing other exclusive open attempts to fail. It
1132  * should be used when the open sequence itself requires exclusive
1133  * access but may subsequently fail.
1134  *
1135  * CONTEXT:
1136  * Might sleep.
1137  *
1138  * RETURNS:
1139  * Pointer to the block device containing @bdev on success, ERR_PTR()
1140  * value on failure.
1141  */
bd_start_claiming(struct block_device * bdev,void * holder)1142 struct block_device *bd_start_claiming(struct block_device *bdev, void *holder)
1143 {
1144 	struct gendisk *disk;
1145 	struct block_device *whole;
1146 	int partno, err;
1147 
1148 	might_sleep();
1149 
1150 	/*
1151 	 * @bdev might not have been initialized properly yet, look up
1152 	 * and grab the outer block device the hard way.
1153 	 */
1154 	disk = bdev_get_gendisk(bdev, &partno);
1155 	if (!disk)
1156 		return ERR_PTR(-ENXIO);
1157 
1158 	/*
1159 	 * Normally, @bdev should equal what's returned from bdget_disk()
1160 	 * if partno is 0; however, some drivers (floppy) use multiple
1161 	 * bdev's for the same physical device and @bdev may be one of the
1162 	 * aliases.  Keep @bdev if partno is 0.  This means claimer
1163 	 * tracking is broken for those devices but it has always been that
1164 	 * way.
1165 	 */
1166 	if (partno)
1167 		whole = bdget_disk(disk, 0);
1168 	else
1169 		whole = bdgrab(bdev);
1170 
1171 	put_disk_and_module(disk);
1172 	if (!whole)
1173 		return ERR_PTR(-ENOMEM);
1174 
1175 	/* prepare to claim, if successful, mark claiming in progress */
1176 	spin_lock(&bdev_lock);
1177 
1178 	err = bd_prepare_to_claim(bdev, whole, holder);
1179 	if (err == 0) {
1180 		whole->bd_claiming = holder;
1181 		spin_unlock(&bdev_lock);
1182 		return whole;
1183 	} else {
1184 		spin_unlock(&bdev_lock);
1185 		bdput(whole);
1186 		return ERR_PTR(err);
1187 	}
1188 }
1189 EXPORT_SYMBOL(bd_start_claiming);
1190 
bd_clear_claiming(struct block_device * whole,void * holder)1191 static void bd_clear_claiming(struct block_device *whole, void *holder)
1192 {
1193 	lockdep_assert_held(&bdev_lock);
1194 	/* tell others that we're done */
1195 	BUG_ON(whole->bd_claiming != holder);
1196 	whole->bd_claiming = NULL;
1197 	wake_up_bit(&whole->bd_claiming, 0);
1198 }
1199 
1200 /**
1201  * bd_finish_claiming - finish claiming of a block device
1202  * @bdev: block device of interest
1203  * @whole: whole block device (returned from bd_start_claiming())
1204  * @holder: holder that has claimed @bdev
1205  *
1206  * Finish exclusive open of a block device. Mark the device as exlusively
1207  * open by the holder and wake up all waiters for exclusive open to finish.
1208  */
bd_finish_claiming(struct block_device * bdev,struct block_device * whole,void * holder)1209 void bd_finish_claiming(struct block_device *bdev, struct block_device *whole,
1210 			void *holder)
1211 {
1212 	spin_lock(&bdev_lock);
1213 	BUG_ON(!bd_may_claim(bdev, whole, holder));
1214 	/*
1215 	 * Note that for a whole device bd_holders will be incremented twice,
1216 	 * and bd_holder will be set to bd_may_claim before being set to holder
1217 	 */
1218 	whole->bd_holders++;
1219 	whole->bd_holder = bd_may_claim;
1220 	bdev->bd_holders++;
1221 	bdev->bd_holder = holder;
1222 	bd_clear_claiming(whole, holder);
1223 	spin_unlock(&bdev_lock);
1224 }
1225 EXPORT_SYMBOL(bd_finish_claiming);
1226 
1227 /**
1228  * bd_abort_claiming - abort claiming of a block device
1229  * @bdev: block device of interest
1230  * @whole: whole block device (returned from bd_start_claiming())
1231  * @holder: holder that has claimed @bdev
1232  *
1233  * Abort claiming of a block device when the exclusive open failed. This can be
1234  * also used when exclusive open is not actually desired and we just needed
1235  * to block other exclusive openers for a while.
