1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-group.h"
6 #include "space-info.h"
7 #include "disk-io.h"
8 #include "free-space-cache.h"
9 #include "free-space-tree.h"
10 #include "disk-io.h"
11 #include "volumes.h"
12 #include "transaction.h"
13 #include "ref-verify.h"
14 #include "sysfs.h"
15 #include "tree-log.h"
16 #include "delalloc-space.h"
17
18 /*
19 * Return target flags in extended format or 0 if restripe for this chunk_type
20 * is not in progress
21 *
22 * Should be called with balance_lock held
23 */
get_restripe_target(struct btrfs_fs_info * fs_info,u64 flags)24 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
25 {
26 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
27 u64 target = 0;
28
29 if (!bctl)
30 return 0;
31
32 if (flags & BTRFS_BLOCK_GROUP_DATA &&
33 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
34 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
35 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
36 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
37 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
38 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
39 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
40 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
41 }
42
43 return target;
44 }
45
46 /*
47 * @flags: available profiles in extended format (see ctree.h)
48 *
49 * Return reduced profile in chunk format. If profile changing is in progress
50 * (either running or paused) picks the target profile (if it's already
51 * available), otherwise falls back to plain reducing.
52 */
btrfs_reduce_alloc_profile(struct btrfs_fs_info * fs_info,u64 flags)53 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
54 {
55 u64 num_devices = fs_info->fs_devices->rw_devices;
56 u64 target;
57 u64 raid_type;
58 u64 allowed = 0;
59
60 /*
61 * See if restripe for this chunk_type is in progress, if so try to
62 * reduce to the target profile
63 */
64 spin_lock(&fs_info->balance_lock);
65 target = get_restripe_target(fs_info, flags);
66 if (target) {
67 /* Pick target profile only if it's already available */
68 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
69 spin_unlock(&fs_info->balance_lock);
70 return extended_to_chunk(target);
71 }
72 }
73 spin_unlock(&fs_info->balance_lock);
74
75 /* First, mask out the RAID levels which aren't possible */
76 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
77 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
78 allowed |= btrfs_raid_array[raid_type].bg_flag;
79 }
80 allowed &= flags;
81
82 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
83 allowed = BTRFS_BLOCK_GROUP_RAID6;
84 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
85 allowed = BTRFS_BLOCK_GROUP_RAID5;
86 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
87 allowed = BTRFS_BLOCK_GROUP_RAID10;
88 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
89 allowed = BTRFS_BLOCK_GROUP_RAID1;
90 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
91 allowed = BTRFS_BLOCK_GROUP_RAID0;
92
93 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
94
95 return extended_to_chunk(flags | allowed);
96 }
97
get_alloc_profile(struct btrfs_fs_info * fs_info,u64 orig_flags)98 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
99 {
100 unsigned seq;
101 u64 flags;
102
103 do {
104 flags = orig_flags;
105 seq = read_seqbegin(&fs_info->profiles_lock);
106
107 if (flags & BTRFS_BLOCK_GROUP_DATA)
108 flags |= fs_info->avail_data_alloc_bits;
109 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
110 flags |= fs_info->avail_system_alloc_bits;
111 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
112 flags |= fs_info->avail_metadata_alloc_bits;
113 } while (read_seqretry(&fs_info->profiles_lock, seq));
114
115 return btrfs_reduce_alloc_profile(fs_info, flags);
116 }
117
btrfs_get_alloc_profile(struct btrfs_fs_info * fs_info,u64 orig_flags)118 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
119 {
120 return get_alloc_profile(fs_info, orig_flags);
121 }
122
btrfs_get_block_group(struct btrfs_block_group_cache * cache)123 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
124 {
125 atomic_inc(&cache->count);
126 }
127
btrfs_put_block_group(struct btrfs_block_group_cache * cache)128 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
129 {
130 if (atomic_dec_and_test(&cache->count)) {
131 WARN_ON(cache->pinned > 0);
132 WARN_ON(cache->reserved > 0);
133
134 /*
135 * If not empty, someone is still holding mutex of
136 * full_stripe_lock, which can only be released by caller.
137 * And it will definitely cause use-after-free when caller
138 * tries to release full stripe lock.
139 *
140 * No better way to resolve, but only to warn.
141 */
142 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
143 kfree(cache->free_space_ctl);
144 kfree(cache);
145 }
146 }
147
148 /*
149 * This adds the block group to the fs_info rb tree for the block group cache
150 */
btrfs_add_block_group_cache(struct btrfs_fs_info * info,struct btrfs_block_group_cache * block_group)151 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
152 struct btrfs_block_group_cache *block_group)
153 {
154 struct rb_node **p;
155 struct rb_node *parent = NULL;
156 struct btrfs_block_group_cache *cache;
157
158 spin_lock(&info->block_group_cache_lock);
159 p = &info->block_group_cache_tree.rb_node;
160
161 while (*p) {
162 parent = *p;
163 cache = rb_entry(parent, struct btrfs_block_group_cache,
164 cache_node);
165 if (block_group->key.objectid < cache->key.objectid) {
166 p = &(*p)->rb_left;
167 } else if (block_group->key.objectid > cache->key.objectid) {
168 p = &(*p)->rb_right;
169 } else {
170 spin_unlock(&info->block_group_cache_lock);
171 return -EEXIST;
172 }
173 }
174
175 rb_link_node(&block_group->cache_node, parent, p);
176 rb_insert_color(&block_group->cache_node,
177 &info->block_group_cache_tree);
178
179 if (info->first_logical_byte > block_group->key.objectid)
180 info->first_logical_byte = block_group->key.objectid;
181
182 spin_unlock(&info->block_group_cache_lock);
183
184 return 0;
185 }
186
187 /*
188 * This will return the block group at or after bytenr if contains is 0, else
189 * it will return the block group that contains the bytenr
190 */
block_group_cache_tree_search(struct btrfs_fs_info * info,u64 bytenr,int contains)191 static struct btrfs_block_group_cache *block_group_cache_tree_search(
192 struct btrfs_fs_info *info, u64 bytenr, int contains)
193 {
194 struct btrfs_block_group_cache *cache, *ret = NULL;
195 struct rb_node *n;
196 u64 end, start;
197
198 spin_lock(&info->block_group_cache_lock);
199 n = info->block_group_cache_tree.rb_node;
200
201 while (n) {
202 cache = rb_entry(n, struct btrfs_block_group_cache,
203 cache_node);
204 end = cache->key.objectid + cache->key.offset - 1;
205 start = cache->key.objectid;
206
207 if (bytenr < start) {
208 if (!contains && (!ret || start < ret->key.objectid))
209 ret = cache;
210 n = n->rb_left;
211 } else if (bytenr > start) {
212 if (contains && bytenr <= end) {
213 ret = cache;
214 break;
215 }
216 n = n->rb_right;
217 } else {
218 ret = cache;
219 break;
220 }
221 }
222 if (ret) {
223 btrfs_get_block_group(ret);
224 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
225 info->first_logical_byte = ret->key.objectid;
226 }
227 spin_unlock(&info->block_group_cache_lock);
228
229 return ret;
230 }
231
232 /*
233 * Return the block group that starts at or after bytenr
234 */
btrfs_lookup_first_block_group(struct btrfs_fs_info * info,u64 bytenr)235 struct btrfs_block_group_cache *btrfs_lookup_first_block_group(
236 struct btrfs_fs_info *info, u64 bytenr)
237 {
238 return block_group_cache_tree_search(info, bytenr, 0);
239 }
240
241 /*
242 * Return the block group that contains the given bytenr
243 */
btrfs_lookup_block_group(struct btrfs_fs_info * info,u64 bytenr)244 struct btrfs_block_group_cache *btrfs_lookup_block_group(
245 struct btrfs_fs_info *info, u64 bytenr)
246 {
247 return block_group_cache_tree_search(info, bytenr, 1);
248 }
249
btrfs_next_block_group(struct btrfs_block_group_cache * cache)250 struct btrfs_block_group_cache *btrfs_next_block_group(
251 struct btrfs_block_group_cache *cache)
252 {
253 struct btrfs_fs_info *fs_info = cache->fs_info;
254 struct rb_node *node;
255
256 spin_lock(&fs_info->block_group_cache_lock);
257
258 /* If our block group was removed, we need a full search. */
259 if (RB_EMPTY_NODE(&cache->cache_node)) {
260 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
261
262 spin_unlock(&fs_info->block_group_cache_lock);
263 btrfs_put_block_group(cache);
264 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
265 }
266 node = rb_next(&cache->cache_node);
267 btrfs_put_block_group(cache);
268 if (node) {
269 cache = rb_entry(node, struct btrfs_block_group_cache,
270 cache_node);
271 btrfs_get_block_group(cache);
272 } else
273 cache = NULL;
274 spin_unlock(&fs_info->block_group_cache_lock);
275 return cache;
276 }
277
btrfs_inc_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)278 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
279 {
280 struct btrfs_block_group_cache *bg;
281 bool ret = true;
282
283 bg = btrfs_lookup_block_group(fs_info, bytenr);
284 if (!bg)
285 return false;
286
287 spin_lock(&bg->lock);
288 if (bg->ro)
289 ret = false;
290 else
291 atomic_inc(&bg->nocow_writers);
292 spin_unlock(&bg->lock);
293
294 /* No put on block group, done by btrfs_dec_nocow_writers */
295 if (!ret)
296 btrfs_put_block_group(bg);
297
298 return ret;
299 }
300
btrfs_dec_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)301 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
302 {
303 struct btrfs_block_group_cache *bg;
304
305 bg = btrfs_lookup_block_group(fs_info, bytenr);
306 ASSERT(bg);
307 if (atomic_dec_and_test(&bg->nocow_writers))
308 wake_up_var(&bg->nocow_writers);
309 /*
310 * Once for our lookup and once for the lookup done by a previous call
311 * to btrfs_inc_nocow_writers()
312 */
313 btrfs_put_block_group(bg);
314 btrfs_put_block_group(bg);
315 }
316
btrfs_wait_nocow_writers(struct btrfs_block_group_cache * bg)317 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
318 {
319 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
320 }
321
btrfs_dec_block_group_reservations(struct btrfs_fs_info * fs_info,const u64 start)322 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
323 const u64 start)
324 {
325 struct btrfs_block_group_cache *bg;
326
327 bg = btrfs_lookup_block_group(fs_info, start);
328 ASSERT(bg);
329 if (atomic_dec_and_test(&bg->reservations))
330 wake_up_var(&bg->reservations);
331 btrfs_put_block_group(bg);
332 }
333
btrfs_wait_block_group_reservations(struct btrfs_block_group_cache * bg)334 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
335 {
336 struct btrfs_space_info *space_info = bg->space_info;
337
338 ASSERT(bg->ro);
339
340 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
341 return;
342
343 /*
344 * Our block group is read only but before we set it to read only,
345 * some task might have had allocated an extent from it already, but it
346 * has not yet created a respective ordered extent (and added it to a
347 * root's list of ordered extents).
348 * Therefore wait for any task currently allocating extents, since the
349 * block group's reservations counter is incremented while a read lock
350 * on the groups' semaphore is held and decremented after releasing
351 * the read access on that semaphore and creating the ordered extent.
352 */
353 down_write(&space_info->groups_sem);
354 up_write(&space_info->groups_sem);
355
356 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
357 }
358
btrfs_get_caching_control(struct btrfs_block_group_cache * cache)359 struct btrfs_caching_control *btrfs_get_caching_control(
360 struct btrfs_block_group_cache *cache)
361 {
362 struct btrfs_caching_control *ctl;
363
364 spin_lock(&cache->lock);
365 if (!cache->caching_ctl) {
366 spin_unlock(&cache->lock);
367 return NULL;
368 }
369
370 ctl = cache->caching_ctl;
371 refcount_inc(&ctl->count);
372 spin_unlock(&cache->lock);
373 return ctl;
374 }
375
btrfs_put_caching_control(struct btrfs_caching_control * ctl)376 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
377 {
378 if (refcount_dec_and_test(&ctl->count))
379 kfree(ctl);
380 }
381
382 /*
383 * When we wait for progress in the block group caching, its because our
384 * allocation attempt failed at least once. So, we must sleep and let some
385 * progress happen before we try again.
386 *
387 * This function will sleep at least once waiting for new free space to show
388 * up, and then it will check the block group free space numbers for our min
389 * num_bytes. Another option is to have it go ahead and look in the rbtree for
390 * a free extent of a given size, but this is a good start.
391 *
392 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
393 * any of the information in this block group.
394 */
btrfs_wait_block_group_cache_progress(struct btrfs_block_group_cache * cache,u64 num_bytes)395 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
396 u64 num_bytes)
397 {
398 struct btrfs_caching_control *caching_ctl;
399
400 caching_ctl = btrfs_get_caching_control(cache);
401 if (!caching_ctl)
402 return;
403
404 wait_event(caching_ctl->wait, btrfs_block_group_cache_done(cache) ||
405 (cache->free_space_ctl->free_space >= num_bytes));
406
407 btrfs_put_caching_control(caching_ctl);
408 }
409
btrfs_wait_block_group_cache_done(struct btrfs_block_group_cache * cache)410 int btrfs_wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
411 {
412 struct btrfs_caching_control *caching_ctl;
413 int ret = 0;
414
415 caching_ctl = btrfs_get_caching_control(cache);
416 if (!caching_ctl)
417 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
418
419 wait_event(caching_ctl->wait, btrfs_block_group_cache_done(cache));
420 if (cache->cached == BTRFS_CACHE_ERROR)
421 ret = -EIO;
422 btrfs_put_caching_control(caching_ctl);
423 return ret;
424 }
425
426 #ifdef CONFIG_BTRFS_DEBUG
fragment_free_space(struct btrfs_block_group_cache * block_group)427 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
428 {
429 struct btrfs_fs_info *fs_info = block_group->fs_info;
430 u64 start = block_group->key.objectid;
431 u64 len = block_group->key.offset;
432 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
433 fs_info->nodesize : fs_info->sectorsize;
434 u64 step = chunk << 1;
435
436 while (len > chunk) {
437 btrfs_remove_free_space(block_group, start, chunk);
438 start += step;
439 if (len < step)
440 len = 0;
441 else
442 len -= step;
443 }
444 }
445 #endif
446
447 /*
448 * This is only called by btrfs_cache_block_group, since we could have freed
449 * extents we need to check the pinned_extents for any extents that can't be
450 * used yet since their free space will be released as soon as the transaction
451 * commits.
