1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "btrfs_inode.h"
23 #include "print-tree.h"
24 #include "tree-log.h"
25 #include "locking.h"
26 #include "volumes.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
30
31 static struct kmem_cache *btrfs_inode_defrag_cachep;
32 /*
33 * when auto defrag is enabled we
34 * queue up these defrag structs to remember which
35 * inodes need defragging passes
36 */
37 struct inode_defrag {
38 struct rb_node rb_node;
39 /* objectid */
40 u64 ino;
41 /*
42 * transid where the defrag was added, we search for
43 * extents newer than this
44 */
45 u64 transid;
46
47 /* root objectid */
48 u64 root;
49
50 /* last offset we were able to defrag */
51 u64 last_offset;
52
53 /* if we've wrapped around back to zero once already */
54 int cycled;
55 };
56
__compare_inode_defrag(struct inode_defrag * defrag1,struct inode_defrag * defrag2)57 static int __compare_inode_defrag(struct inode_defrag *defrag1,
58 struct inode_defrag *defrag2)
59 {
60 if (defrag1->root > defrag2->root)
61 return 1;
62 else if (defrag1->root < defrag2->root)
63 return -1;
64 else if (defrag1->ino > defrag2->ino)
65 return 1;
66 else if (defrag1->ino < defrag2->ino)
67 return -1;
68 else
69 return 0;
70 }
71
72 /* pop a record for an inode into the defrag tree. The lock
73 * must be held already
74 *
75 * If you're inserting a record for an older transid than an
76 * existing record, the transid already in the tree is lowered
77 *
78 * If an existing record is found the defrag item you
79 * pass in is freed
80 */
__btrfs_add_inode_defrag(struct btrfs_inode * inode,struct inode_defrag * defrag)81 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
82 struct inode_defrag *defrag)
83 {
84 struct btrfs_fs_info *fs_info = inode->root->fs_info;
85 struct inode_defrag *entry;
86 struct rb_node **p;
87 struct rb_node *parent = NULL;
88 int ret;
89
90 p = &fs_info->defrag_inodes.rb_node;
91 while (*p) {
92 parent = *p;
93 entry = rb_entry(parent, struct inode_defrag, rb_node);
94
95 ret = __compare_inode_defrag(defrag, entry);
96 if (ret < 0)
97 p = &parent->rb_left;
98 else if (ret > 0)
99 p = &parent->rb_right;
100 else {
101 /* if we're reinserting an entry for
102 * an old defrag run, make sure to
103 * lower the transid of our existing record
104 */
105 if (defrag->transid < entry->transid)
106 entry->transid = defrag->transid;
107 if (defrag->last_offset > entry->last_offset)
108 entry->last_offset = defrag->last_offset;
109 return -EEXIST;
110 }
111 }
112 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
113 rb_link_node(&defrag->rb_node, parent, p);
114 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
115 return 0;
116 }
117
__need_auto_defrag(struct btrfs_fs_info * fs_info)118 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
119 {
120 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
121 return 0;
122
123 if (btrfs_fs_closing(fs_info))
124 return 0;
125
126 return 1;
127 }
128
129 /*
130 * insert a defrag record for this inode if auto defrag is
131 * enabled
132 */
btrfs_add_inode_defrag(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)133 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
134 struct btrfs_inode *inode)
135 {
136 struct btrfs_root *root = inode->root;
137 struct btrfs_fs_info *fs_info = root->fs_info;
138 struct inode_defrag *defrag;
139 u64 transid;
140 int ret;
141
142 if (!__need_auto_defrag(fs_info))
143 return 0;
144
145 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
146 return 0;
147
148 if (trans)
149 transid = trans->transid;
150 else
151 transid = inode->root->last_trans;
152
153 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
154 if (!defrag)
155 return -ENOMEM;
156
157 defrag->ino = btrfs_ino(inode);
158 defrag->transid = transid;
159 defrag->root = root->root_key.objectid;
160
161 spin_lock(&fs_info->defrag_inodes_lock);
162 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
163 /*
164 * If we set IN_DEFRAG flag and evict the inode from memory,
165 * and then re-read this inode, this new inode doesn't have
166 * IN_DEFRAG flag. At the case, we may find the existed defrag.