1236  */
bd_abort_claiming(struct block_device * bdev,struct block_device * whole,void * holder)1237 void bd_abort_claiming(struct block_device *bdev, struct block_device *whole,
1238 		       void *holder)
1239 {
1240 	spin_lock(&bdev_lock);
1241 	bd_clear_claiming(whole, holder);
1242 	spin_unlock(&bdev_lock);
1243 }
1244 EXPORT_SYMBOL(bd_abort_claiming);
1245 
1246 #ifdef CONFIG_SYSFS
1247 struct bd_holder_disk {
1248 	struct list_head	list;
1249 	struct gendisk		*disk;
1250 	int			refcnt;
1251 };
1252 
bd_find_holder_disk(struct block_device * bdev,struct gendisk * disk)1253 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1254 						  struct gendisk *disk)
1255 {
1256 	struct bd_holder_disk *holder;
1257 
1258 	list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1259 		if (holder->disk == disk)
1260 			return holder;
1261 	return NULL;
1262 }
1263 
add_symlink(struct kobject * from,struct kobject * to)1264 static int add_symlink(struct kobject *from, struct kobject *to)
1265 {
1266 	return sysfs_create_link(from, to, kobject_name(to));
1267 }
1268 
del_symlink(struct kobject * from,struct kobject * to)1269 static void del_symlink(struct kobject *from, struct kobject *to)
1270 {
1271 	sysfs_remove_link(from, kobject_name(to));
1272 }
1273 
1274 /**
1275  * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1276  * @bdev: the claimed slave bdev
1277  * @disk: the holding disk
1278  *
1279  * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1280  *
1281  * This functions creates the following sysfs symlinks.
1282  *
1283  * - from "slaves" directory of the holder @disk to the claimed @bdev
1284  * - from "holders" directory of the @bdev to the holder @disk
1285  *
1286  * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1287  * passed to bd_link_disk_holder(), then:
1288  *
1289  *   /sys/block/dm-0/slaves/sda --> /sys/block/sda
1290  *   /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1291  *
1292  * The caller must have claimed @bdev before calling this function and
1293  * ensure that both @bdev and @disk are valid during the creation and
1294  * lifetime of these symlinks.
1295  *
1296  * CONTEXT:
1297  * Might sleep.
1298  *
1299  * RETURNS:
1300  * 0 on success, -errno on failure.
1301  */
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)1302 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1303 {
1304 	struct bd_holder_disk *holder;
1305 	int ret = 0;
1306 
1307 	mutex_lock(&bdev->bd_mutex);
1308 
1309 	WARN_ON_ONCE(!bdev->bd_holder);
1310 
1311 	/* FIXME: remove the following once add_disk() handles errors */
1312 	if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1313 		goto out_unlock;
1314 
1315 	holder = bd_find_holder_disk(bdev, disk);
1316 	if (holder) {
1317 		holder->refcnt++;
1318 		goto out_unlock;
1319 	}
1320 
1321 	holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1322 	if (!holder) {
1323 		ret = -ENOMEM;
1324 		goto out_unlock;
1325 	}
1326 
1327 	INIT_LIST_HEAD(&holder->list);
1328 	holder->disk = disk;
1329 	holder->refcnt = 1;
1330 
1331 	ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1332 	if (ret)
1333 		goto out_free;
1334 
1335 	ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1336 	if (ret)
1337 		goto out_del;
1338 	/*
1339 	 * bdev could be deleted beneath us which would implicitly destroy
1340 	 * the holder directory.  Hold on to it.
1341 	 */
1342 	kobject_get(bdev->bd_part->holder_dir);
1343 
1344 	list_add(&holder->list, &bdev->bd_holder_disks);
1345 	goto out_unlock;
1346 
1347 out_del:
1348 	del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1349 out_free:
1350 	kfree(holder);
1351 out_unlock:
1352 	mutex_unlock(&bdev->bd_mutex);
1353 	return ret;
1354 }
1355 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1356 
1357 /**
1358  * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1359  * @bdev: the calimed slave bdev
1360  * @disk: the holding disk
1361  *
1362  * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1363  *
1364  * CONTEXT:
1365  * Might sleep.
1366  */
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)1367 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1368 {
1369 	struct bd_holder_disk *holder;
1370 
1371 	mutex_lock(&bdev->bd_mutex);
1372 
1373 	holder = bd_find_holder_disk(bdev, disk);
1374 
1375 	if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1376 		del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1377 		del_symlink(bdev->bd_part->holder_dir,
1378 			    &disk_to_dev(disk)->kobj);
1379 		kobject_put(bdev->bd_part->holder_dir);
1380 		list_del_init(&holder->list);
1381 		kfree(holder);
1382 	}
1383 
1384 	mutex_unlock(&bdev->bd_mutex);
1385 }
1386 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1387 #endif
1388 
1389 /**
1390  * flush_disk - invalidates all buffer-cache entries on a disk
1391  *
1392  * @bdev:      struct block device to be flushed
1393  * @kill_dirty: flag to guide handling of dirty inodes
1394  *
1395  * Invalidates all buffer-cache entries on a disk. It should be called
1396  * when a disk has been changed -- either by a media change or online
1397  * resize.
1398  */
flush_disk(struct block_device * bdev,bool kill_dirty)1399 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1400 {
1401 	if (__invalidate_device(bdev, kill_dirty)) {
1402 		printk(KERN_WARNING "VFS: busy inodes on changed media or "
1403 		       "resized disk %s\n",
1404 		       bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1405 	}
1406 	bdev->bd_invalidated = 1;
1407 }
1408 
1409 /**
1410  * check_disk_size_change - checks for disk size change and adjusts bdev size.
1411  * @disk: struct gendisk to check
1412  * @bdev: struct bdev to adjust.
1413  * @verbose: if %true log a message about a size change if there is any
1414  *
1415  * This routine checks to see if the bdev size does not match the disk size
1416  * and adjusts it if it differs. When shrinking the bdev size, its all caches
1417  * are freed.