452 */
add_new_free_space(struct btrfs_block_group_cache * block_group,u64 start,u64 end)453 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
454 u64 start, u64 end)
455 {
456 struct btrfs_fs_info *info = block_group->fs_info;
457 u64 extent_start, extent_end, size, total_added = 0;
458 int ret;
459
460 while (start < end) {
461 ret = find_first_extent_bit(info->pinned_extents, start,
462 &extent_start, &extent_end,
463 EXTENT_DIRTY | EXTENT_UPTODATE,
464 NULL);
465 if (ret)
466 break;
467
468 if (extent_start <= start) {
469 start = extent_end + 1;
470 } else if (extent_start > start && extent_start < end) {
471 size = extent_start - start;
472 total_added += size;
473 ret = btrfs_add_free_space(block_group, start,
474 size);
475 BUG_ON(ret); /* -ENOMEM or logic error */
476 start = extent_end + 1;
477 } else {
478 break;
479 }
480 }
481
482 if (start < end) {
483 size = end - start;
484 total_added += size;
485 ret = btrfs_add_free_space(block_group, start, size);
486 BUG_ON(ret); /* -ENOMEM or logic error */
487 }
488
489 return total_added;
490 }
491
load_extent_tree_free(struct btrfs_caching_control * caching_ctl)492 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
493 {
494 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
495 struct btrfs_fs_info *fs_info = block_group->fs_info;
496 struct btrfs_root *extent_root = fs_info->extent_root;
497 struct btrfs_path *path;
498 struct extent_buffer *leaf;
499 struct btrfs_key key;
500 u64 total_found = 0;
501 u64 last = 0;
502 u32 nritems;
503 int ret;
504 bool wakeup = true;
505
506 path = btrfs_alloc_path();
507 if (!path)
508 return -ENOMEM;
509
510 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
511
512 #ifdef CONFIG_BTRFS_DEBUG
513 /*
514 * If we're fragmenting we don't want to make anybody think we can
515 * allocate from this block group until we've had a chance to fragment
516 * the free space.
517 */
518 if (btrfs_should_fragment_free_space(block_group))
519 wakeup = false;
520 #endif
521 /*
522 * We don't want to deadlock with somebody trying to allocate a new
523 * extent for the extent root while also trying to search the extent
524 * root to add free space. So we skip locking and search the commit
525 * root, since its read-only
526 */
527 path->skip_locking = 1;
528 path->search_commit_root = 1;
529 path->reada = READA_FORWARD;
530
531 key.objectid = last;
532 key.offset = 0;
533 key.type = BTRFS_EXTENT_ITEM_KEY;
534
535 next:
536 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
537 if (ret < 0)
538 goto out;
539
540 leaf = path->nodes[0];
541 nritems = btrfs_header_nritems(leaf);
542
543 while (1) {
544 if (btrfs_fs_closing(fs_info) > 1) {
545 last = (u64)-1;
546 break;
547 }
548
549 if (path->slots[0] < nritems) {
550 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
551 } else {
552 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
553 if (ret)
554 break;
555
556 if (need_resched() ||
557 rwsem_is_contended(&fs_info->commit_root_sem)) {
558 if (wakeup)
559 caching_ctl->progress = last;
560 btrfs_release_path(path);
561 up_read(&fs_info->commit_root_sem);
562 mutex_unlock(&caching_ctl->mutex);
563 cond_resched();
564 mutex_lock(&caching_ctl->mutex);
565 down_read(&fs_info->commit_root_sem);
566 goto next;
567 }
568
569 ret = btrfs_next_leaf(extent_root, path);
570 if (ret < 0)
571 goto out;
572 if (ret)
573 break;
574 leaf = path->nodes[0];
575 nritems = btrfs_header_nritems(leaf);
576 continue;
577 }
578
579 if (key.objectid < last) {
580 key.objectid = last;
581 key.offset = 0;
582 key.type = BTRFS_EXTENT_ITEM_KEY;
583
584 if (wakeup)
585 caching_ctl->progress = last;
586 btrfs_release_path(path);
587 goto next;
588 }
589
590 if (key.objectid < block_group->key.objectid) {
591 path->slots[0]++;
592 continue;
593 }
594
595 if (key.objectid >= block_group->key.objectid +
596 block_group->key.offset)
597 break;
598
599 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
600 key.type == BTRFS_METADATA_ITEM_KEY) {
601 total_found += add_new_free_space(block_group, last,
602 key.objectid);
603 if (key.type == BTRFS_METADATA_ITEM_KEY)
604 last = key.objectid +
605 fs_info->nodesize;
606 else
607 last = key.objectid + key.offset;
608
609 if (total_found > CACHING_CTL_WAKE_UP) {
610 total_found = 0;
611 if (wakeup)
612 wake_up(&caching_ctl->wait);
613 }
614 }
615 path->slots[0]++;
616 }
617 ret = 0;
618
619 total_found += add_new_free_space(block_group, last,
620 block_group->key.objectid +
621 block_group->key.offset);
622 caching_ctl->progress = (u64)-1;
623
624 out:
625 btrfs_free_path(path);
626 return ret;
627 }
628
caching_thread(struct btrfs_work * work)629 static noinline void caching_thread(struct btrfs_work *work)
630 {
631 struct btrfs_block_group_cache *block_group;
632 struct btrfs_fs_info *fs_info;
633 struct btrfs_caching_control *caching_ctl;
634 int ret;
635
636 caching_ctl = container_of(work, struct btrfs_caching_control, work);
637 block_group = caching_ctl->block_group;
638 fs_info = block_group->fs_info;
639
640 mutex_lock(&caching_ctl->mutex);
641 down_read(&fs_info->commit_root_sem);
642
643 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
644 ret = load_free_space_tree(caching_ctl);
645 else
646 ret = load_extent_tree_free(caching_ctl);
647
648 spin_lock(&block_group->lock);
649 block_group->caching_ctl = NULL;
650 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
651 spin_unlock(&block_group->lock);
652
653 #ifdef CONFIG_BTRFS_DEBUG
654 if (btrfs_should_fragment_free_space(block_group)) {
655 u64 bytes_used;
656
657 spin_lock(&block_group->space_info->lock);
658 spin_lock(&block_group->lock);
659 bytes_used = block_group->key.offset -
660 btrfs_block_group_used(&block_group->item);
661 block_group->space_info->bytes_used += bytes_used >> 1;
662 spin_unlock(&block_group->lock);
663 spin_unlock(&block_group->space_info->lock);
664 fragment_free_space(block_group);
665 }
666 #endif
667
668 caching_ctl->progress = (u64)-1;
669
670 up_read(&fs_info->commit_root_sem);
671 btrfs_free_excluded_extents(block_group);
672 mutex_unlock(&caching_ctl->mutex);
673
674 wake_up(&caching_ctl->wait);
675
676 btrfs_put_caching_control(caching_ctl);
677 btrfs_put_block_group(block_group);
678 }
679
btrfs_cache_block_group(struct btrfs_block_group_cache * cache,int load_cache_only)680 int btrfs_cache_block_group(struct btrfs_block_group_cache *cache,
681 int load_cache_only)
682 {
683 DEFINE_WAIT(wait);
684 struct btrfs_fs_info *fs_info = cache->fs_info;
685 struct btrfs_caching_control *caching_ctl;
686 int ret = 0;
687
688 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
689 if (!caching_ctl)
690 return -ENOMEM;
691
692 INIT_LIST_HEAD(&caching_ctl->list);
693 mutex_init(&caching_ctl->mutex);
694 init_waitqueue_head(&caching_ctl->wait);
695 caching_ctl->block_group = cache;
696 caching_ctl->progress = cache->key.objectid;
697 refcount_set(&caching_ctl->count, 1);
698 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
699
700 spin_lock(&cache->lock);
701 /*
702 * This should be a rare occasion, but this could happen I think in the
703 * case where one thread starts to load the space cache info, and then
704 * some other thread starts a transaction commit which tries to do an
705 * allocation while the other thread is still loading the space cache
706 * info. The previous loop should have kept us from choosing this block
707 * group, but if we've moved to the state where we will wait on caching
708 * block groups we need to first check if we're doing a fast load here,
709 * so we can wait for it to finish, otherwise we could end up allocating
710 * from a block group who's cache gets evicted for one reason or
711 * another.
712 */
713 while (cache->cached == BTRFS_CACHE_FAST) {
714 struct btrfs_caching_control *ctl;
715
716 ctl = cache->caching_ctl;
717 refcount_inc(&ctl->count);
718 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
719 spin_unlock(&cache->lock);
720
721 schedule();
722
723 finish_wait(&ctl->wait, &wait);
724 btrfs_put_caching_control(ctl);
725 spin_lock(&cache->lock);
726 }
727
728 if (cache->cached != BTRFS_CACHE_NO) {
729 spin_unlock(&cache->lock);
730 kfree(caching_ctl);
731 return 0;
732 }
733 WARN_ON(cache->caching_ctl);
734 cache->caching_ctl = caching_ctl;
735 cache->cached = BTRFS_CACHE_FAST;
736 spin_unlock(&cache->lock);
737
738 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
739 mutex_lock(&caching_ctl->mutex);
740 ret = load_free_space_cache(cache);
741
742 spin_lock(&cache->lock);
743 if (ret == 1) {
744 cache->caching_ctl = NULL;
745 cache->cached = BTRFS_CACHE_FINISHED;
746 cache->last_byte_to_unpin = (u64)-1;
747 caching_ctl->progress = (u64)-1;
748 } else {
749 if (load_cache_only) {
750 cache->caching_ctl = NULL;
751 cache->cached = BTRFS_CACHE_NO;
752 } else {
753 cache->cached = BTRFS_CACHE_STARTED;
754 cache->has_caching_ctl = 1;
755 }
756 }
757 spin_unlock(&cache->lock);
758 #ifdef CONFIG_BTRFS_DEBUG
759 if (ret == 1 &&
760 btrfs_should_fragment_free_space(cache)) {
761 u64 bytes_used;
762
763 spin_lock(&cache->space_info->lock);
764 spin_lock(&cache->lock);
765 bytes_used = cache->key.offset -
766 btrfs_block_group_used(&cache->item);
767 cache->space_info->bytes_used += bytes_used >> 1;
768 spin_unlock(&cache->lock);
769 spin_unlock(&cache->space_info->lock);
770 fragment_free_space(cache);
771 }
772 #endif
773 mutex_unlock(&caching_ctl->mutex);
774
775 wake_up(&caching_ctl->wait);
776 if (ret == 1) {
777 btrfs_put_caching_control(caching_ctl);
778 btrfs_free_excluded_extents(cache);
779 return 0;
780 }
781 } else {
782 /*
783 * We're either using the free space tree or no caching at all.
784 * Set cached to the appropriate value and wakeup any waiters.
785 */
786 spin_lock(&cache->lock);
787 if (load_cache_only) {
788 cache->caching_ctl = NULL;
789 cache->cached = BTRFS_CACHE_NO;
790 } else {
791 cache->cached = BTRFS_CACHE_STARTED;
792 cache->has_caching_ctl = 1;
793 }
794 spin_unlock(&cache->lock);
795 wake_up(&caching_ctl->wait);
796 }
797
798 if (load_cache_only) {
799 btrfs_put_caching_control(caching_ctl);
800 return 0;
801 }
802
803 down_write(&fs_info->commit_root_sem);
804 refcount_inc(&caching_ctl->count);
805 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
806 up_write(&fs_info->commit_root_sem);
807
808 btrfs_get_block_group(cache);
809
810 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
811
812 return ret;
813 }
814
clear_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)815 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
816 {
817 u64 extra_flags = chunk_to_extended(flags) &
818 BTRFS_EXTENDED_PROFILE_MASK;
819
820 write_seqlock(&fs_info->profiles_lock);
821 if (flags & BTRFS_BLOCK_GROUP_DATA)
822 fs_info->avail_data_alloc_bits &= ~extra_flags;
823 if (flags & BTRFS_BLOCK_GROUP_METADATA)
824 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
825 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
826 fs_info->avail_system_alloc_bits &= ~extra_flags;
827 write_sequnlock(&fs_info->profiles_lock);
828 }
829
830 /*
831 * Clear incompat bits for the following feature(s):
832 *
833 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
834 * in the whole filesystem
835 */
clear_incompat_bg_bits(struct btrfs_fs_info * fs_info,u64 flags)836 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
837 {
838 if (flags & BTRFS_BLOCK_GROUP_RAID56_MASK) {
839 struct list_head *head = &fs_info->space_info;
840 struct btrfs_space_info *sinfo;
841
842 list_for_each_entry_rcu(sinfo, head, list) {
843 bool found = false;
844
845 down_read(&sinfo->groups_sem);
846 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
847 found = true;
848 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
849 found = true;
850 up_read(&sinfo->groups_sem);
851
852 if (found)
853 return;
854 }
855 btrfs_clear_fs_incompat(fs_info, RAID56);
856 }
857 }
858
btrfs_remove_block_group(struct btrfs_trans_handle * trans,u64 group_start,struct extent_map * em)859 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
860 u64 group_start, struct extent_map *em)
861 {
862 struct btrfs_fs_info *fs_info = trans->fs_info;
863 struct btrfs_root *root = fs_info->extent_root;
864 struct btrfs_path *path;
865 struct btrfs_block_group_cache *block_group;
866 struct btrfs_free_cluster *cluster;
867 struct btrfs_root *tree_root = fs_info->tree_root;
868 struct btrfs_key key;
869 struct inode *inode;
870 struct kobject *kobj = NULL;
871 int ret;
872 int index;
873 int factor;
874 struct btrfs_caching_control *caching_ctl = NULL;
875 bool remove_em;
876 bool remove_rsv = false;
877
878 block_group = btrfs_lookup_block_group(fs_info, group_start);
879 BUG_ON(!block_group);
880 BUG_ON(!block_group->ro);
881
882 trace_btrfs_remove_block_group(block_group);
883 /*
884 * Free the reserved super bytes from this block group before
885 * remove it.