167 */
168 ret = __btrfs_add_inode_defrag(inode, defrag);
169 if (ret)
170 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
171 } else {
172 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
173 }
174 spin_unlock(&fs_info->defrag_inodes_lock);
175 return 0;
176 }
177
178 /*
179 * Requeue the defrag object. If there is a defrag object that points to
180 * the same inode in the tree, we will merge them together (by
181 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
182 */
btrfs_requeue_inode_defrag(struct btrfs_inode * inode,struct inode_defrag * defrag)183 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
184 struct inode_defrag *defrag)
185 {
186 struct btrfs_fs_info *fs_info = inode->root->fs_info;
187 int ret;
188
189 if (!__need_auto_defrag(fs_info))
190 goto out;
191
192 /*
193 * Here we don't check the IN_DEFRAG flag, because we need merge
194 * them together.
195 */
196 spin_lock(&fs_info->defrag_inodes_lock);
197 ret = __btrfs_add_inode_defrag(inode, defrag);
198 spin_unlock(&fs_info->defrag_inodes_lock);
199 if (ret)
200 goto out;
201 return;
202 out:
203 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
204 }
205
206 /*
207 * pick the defragable inode that we want, if it doesn't exist, we will get
208 * the next one.
209 */
210 static struct inode_defrag *
btrfs_pick_defrag_inode(struct btrfs_fs_info * fs_info,u64 root,u64 ino)211 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
212 {
213 struct inode_defrag *entry = NULL;
214 struct inode_defrag tmp;
215 struct rb_node *p;
216 struct rb_node *parent = NULL;
217 int ret;
218
219 tmp.ino = ino;
220 tmp.root = root;
221
222 spin_lock(&fs_info->defrag_inodes_lock);
223 p = fs_info->defrag_inodes.rb_node;
224 while (p) {
225 parent = p;
226 entry = rb_entry(parent, struct inode_defrag, rb_node);
227
228 ret = __compare_inode_defrag(&tmp, entry);
229 if (ret < 0)
230 p = parent->rb_left;
231 else if (ret > 0)
232 p = parent->rb_right;
233 else
234 goto out;
235 }
236
237 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
238 parent = rb_next(parent);
239 if (parent)
240 entry = rb_entry(parent, struct inode_defrag, rb_node);
241 else
242 entry = NULL;
243 }
244 out:
245 if (entry)
246 rb_erase(parent, &fs_info->defrag_inodes);
247 spin_unlock(&fs_info->defrag_inodes_lock);
248 return entry;
249 }
250
btrfs_cleanup_defrag_inodes(struct btrfs_fs_info * fs_info)251 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
252 {
253 struct inode_defrag *defrag;
254 struct rb_node *node;
255
256 spin_lock(&fs_info->defrag_inodes_lock);
257 node = rb_first(&fs_info->defrag_inodes);
258 while (node) {
259 rb_erase(node, &fs_info->defrag_inodes);
260 defrag = rb_entry(node, struct inode_defrag, rb_node);
261 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
262
263 cond_resched_lock(&fs_info->defrag_inodes_lock);
264
265 node = rb_first(&fs_info->defrag_inodes);
266 }
267 spin_unlock(&fs_info->defrag_inodes_lock);
268 }
269
270 #define BTRFS_DEFRAG_BATCH 1024
271
__btrfs_run_defrag_inode(struct btrfs_fs_info * fs_info,struct inode_defrag * defrag)272 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
273 struct inode_defrag *defrag)
274 {
275 struct btrfs_root *inode_root;
276 struct inode *inode;
277 struct btrfs_key key;
278 struct btrfs_ioctl_defrag_range_args range;
279 int num_defrag;
280 int index;
281 int ret;
282
283 /* get the inode */
284 key.objectid = defrag->root;
285 key.type = BTRFS_ROOT_ITEM_KEY;
286 key.offset = (u64)-1;
287
288 index = srcu_read_lock(&fs_info->subvol_srcu);
289
290 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
291 if (IS_ERR(inode_root)) {
292 ret = PTR_ERR(inode_root);