1418  */
check_disk_size_change(struct gendisk * disk,struct block_device * bdev,bool verbose)1419 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev,
1420 		bool verbose)
1421 {
1422 	loff_t disk_size, bdev_size;
1423 
1424 	disk_size = (loff_t)get_capacity(disk) << 9;
1425 	bdev_size = i_size_read(bdev->bd_inode);
1426 	if (disk_size != bdev_size) {
1427 		if (verbose) {
1428 			printk(KERN_INFO
1429 			       "%s: detected capacity change from %lld to %lld\n",
1430 			       disk->disk_name, bdev_size, disk_size);
1431 		}
1432 		i_size_write(bdev->bd_inode, disk_size);
1433 		if (bdev_size > disk_size)
1434 			flush_disk(bdev, false);
1435 	}
1436 }
1437 
1438 /**
1439  * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1440  * @disk: struct gendisk to be revalidated
1441  *
1442  * This routine is a wrapper for lower-level driver's revalidate_disk
1443  * call-backs.  It is used to do common pre and post operations needed
1444  * for all revalidate_disk operations.
1445  */
revalidate_disk(struct gendisk * disk)1446 int revalidate_disk(struct gendisk *disk)
1447 {
1448 	int ret = 0;
1449 
1450 	if (disk->fops->revalidate_disk)
1451 		ret = disk->fops->revalidate_disk(disk);
1452 
1453 	/*
1454 	 * Hidden disks don't have associated bdev so there's no point in
1455 	 * revalidating it.
1456 	 */
1457 	if (!(disk->flags & GENHD_FL_HIDDEN)) {
1458 		struct block_device *bdev = bdget_disk(disk, 0);
1459 
1460 		if (!bdev)
1461 			return ret;
1462 
1463 		mutex_lock(&bdev->bd_mutex);
1464 		check_disk_size_change(disk, bdev, ret == 0);
1465 		bdev->bd_invalidated = 0;
1466 		mutex_unlock(&bdev->bd_mutex);
1467 		bdput(bdev);
1468 	}
1469 	return ret;
1470 }
1471 EXPORT_SYMBOL(revalidate_disk);
1472 
1473 /*
1474  * This routine checks whether a removable media has been changed,
1475  * and invalidates all buffer-cache-entries in that case. This
1476  * is a relatively slow routine, so we have to try to minimize using
1477  * it. Thus it is called only upon a 'mount' or 'open'. This
1478  * is the best way of combining speed and utility, I think.
1479  * People changing diskettes in the middle of an operation deserve
1480  * to lose :-)
1481  */
check_disk_change(struct block_device * bdev)1482 int check_disk_change(struct block_device *bdev)
1483 {
1484 	struct gendisk *disk = bdev->bd_disk;
1485 	const struct block_device_operations *bdops = disk->fops;
1486 	unsigned int events;
1487 
1488 	events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1489 				   DISK_EVENT_EJECT_REQUEST);
1490 	if (!(events & DISK_EVENT_MEDIA_CHANGE))
1491 		return 0;
1492 
1493 	flush_disk(bdev, true);
1494 	if (bdops->revalidate_disk)
1495 		bdops->revalidate_disk(bdev->bd_disk);
1496 	return 1;
1497 }
1498 
1499 EXPORT_SYMBOL(check_disk_change);
1500 
bd_set_size(struct block_device * bdev,loff_t size)1501 void bd_set_size(struct block_device *bdev, loff_t size)
1502 {
1503 	inode_lock(bdev->bd_inode);
1504 	i_size_write(bdev->bd_inode, size);
1505 	inode_unlock(bdev->bd_inode);
1506 }
1507 EXPORT_SYMBOL(bd_set_size);
1508 
1509 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1510 
bdev_disk_changed(struct block_device * bdev,bool invalidate)1511 static void bdev_disk_changed(struct block_device *bdev, bool invalidate)
1512 {
1513 	if (disk_part_scan_enabled(bdev->bd_disk)) {
1514 		if (invalidate)
1515 			invalidate_partitions(bdev->bd_disk, bdev);
1516 		else
1517 			rescan_partitions(bdev->bd_disk, bdev);
1518 	} else {
1519 		check_disk_size_change(bdev->bd_disk, bdev, !invalidate);
1520 		bdev->bd_invalidated = 0;
1521 	}
1522 }
1523 
1524 /*
1525  * bd_mutex locking:
1526  *
1527  *  mutex_lock(part->bd_mutex)
1528  *    mutex_lock_nested(whole->bd_mutex, 1)
1529  */
1530 
__blkdev_get(struct block_device * bdev,fmode_t mode,int for_part)1531 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1532 {
1533 	struct gendisk *disk;
1534 	int ret;
1535 	int partno;
1536 	int perm = 0;
1537 	bool first_open = false;
1538 
1539 	if (mode & FMODE_READ)
1540 		perm |= MAY_READ;
1541 	if (mode & FMODE_WRITE)
1542 		perm |= MAY_WRITE;
1543 	/*
1544 	 * hooks: /n/, see "layering violations".