886 */
887 btrfs_free_excluded_extents(block_group);
888 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
889 block_group->key.offset);
890
891 memcpy(&key, &block_group->key, sizeof(key));
892 index = btrfs_bg_flags_to_raid_index(block_group->flags);
893 factor = btrfs_bg_type_to_factor(block_group->flags);
894
895 /* make sure this block group isn't part of an allocation cluster */
896 cluster = &fs_info->data_alloc_cluster;
897 spin_lock(&cluster->refill_lock);
898 btrfs_return_cluster_to_free_space(block_group, cluster);
899 spin_unlock(&cluster->refill_lock);
900
901 /*
902 * make sure this block group isn't part of a metadata
903 * allocation cluster
904 */
905 cluster = &fs_info->meta_alloc_cluster;
906 spin_lock(&cluster->refill_lock);
907 btrfs_return_cluster_to_free_space(block_group, cluster);
908 spin_unlock(&cluster->refill_lock);
909
910 path = btrfs_alloc_path();
911 if (!path) {
912 ret = -ENOMEM;
913 goto out;
914 }
915
916 /*
917 * get the inode first so any iput calls done for the io_list
918 * aren't the final iput (no unlinks allowed now)
919 */
920 inode = lookup_free_space_inode(block_group, path);
921
922 mutex_lock(&trans->transaction->cache_write_mutex);
923 /*
924 * Make sure our free space cache IO is done before removing the
925 * free space inode
926 */
927 spin_lock(&trans->transaction->dirty_bgs_lock);
928 if (!list_empty(&block_group->io_list)) {
929 list_del_init(&block_group->io_list);
930
931 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
932
933 spin_unlock(&trans->transaction->dirty_bgs_lock);
934 btrfs_wait_cache_io(trans, block_group, path);
935 btrfs_put_block_group(block_group);
936 spin_lock(&trans->transaction->dirty_bgs_lock);
937 }
938
939 if (!list_empty(&block_group->dirty_list)) {
940 list_del_init(&block_group->dirty_list);
941 remove_rsv = true;
942 btrfs_put_block_group(block_group);
943 }
944 spin_unlock(&trans->transaction->dirty_bgs_lock);
945 mutex_unlock(&trans->transaction->cache_write_mutex);
946
947 if (!IS_ERR(inode)) {
948 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
949 if (ret) {
950 btrfs_add_delayed_iput(inode);
951 goto out;
952 }
953 clear_nlink(inode);
954 /* One for the block groups ref */
955 spin_lock(&block_group->lock);
956 if (block_group->iref) {
957 block_group->iref = 0;
958 block_group->inode = NULL;
959 spin_unlock(&block_group->lock);
960 iput(inode);
961 } else {
962 spin_unlock(&block_group->lock);
963 }
964 /* One for our lookup ref */
965 btrfs_add_delayed_iput(inode);
966 }
967
968 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
969 key.offset = block_group->key.objectid;
970 key.type = 0;
971
972 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
973 if (ret < 0)
974 goto out;
975 if (ret > 0)
976 btrfs_release_path(path);
977 if (ret == 0) {
978 ret = btrfs_del_item(trans, tree_root, path);
979 if (ret)
980 goto out;
981 btrfs_release_path(path);
982 }
983
984 spin_lock(&fs_info->block_group_cache_lock);
985 rb_erase(&block_group->cache_node,
986 &fs_info->block_group_cache_tree);
987 RB_CLEAR_NODE(&block_group->cache_node);
988
989 if (fs_info->first_logical_byte == block_group->key.objectid)
990 fs_info->first_logical_byte = (u64)-1;
991 spin_unlock(&fs_info->block_group_cache_lock);
992
993 down_write(&block_group->space_info->groups_sem);
994 /*
995 * we must use list_del_init so people can check to see if they
996 * are still on the list after taking the semaphore
997 */
998 list_del_init(&block_group->list);
999 if (list_empty(&block_group->space_info->block_groups[index])) {
1000 kobj = block_group->space_info->block_group_kobjs[index];
1001 block_group->space_info->block_group_kobjs[index] = NULL;
1002 clear_avail_alloc_bits(fs_info, block_group->flags);
1003 }
1004 up_write(&block_group->space_info->groups_sem);
1005 clear_incompat_bg_bits(fs_info, block_group->flags);
1006 if (kobj) {
1007 kobject_del(kobj);
1008 kobject_put(kobj);
1009 }
1010
1011 if (block_group->has_caching_ctl)
1012 caching_ctl = btrfs_get_caching_control(block_group);
1013 if (block_group->cached == BTRFS_CACHE_STARTED)
1014 btrfs_wait_block_group_cache_done(block_group);
1015 if (block_group->has_caching_ctl) {
1016 down_write(&fs_info->commit_root_sem);
1017 if (!caching_ctl) {
1018 struct btrfs_caching_control *ctl;
1019
1020 list_for_each_entry(ctl,
1021 &fs_info->caching_block_groups, list)
1022 if (ctl->block_group == block_group) {
1023 caching_ctl = ctl;
1024 refcount_inc(&caching_ctl->count);
1025 break;
1026 }
1027 }
1028 if (caching_ctl)
1029 list_del_init(&caching_ctl->list);
1030 up_write(&fs_info->commit_root_sem);
1031 if (caching_ctl) {
1032 /* Once for the caching bgs list and once for us. */
1033 btrfs_put_caching_control(caching_ctl);
1034 btrfs_put_caching_control(caching_ctl);
1035 }
1036 }
1037
1038 spin_lock(&trans->transaction->dirty_bgs_lock);
1039 WARN_ON(!list_empty(&block_group->dirty_list));
1040 WARN_ON(!list_empty(&block_group->io_list));
1041 spin_unlock(&trans->transaction->dirty_bgs_lock);
1042
1043 btrfs_remove_free_space_cache(block_group);
1044
1045 spin_lock(&block_group->space_info->lock);
1046 list_del_init(&block_group->ro_list);
1047
1048 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1049 WARN_ON(block_group->space_info->total_bytes
1050 < block_group->key.offset);
1051 WARN_ON(block_group->space_info->bytes_readonly
1052 < block_group->key.offset);
1053 WARN_ON(block_group->space_info->disk_total
1054 < block_group->key.offset * factor);
1055 }
1056 block_group->space_info->total_bytes -= block_group->key.offset;
1057 block_group->space_info->bytes_readonly -= block_group->key.offset;
1058 block_group->space_info->disk_total -= block_group->key.offset * factor;
1059
1060 spin_unlock(&block_group->space_info->lock);
1061
1062 memcpy(&key, &block_group->key, sizeof(key));
1063
1064 mutex_lock(&fs_info->chunk_mutex);
1065 spin_lock(&block_group->lock);
1066 block_group->removed = 1;
1067 /*
1068 * At this point trimming can't start on this block group, because we
1069 * removed the block group from the tree fs_info->block_group_cache_tree
1070 * so no one can't find it anymore and even if someone already got this
1071 * block group before we removed it from the rbtree, they have already
1072 * incremented block_group->trimming - if they didn't, they won't find
1073 * any free space entries because we already removed them all when we
1074 * called btrfs_remove_free_space_cache().
1075 *
1076 * And we must not remove the extent map from the fs_info->mapping_tree
1077 * to prevent the same logical address range and physical device space
1078 * ranges from being reused for a new block group. This is because our
1079 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1080 * completely transactionless, so while it is trimming a range the
1081 * currently running transaction might finish and a new one start,
1082 * allowing for new block groups to be created that can reuse the same
1083 * physical device locations unless we take this special care.
1084 *
1085 * There may also be an implicit trim operation if the file system
1086 * is mounted with -odiscard. The same protections must remain
1087 * in place until the extents have been discarded completely when
1088 * the transaction commit has completed.
1089 */
1090 remove_em = (atomic_read(&block_group->trimming) == 0);
1091 spin_unlock(&block_group->lock);
1092
1093 mutex_unlock(&fs_info->chunk_mutex);
1094
1095 ret = remove_block_group_free_space(trans, block_group);
1096 if (ret)
1097 goto out;
1098
1099 btrfs_put_block_group(block_group);
1100 btrfs_put_block_group(block_group);
1101
1102 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1103 if (ret > 0)
1104 ret = -EIO;
1105 if (ret < 0)
1106 goto out;
1107
1108 ret = btrfs_del_item(trans, root, path);
1109 if (ret)
1110 goto out;
1111
1112 if (remove_em) {
1113 struct extent_map_tree *em_tree;
1114
1115 em_tree = &fs_info->mapping_tree;
1116 write_lock(&em_tree->lock);
1117 remove_extent_mapping(em_tree, em);
1118 write_unlock(&em_tree->lock);
1119 /* once for the tree */
1120 free_extent_map(em);
1121 }
1122 out:
1123 if (remove_rsv)
1124 btrfs_delayed_refs_rsv_release(fs_info, 1);
1125 btrfs_free_path(path);
1126 return ret;
1127 }
1128
btrfs_start_trans_remove_block_group(struct btrfs_fs_info * fs_info,const u64 chunk_offset)1129 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1130 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1131 {
1132 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1133 struct extent_map *em;
1134 struct map_lookup *map;
1135 unsigned int num_items;
1136
1137 read_lock(&em_tree->lock);
1138 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1139 read_unlock(&em_tree->lock);
1140 ASSERT(em && em->start == chunk_offset);
1141
1142 /*
1143 * We need to reserve 3 + N units from the metadata space info in order
1144 * to remove a block group (done at btrfs_remove_chunk() and at
1145 * btrfs_remove_block_group()), which are used for:
1146 *
1147 * 1 unit for adding the free space inode's orphan (located in the tree
1148 * of tree roots).
1149 * 1 unit for deleting the block group item (located in the extent
1150 * tree).
1151 * 1 unit for deleting the free space item (located in tree of tree
1152 * roots).
1153 * N units for deleting N device extent items corresponding to each
1154 * stripe (located in the device tree).
1155 *
1156 * In order to remove a block group we also need to reserve units in the
1157 * system space info in order to update the chunk tree (update one or
1158 * more device items and remove one chunk item), but this is done at
1159 * btrfs_remove_chunk() through a call to check_system_chunk().
1160 */
1161 map = em->map_lookup;
1162 num_items = 3 + map->num_stripes;
1163 free_extent_map(em);
1164
1165 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1166 num_items, 1);
1167 }
1168
1169 /*
1170 * Mark block group @cache read-only, so later write won't happen to block
1171 * group @cache.
1172 *
1173 * If @force is not set, this function will only mark the block group readonly
1174 * if we have enough free space (1M) in other metadata/system block groups.
1175 * If @force is not set, this function will mark the block group readonly
1176 * without checking free space.
1177 *
1178 * NOTE: This function doesn't care if other block groups can contain all the
1179 * data in this block group. That check should be done by relocation routine,
1180 * not this function.
1181 */
inc_block_group_ro(struct btrfs_block_group_cache * cache,int force)1182 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
1183 {
1184 struct btrfs_space_info *sinfo = cache->space_info;
1185 u64 num_bytes;
1186 u64 sinfo_used;
1187 u64 min_allocable_bytes;
1188 int ret = -ENOSPC;
1189
1190 /*
1191 * We need some metadata space and system metadata space for
1192 * allocating chunks in some corner cases until we force to set
1193 * it to be readonly.
1194 */
1195 if ((sinfo->flags &
1196 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
1197 !force)
1198 min_allocable_bytes = SZ_1M;
1199 else
1200 min_allocable_bytes = 0;
1201
1202 spin_lock(&sinfo->lock);
1203 spin_lock(&cache->lock);
1204
1205 if (cache->ro) {
1206 cache->ro++;
1207 ret = 0;
1208 goto out;
1209 }
1210
1211 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
1212 cache->bytes_super - btrfs_block_group_used(&cache->item);
1213 sinfo_used = btrfs_space_info_used(sinfo, true);
1214
1215 /*
1216 * sinfo_used + num_bytes should always <= sinfo->total_bytes.
1217 *
1218 * Here we make sure if we mark this bg RO, we still have enough
1219 * free space as buffer (if min_allocable_bytes is not 0).
1220 */
1221 if (sinfo_used + num_bytes + min_allocable_bytes <=
1222 sinfo->total_bytes) {
1223 sinfo->bytes_readonly += num_bytes;
1224 cache->ro++;
1225 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1226 ret = 0;
1227 }
1228 out:
1229 spin_unlock(&cache->lock);
1230 spin_unlock(&sinfo->lock);
1231 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1232 btrfs_info(cache->fs_info,
1233 "unable to make block group %llu ro",
1234 cache->key.objectid);
1235 btrfs_info(cache->fs_info,
1236 "sinfo_used=%llu bg_num_bytes=%llu min_allocable=%llu",
1237 sinfo_used, num_bytes, min_allocable_bytes);
1238 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1239 }
1240 return ret;
1241 }
1242
1243 /*
1244 * Process the unused_bgs list and remove any that don't have any allocated
1245 * space inside of them.