293 goto cleanup;
294 }
295
296 key.objectid = defrag->ino;
297 key.type = BTRFS_INODE_ITEM_KEY;
298 key.offset = 0;
299 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
300 if (IS_ERR(inode)) {
301 ret = PTR_ERR(inode);
302 goto cleanup;
303 }
304 srcu_read_unlock(&fs_info->subvol_srcu, index);
305
306 /* do a chunk of defrag */
307 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
308 memset(&range, 0, sizeof(range));
309 range.len = (u64)-1;
310 range.start = defrag->last_offset;
311
312 sb_start_write(fs_info->sb);
313 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
314 BTRFS_DEFRAG_BATCH);
315 sb_end_write(fs_info->sb);
316 /*
317 * if we filled the whole defrag batch, there
318 * must be more work to do. Queue this defrag
319 * again
320 */
321 if (num_defrag == BTRFS_DEFRAG_BATCH) {
322 defrag->last_offset = range.start;
323 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
324 } else if (defrag->last_offset && !defrag->cycled) {
325 /*
326 * we didn't fill our defrag batch, but
327 * we didn't start at zero. Make sure we loop
328 * around to the start of the file.
329 */
330 defrag->last_offset = 0;
331 defrag->cycled = 1;
332 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
333 } else {
334 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
335 }
336
337 iput(inode);
338 return 0;
339 cleanup:
340 srcu_read_unlock(&fs_info->subvol_srcu, index);
341 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
342 return ret;
343 }
344
345 /*
346 * run through the list of inodes in the FS that need
347 * defragging
348 */
btrfs_run_defrag_inodes(struct btrfs_fs_info * fs_info)349 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
350 {
351 struct inode_defrag *defrag;
352 u64 first_ino = 0;
353 u64 root_objectid = 0;
354
355 atomic_inc(&fs_info->defrag_running);
356 while (1) {
357 /* Pause the auto defragger. */
358 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
359 &fs_info->fs_state))
360 break;
361
362 if (!__need_auto_defrag(fs_info))
363 break;
364
365 /* find an inode to defrag */
366 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
367 first_ino);
368 if (!defrag) {
369 if (root_objectid || first_ino) {
370 root_objectid = 0;
371 first_ino = 0;
372 continue;
373 } else {
374 break;
375 }
376 }
377
378 first_ino = defrag->ino + 1;
379 root_objectid = defrag->root;
380
381 __btrfs_run_defrag_inode(fs_info, defrag);
382 }
383 atomic_dec(&fs_info->defrag_running);
384
385 /*
386 * during unmount, we use the transaction_wait queue to
387 * wait for the defragger to stop
388 */
389 wake_up(&fs_info->transaction_wait);
390 return 0;
391 }
392
393 /* simple helper to fault in pages and copy. This should go away
394 * and be replaced with calls into generic code.
395 */
btrfs_copy_from_user(loff_t pos,size_t write_bytes,struct page ** prepared_pages,struct iov_iter * i)396 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
397 struct page **prepared_pages,
398 struct iov_iter *i)
399 {
400 size_t copied = 0;
401 size_t total_copied = 0;
402 int pg = 0;
403 int offset = offset_in_page(pos);
404
405 while (write_bytes > 0) {
406 size_t count = min_t(size_t,
407 PAGE_SIZE - offset, write_bytes);
408 struct page *page = prepared_pages[pg];
409 /*
410 * Copy data from userspace to the current page
411 */
412 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
413
414 /* Flush processor's dcache for this page */
415 flush_dcache_page(page);
416
417 /*
418 * if we get a partial write, we can end up with
419 * partially up to date pages. These add
420 * a lot of complexity, so make sure they don't
421 * happen by forcing this copy to be retried.