1545 	 */
1546 	if (!for_part) {
1547 		ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1548 		if (ret != 0) {
1549 			bdput(bdev);
1550 			return ret;
1551 		}
1552 	}
1553 
1554  restart:
1555 
1556 	ret = -ENXIO;
1557 	disk = bdev_get_gendisk(bdev, &partno);
1558 	if (!disk)
1559 		goto out;
1560 
1561 	disk_block_events(disk);
1562 	mutex_lock_nested(&bdev->bd_mutex, for_part);
1563 	if (!bdev->bd_openers) {
1564 		first_open = true;
1565 		bdev->bd_disk = disk;
1566 		bdev->bd_queue = disk->queue;
1567 		bdev->bd_contains = bdev;
1568 		bdev->bd_partno = partno;
1569 
1570 		if (!partno) {
1571 			ret = -ENXIO;
1572 			bdev->bd_part = disk_get_part(disk, partno);
1573 			if (!bdev->bd_part)
1574 				goto out_clear;
1575 
1576 			ret = 0;
1577 			if (disk->fops->open) {
1578 				ret = disk->fops->open(bdev, mode);
1579 				if (ret == -ERESTARTSYS) {
1580 					/* Lost a race with 'disk' being
1581 					 * deleted, try again.
1582 					 * See md.c
1583 					 */
1584 					disk_put_part(bdev->bd_part);
1585 					bdev->bd_part = NULL;
1586 					bdev->bd_disk = NULL;
1587 					bdev->bd_queue = NULL;
1588 					mutex_unlock(&bdev->bd_mutex);
1589 					disk_unblock_events(disk);
1590 					put_disk_and_module(disk);
1591 					goto restart;
1592 				}
1593 			}
1594 
1595 			if (!ret) {
1596 				bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1597 				set_init_blocksize(bdev);
1598 			}
1599 
1600 			/*
1601 			 * If the device is invalidated, rescan partition
1602 			 * if open succeeded or failed with -ENOMEDIUM.
1603 			 * The latter is necessary to prevent ghost
1604 			 * partitions on a removed medium.
1605 			 */
1606 			if (bdev->bd_invalidated &&
1607 			    (!ret || ret == -ENOMEDIUM))
1608 				bdev_disk_changed(bdev, ret == -ENOMEDIUM);
1609 
1610 			if (ret)
1611 				goto out_clear;
1612 		} else {
1613 			struct block_device *whole;
1614 			whole = bdget_disk(disk, 0);
1615 			ret = -ENOMEM;
1616 			if (!whole)
1617 				goto out_clear;
1618 			BUG_ON(for_part);
1619 			ret = __blkdev_get(whole, mode, 1);
1620 			if (ret)
1621 				goto out_clear;
1622 			bdev->bd_contains = whole;
1623 			bdev->bd_part = disk_get_part(disk, partno);
1624 			if (!(disk->flags & GENHD_FL_UP) ||
1625 			    !bdev->bd_part || !bdev->bd_part->nr_sects) {
1626 				ret = -ENXIO;
1627 				goto out_clear;
1628 			}
1629 			bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1630 			set_init_blocksize(bdev);
1631 		}
1632 
1633 		if (bdev->bd_bdi == &noop_backing_dev_info)
1634 			bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1635 	} else {
1636 		if (bdev->bd_contains == bdev) {
1637 			ret = 0;
1638 			if (bdev->bd_disk->fops->open)
1639 				ret = bdev->bd_disk->fops->open(bdev, mode);
1640 			/* the same as first opener case, read comment there */
1641 			if (bdev->bd_invalidated &&
1642 			    (!ret || ret == -ENOMEDIUM))
1643 				bdev_disk_changed(bdev, ret == -ENOMEDIUM);
1644 			if (ret)
1645 				goto out_unlock_bdev;
1646 		}
1647 	}
1648 	bdev->bd_openers++;
1649 	if (for_part)
1650 		bdev->bd_part_count++;
1651 	mutex_unlock(&bdev->bd_mutex);
1652 	disk_unblock_events(disk);
1653 	/* only one opener holds refs to the module and disk */
1654 	if (!first_open)
1655 		put_disk_and_module(disk);
1656 	return 0;
1657 
1658  out_clear:
1659 	disk_put_part(bdev->bd_part);
1660 	bdev->bd_disk = NULL;
1661 	bdev->bd_part = NULL;
1662 	bdev->bd_queue = NULL;
1663 	if (bdev != bdev->bd_contains)
1664 		__blkdev_put(bdev->bd_contains, mode, 1);
1665 	bdev->bd_contains = NULL;
1666  out_unlock_bdev:
1667 	mutex_unlock(&bdev->bd_mutex);
1668 	disk_unblock_events(disk);
1669 	put_disk_and_module(disk);
1670  out:
1671 	bdput(bdev);
1672 
1673 	return ret;
1674 }
1675 
1676 /**
1677  * blkdev_get - open a block device
1678  * @bdev: block_device to open
1679  * @mode: FMODE_* mask
1680  * @holder: exclusive holder identifier
1681  *
1682  * Open @bdev with @mode.  If @mode includes %FMODE_EXCL, @bdev is
1683  * open with exclusive access.  Specifying %FMODE_EXCL with %NULL
1684  * @holder is invalid.  Exclusive opens may nest for the same @holder.