1246 */
btrfs_delete_unused_bgs(struct btrfs_fs_info * fs_info)1247 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1248 {
1249 struct btrfs_block_group_cache *block_group;
1250 struct btrfs_space_info *space_info;
1251 struct btrfs_trans_handle *trans;
1252 int ret = 0;
1253
1254 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1255 return;
1256
1257 spin_lock(&fs_info->unused_bgs_lock);
1258 while (!list_empty(&fs_info->unused_bgs)) {
1259 u64 start, end;
1260 int trimming;
1261
1262 block_group = list_first_entry(&fs_info->unused_bgs,
1263 struct btrfs_block_group_cache,
1264 bg_list);
1265 list_del_init(&block_group->bg_list);
1266
1267 space_info = block_group->space_info;
1268
1269 if (ret || btrfs_mixed_space_info(space_info)) {
1270 btrfs_put_block_group(block_group);
1271 continue;
1272 }
1273 spin_unlock(&fs_info->unused_bgs_lock);
1274
1275 mutex_lock(&fs_info->delete_unused_bgs_mutex);
1276
1277 /* Don't want to race with allocators so take the groups_sem */
1278 down_write(&space_info->groups_sem);
1279 spin_lock(&block_group->lock);
1280 if (block_group->reserved || block_group->pinned ||
1281 btrfs_block_group_used(&block_group->item) ||
1282 block_group->ro ||
1283 list_is_singular(&block_group->list)) {
1284 /*
1285 * We want to bail if we made new allocations or have
1286 * outstanding allocations in this block group. We do
1287 * the ro check in case balance is currently acting on
1288 * this block group.
1289 */
1290 trace_btrfs_skip_unused_block_group(block_group);
1291 spin_unlock(&block_group->lock);
1292 up_write(&space_info->groups_sem);
1293 goto next;
1294 }
1295 spin_unlock(&block_group->lock);
1296
1297 /* We don't want to force the issue, only flip if it's ok. */
1298 ret = inc_block_group_ro(block_group, 0);
1299 up_write(&space_info->groups_sem);
1300 if (ret < 0) {
1301 ret = 0;
1302 goto next;
1303 }
1304
1305 /*
1306 * Want to do this before we do anything else so we can recover
1307 * properly if we fail to join the transaction.
1308 */
1309 trans = btrfs_start_trans_remove_block_group(fs_info,
1310 block_group->key.objectid);
1311 if (IS_ERR(trans)) {
1312 btrfs_dec_block_group_ro(block_group);
1313 ret = PTR_ERR(trans);
1314 goto next;
1315 }
1316
1317 /*
1318 * We could have pending pinned extents for this block group,
1319 * just delete them, we don't care about them anymore.
1320 */
1321 start = block_group->key.objectid;
1322 end = start + block_group->key.offset - 1;
1323 /*
1324 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1325 * btrfs_finish_extent_commit(). If we are at transaction N,
1326 * another task might be running finish_extent_commit() for the
1327 * previous transaction N - 1, and have seen a range belonging
1328 * to the block group in freed_extents[] before we were able to
1329 * clear the whole block group range from freed_extents[]. This
1330 * means that task can lookup for the block group after we
1331 * unpinned it from freed_extents[] and removed it, leading to
1332 * a BUG_ON() at btrfs_unpin_extent_range().
1333 */
1334 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1335 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
1336 EXTENT_DIRTY);
1337 if (ret) {
1338 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1339 btrfs_dec_block_group_ro(block_group);
1340 goto end_trans;
1341 }
1342 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
1343 EXTENT_DIRTY);
1344 if (ret) {
1345 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1346 btrfs_dec_block_group_ro(block_group);
1347 goto end_trans;
1348 }
1349 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1350
1351 /* Reset pinned so btrfs_put_block_group doesn't complain */
1352 spin_lock(&space_info->lock);
1353 spin_lock(&block_group->lock);
1354
1355 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1356 -block_group->pinned);
1357 space_info->bytes_readonly += block_group->pinned;
1358 percpu_counter_add_batch(&space_info->total_bytes_pinned,
1359 -block_group->pinned,
1360 BTRFS_TOTAL_BYTES_PINNED_BATCH);
1361 block_group->pinned = 0;
1362
1363 spin_unlock(&block_group->lock);
1364 spin_unlock(&space_info->lock);
1365
1366 /* DISCARD can flip during remount */
1367 trimming = btrfs_test_opt(fs_info, DISCARD);
1368
1369 /* Implicit trim during transaction commit. */
1370 if (trimming)
1371 btrfs_get_block_group_trimming(block_group);
1372
1373 /*
1374 * Btrfs_remove_chunk will abort the transaction if things go
1375 * horribly wrong.
1376 */
1377 ret = btrfs_remove_chunk(trans, block_group->key.objectid);
1378
1379 if (ret) {
1380 if (trimming)
1381 btrfs_put_block_group_trimming(block_group);
1382 goto end_trans;
1383 }
1384
1385 /*
1386 * If we're not mounted with -odiscard, we can just forget
1387 * about this block group. Otherwise we'll need to wait
1388 * until transaction commit to do the actual discard.
1389 */
1390 if (trimming) {
1391 spin_lock(&fs_info->unused_bgs_lock);
1392 /*
1393 * A concurrent scrub might have added us to the list
1394 * fs_info->unused_bgs, so use a list_move operation
1395 * to add the block group to the deleted_bgs list.
1396 */
1397 list_move(&block_group->bg_list,
1398 &trans->transaction->deleted_bgs);
1399 spin_unlock(&fs_info->unused_bgs_lock);
1400 btrfs_get_block_group(block_group);
1401 }
1402 end_trans:
1403 btrfs_end_transaction(trans);
1404 next:
1405 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1406 btrfs_put_block_group(block_group);
1407 spin_lock(&fs_info->unused_bgs_lock);
1408 }
1409 spin_unlock(&fs_info->unused_bgs_lock);
1410 }
1411
btrfs_mark_bg_unused(struct btrfs_block_group_cache * bg)1412 void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg)
1413 {
1414 struct btrfs_fs_info *fs_info = bg->fs_info;
1415
1416 spin_lock(&fs_info->unused_bgs_lock);
1417 if (list_empty(&bg->bg_list)) {
1418 btrfs_get_block_group(bg);
1419 trace_btrfs_add_unused_block_group(bg);
1420 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1421 }
1422 spin_unlock(&fs_info->unused_bgs_lock);
1423 }
1424
find_first_block_group(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_key * key)1425 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1426 struct btrfs_path *path,
1427 struct btrfs_key *key)
1428 {
1429 struct btrfs_root *root = fs_info->extent_root;
1430 int ret = 0;
1431 struct btrfs_key found_key;
1432 struct extent_buffer *leaf;
1433 struct btrfs_block_group_item bg;
1434 u64 flags;
1435 int slot;
1436
1437 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1438 if (ret < 0)
1439 goto out;
1440
1441 while (1) {
1442 slot = path->slots[0];
1443 leaf = path->nodes[0];
1444 if (slot >= btrfs_header_nritems(leaf)) {
1445 ret = btrfs_next_leaf(root, path);
1446 if (ret == 0)
1447 continue;
1448 if (ret < 0)
1449 goto out;
1450 break;
1451 }
1452 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1453
1454 if (found_key.objectid >= key->objectid &&
1455 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1456 struct extent_map_tree *em_tree;
1457 struct extent_map *em;
1458
1459 em_tree = &root->fs_info->mapping_tree;
1460 read_lock(&em_tree->lock);
1461 em = lookup_extent_mapping(em_tree, found_key.objectid,
1462 found_key.offset);
1463 read_unlock(&em_tree->lock);
1464 if (!em) {
1465 btrfs_err(fs_info,
1466 "logical %llu len %llu found bg but no related chunk",
1467 found_key.objectid, found_key.offset);
1468 ret = -ENOENT;
1469 } else if (em->start != found_key.objectid ||
1470 em->len != found_key.offset) {
1471 btrfs_err(fs_info,
1472 "block group %llu len %llu mismatch with chunk %llu len %llu",
1473 found_key.objectid, found_key.offset,
1474 em->start, em->len);
1475 ret = -EUCLEAN;
1476 } else {
1477 read_extent_buffer(leaf, &bg,
1478 btrfs_item_ptr_offset(leaf, slot),
1479 sizeof(bg));
1480 flags = btrfs_block_group_flags(&bg) &
1481 BTRFS_BLOCK_GROUP_TYPE_MASK;
1482
1483 if (flags != (em->map_lookup->type &
1484 BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1485 btrfs_err(fs_info,
1486 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1487 found_key.objectid,
1488 found_key.offset, flags,
1489 (BTRFS_BLOCK_GROUP_TYPE_MASK &
1490 em->map_lookup->type));
1491 ret = -EUCLEAN;
1492 } else {
1493 ret = 0;
1494 }
1495 }
1496 free_extent_map(em);
1497 goto out;
1498 }
1499 path->slots[0]++;
1500 }
1501 out:
1502 return ret;
1503 }
1504
set_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)1505 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1506 {
1507 u64 extra_flags = chunk_to_extended(flags) &
1508 BTRFS_EXTENDED_PROFILE_MASK;
1509
1510 write_seqlock(&fs_info->profiles_lock);
1511 if (flags & BTRFS_BLOCK_GROUP_DATA)
1512 fs_info->avail_data_alloc_bits |= extra_flags;
1513 if (flags & BTRFS_BLOCK_GROUP_METADATA)
1514 fs_info->avail_metadata_alloc_bits |= extra_flags;
1515 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1516 fs_info->avail_system_alloc_bits |= extra_flags;
1517 write_sequnlock(&fs_info->profiles_lock);
1518 }
1519
exclude_super_stripes(struct btrfs_block_group_cache * cache)1520 static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
1521 {
1522 struct btrfs_fs_info *fs_info = cache->fs_info;
1523 u64 bytenr;
1524 u64 *logical;
1525 int stripe_len;
1526 int i, nr, ret;
1527
1528 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
1529 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
1530 cache->bytes_super += stripe_len;
1531 ret = btrfs_add_excluded_extent(fs_info, cache->key.objectid,
1532 stripe_len);
1533 if (ret)
1534 return ret;
1535 }
1536
1537 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1538 bytenr = btrfs_sb_offset(i);
1539 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
1540 bytenr, &logical, &nr, &stripe_len);
1541 if (ret)
1542 return ret;
1543
1544 while (nr--) {
1545 u64 start, len;
1546
1547 if (logical[nr] > cache->key.objectid +
1548 cache->key.offset)
1549 continue;
1550
1551 if (logical[nr] + stripe_len <= cache->key.objectid)
1552 continue;
1553
1554 start = logical[nr];
1555 if (start < cache->key.objectid) {
1556 start = cache->key.objectid;
1557 len = (logical[nr] + stripe_len) - start;
1558 } else {
1559 len = min_t(u64, stripe_len,
1560 cache->key.objectid +
1561 cache->key.offset - start);
1562 }
1563
1564 cache->bytes_super += len;
1565 ret = btrfs_add_excluded_extent(fs_info, start, len);
1566 if (ret) {
1567 kfree(logical);
1568 return ret;
1569 }
1570 }
1571
1572 kfree(logical);
1573 }
1574 return 0;
1575 }
1576
link_block_group(struct btrfs_block_group_cache * cache)1577 static void link_block_group(struct btrfs_block_group_cache *cache)
1578 {
1579 struct btrfs_space_info *space_info = cache->space_info;
1580 int index = btrfs_bg_flags_to_raid_index(cache->flags);
1581 bool first = false;
1582
1583 down_write(&space_info->groups_sem);
1584 if (list_empty(&space_info->block_groups[index]))
1585 first = true;
1586 list_add_tail(&cache->list, &space_info->block_groups[index]);
1587 up_write(&space_info->groups_sem);
1588
1589 if (first)
1590 btrfs_sysfs_add_block_group_type(cache);
1591 }
1592
btrfs_create_block_group_cache(struct btrfs_fs_info * fs_info,u64 start,u64 size)1593 static struct btrfs_block_group_cache *btrfs_create_block_group_cache(
1594 struct btrfs_fs_info *fs_info, u64 start, u64 size)
1595 {
1596 struct btrfs_block_group_cache *cache;
1597
1598 cache = kzalloc(sizeof(*cache), GFP_NOFS);
1599 if (!cache)
1600 return NULL;
1601
1602 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1603 GFP_NOFS);
1604 if (!cache->free_space_ctl) {
1605 kfree(cache);
1606 return NULL;
1607 }
1608
1609 cache->key.objectid = start;
1610 cache->key.offset = size;
1611 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1612
1613 cache->fs_info = fs_info;
1614 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1615 set_free_space_tree_thresholds(cache);
1616
1617 atomic_set(&cache->count, 1);
1618 spin_lock_init(&cache->lock);
1619 init_rwsem(&cache->data_rwsem);
1620 INIT_LIST_HEAD(&cache->list);
1621 INIT_LIST_HEAD(&cache->cluster_list);
1622 INIT_LIST_HEAD(&cache->bg_list);
1623 INIT_LIST_HEAD(&cache->ro_list);
1624 INIT_LIST_HEAD(&cache->dirty_list);
1625 INIT_LIST_HEAD(&cache->io_list);
1626 btrfs_init_free_space_ctl(cache);
1627 atomic_set(&cache->trimming, 0);
1628 mutex_init(&cache->free_space_lock);
1629 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1630
1631 return cache;
1632 }
1633
1634 /*
1635 * Iterate all chunks and verify that each of them has the corresponding block
1636 * group
1637 */
check_chunk_block_group_mappings(struct btrfs_fs_info * fs_info)1638 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1639 {
1640 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1641 struct extent_map *em;
1642 struct btrfs_block_group_cache *bg;
1643 u64 start = 0;
1644 int ret = 0;
1645
1646 while (1) {
1647 read_lock(&map_tree->lock);
1648 /*
1649 * lookup_extent_mapping will return the first extent map
1650 * intersecting the range, so setting @len to 1 is enough to
1651 * get the first chunk.