422 *
423 * The rest of the btrfs_file_write code will fall
424 * back to page at a time copies after we return 0.
425 */
426 if (!PageUptodate(page) && copied < count)
427 copied = 0;
428
429 iov_iter_advance(i, copied);
430 write_bytes -= copied;
431 total_copied += copied;
432
433 /* Return to btrfs_file_write_iter to fault page */
434 if (unlikely(copied == 0))
435 break;
436
437 if (copied < PAGE_SIZE - offset) {
438 offset += copied;
439 } else {
440 pg++;
441 offset = 0;
442 }
443 }
444 return total_copied;
445 }
446
447 /*
448 * unlocks pages after btrfs_file_write is done with them
449 */
btrfs_drop_pages(struct page ** pages,size_t num_pages)450 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
451 {
452 size_t i;
453 for (i = 0; i < num_pages; i++) {
454 /* page checked is some magic around finding pages that
455 * have been modified without going through btrfs_set_page_dirty
456 * clear it here. There should be no need to mark the pages
457 * accessed as prepare_pages should have marked them accessed
458 * in prepare_pages via find_or_create_page()
459 */
460 ClearPageChecked(pages[i]);
461 unlock_page(pages[i]);
462 put_page(pages[i]);
463 }
464 }
465
btrfs_find_new_delalloc_bytes(struct btrfs_inode * inode,const u64 start,const u64 len,struct extent_state ** cached_state)466 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
467 const u64 start,
468 const u64 len,
469 struct extent_state **cached_state)
470 {
471 u64 search_start = start;
472 const u64 end = start + len - 1;
473
474 while (search_start < end) {
475 const u64 search_len = end - search_start + 1;
476 struct extent_map *em;
477 u64 em_len;
478 int ret = 0;
479
480 em = btrfs_get_extent(inode, NULL, 0, search_start,
481 search_len, 0);
482 if (IS_ERR(em))
483 return PTR_ERR(em);
484
485 if (em->block_start != EXTENT_MAP_HOLE)
486 goto next;
487
488 em_len = em->len;
489 if (em->start < search_start)
490 em_len -= search_start - em->start;
491 if (em_len > search_len)
492 em_len = search_len;
493
494 ret = set_extent_bit(&inode->io_tree, search_start,
495 search_start + em_len - 1,
496 EXTENT_DELALLOC_NEW,
497 NULL, cached_state, GFP_NOFS);
498 next:
499 search_start = extent_map_end(em);
500 free_extent_map(em);
501 if (ret)
502 return ret;
503 }
504 return 0;
505 }
506
507 /*
508 * after copy_from_user, pages need to be dirtied and we need to make
509 * sure holes are created between the current EOF and the start of
510 * any next extents (if required).
511 *
512 * this also makes the decision about creating an inline extent vs
513 * doing real data extents, marking pages dirty and delalloc as required.
514 */
btrfs_dirty_pages(struct inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,struct extent_state ** cached)515 int btrfs_dirty_pages(struct inode *inode, struct page **pages,
516 size_t num_pages, loff_t pos, size_t write_bytes,
517 struct extent_state **cached)
518 {
519 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
520 int err = 0;
521 int i;
522 u64 num_bytes;
523 u64 start_pos;
524 u64 end_of_last_block;
525 u64 end_pos = pos + write_bytes;
526 loff_t isize = i_size_read(inode);
527 unsigned int extra_bits = 0;
528
529 start_pos = pos & ~((u64) fs_info->sectorsize - 1);
530 num_bytes = round_up(write_bytes + pos - start_pos,
531 fs_info->sectorsize);
532
533 end_of_last_block = start_pos + num_bytes - 1;
534
535 /*
536 * The pages may have already been dirty, clear out old accounting so
537 * we can set things up properly
538 */
539 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block,
540 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
541 0, 0, cached);
542
543 if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
544 if (start_pos >= isize &&
545 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
546 /*
547 * There can't be any extents following eof in this case
548 * so just set the delalloc new bit for the range
549 * directly.