1685  *
1686  * On success, the reference count of @bdev is unchanged.  On failure,
1687  * @bdev is put.
1688  *
1689  * CONTEXT:
1690  * Might sleep.
1691  *
1692  * RETURNS:
1693  * 0 on success, -errno on failure.
1694  */
blkdev_get(struct block_device * bdev,fmode_t mode,void * holder)1695 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1696 {
1697 	struct block_device *whole = NULL;
1698 	int res;
1699 
1700 	WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1701 
1702 	if ((mode & FMODE_EXCL) && holder) {
1703 		whole = bd_start_claiming(bdev, holder);
1704 		if (IS_ERR(whole)) {
1705 			bdput(bdev);
1706 			return PTR_ERR(whole);
1707 		}
1708 	}
1709 
1710 	res = __blkdev_get(bdev, mode, 0);
1711 
1712 	if (whole) {
1713 		struct gendisk *disk = whole->bd_disk;
1714 
1715 		/* finish claiming */
1716 		mutex_lock(&bdev->bd_mutex);
1717 		if (!res)
1718 			bd_finish_claiming(bdev, whole, holder);
1719 		else
1720 			bd_abort_claiming(bdev, whole, holder);
1721 		/*
1722 		 * Block event polling for write claims if requested.  Any
1723 		 * write holder makes the write_holder state stick until
1724 		 * all are released.  This is good enough and tracking
1725 		 * individual writeable reference is too fragile given the
1726 		 * way @mode is used in blkdev_get/put().
1727 		 */
1728 		if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1729 		    (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1730 			bdev->bd_write_holder = true;
1731 			disk_block_events(disk);
1732 		}
1733 
1734 		mutex_unlock(&bdev->bd_mutex);
1735 		bdput(whole);
1736 	}
1737 
1738 	return res;
1739 }
1740 EXPORT_SYMBOL(blkdev_get);
1741 
1742 /**
1743  * blkdev_get_by_path - open a block device by name
1744  * @path: path to the block device to open
1745  * @mode: FMODE_* mask
1746  * @holder: exclusive holder identifier
1747  *
1748  * Open the blockdevice described by the device file at @path.  @mode
1749  * and @holder are identical to blkdev_get().
1750  *
1751  * On success, the returned block_device has reference count of one.
1752  *
1753  * CONTEXT:
1754  * Might sleep.
1755  *
1756  * RETURNS:
1757  * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1758  */
blkdev_get_by_path(const char * path,fmode_t mode,void * holder)1759 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1760 					void *holder)
1761 {
1762 	struct block_device *bdev;
1763 	int err;
1764 
1765 	bdev = lookup_bdev(path);
1766 	if (IS_ERR(bdev))
1767 		return bdev;
1768 
1769 	err = blkdev_get(bdev, mode, holder);
1770 	if (err)
1771 		return ERR_PTR(err);
1772 
1773 	if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1774 		blkdev_put(bdev, mode);
1775 		return ERR_PTR(-EACCES);
1776 	}
1777 
1778 	return bdev;
1779 }
1780 EXPORT_SYMBOL(blkdev_get_by_path);
1781 
1782 /**
1783  * blkdev_get_by_dev - open a block device by device number
1784  * @dev: device number of block device to open
1785  * @mode: FMODE_* mask
1786  * @holder: exclusive holder identifier
1787  *
1788  * Open the blockdevice described by device number @dev.  @mode and
1789  * @holder are identical to blkdev_get().
1790  *
1791  * Use it ONLY if you really do not have anything better - i.e. when
1792  * you are behind a truly sucky interface and all you are given is a
1793  * device number.  _Never_ to be used for internal purposes.  If you
1794  * ever need it - reconsider your API.
1795  *
1796  * On success, the returned block_device has reference count of one.
1797  *
1798  * CONTEXT:
1799  * Might sleep.
1800  *
1801  * RETURNS:
1802  * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1803  */
blkdev_get_by_dev(dev_t dev,fmode_t mode,void * holder)1804 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1805 {
1806 	struct block_device *bdev;
1807 	int err;
1808 
1809 	bdev = bdget(dev);
1810 	if (!bdev)
1811 		return ERR_PTR(-ENOMEM);
1812 
1813 	err = blkdev_get(bdev, mode, holder);
1814 	if (err)
1815 		return ERR_PTR(err);
1816 
1817 	return bdev;
1818 }
1819 EXPORT_SYMBOL(blkdev_get_by_dev);
1820 
blkdev_open(struct inode * inode,struct file * filp)1821 static int blkdev_open(struct inode * inode, struct file * filp)
1822 {
1823 	struct block_device *bdev;
1824 
1825 	/*
1826 	 * Preserve backwards compatibility and allow large file access
1827 	 * even if userspace doesn't ask for it explicitly. Some mkfs
1828 	 * binary needs it. We might want to drop this workaround
1829 	 * during an unstable branch.