1652 */
1653 em = lookup_extent_mapping(map_tree, start, 1);
1654 read_unlock(&map_tree->lock);
1655 if (!em)
1656 break;
1657
1658 bg = btrfs_lookup_block_group(fs_info, em->start);
1659 if (!bg) {
1660 btrfs_err(fs_info,
1661 "chunk start=%llu len=%llu doesn't have corresponding block group",
1662 em->start, em->len);
1663 ret = -EUCLEAN;
1664 free_extent_map(em);
1665 break;
1666 }
1667 if (bg->key.objectid != em->start ||
1668 bg->key.offset != em->len ||
1669 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1670 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1671 btrfs_err(fs_info,
1672 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1673 em->start, em->len,
1674 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1675 bg->key.objectid, bg->key.offset,
1676 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1677 ret = -EUCLEAN;
1678 free_extent_map(em);
1679 btrfs_put_block_group(bg);
1680 break;
1681 }
1682 start = em->start + em->len;
1683 free_extent_map(em);
1684 btrfs_put_block_group(bg);
1685 }
1686 return ret;
1687 }
1688
btrfs_read_block_groups(struct btrfs_fs_info * info)1689 int btrfs_read_block_groups(struct btrfs_fs_info *info)
1690 {
1691 struct btrfs_path *path;
1692 int ret;
1693 struct btrfs_block_group_cache *cache;
1694 struct btrfs_space_info *space_info;
1695 struct btrfs_key key;
1696 struct btrfs_key found_key;
1697 struct extent_buffer *leaf;
1698 int need_clear = 0;
1699 u64 cache_gen;
1700 u64 feature;
1701 int mixed;
1702
1703 feature = btrfs_super_incompat_flags(info->super_copy);
1704 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
1705
1706 key.objectid = 0;
1707 key.offset = 0;
1708 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1709 path = btrfs_alloc_path();
1710 if (!path)
1711 return -ENOMEM;
1712 path->reada = READA_FORWARD;
1713
1714 cache_gen = btrfs_super_cache_generation(info->super_copy);
1715 if (btrfs_test_opt(info, SPACE_CACHE) &&
1716 btrfs_super_generation(info->super_copy) != cache_gen)
1717 need_clear = 1;
1718 if (btrfs_test_opt(info, CLEAR_CACHE))
1719 need_clear = 1;
1720
1721 while (1) {
1722 ret = find_first_block_group(info, path, &key);
1723 if (ret > 0)
1724 break;
1725 if (ret != 0)
1726 goto error;
1727
1728 leaf = path->nodes[0];
1729 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1730
1731 cache = btrfs_create_block_group_cache(info, found_key.objectid,
1732 found_key.offset);
1733 if (!cache) {
1734 ret = -ENOMEM;
1735 goto error;
1736 }
1737
1738 if (need_clear) {
1739 /*
1740 * When we mount with old space cache, we need to
1741 * set BTRFS_DC_CLEAR and set dirty flag.
1742 *
1743 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1744 * truncate the old free space cache inode and
1745 * setup a new one.
1746 * b) Setting 'dirty flag' makes sure that we flush
1747 * the new space cache info onto disk.
1748 */
1749 if (btrfs_test_opt(info, SPACE_CACHE))
1750 cache->disk_cache_state = BTRFS_DC_CLEAR;
1751 }
1752
1753 read_extent_buffer(leaf, &cache->item,
1754 btrfs_item_ptr_offset(leaf, path->slots[0]),
1755 sizeof(cache->item));
1756 cache->flags = btrfs_block_group_flags(&cache->item);
1757 if (!mixed &&
1758 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1759 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1760 btrfs_err(info,
1761 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
1762 cache->key.objectid);
1763 btrfs_put_block_group(cache);
1764 ret = -EINVAL;
1765 goto error;
1766 }
1767
1768 key.objectid = found_key.objectid + found_key.offset;
1769 btrfs_release_path(path);
1770
1771 /*
1772 * We need to exclude the super stripes now so that the space
1773 * info has super bytes accounted for, otherwise we'll think
1774 * we have more space than we actually do.
1775 */
1776 ret = exclude_super_stripes(cache);
1777 if (ret) {
1778 /*
1779 * We may have excluded something, so call this just in
1780 * case.
1781 */
1782 btrfs_free_excluded_extents(cache);
1783 btrfs_put_block_group(cache);
1784 goto error;
1785 }
1786
1787 /*
1788 * Check for two cases, either we are full, and therefore
1789 * don't need to bother with the caching work since we won't
1790 * find any space, or we are empty, and we can just add all
1791 * the space in and be done with it. This saves us _a_lot_ of
1792 * time, particularly in the full case.
1793 */
1794 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
1795 cache->last_byte_to_unpin = (u64)-1;
1796 cache->cached = BTRFS_CACHE_FINISHED;
1797 btrfs_free_excluded_extents(cache);
1798 } else if (btrfs_block_group_used(&cache->item) == 0) {
1799 cache->last_byte_to_unpin = (u64)-1;
1800 cache->cached = BTRFS_CACHE_FINISHED;
1801 add_new_free_space(cache, found_key.objectid,
1802 found_key.objectid +
1803 found_key.offset);
1804 btrfs_free_excluded_extents(cache);
1805 }
1806
1807 ret = btrfs_add_block_group_cache(info, cache);
1808 if (ret) {
1809 btrfs_remove_free_space_cache(cache);
1810 btrfs_put_block_group(cache);
1811 goto error;
1812 }
1813
1814 trace_btrfs_add_block_group(info, cache, 0);
1815 btrfs_update_space_info(info, cache->flags, found_key.offset,
1816 btrfs_block_group_used(&cache->item),
1817 cache->bytes_super, &space_info);
1818
1819 cache->space_info = space_info;
1820
1821 link_block_group(cache);
1822
1823 set_avail_alloc_bits(info, cache->flags);
1824 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
1825 inc_block_group_ro(cache, 1);
1826 } else if (btrfs_block_group_used(&cache->item) == 0) {
1827 ASSERT(list_empty(&cache->bg_list));
1828 btrfs_mark_bg_unused(cache);
1829 }
1830 }
1831
1832 list_for_each_entry_rcu(space_info, &info->space_info, list) {
1833 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
1834 (BTRFS_BLOCK_GROUP_RAID10 |
1835 BTRFS_BLOCK_GROUP_RAID1_MASK |
1836 BTRFS_BLOCK_GROUP_RAID56_MASK |
1837 BTRFS_BLOCK_GROUP_DUP)))
1838 continue;
1839 /*
1840 * Avoid allocating from un-mirrored block group if there are
1841 * mirrored block groups.
1842 */
1843 list_for_each_entry(cache,
1844 &space_info->block_groups[BTRFS_RAID_RAID0],
1845 list)
1846 inc_block_group_ro(cache, 1);
1847 list_for_each_entry(cache,
1848 &space_info->block_groups[BTRFS_RAID_SINGLE],
1849 list)
1850 inc_block_group_ro(cache, 1);
1851 }
1852
1853 btrfs_init_global_block_rsv(info);
1854 ret = check_chunk_block_group_mappings(info);
1855 error:
1856 btrfs_free_path(path);
1857 return ret;
1858 }
1859
btrfs_create_pending_block_groups(struct btrfs_trans_handle * trans)1860 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
1861 {
1862 struct btrfs_fs_info *fs_info = trans->fs_info;
1863 struct btrfs_block_group_cache *block_group;
1864 struct btrfs_root *extent_root = fs_info->extent_root;
1865 struct btrfs_block_group_item item;
1866 struct btrfs_key key;
1867 int ret = 0;
1868
1869 if (!trans->can_flush_pending_bgs)
1870 return;
1871
1872 while (!list_empty(&trans->new_bgs)) {
1873 block_group = list_first_entry(&trans->new_bgs,
1874 struct btrfs_block_group_cache,
1875 bg_list);
1876 if (ret)
1877 goto next;
1878
1879 spin_lock(&block_group->lock);
1880 memcpy(&item, &block_group->item, sizeof(item));
1881 memcpy(&key, &block_group->key, sizeof(key));
1882 spin_unlock(&block_group->lock);
1883
1884 ret = btrfs_insert_item(trans, extent_root, &key, &item,
1885 sizeof(item));
1886 if (ret)
1887 btrfs_abort_transaction(trans, ret);
1888 ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
1889 if (ret)
1890 btrfs_abort_transaction(trans, ret);
1891 add_block_group_free_space(trans, block_group);
1892 /* Already aborted the transaction if it failed. */
1893 next:
1894 btrfs_delayed_refs_rsv_release(fs_info, 1);
1895 list_del_init(&block_group->bg_list);
1896 }
1897 btrfs_trans_release_chunk_metadata(trans);
1898 }
1899
btrfs_make_block_group(struct btrfs_trans_handle * trans,u64 bytes_used,u64 type,u64 chunk_offset,u64 size)1900 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
1901 u64 type, u64 chunk_offset, u64 size)
1902 {
1903 struct btrfs_fs_info *fs_info = trans->fs_info;
1904 struct btrfs_block_group_cache *cache;
1905 int ret;
1906
1907 btrfs_set_log_full_commit(trans);
1908
1909 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
1910 if (!cache)
1911 return -ENOMEM;
1912
1913 btrfs_set_block_group_used(&cache->item, bytes_used);
1914 btrfs_set_block_group_chunk_objectid(&cache->item,
1915 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1916 btrfs_set_block_group_flags(&cache->item, type);
1917
1918 cache->flags = type;
1919 cache->last_byte_to_unpin = (u64)-1;
1920 cache->cached = BTRFS_CACHE_FINISHED;
1921 cache->needs_free_space = 1;
1922 ret = exclude_super_stripes(cache);
1923 if (ret) {
1924 /* We may have excluded something, so call this just in case */
1925 btrfs_free_excluded_extents(cache);
1926 btrfs_put_block_group(cache);
1927 return ret;
1928 }
1929
1930 add_new_free_space(cache, chunk_offset, chunk_offset + size);
1931
1932 btrfs_free_excluded_extents(cache);
1933
1934 #ifdef CONFIG_BTRFS_DEBUG
1935 if (btrfs_should_fragment_free_space(cache)) {
1936 u64 new_bytes_used = size - bytes_used;
1937
1938 bytes_used += new_bytes_used >> 1;
1939 fragment_free_space(cache);
1940 }
1941 #endif
1942 /*
1943 * Ensure the corresponding space_info object is created and
1944 * assigned to our block group. We want our bg to be added to the rbtree
1945 * with its ->space_info set.
1946 */
1947 cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
1948 ASSERT(cache->space_info);
1949
1950 ret = btrfs_add_block_group_cache(fs_info, cache);
1951 if (ret) {
1952 btrfs_remove_free_space_cache(cache);
1953 btrfs_put_block_group(cache);
1954 return ret;
1955 }
1956
1957 /*
1958 * Now that our block group has its ->space_info set and is inserted in
1959 * the rbtree, update the space info's counters.
1960 */
1961 trace_btrfs_add_block_group(fs_info, cache, 1);
1962 btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
1963 cache->bytes_super, &cache->space_info);
1964 btrfs_update_global_block_rsv(fs_info);
1965
1966 link_block_group(cache);
1967
1968 list_add_tail(&cache->bg_list, &trans->new_bgs);
1969 trans->delayed_ref_updates++;
1970 btrfs_update_delayed_refs_rsv(trans);
1971
1972 set_avail_alloc_bits(fs_info, type);
1973 return 0;
1974 }
1975
update_block_group_flags(struct btrfs_fs_info * fs_info,u64 flags)1976 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
1977 {
1978 u64 num_devices;
1979 u64 stripped;
1980
1981 /*
1982 * if restripe for this chunk_type is on pick target profile and
1983 * return, otherwise do the usual balance
1984 */
1985 stripped = get_restripe_target(fs_info, flags);
1986 if (stripped)
1987 return extended_to_chunk(stripped);
1988
1989 num_devices = fs_info->fs_devices->rw_devices;
1990
1991 stripped = BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID56_MASK |
1992 BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10;
1993
1994 if (num_devices == 1) {
1995 stripped |= BTRFS_BLOCK_GROUP_DUP;
1996 stripped = flags & ~stripped;
1997
1998 /* turn raid0 into single device chunks */
1999 if (flags & BTRFS_BLOCK_GROUP_RAID0)
2000 return stripped;
2001
2002 /* turn mirroring into duplication */
2003 if (flags & (BTRFS_BLOCK_GROUP_RAID1_MASK |
2004 BTRFS_BLOCK_GROUP_RAID10))
2005 return stripped | BTRFS_BLOCK_GROUP_DUP;
2006 } else {
2007 /* they already had raid on here, just return */
2008 if (flags & stripped)
2009 return flags;
2010
2011 stripped |= BTRFS_BLOCK_GROUP_DUP;
2012 stripped = flags & ~stripped;
2013
2014 /* switch duplicated blocks with raid1 */
2015 if (flags & BTRFS_BLOCK_GROUP_DUP)
2016 return stripped | BTRFS_BLOCK_GROUP_RAID1;
2017
2018 /* this is drive concat, leave it alone */
2019 }
2020
2021 return flags;
2022 }
2023
btrfs_inc_block_group_ro(struct btrfs_block_group_cache * cache)2024 int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache)
2025
2026 {
2027 struct btrfs_fs_info *fs_info = cache->fs_info;
2028 struct btrfs_trans_handle *trans;
2029 u64 alloc_flags;
2030 int ret;
2031
2032 again:
2033 trans = btrfs_join_transaction(fs_info->extent_root);
2034 if (IS_ERR(trans))
2035 return PTR_ERR(trans);
2036
2037 /*
2038 * we're not allowed to set block groups readonly after the dirty
2039 * block groups cache has started writing. If it already started,
2040 * back off and let this transaction commit
2041 */
2042 mutex_lock(&fs_info->ro_block_group_mutex);
2043 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2044 u64 transid = trans->transid;
2045
2046 mutex_unlock(&fs_info->ro_block_group_mutex);
2047 btrfs_end_transaction(trans);
2048
2049 ret = btrfs_wait_for_commit(fs_info, transid);
2050 if (ret)
2051 return ret;
2052 goto again;
2053 }
2054
2055 /*
2056 * if we are changing raid levels, try to allocate a corresponding
2057 * block group with the new raid level.