550 */
551 extra_bits |= EXTENT_DELALLOC_NEW;
552 } else {
553 err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
554 start_pos,
555 num_bytes, cached);
556 if (err)
557 return err;
558 }
559 }
560
561 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
562 extra_bits, cached);
563 if (err)
564 return err;
565
566 for (i = 0; i < num_pages; i++) {
567 struct page *p = pages[i];
568 SetPageUptodate(p);
569 ClearPageChecked(p);
570 set_page_dirty(p);
571 }
572
573 /*
574 * we've only changed i_size in ram, and we haven't updated
575 * the disk i_size. There is no need to log the inode
576 * at this time.
577 */
578 if (end_pos > isize)
579 i_size_write(inode, end_pos);
580 return 0;
581 }
582
583 /*
584 * this drops all the extents in the cache that intersect the range
585 * [start, end]. Existing extents are split as required.
586 */
btrfs_drop_extent_cache(struct btrfs_inode * inode,u64 start,u64 end,int skip_pinned)587 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
588 int skip_pinned)
589 {
590 struct extent_map *em;
591 struct extent_map *split = NULL;
592 struct extent_map *split2 = NULL;
593 struct extent_map_tree *em_tree = &inode->extent_tree;
594 u64 len = end - start + 1;
595 u64 gen;
596 int ret;
597 int testend = 1;
598 unsigned long flags;
599 int compressed = 0;
600 bool modified;
601
602 WARN_ON(end < start);
603 if (end == (u64)-1) {
604 len = (u64)-1;
605 testend = 0;
606 }
607 while (1) {
608 int no_splits = 0;
609
610 modified = false;
611 if (!split)
612 split = alloc_extent_map();
613 if (!split2)
614 split2 = alloc_extent_map();
615 if (!split || !split2)
616 no_splits = 1;
617
618 write_lock(&em_tree->lock);
619 em = lookup_extent_mapping(em_tree, start, len);
620 if (!em) {
621 write_unlock(&em_tree->lock);
622 break;
623 }
624 flags = em->flags;
625 gen = em->generation;
626 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
627 if (testend && em->start + em->len >= start + len) {
628 free_extent_map(em);
629 write_unlock(&em_tree->lock);
630 break;
631 }
632 start = em->start + em->len;
633 if (testend)
634 len = start + len - (em->start + em->len);
635 free_extent_map(em);
636 write_unlock(&em_tree->lock);
637 continue;
638 }
639 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
640 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
641 clear_bit(EXTENT_FLAG_LOGGING, &flags);
642 modified = !list_empty(&em->list);
643 if (no_splits)
644 goto next;
645
646 if (em->start < start) {
647 split->start = em->start;
648 split->len = start - em->start;
649
650 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
651 split->orig_start = em->orig_start;
652 split->block_start = em->block_start;
653
654 if (compressed)
655 split->block_len = em->block_len;
656 else
657 split->block_len = split->len;
658 split->orig_block_len = max(split->block_len,
659 em->orig_block_len);
660 split->ram_bytes = em->ram_bytes;
661 } else {
662 split->orig_start = split->start;
663 split->block_len = 0;
664 split->block_start = em->block_start;
665 split->orig_block_len = 0;
666 split->ram_bytes = split->len;
667 }
668
669 split->generation = gen;
670 split->bdev = em->bdev;
671 split->flags = flags;
672 split->compress_type = em->compress_type;
673 replace_extent_mapping(em_tree, em, split, modified);
674 free_extent_map(split);
675 split = split2;
676 split2 = NULL;
677 }
678 if (testend && em->start + em->len > start + len) {
679 u64 diff = start + len - em->start;
680
681 split->start = start + len;
682 split->len = em->start + em->len - (start + len);