1830 	 */
1831 	filp->f_flags |= O_LARGEFILE;
1832 
1833 	filp->f_mode |= FMODE_NOWAIT;
1834 
1835 	if (filp->f_flags & O_NDELAY)
1836 		filp->f_mode |= FMODE_NDELAY;
1837 	if (filp->f_flags & O_EXCL)
1838 		filp->f_mode |= FMODE_EXCL;
1839 	if ((filp->f_flags & O_ACCMODE) == 3)
1840 		filp->f_mode |= FMODE_WRITE_IOCTL;
1841 
1842 	bdev = bd_acquire(inode);
1843 	if (bdev == NULL)
1844 		return -ENOMEM;
1845 
1846 	filp->f_mapping = bdev->bd_inode->i_mapping;
1847 	filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
1848 
1849 	return blkdev_get(bdev, filp->f_mode, filp);
1850 }
1851 
__blkdev_put(struct block_device * bdev,fmode_t mode,int for_part)1852 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1853 {
1854 	struct gendisk *disk = bdev->bd_disk;
1855 	struct block_device *victim = NULL;
1856 
1857 	mutex_lock_nested(&bdev->bd_mutex, for_part);
1858 	if (for_part)
1859 		bdev->bd_part_count--;
1860 
1861 	if (!--bdev->bd_openers) {
1862 		WARN_ON_ONCE(bdev->bd_holders);
1863 		sync_blockdev(bdev);
1864 		kill_bdev(bdev);
1865 
1866 		bdev_write_inode(bdev);
1867 	}
1868 	if (bdev->bd_contains == bdev) {
1869 		if (disk->fops->release)
1870 			disk->fops->release(disk, mode);
1871 	}
1872 	if (!bdev->bd_openers) {
1873 		disk_put_part(bdev->bd_part);
1874 		bdev->bd_part = NULL;
1875 		bdev->bd_disk = NULL;
1876 		if (bdev != bdev->bd_contains)
1877 			victim = bdev->bd_contains;
1878 		bdev->bd_contains = NULL;
1879 
1880 		put_disk_and_module(disk);
1881 	}
1882 	mutex_unlock(&bdev->bd_mutex);
1883 	bdput(bdev);
1884 	if (victim)
1885 		__blkdev_put(victim, mode, 1);
1886 }
1887 
blkdev_put(struct block_device * bdev,fmode_t mode)1888 void blkdev_put(struct block_device *bdev, fmode_t mode)
1889 {
1890 	mutex_lock(&bdev->bd_mutex);
1891 
1892 	if (mode & FMODE_EXCL) {
1893 		bool bdev_free;
1894 
1895 		/*
1896 		 * Release a claim on the device.  The holder fields
1897 		 * are protected with bdev_lock.  bd_mutex is to
1898 		 * synchronize disk_holder unlinking.
1899 		 */
1900 		spin_lock(&bdev_lock);
1901 
1902 		WARN_ON_ONCE(--bdev->bd_holders < 0);
1903 		WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1904 
1905 		/* bd_contains might point to self, check in a separate step */
1906 		if ((bdev_free = !bdev->bd_holders))
1907 			bdev->bd_holder = NULL;
1908 		if (!bdev->bd_contains->bd_holders)
1909 			bdev->bd_contains->bd_holder = NULL;
1910 
1911 		spin_unlock(&bdev_lock);
1912 
1913 		/*
1914 		 * If this was the last claim, remove holder link and
1915 		 * unblock evpoll if it was a write holder.
1916 		 */
1917 		if (bdev_free && bdev->bd_write_holder) {
1918 			disk_unblock_events(bdev->bd_disk);
1919 			bdev->bd_write_holder = false;
1920 		}
1921 	}
1922 
1923 	/*
1924 	 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1925 	 * event.  This is to ensure detection of media removal commanded
1926 	 * from userland - e.g. eject(1).
1927 	 */
1928 	disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1929 
1930 	mutex_unlock(&bdev->bd_mutex);
1931 
1932 	__blkdev_put(bdev, mode, 0);
1933 }
1934 EXPORT_SYMBOL(blkdev_put);
1935 
blkdev_close(struct inode * inode,struct file * filp)1936 static int blkdev_close(struct inode * inode, struct file * filp)
1937 {
1938 	struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1939 	blkdev_put(bdev, filp->f_mode);
1940 	return 0;
1941 }
1942 
block_ioctl(struct file * file,unsigned cmd,unsigned long arg)1943 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1944 {
1945 	struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1946 	fmode_t mode = file->f_mode;
1947 
1948 	/*
1949 	 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1950 	 * to updated it before every ioctl.
1951 	 */
1952 	if (file->f_flags & O_NDELAY)
1953 		mode |= FMODE_NDELAY;
1954 	else
1955 		mode &= ~FMODE_NDELAY;
1956 
1957 	return blkdev_ioctl(bdev, mode, cmd, arg);
1958 }
1959 
1960 /*
1961  * Write data to the block device.  Only intended for the block device itself
1962  * and the raw driver which basically is a fake block device.
1963  *
1964  * Does not take i_mutex for the write and thus is not for general purpose
1965  * use.