2058 */
2059 alloc_flags = update_block_group_flags(fs_info, cache->flags);
2060 if (alloc_flags != cache->flags) {
2061 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2062 /*
2063 * ENOSPC is allowed here, we may have enough space
2064 * already allocated at the new raid level to
2065 * carry on
2066 */
2067 if (ret == -ENOSPC)
2068 ret = 0;
2069 if (ret < 0)
2070 goto out;
2071 }
2072
2073 ret = inc_block_group_ro(cache, 0);
2074 if (!ret)
2075 goto out;
2076 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2077 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2078 if (ret < 0)
2079 goto out;
2080 ret = inc_block_group_ro(cache, 0);
2081 out:
2082 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2083 alloc_flags = update_block_group_flags(fs_info, cache->flags);
2084 mutex_lock(&fs_info->chunk_mutex);
2085 check_system_chunk(trans, alloc_flags);
2086 mutex_unlock(&fs_info->chunk_mutex);
2087 }
2088 mutex_unlock(&fs_info->ro_block_group_mutex);
2089
2090 btrfs_end_transaction(trans);
2091 return ret;
2092 }
2093
btrfs_dec_block_group_ro(struct btrfs_block_group_cache * cache)2094 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
2095 {
2096 struct btrfs_space_info *sinfo = cache->space_info;
2097 u64 num_bytes;
2098
2099 BUG_ON(!cache->ro);
2100
2101 spin_lock(&sinfo->lock);
2102 spin_lock(&cache->lock);
2103 if (!--cache->ro) {
2104 num_bytes = cache->key.offset - cache->reserved -
2105 cache->pinned - cache->bytes_super -
2106 btrfs_block_group_used(&cache->item);
2107 sinfo->bytes_readonly -= num_bytes;
2108 list_del_init(&cache->ro_list);
2109 }
2110 spin_unlock(&cache->lock);
2111 spin_unlock(&sinfo->lock);
2112 }
2113
write_one_cache_group(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_block_group_cache * cache)2114 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2115 struct btrfs_path *path,
2116 struct btrfs_block_group_cache *cache)
2117 {
2118 struct btrfs_fs_info *fs_info = trans->fs_info;
2119 int ret;
2120 struct btrfs_root *extent_root = fs_info->extent_root;
2121 unsigned long bi;
2122 struct extent_buffer *leaf;
2123
2124 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2125 if (ret) {
2126 if (ret > 0)
2127 ret = -ENOENT;
2128 goto fail;
2129 }
2130
2131 leaf = path->nodes[0];
2132 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2133 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2134 btrfs_mark_buffer_dirty(leaf);
2135 fail:
2136 btrfs_release_path(path);
2137 return ret;
2138
2139 }
2140
cache_save_setup(struct btrfs_block_group_cache * block_group,struct btrfs_trans_handle * trans,struct btrfs_path * path)2141 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2142 struct btrfs_trans_handle *trans,
2143 struct btrfs_path *path)
2144 {
2145 struct btrfs_fs_info *fs_info = block_group->fs_info;
2146 struct btrfs_root *root = fs_info->tree_root;
2147 struct inode *inode = NULL;
2148 struct extent_changeset *data_reserved = NULL;
2149 u64 alloc_hint = 0;
2150 int dcs = BTRFS_DC_ERROR;
2151 u64 num_pages = 0;
2152 int retries = 0;
2153 int ret = 0;
2154
2155 /*
2156 * If this block group is smaller than 100 megs don't bother caching the
2157 * block group.
2158 */
2159 if (block_group->key.offset < (100 * SZ_1M)) {
2160 spin_lock(&block_group->lock);
2161 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2162 spin_unlock(&block_group->lock);
2163 return 0;
2164 }
2165
2166 if (trans->aborted)
2167 return 0;
2168 again:
2169 inode = lookup_free_space_inode(block_group, path);
2170 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2171 ret = PTR_ERR(inode);
2172 btrfs_release_path(path);
2173 goto out;
2174 }
2175
2176 if (IS_ERR(inode)) {
2177 BUG_ON(retries);
2178 retries++;
2179
2180 if (block_group->ro)
2181 goto out_free;
2182
2183 ret = create_free_space_inode(trans, block_group, path);
2184 if (ret)
2185 goto out_free;
2186 goto again;
2187 }
2188
2189 /*
2190 * We want to set the generation to 0, that way if anything goes wrong
2191 * from here on out we know not to trust this cache when we load up next
2192 * time.
2193 */
2194 BTRFS_I(inode)->generation = 0;
2195 ret = btrfs_update_inode(trans, root, inode);
2196 if (ret) {
2197 /*
2198 * So theoretically we could recover from this, simply set the
2199 * super cache generation to 0 so we know to invalidate the
2200 * cache, but then we'd have to keep track of the block groups
2201 * that fail this way so we know we _have_ to reset this cache
2202 * before the next commit or risk reading stale cache. So to
2203 * limit our exposure to horrible edge cases lets just abort the
2204 * transaction, this only happens in really bad situations
2205 * anyway.
2206 */
2207 btrfs_abort_transaction(trans, ret);
2208 goto out_put;
2209 }
2210 WARN_ON(ret);
2211
2212 /* We've already setup this transaction, go ahead and exit */
2213 if (block_group->cache_generation == trans->transid &&
2214 i_size_read(inode)) {
2215 dcs = BTRFS_DC_SETUP;
2216 goto out_put;
2217 }
2218
2219 if (i_size_read(inode) > 0) {
2220 ret = btrfs_check_trunc_cache_free_space(fs_info,
2221 &fs_info->global_block_rsv);
2222 if (ret)
2223 goto out_put;
2224
2225 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2226 if (ret)
2227 goto out_put;
2228 }
2229
2230 spin_lock(&block_group->lock);
2231 if (block_group->cached != BTRFS_CACHE_FINISHED ||
2232 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2233 /*
2234 * don't bother trying to write stuff out _if_
2235 * a) we're not cached,
2236 * b) we're with nospace_cache mount option,
2237 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2238 */
2239 dcs = BTRFS_DC_WRITTEN;
2240 spin_unlock(&block_group->lock);
2241 goto out_put;
2242 }
2243 spin_unlock(&block_group->lock);
2244
2245 /*
2246 * We hit an ENOSPC when setting up the cache in this transaction, just
2247 * skip doing the setup, we've already cleared the cache so we're safe.
2248 */
2249 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2250 ret = -ENOSPC;
2251 goto out_put;
2252 }
2253
2254 /*
2255 * Try to preallocate enough space based on how big the block group is.
2256 * Keep in mind this has to include any pinned space which could end up
2257 * taking up quite a bit since it's not folded into the other space
2258 * cache.
2259 */
2260 num_pages = div_u64(block_group->key.offset, SZ_256M);
2261 if (!num_pages)
2262 num_pages = 1;
2263
2264 num_pages *= 16;
2265 num_pages *= PAGE_SIZE;
2266
2267 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
2268 if (ret)
2269 goto out_put;
2270
2271 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2272 num_pages, num_pages,
2273 &alloc_hint);
2274 /*
2275 * Our cache requires contiguous chunks so that we don't modify a bunch
2276 * of metadata or split extents when writing the cache out, which means
2277 * we can enospc if we are heavily fragmented in addition to just normal
2278 * out of space conditions. So if we hit this just skip setting up any
2279 * other block groups for this transaction, maybe we'll unpin enough
2280 * space the next time around.
2281 */
2282 if (!ret)
2283 dcs = BTRFS_DC_SETUP;
2284 else if (ret == -ENOSPC)
2285 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2286
2287 out_put:
2288 iput(inode);
2289 out_free:
2290 btrfs_release_path(path);
2291 out:
2292 spin_lock(&block_group->lock);
2293 if (!ret && dcs == BTRFS_DC_SETUP)
2294 block_group->cache_generation = trans->transid;
2295 block_group->disk_cache_state = dcs;
2296 spin_unlock(&block_group->lock);
2297
2298 extent_changeset_free(data_reserved);
2299 return ret;
2300 }
2301
btrfs_setup_space_cache(struct btrfs_trans_handle * trans)2302 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2303 {
2304 struct btrfs_fs_info *fs_info = trans->fs_info;
2305 struct btrfs_block_group_cache *cache, *tmp;
2306 struct btrfs_transaction *cur_trans = trans->transaction;
2307 struct btrfs_path *path;
2308
2309 if (list_empty(&cur_trans->dirty_bgs) ||
2310 !btrfs_test_opt(fs_info, SPACE_CACHE))
2311 return 0;
2312
2313 path = btrfs_alloc_path();
2314 if (!path)
2315 return -ENOMEM;
2316
2317 /* Could add new block groups, use _safe just in case */
2318 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2319 dirty_list) {
2320 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2321 cache_save_setup(cache, trans, path);
2322 }
2323
2324 btrfs_free_path(path);
2325 return 0;
2326 }
2327
2328 /*
2329 * Transaction commit does final block group cache writeback during a critical
2330 * section where nothing is allowed to change the FS. This is required in
2331 * order for the cache to actually match the block group, but can introduce a
2332 * lot of latency into the commit.
2333 *
2334 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2335 * There's a chance we'll have to redo some of it if the block group changes
2336 * again during the commit, but it greatly reduces the commit latency by
2337 * getting rid of the easy block groups while we're still allowing others to
2338 * join the commit.
2339 */
btrfs_start_dirty_block_groups(struct btrfs_trans_handle * trans)2340 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2341 {
2342 struct btrfs_fs_info *fs_info = trans->fs_info;
2343 struct btrfs_block_group_cache *cache;
2344 struct btrfs_transaction *cur_trans = trans->transaction;
2345 int ret = 0;
2346 int should_put;
2347 struct btrfs_path *path = NULL;
2348 LIST_HEAD(dirty);
2349 struct list_head *io = &cur_trans->io_bgs;
2350 int num_started = 0;
2351 int loops = 0;
2352
2353 spin_lock(&cur_trans->dirty_bgs_lock);
2354 if (list_empty(&cur_trans->dirty_bgs)) {
2355 spin_unlock(&cur_trans->dirty_bgs_lock);
2356 return 0;
2357 }
2358 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2359 spin_unlock(&cur_trans->dirty_bgs_lock);
2360
2361 again:
2362 /* Make sure all the block groups on our dirty list actually exist */
2363 btrfs_create_pending_block_groups(trans);
2364
2365 if (!path) {
2366 path = btrfs_alloc_path();
2367 if (!path)
2368 return -ENOMEM;
2369 }
2370
2371 /*
2372 * cache_write_mutex is here only to save us from balance or automatic
2373 * removal of empty block groups deleting this block group while we are
2374 * writing out the cache
2375 */
2376 mutex_lock(&trans->transaction->cache_write_mutex);
2377 while (!list_empty(&dirty)) {
2378 bool drop_reserve = true;
2379
2380 cache = list_first_entry(&dirty,
2381 struct btrfs_block_group_cache,
2382 dirty_list);
2383 /*
2384 * This can happen if something re-dirties a block group that
2385 * is already under IO. Just wait for it to finish and then do
2386 * it all again
2387 */
2388 if (!list_empty(&cache->io_list)) {
2389 list_del_init(&cache->io_list);
2390 btrfs_wait_cache_io(trans, cache, path);
2391 btrfs_put_block_group(cache);
2392 }
2393
2394
2395 /*
2396 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2397 * it should update the cache_state. Don't delete until after
2398 * we wait.
2399 *
2400 * Since we're not running in the commit critical section
2401 * we need the dirty_bgs_lock to protect from update_block_group
2402 */
2403 spin_lock(&cur_trans->dirty_bgs_lock);
2404 list_del_init(&cache->dirty_list);
2405 spin_unlock(&cur_trans->dirty_bgs_lock);
2406
2407 should_put = 1;
2408
2409 cache_save_setup(cache, trans, path);
2410
2411 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2412 cache->io_ctl.inode = NULL;
2413 ret = btrfs_write_out_cache(trans, cache, path);
2414 if (ret == 0 && cache->io_ctl.inode) {
2415 num_started++;
2416 should_put = 0;
2417
2418 /*
2419 * The cache_write_mutex is protecting the
2420 * io_list, also refer to the definition of
2421 * btrfs_transaction::io_bgs for more details
2422 */
2423 list_add_tail(&cache->io_list, io);
2424 } else {
2425 /*
2426 * If we failed to write the cache, the
2427 * generation will be bad and life goes on
2428 */
2429 ret = 0;
2430 }
2431 }
2432 if (!ret) {
2433 ret = write_one_cache_group(trans, path, cache);
2434 /*
2435 * Our block group might still be attached to the list
2436 * of new block groups in the transaction handle of some
2437 * other task (struct btrfs_trans_handle->new_bgs). This
2438 * means its block group item isn't yet in the extent
2439 * tree. If this happens ignore the error, as we will
2440 * try again later in the critical section of the
2441 * transaction commit.