683 split->bdev = em->bdev;
684 split->flags = flags;
685 split->compress_type = em->compress_type;
686 split->generation = gen;
687
688 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
689 split->orig_block_len = max(em->block_len,
690 em->orig_block_len);
691
692 split->ram_bytes = em->ram_bytes;
693 if (compressed) {
694 split->block_len = em->block_len;
695 split->block_start = em->block_start;
696 split->orig_start = em->orig_start;
697 } else {
698 split->block_len = split->len;
699 split->block_start = em->block_start
700 + diff;
701 split->orig_start = em->orig_start;
702 }
703 } else {
704 split->ram_bytes = split->len;
705 split->orig_start = split->start;
706 split->block_len = 0;
707 split->block_start = em->block_start;
708 split->orig_block_len = 0;
709 }
710
711 if (extent_map_in_tree(em)) {
712 replace_extent_mapping(em_tree, em, split,
713 modified);
714 } else {
715 ret = add_extent_mapping(em_tree, split,
716 modified);
717 ASSERT(ret == 0); /* Logic error */
718 }
719 free_extent_map(split);
720 split = NULL;
721 }
722 next:
723 if (extent_map_in_tree(em))
724 remove_extent_mapping(em_tree, em);
725 write_unlock(&em_tree->lock);
726
727 /* once for us */
728 free_extent_map(em);
729 /* once for the tree*/
730 free_extent_map(em);
731 }
732 if (split)
733 free_extent_map(split);
734 if (split2)
735 free_extent_map(split2);
736 }
737
738 /*
739 * this is very complex, but the basic idea is to drop all extents
740 * in the range start - end. hint_block is filled in with a block number
741 * that would be a good hint to the block allocator for this file.
742 *
743 * If an extent intersects the range but is not entirely inside the range
744 * it is either truncated or split. Anything entirely inside the range
745 * is deleted from the tree.
746 */
__btrfs_drop_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,u64 start,u64 end,u64 * drop_end,int drop_cache,int replace_extent,u32 extent_item_size,int * key_inserted)747 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
748 struct btrfs_root *root, struct inode *inode,
749 struct btrfs_path *path, u64 start, u64 end,
750 u64 *drop_end, int drop_cache,
751 int replace_extent,
752 u32 extent_item_size,
753 int *key_inserted)
754 {
755 struct btrfs_fs_info *fs_info = root->fs_info;
756 struct extent_buffer *leaf;
757 struct btrfs_file_extent_item *fi;
758 struct btrfs_ref ref = { 0 };
759 struct btrfs_key key;
760 struct btrfs_key new_key;
761 u64 ino = btrfs_ino(BTRFS_I(inode));
762 u64 search_start = start;
763 u64 disk_bytenr = 0;
764 u64 num_bytes = 0;
765 u64 extent_offset = 0;
766 u64 extent_end = 0;
767 u64 last_end = start;
768 int del_nr = 0;
769 int del_slot = 0;
770 int extent_type;
771 int recow;
772 int ret;
773 int modify_tree = -1;
774 int update_refs;
775 int found = 0;
776 int leafs_visited = 0;
777
778 if (drop_cache)
779 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
780
781 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
782 modify_tree = 0;
783
784 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
785 root == fs_info->tree_root);
786 while (1) {
787 recow = 0;
788 ret = btrfs_lookup_file_extent(trans, root, path, ino,
789 search_start, modify_tree);
790 if (ret < 0)
791 break;
792 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
793 leaf = path->nodes[0];
794 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
795 if (key.objectid == ino &&
796 key.type == BTRFS_EXTENT_DATA_KEY)
797 path->slots[0]--;
798 }
799 ret = 0;
800 leafs_visited++;