1966  */
blkdev_write_iter(struct kiocb * iocb,struct iov_iter * from)1967 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1968 {
1969 	struct file *file = iocb->ki_filp;
1970 	struct inode *bd_inode = bdev_file_inode(file);
1971 	loff_t size = i_size_read(bd_inode);
1972 	struct blk_plug plug;
1973 	ssize_t ret;
1974 
1975 	if (bdev_read_only(I_BDEV(bd_inode)))
1976 		return -EPERM;
1977 
1978 	if (IS_SWAPFILE(bd_inode))
1979 		return -ETXTBSY;
1980 
1981 	if (!iov_iter_count(from))
1982 		return 0;
1983 
1984 	if (iocb->ki_pos >= size)
1985 		return -ENOSPC;
1986 
1987 	if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT)
1988 		return -EOPNOTSUPP;
1989 
1990 	iov_iter_truncate(from, size - iocb->ki_pos);
1991 
1992 	blk_start_plug(&plug);
1993 	ret = __generic_file_write_iter(iocb, from);
1994 	if (ret > 0)
1995 		ret = generic_write_sync(iocb, ret);
1996 	blk_finish_plug(&plug);
1997 	return ret;
1998 }
1999 EXPORT_SYMBOL_GPL(blkdev_write_iter);
2000 
blkdev_read_iter(struct kiocb * iocb,struct iov_iter * to)2001 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
2002 {
2003 	struct file *file = iocb->ki_filp;
2004 	struct inode *bd_inode = bdev_file_inode(file);
2005 	loff_t size = i_size_read(bd_inode);
2006 	loff_t pos = iocb->ki_pos;
2007 
2008 	if (pos >= size)
2009 		return 0;
2010 
2011 	size -= pos;
2012 	iov_iter_truncate(to, size);
2013 	return generic_file_read_iter(iocb, to);
2014 }
2015 EXPORT_SYMBOL_GPL(blkdev_read_iter);
2016 
2017 /*
2018  * Try to release a page associated with block device when the system
2019  * is under memory pressure.
2020  */
blkdev_releasepage(struct page * page,gfp_t wait)2021 static int blkdev_releasepage(struct page *page, gfp_t wait)
2022 {
2023 	struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
2024 
2025 	if (super && super->s_op->bdev_try_to_free_page)
2026 		return super->s_op->bdev_try_to_free_page(super, page, wait);
2027 
2028 	return try_to_free_buffers(page);
2029 }
2030 
blkdev_writepages(struct address_space * mapping,struct writeback_control * wbc)2031 static int blkdev_writepages(struct address_space *mapping,
2032 			     struct writeback_control *wbc)
2033 {
2034 	return generic_writepages(mapping, wbc);
2035 }
2036 
2037 static const struct address_space_operations def_blk_aops = {
2038 	.readpage	= blkdev_readpage,
2039 	.readpages	= blkdev_readpages,
2040 	.writepage	= blkdev_writepage,
2041 	.write_begin	= blkdev_write_begin,
2042 	.write_end	= blkdev_write_end,
2043 	.writepages	= blkdev_writepages,
2044 	.releasepage	= blkdev_releasepage,
2045 	.direct_IO	= blkdev_direct_IO,
2046 	.migratepage	= buffer_migrate_page_norefs,
2047 	.is_dirty_writeback = buffer_check_dirty_writeback,
2048 };
2049 
2050 #define	BLKDEV_FALLOC_FL_SUPPORTED					\
2051 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
2052 		 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
2053 
blkdev_fallocate(struct file * file,int mode,loff_t start,loff_t len)2054 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
2055 			     loff_t len)
2056 {
2057 	struct block_device *bdev = I_BDEV(bdev_file_inode(file));
2058 	struct address_space *mapping;
2059 	loff_t end = start + len - 1;
2060 	loff_t isize;
2061 	int error;
2062 
2063 	/* Fail if we don't recognize the flags. */
2064 	if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
2065 		return -EOPNOTSUPP;
2066 
2067 	/* Don't go off the end of the device. */
2068 	isize = i_size_read(bdev->bd_inode);
2069 	if (start >= isize)
2070 		return -EINVAL;
2071 	if (end >= isize) {
2072 		if (mode & FALLOC_FL_KEEP_SIZE) {
2073 			len = isize - start;
2074 			end = start + len - 1;
2075 		} else
2076 			return -EINVAL;
2077 	}
2078 
2079 	/*
2080 	 * Don't allow IO that isn't aligned to logical block size.
2081 	 */
2082 	if ((start | len) & (bdev_logical_block_size(bdev) - 1))
2083 		return -EINVAL;
2084 
2085 	/* Invalidate the page cache, including dirty pages. */
2086 	mapping = bdev->bd_inode->i_mapping;
2087 	truncate_inode_pages_range(mapping, start, end);
2088 
2089 	switch (mode) {
2090 	case FALLOC_FL_ZERO_RANGE:
2091 	case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2092 		error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2093 					    GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
2094 		break;
2095 	case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2096 		error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2097 					     GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2098 		break;
2099 	case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2100 		error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2101 					     GFP_KERNEL, 0);
2102 		break;
2103 	default:
2104 		return -EOPNOTSUPP;
2105 	}
2106 	if (error)
2107 		return error;
2108 
2109 	/*
2110 	 * Invalidate again; if someone wandered in and dirtied a page,
2111 	 * the caller will be given -EBUSY.  The third argument is
2112 	 * inclusive, so the rounding here is safe.