2442 */
2443 if (ret == -ENOENT) {
2444 ret = 0;
2445 spin_lock(&cur_trans->dirty_bgs_lock);
2446 if (list_empty(&cache->dirty_list)) {
2447 list_add_tail(&cache->dirty_list,
2448 &cur_trans->dirty_bgs);
2449 btrfs_get_block_group(cache);
2450 drop_reserve = false;
2451 }
2452 spin_unlock(&cur_trans->dirty_bgs_lock);
2453 } else if (ret) {
2454 btrfs_abort_transaction(trans, ret);
2455 }
2456 }
2457
2458 /* If it's not on the io list, we need to put the block group */
2459 if (should_put)
2460 btrfs_put_block_group(cache);
2461 if (drop_reserve)
2462 btrfs_delayed_refs_rsv_release(fs_info, 1);
2463
2464 if (ret)
2465 break;
2466
2467 /*
2468 * Avoid blocking other tasks for too long. It might even save
2469 * us from writing caches for block groups that are going to be
2470 * removed.
2471 */
2472 mutex_unlock(&trans->transaction->cache_write_mutex);
2473 mutex_lock(&trans->transaction->cache_write_mutex);
2474 }
2475 mutex_unlock(&trans->transaction->cache_write_mutex);
2476
2477 /*
2478 * Go through delayed refs for all the stuff we've just kicked off
2479 * and then loop back (just once)
2480 */
2481 ret = btrfs_run_delayed_refs(trans, 0);
2482 if (!ret && loops == 0) {
2483 loops++;
2484 spin_lock(&cur_trans->dirty_bgs_lock);
2485 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2486 /*
2487 * dirty_bgs_lock protects us from concurrent block group
2488 * deletes too (not just cache_write_mutex).
2489 */
2490 if (!list_empty(&dirty)) {
2491 spin_unlock(&cur_trans->dirty_bgs_lock);
2492 goto again;
2493 }
2494 spin_unlock(&cur_trans->dirty_bgs_lock);
2495 } else if (ret < 0) {
2496 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
2497 }
2498
2499 btrfs_free_path(path);
2500 return ret;
2501 }
2502
btrfs_write_dirty_block_groups(struct btrfs_trans_handle * trans)2503 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
2504 {
2505 struct btrfs_fs_info *fs_info = trans->fs_info;
2506 struct btrfs_block_group_cache *cache;
2507 struct btrfs_transaction *cur_trans = trans->transaction;
2508 int ret = 0;
2509 int should_put;
2510 struct btrfs_path *path;
2511 struct list_head *io = &cur_trans->io_bgs;
2512 int num_started = 0;
2513
2514 path = btrfs_alloc_path();
2515 if (!path)
2516 return -ENOMEM;
2517
2518 /*
2519 * Even though we are in the critical section of the transaction commit,
2520 * we can still have concurrent tasks adding elements to this
2521 * transaction's list of dirty block groups. These tasks correspond to
2522 * endio free space workers started when writeback finishes for a
2523 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2524 * allocate new block groups as a result of COWing nodes of the root
2525 * tree when updating the free space inode. The writeback for the space
2526 * caches is triggered by an earlier call to
2527 * btrfs_start_dirty_block_groups() and iterations of the following
2528 * loop.
2529 * Also we want to do the cache_save_setup first and then run the
2530 * delayed refs to make sure we have the best chance at doing this all
2531 * in one shot.
2532 */
2533 spin_lock(&cur_trans->dirty_bgs_lock);
2534 while (!list_empty(&cur_trans->dirty_bgs)) {
2535 cache = list_first_entry(&cur_trans->dirty_bgs,
2536 struct btrfs_block_group_cache,
2537 dirty_list);
2538
2539 /*
2540 * This can happen if cache_save_setup re-dirties a block group
2541 * that is already under IO. Just wait for it to finish and
2542 * then do it all again
2543 */
2544 if (!list_empty(&cache->io_list)) {
2545 spin_unlock(&cur_trans->dirty_bgs_lock);
2546 list_del_init(&cache->io_list);
2547 btrfs_wait_cache_io(trans, cache, path);
2548 btrfs_put_block_group(cache);
2549 spin_lock(&cur_trans->dirty_bgs_lock);
2550 }
2551
2552 /*
2553 * Don't remove from the dirty list until after we've waited on
2554 * any pending IO
2555 */
2556 list_del_init(&cache->dirty_list);
2557 spin_unlock(&cur_trans->dirty_bgs_lock);
2558 should_put = 1;
2559
2560 cache_save_setup(cache, trans, path);
2561
2562 if (!ret)
2563 ret = btrfs_run_delayed_refs(trans,
2564 (unsigned long) -1);
2565
2566 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
2567 cache->io_ctl.inode = NULL;
2568 ret = btrfs_write_out_cache(trans, cache, path);
2569 if (ret == 0 && cache->io_ctl.inode) {
2570 num_started++;
2571 should_put = 0;
2572 list_add_tail(&cache->io_list, io);
2573 } else {
2574 /*
2575 * If we failed to write the cache, the
2576 * generation will be bad and life goes on
2577 */
2578 ret = 0;
2579 }
2580 }
2581 if (!ret) {
2582 ret = write_one_cache_group(trans, path, cache);
2583 /*
2584 * One of the free space endio workers might have
2585 * created a new block group while updating a free space
2586 * cache's inode (at inode.c:btrfs_finish_ordered_io())
2587 * and hasn't released its transaction handle yet, in
2588 * which case the new block group is still attached to
2589 * its transaction handle and its creation has not
2590 * finished yet (no block group item in the extent tree
2591 * yet, etc). If this is the case, wait for all free
2592 * space endio workers to finish and retry. This is a
2593 * a very rare case so no need for a more efficient and
2594 * complex approach.
2595 */
2596 if (ret == -ENOENT) {
2597 wait_event(cur_trans->writer_wait,
2598 atomic_read(&cur_trans->num_writers) == 1);
2599 ret = write_one_cache_group(trans, path, cache);
2600 }
2601 if (ret)
2602 btrfs_abort_transaction(trans, ret);
2603 }
2604
2605 /* If its not on the io list, we need to put the block group */
2606 if (should_put)
2607 btrfs_put_block_group(cache);
2608 btrfs_delayed_refs_rsv_release(fs_info, 1);
2609 spin_lock(&cur_trans->dirty_bgs_lock);
2610 }
2611 spin_unlock(&cur_trans->dirty_bgs_lock);
2612
2613 /*
2614 * Refer to the definition of io_bgs member for details why it's safe
2615 * to use it without any locking
2616 */
2617 while (!list_empty(io)) {
2618 cache = list_first_entry(io, struct btrfs_block_group_cache,
2619 io_list);
2620 list_del_init(&cache->io_list);
2621 btrfs_wait_cache_io(trans, cache, path);
2622 btrfs_put_block_group(cache);
2623 }
2624
2625 btrfs_free_path(path);
2626 return ret;
2627 }
2628
btrfs_update_block_group(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,int alloc)2629 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
2630 u64 bytenr, u64 num_bytes, int alloc)
2631 {
2632 struct btrfs_fs_info *info = trans->fs_info;
2633 struct btrfs_block_group_cache *cache = NULL;
2634 u64 total = num_bytes;
2635 u64 old_val;
2636 u64 byte_in_group;
2637 int factor;
2638 int ret = 0;
2639
2640 /* Block accounting for super block */
2641 spin_lock(&info->delalloc_root_lock);
2642 old_val = btrfs_super_bytes_used(info->super_copy);
2643 if (alloc)
2644 old_val += num_bytes;
2645 else
2646 old_val -= num_bytes;
2647 btrfs_set_super_bytes_used(info->super_copy, old_val);
2648 spin_unlock(&info->delalloc_root_lock);
2649
2650 while (total) {
2651 cache = btrfs_lookup_block_group(info, bytenr);
2652 if (!cache) {
2653 ret = -ENOENT;
2654 break;
2655 }
2656 factor = btrfs_bg_type_to_factor(cache->flags);
2657
2658 /*
2659 * If this block group has free space cache written out, we
2660 * need to make sure to load it if we are removing space. This
2661 * is because we need the unpinning stage to actually add the
2662 * space back to the block group, otherwise we will leak space.
2663 */
2664 if (!alloc && !btrfs_block_group_cache_done(cache))
2665 btrfs_cache_block_group(cache, 1);
2666
2667 byte_in_group = bytenr - cache->key.objectid;
2668 WARN_ON(byte_in_group > cache->key.offset);
2669
2670 spin_lock(&cache->space_info->lock);
2671 spin_lock(&cache->lock);
2672
2673 if (btrfs_test_opt(info, SPACE_CACHE) &&
2674 cache->disk_cache_state < BTRFS_DC_CLEAR)
2675 cache->disk_cache_state = BTRFS_DC_CLEAR;
2676
2677 old_val = btrfs_block_group_used(&cache->item);
2678 num_bytes = min(total, cache->key.offset - byte_in_group);
2679 if (alloc) {
2680 old_val += num_bytes;
2681 btrfs_set_block_group_used(&cache->item, old_val);
2682 cache->reserved -= num_bytes;
2683 cache->space_info->bytes_reserved -= num_bytes;
2684 cache->space_info->bytes_used += num_bytes;
2685 cache->space_info->disk_used += num_bytes * factor;
2686 spin_unlock(&cache->lock);
2687 spin_unlock(&cache->space_info->lock);
2688 } else {
2689 old_val -= num_bytes;
2690 btrfs_set_block_group_used(&cache->item, old_val);
2691 cache->pinned += num_bytes;
2692 btrfs_space_info_update_bytes_pinned(info,
2693 cache->space_info, num_bytes);
2694 cache->space_info->bytes_used -= num_bytes;
2695 cache->space_info->disk_used -= num_bytes * factor;
2696 spin_unlock(&cache->lock);
2697 spin_unlock(&cache->space_info->lock);
2698
2699 percpu_counter_add_batch(
2700 &cache->space_info->total_bytes_pinned,
2701 num_bytes,
2702 BTRFS_TOTAL_BYTES_PINNED_BATCH);
2703 set_extent_dirty(info->pinned_extents,
2704 bytenr, bytenr + num_bytes - 1,
2705 GFP_NOFS | __GFP_NOFAIL);
2706 }
2707
2708 spin_lock(&trans->transaction->dirty_bgs_lock);
2709 if (list_empty(&cache->dirty_list)) {
2710 list_add_tail(&cache->dirty_list,
2711 &trans->transaction->dirty_bgs);
2712 trans->delayed_ref_updates++;
2713 btrfs_get_block_group(cache);
2714 }
2715 spin_unlock(&trans->transaction->dirty_bgs_lock);
2716
2717 /*
2718 * No longer have used bytes in this block group, queue it for
2719 * deletion. We do this after adding the block group to the
2720 * dirty list to avoid races between cleaner kthread and space
2721 * cache writeout.
2722 */
2723 if (!alloc && old_val == 0)
2724 btrfs_mark_bg_unused(cache);
2725
2726 btrfs_put_block_group(cache);
2727 total -= num_bytes;
2728 bytenr += num_bytes;
2729 }
2730
2731 /* Modified block groups are accounted for in the delayed_refs_rsv. */
2732 btrfs_update_delayed_refs_rsv(trans);
2733 return ret;
2734 }
2735
2736 /**
2737 * btrfs_add_reserved_bytes - update the block_group and space info counters
2738 * @cache: The cache we are manipulating
2739 * @ram_bytes: The number of bytes of file content, and will be same to
2740 * @num_bytes except for the compress path.
2741 * @num_bytes: The number of bytes in question
2742 * @delalloc: The blocks are allocated for the delalloc write
2743 *
2744 * This is called by the allocator when it reserves space. If this is a
2745 * reservation and the block group has become read only we cannot make the
2746 * reservation and return -EAGAIN, otherwise this function always succeeds.
2747 */
btrfs_add_reserved_bytes(struct btrfs_block_group_cache * cache,u64 ram_bytes,u64 num_bytes,int delalloc)2748 int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
2749 u64 ram_bytes, u64 num_bytes, int delalloc)
2750 {
2751 struct btrfs_space_info *space_info = cache->space_info;
2752 int ret = 0;
2753
2754 spin_lock(&space_info->lock);
2755 spin_lock(&cache->lock);
2756 if (cache->ro) {
2757 ret = -EAGAIN;
2758 } else {
2759 cache->reserved += num_bytes;
2760 space_info->bytes_reserved += num_bytes;
2761 trace_btrfs_space_reservation(cache->fs_info, "space_info",
2762 space_info->flags, num_bytes, 1);
2763 btrfs_space_info_update_bytes_may_use(cache->fs_info,
2764 space_info, -ram_bytes);
2765 if (delalloc)
2766 cache->delalloc_bytes += num_bytes;
2767 }
2768 spin_unlock(&cache->lock);
2769 spin_unlock(&space_info->lock);
2770 return ret;
2771 }
2772
2773 /**
2774 * btrfs_free_reserved_bytes - update the block_group and space info counters
2775 * @cache: The cache we are manipulating
2776 * @num_bytes: The number of bytes in question
2777 * @delalloc: The blocks are allocated for the delalloc write
2778 *
2779 * This is called by somebody who is freeing space that was never actually used
2780 * on disk. For example if you reserve some space for a new leaf in transaction
2781 * A and before transaction A commits you free that leaf, you call this with
2782 * reserve set to 0 in order to clear the reservation.