2113 	 */
2114 	return invalidate_inode_pages2_range(mapping,
2115 					     start >> PAGE_SHIFT,
2116 					     end >> PAGE_SHIFT);
2117 }
2118 
2119 const struct file_operations def_blk_fops = {
2120 	.open		= blkdev_open,
2121 	.release	= blkdev_close,
2122 	.llseek		= block_llseek,
2123 	.read_iter	= blkdev_read_iter,
2124 	.write_iter	= blkdev_write_iter,
2125 	.iopoll		= blkdev_iopoll,
2126 	.mmap		= generic_file_mmap,
2127 	.fsync		= blkdev_fsync,
2128 	.unlocked_ioctl	= block_ioctl,
2129 #ifdef CONFIG_COMPAT
2130 	.compat_ioctl	= compat_blkdev_ioctl,
2131 #endif
2132 	.splice_read	= generic_file_splice_read,
2133 	.splice_write	= iter_file_splice_write,
2134 	.fallocate	= blkdev_fallocate,
2135 };
2136 
ioctl_by_bdev(struct block_device * bdev,unsigned cmd,unsigned long arg)2137 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
2138 {
2139 	int res;
2140 	mm_segment_t old_fs = get_fs();
2141 	set_fs(KERNEL_DS);
2142 	res = blkdev_ioctl(bdev, 0, cmd, arg);
2143 	set_fs(old_fs);
2144 	return res;
2145 }
2146 
2147 EXPORT_SYMBOL(ioctl_by_bdev);
2148 
2149 /**
2150  * lookup_bdev  - lookup a struct block_device by name
2151  * @pathname:	special file representing the block device
2152  *
2153  * Get a reference to the blockdevice at @pathname in the current
2154  * namespace if possible and return it.  Return ERR_PTR(error)
2155  * otherwise.
2156  */
lookup_bdev(const char * pathname)2157 struct block_device *lookup_bdev(const char *pathname)
2158 {
2159 	struct block_device *bdev;
2160 	struct inode *inode;
2161 	struct path path;
2162 	int error;
2163 
2164 	if (!pathname || !*pathname)
2165 		return ERR_PTR(-EINVAL);
2166 
2167 	error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2168 	if (error)
2169 		return ERR_PTR(error);
2170 
2171 	inode = d_backing_inode(path.dentry);
2172 	error = -ENOTBLK;
2173 	if (!S_ISBLK(inode->i_mode))
2174 		goto fail;
2175 	error = -EACCES;
2176 	if (!may_open_dev(&path))
2177 		goto fail;
2178 	error = -ENOMEM;
2179 	bdev = bd_acquire(inode);
2180 	if (!bdev)
2181 		goto fail;
2182 out:
2183 	path_put(&path);
2184 	return bdev;
2185 fail:
2186 	bdev = ERR_PTR(error);
2187 	goto out;
2188 }
2189 EXPORT_SYMBOL(lookup_bdev);
2190 
__invalidate_device(struct block_device * bdev,bool kill_dirty)2191 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2192 {
2193 	struct super_block *sb = get_super(bdev);
2194 	int res = 0;
2195 
2196 	if (sb) {
2197 		/*
2198 		 * no need to lock the super, get_super holds the
2199 		 * read mutex so the filesystem cannot go away
2200 		 * under us (->put_super runs with the write lock
2201 		 * hold).
2202 		 */
2203 		shrink_dcache_sb(sb);
2204 		res = invalidate_inodes(sb, kill_dirty);
2205 		drop_super(sb);
2206 	}
2207 	invalidate_bdev(bdev);
2208 	return res;
2209 }
2210 EXPORT_SYMBOL(__invalidate_device);
2211 
iterate_bdevs(void (* func)(struct block_device *,void *),void * arg)2212 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2213 {
2214 	struct inode *inode, *old_inode = NULL;
2215 
2216 	spin_lock(&blockdev_superblock->s_inode_list_lock);
2217 	list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2218 		struct address_space *mapping = inode->i_mapping;
2219 		struct block_device *bdev;
2220 
2221 		spin_lock(&inode->i_lock);
2222 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2223 		    mapping->nrpages == 0) {
2224 			spin_unlock(&inode->i_lock);
2225 			continue;
2226 		}
2227 		__iget(inode);
2228 		spin_unlock(&inode->i_lock);
2229 		spin_unlock(&blockdev_superblock->s_inode_list_lock);
2230 		/*
2231 		 * We hold a reference to 'inode' so it couldn't have been
2232 		 * removed from s_inodes list while we dropped the
2233 		 * s_inode_list_lock  We cannot iput the inode now as we can
2234 		 * be holding the last reference and we cannot iput it under
2235 		 * s_inode_list_lock. So we keep the reference and iput it
2236 		 * later.
2237 		 */
2238 		iput(old_inode);
2239 		old_inode = inode;
2240 		bdev = I_BDEV(inode);
2241 
2242 		mutex_lock(&bdev->bd_mutex);
2243 		if (bdev->bd_openers)
2244 			func(bdev, arg);
2245 		mutex_unlock(&bdev->bd_mutex);
2246 
2247 		spin_lock(&blockdev_superblock->s_inode_list_lock);
2248 	}
2249 	spin_unlock(&blockdev_superblock->s_inode_list_lock);
2250 	iput(old_inode);
2251 }
2252