2783 */
btrfs_free_reserved_bytes(struct btrfs_block_group_cache * cache,u64 num_bytes,int delalloc)2784 void btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
2785 u64 num_bytes, int delalloc)
2786 {
2787 struct btrfs_space_info *space_info = cache->space_info;
2788
2789 spin_lock(&space_info->lock);
2790 spin_lock(&cache->lock);
2791 if (cache->ro)
2792 space_info->bytes_readonly += num_bytes;
2793 cache->reserved -= num_bytes;
2794 space_info->bytes_reserved -= num_bytes;
2795 space_info->max_extent_size = 0;
2796
2797 if (delalloc)
2798 cache->delalloc_bytes -= num_bytes;
2799 spin_unlock(&cache->lock);
2800 spin_unlock(&space_info->lock);
2801 }
2802
force_metadata_allocation(struct btrfs_fs_info * info)2803 static void force_metadata_allocation(struct btrfs_fs_info *info)
2804 {
2805 struct list_head *head = &info->space_info;
2806 struct btrfs_space_info *found;
2807
2808 rcu_read_lock();
2809 list_for_each_entry_rcu(found, head, list) {
2810 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
2811 found->force_alloc = CHUNK_ALLOC_FORCE;
2812 }
2813 rcu_read_unlock();
2814 }
2815
should_alloc_chunk(struct btrfs_fs_info * fs_info,struct btrfs_space_info * sinfo,int force)2816 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
2817 struct btrfs_space_info *sinfo, int force)
2818 {
2819 u64 bytes_used = btrfs_space_info_used(sinfo, false);
2820 u64 thresh;
2821
2822 if (force == CHUNK_ALLOC_FORCE)
2823 return 1;
2824
2825 /*
2826 * in limited mode, we want to have some free space up to
2827 * about 1% of the FS size.
2828 */
2829 if (force == CHUNK_ALLOC_LIMITED) {
2830 thresh = btrfs_super_total_bytes(fs_info->super_copy);
2831 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
2832
2833 if (sinfo->total_bytes - bytes_used < thresh)
2834 return 1;
2835 }
2836
2837 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
2838 return 0;
2839 return 1;
2840 }
2841
btrfs_force_chunk_alloc(struct btrfs_trans_handle * trans,u64 type)2842 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
2843 {
2844 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
2845
2846 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2847 }
2848
2849 /*
2850 * If force is CHUNK_ALLOC_FORCE:
2851 * - return 1 if it successfully allocates a chunk,
2852 * - return errors including -ENOSPC otherwise.
2853 * If force is NOT CHUNK_ALLOC_FORCE:
2854 * - return 0 if it doesn't need to allocate a new chunk,
2855 * - return 1 if it successfully allocates a chunk,
2856 * - return errors including -ENOSPC otherwise.
2857 */
btrfs_chunk_alloc(struct btrfs_trans_handle * trans,u64 flags,enum btrfs_chunk_alloc_enum force)2858 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
2859 enum btrfs_chunk_alloc_enum force)
2860 {
2861 struct btrfs_fs_info *fs_info = trans->fs_info;
2862 struct btrfs_space_info *space_info;
2863 bool wait_for_alloc = false;
2864 bool should_alloc = false;
2865 int ret = 0;
2866
2867 /* Don't re-enter if we're already allocating a chunk */
2868 if (trans->allocating_chunk)
2869 return -ENOSPC;
2870
2871 space_info = btrfs_find_space_info(fs_info, flags);
2872 ASSERT(space_info);
2873
2874 do {
2875 spin_lock(&space_info->lock);
2876 if (force < space_info->force_alloc)
2877 force = space_info->force_alloc;
2878 should_alloc = should_alloc_chunk(fs_info, space_info, force);
2879 if (space_info->full) {
2880 /* No more free physical space */
2881 if (should_alloc)
2882 ret = -ENOSPC;
2883 else
2884 ret = 0;
2885 spin_unlock(&space_info->lock);
2886 return ret;
2887 } else if (!should_alloc) {
2888 spin_unlock(&space_info->lock);
2889 return 0;
2890 } else if (space_info->chunk_alloc) {
2891 /*
2892 * Someone is already allocating, so we need to block
2893 * until this someone is finished and then loop to
2894 * recheck if we should continue with our allocation
2895 * attempt.
2896 */
2897 wait_for_alloc = true;
2898 spin_unlock(&space_info->lock);
2899 mutex_lock(&fs_info->chunk_mutex);
2900 mutex_unlock(&fs_info->chunk_mutex);
2901 } else {
2902 /* Proceed with allocation */
2903 space_info->chunk_alloc = 1;
2904 wait_for_alloc = false;
2905 spin_unlock(&space_info->lock);
2906 }
2907
2908 cond_resched();
2909 } while (wait_for_alloc);
2910
2911 mutex_lock(&fs_info->chunk_mutex);
2912 trans->allocating_chunk = true;
2913
2914 /*
2915 * If we have mixed data/metadata chunks we want to make sure we keep
2916 * allocating mixed chunks instead of individual chunks.
2917 */
2918 if (btrfs_mixed_space_info(space_info))
2919 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
2920
2921 /*
2922 * if we're doing a data chunk, go ahead and make sure that
2923 * we keep a reasonable number of metadata chunks allocated in the
2924 * FS as well.
2925 */
2926 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
2927 fs_info->data_chunk_allocations++;
2928 if (!(fs_info->data_chunk_allocations %
2929 fs_info->metadata_ratio))
2930 force_metadata_allocation(fs_info);
2931 }
2932
2933 /*
2934 * Check if we have enough space in SYSTEM chunk because we may need
2935 * to update devices.
2936 */
2937 check_system_chunk(trans, flags);
2938
2939 ret = btrfs_alloc_chunk(trans, flags);
2940 trans->allocating_chunk = false;
2941
2942 spin_lock(&space_info->lock);
2943 if (ret < 0) {
2944 if (ret == -ENOSPC)
2945 space_info->full = 1;
2946 else
2947 goto out;
2948 } else {
2949 ret = 1;
2950 space_info->max_extent_size = 0;
2951 }
2952
2953 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
2954 out:
2955 space_info->chunk_alloc = 0;
2956 spin_unlock(&space_info->lock);
2957 mutex_unlock(&fs_info->chunk_mutex);
2958 /*
2959 * When we allocate a new chunk we reserve space in the chunk block
2960 * reserve to make sure we can COW nodes/leafs in the chunk tree or
2961 * add new nodes/leafs to it if we end up needing to do it when
2962 * inserting the chunk item and updating device items as part of the
2963 * second phase of chunk allocation, performed by
2964 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
2965 * large number of new block groups to create in our transaction
2966 * handle's new_bgs list to avoid exhausting the chunk block reserve
2967 * in extreme cases - like having a single transaction create many new
2968 * block groups when starting to write out the free space caches of all
2969 * the block groups that were made dirty during the lifetime of the
2970 * transaction.
2971 */
2972 if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
2973 btrfs_create_pending_block_groups(trans);
2974
2975 return ret;
2976 }
2977
get_profile_num_devs(struct btrfs_fs_info * fs_info,u64 type)2978 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
2979 {
2980 u64 num_dev;
2981
2982 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
2983 if (!num_dev)
2984 num_dev = fs_info->fs_devices->rw_devices;
2985
2986 return num_dev;
2987 }
2988
2989 /*
2990 * If @is_allocation is true, reserve space in the system space info necessary
2991 * for allocating a chunk, otherwise if it's false, reserve space necessary for
2992 * removing a chunk.
2993 */
check_system_chunk(struct btrfs_trans_handle * trans,u64 type)2994 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
2995 {
2996 struct btrfs_fs_info *fs_info = trans->fs_info;
2997 struct btrfs_space_info *info;
2998 u64 left;
2999 u64 thresh;
3000 int ret = 0;
3001 u64 num_devs;
3002
3003 /*
3004 * Needed because we can end up allocating a system chunk and for an
3005 * atomic and race free space reservation in the chunk block reserve.
3006 */
3007 lockdep_assert_held(&fs_info->chunk_mutex);
3008
3009 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3010 spin_lock(&info->lock);
3011 left = info->total_bytes - btrfs_space_info_used(info, true);
3012 spin_unlock(&info->lock);
3013
3014 num_devs = get_profile_num_devs(fs_info, type);
3015
3016 /* num_devs device items to update and 1 chunk item to add or remove */
3017 thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3018 btrfs_calc_insert_metadata_size(fs_info, 1);
3019
3020 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3021 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3022 left, thresh, type);
3023 btrfs_dump_space_info(fs_info, info, 0, 0);
3024 }
3025
3026 if (left < thresh) {
3027 u64 flags = btrfs_system_alloc_profile(fs_info);
3028
3029 /*
3030 * Ignore failure to create system chunk. We might end up not
3031 * needing it, as we might not need to COW all nodes/leafs from
3032 * the paths we visit in the chunk tree (they were already COWed
3033 * or created in the current transaction for example).
3034 */
3035 ret = btrfs_alloc_chunk(trans, flags);
3036 }
3037
3038 if (!ret) {
3039 ret = btrfs_block_rsv_add(fs_info->chunk_root,
3040 &fs_info->chunk_block_rsv,
3041 thresh, BTRFS_RESERVE_NO_FLUSH);
3042 if (!ret)
3043 trans->chunk_bytes_reserved += thresh;
3044 }
3045 }
3046
btrfs_put_block_group_cache(struct btrfs_fs_info * info)3047 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3048 {
3049 struct btrfs_block_group_cache *block_group;
3050 u64 last = 0;
3051
3052 while (1) {
3053 struct inode *inode;
3054
3055 block_group = btrfs_lookup_first_block_group(info, last);
3056 while (block_group) {
3057 btrfs_wait_block_group_cache_done(block_group);
3058 spin_lock(&block_group->lock);
3059 if (block_group->iref)
3060 break;
3061 spin_unlock(&block_group->lock);
3062 block_group = btrfs_next_block_group(block_group);
3063 }
3064 if (!block_group) {
3065 if (last == 0)
3066 break;
3067 last = 0;
3068 continue;
3069 }
3070
3071 inode = block_group->inode;
3072 block_group->iref = 0;
3073 block_group->inode = NULL;
3074 spin_unlock(&block_group->lock);
3075 ASSERT(block_group->io_ctl.inode == NULL);
3076 iput(inode);
3077 last = block_group->key.objectid + block_group->key.offset;
3078 btrfs_put_block_group(block_group);
3079 }
3080 }
3081
3082 /*
3083 * Must be called only after stopping all workers, since we could have block
3084 * group caching kthreads running, and therefore they could race with us if we
3085 * freed the block groups before stopping them.
3086 */
btrfs_free_block_groups(struct btrfs_fs_info * info)3087 int btrfs_free_block_groups(struct btrfs_fs_info *info)
3088 {
3089 struct btrfs_block_group_cache *block_group;
3090 struct btrfs_space_info *space_info;
3091 struct btrfs_caching_control *caching_ctl;
3092 struct rb_node *n;
3093
3094 down_write(&info->commit_root_sem);
3095 while (!list_empty(&info->caching_block_groups)) {
3096 caching_ctl = list_entry(info->caching_block_groups.next,
3097 struct btrfs_caching_control, list);
3098 list_del(&caching_ctl->list);
3099 btrfs_put_caching_control(caching_ctl);
3100 }
3101 up_write(&info->commit_root_sem);
3102
3103 spin_lock(&info->unused_bgs_lock);
3104 while (!list_empty(&info->unused_bgs)) {
3105 block_group = list_first_entry(&info->unused_bgs,
3106 struct btrfs_block_group_cache,
3107 bg_list);
3108 list_del_init(&block_group->bg_list);
3109 btrfs_put_block_group(block_group);
3110 }
3111 spin_unlock(&info->unused_bgs_lock);
3112
3113 spin_lock(&info->block_group_cache_lock);
3114 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3115 block_group = rb_entry(n, struct btrfs_block_group_cache,
3116 cache_node);
3117 rb_erase(&block_group->cache_node,
3118 &info->block_group_cache_tree);
3119 RB_CLEAR_NODE(&block_group->cache_node);
3120 spin_unlock(&info->block_group_cache_lock);
3121
3122 down_write(&block_group->space_info->groups_sem);
3123 list_del(&block_group->list);
3124 up_write(&block_group->space_info->groups_sem);
3125
3126 /*
3127 * We haven't cached this block group, which means we could
3128 * possibly have excluded extents on this block group.
3129 */
3130 if (block_group->cached == BTRFS_CACHE_NO ||
3131 block_group->cached == BTRFS_CACHE_ERROR)
3132 btrfs_free_excluded_extents(block_group);
3133
3134 btrfs_remove_free_space_cache(block_group);
3135 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3136 ASSERT(list_empty(&block_group->dirty_list));
3137 ASSERT(list_empty(&block_group->io_list));
3138 ASSERT(list_empty(&block_group->bg_list));
3139 ASSERT(atomic_read(&block_group->count) == 1);
3140 btrfs_put_block_group(block_group);
3141
3142 spin_lock(&info->block_group_cache_lock);
3143 }
3144 spin_unlock(&info->block_group_cache_lock);
3145
3146 /*
3147 * Now that all the block groups are freed, go through and free all the
3148 * space_info structs. This is only called during the final stages of
3149 * unmount, and so we know nobody is using them. We call
3150 * synchronize_rcu() once before we start, just to be on the safe side.
3151 */
3152 synchronize_rcu();
3153
3154 btrfs_release_global_block_rsv(info);
3155
3156 while (!list_empty(&info->space_info)) {
3157 space_info = list_entry(info->space_info.next,
3158 struct btrfs_space_info,
3159 list);
3160
3161 /*
3162 * Do not hide this behind enospc_debug, this is actually
3163 * important and indicates a real bug if this happens.
3164 */
3165 if (WARN_ON(space_info->bytes_pinned > 0 ||
3166 space_info->bytes_reserved > 0 ||
3167 space_info->bytes_may_use > 0))
3168 btrfs_dump_space_info(info, space_info, 0, 0);
3169 list_del(&space_info->list);
3170 btrfs_sysfs_remove_space_info(space_info);
3171 }
3172 return 0;
3173 }
3174