801 next_slot:
802 leaf = path->nodes[0];
803 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
804 BUG_ON(del_nr > 0);
805 ret = btrfs_next_leaf(root, path);
806 if (ret < 0)
807 break;
808 if (ret > 0) {
809 ret = 0;
810 break;
811 }
812 leafs_visited++;
813 leaf = path->nodes[0];
814 recow = 1;
815 }
816
817 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
818
819 if (key.objectid > ino)
820 break;
821 if (WARN_ON_ONCE(key.objectid < ino) ||
822 key.type < BTRFS_EXTENT_DATA_KEY) {
823 ASSERT(del_nr == 0);
824 path->slots[0]++;
825 goto next_slot;
826 }
827 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
828 break;
829
830 fi = btrfs_item_ptr(leaf, path->slots[0],
831 struct btrfs_file_extent_item);
832 extent_type = btrfs_file_extent_type(leaf, fi);
833
834 if (extent_type == BTRFS_FILE_EXTENT_REG ||
835 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
836 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
837 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
838 extent_offset = btrfs_file_extent_offset(leaf, fi);
839 extent_end = key.offset +
840 btrfs_file_extent_num_bytes(leaf, fi);
841 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
842 extent_end = key.offset +
843 btrfs_file_extent_ram_bytes(leaf, fi);
844 } else {
845 /* can't happen */
846 BUG();
847 }
848
849 /*
850 * Don't skip extent items representing 0 byte lengths. They
851 * used to be created (bug) if while punching holes we hit
852 * -ENOSPC condition. So if we find one here, just ensure we
853 * delete it, otherwise we would insert a new file extent item
854 * with the same key (offset) as that 0 bytes length file
855 * extent item in the call to setup_items_for_insert() later
856 * in this function.
857 */
858 if (extent_end == key.offset && extent_end >= search_start) {
859 last_end = extent_end;
860 goto delete_extent_item;
861 }
862
863 if (extent_end <= search_start) {
864 path->slots[0]++;
865 goto next_slot;
866 }
867
868 found = 1;
869 search_start = max(key.offset, start);
870 if (recow || !modify_tree) {
871 modify_tree = -1;
872 btrfs_release_path(path);
873 continue;
874 }
875
876 /*
877 * | - range to drop - |
878 * | -------- extent -------- |
879 */
880 if (start > key.offset && end < extent_end) {
881 BUG_ON(del_nr > 0);
882 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
883 ret = -EOPNOTSUPP;
884 break;
885 }
886
887 memcpy(&new_key, &key, sizeof(new_key));
888 new_key.offset = start;
889 ret = btrfs_duplicate_item(trans, root, path,
890 &new_key);
891 if (ret == -EAGAIN) {
892 btrfs_release_path(path);
893 continue;
894 }
895 if (ret < 0)
896 break;
897
898 leaf = path->nodes[0];
899 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
900 struct btrfs_file_extent_item);
901 btrfs_set_file_extent_num_bytes(leaf, fi,
902 start - key.offset);
903
904 fi = btrfs_item_ptr(leaf, path->slots[0],
905 struct btrfs_file_extent_item);
906
907 extent_offset += start - key.offset;
908 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
909 btrfs_set_file_extent_num_bytes(leaf, fi,
910 extent_end - start);
911 btrfs_mark_buffer_dirty(leaf);
912
913 if (update_refs && disk_bytenr > 0) {
914 btrfs_init_generic_ref(&ref,
915 BTRFS_ADD_DELAYED_REF,
916 disk_bytenr, num_bytes, 0);
917 btrfs_init_data_ref(&ref,
918 root->root_key.objectid,
919 new_key.objectid,
920 start - extent_offset);
921 ret = btrfs_inc_extent_ref(trans, &ref);
922 BUG_ON(ret); /* -ENOMEM */
923 }
924 key.offset = start;
925 }
926 /*
927 * From here on out we will have actually dropped something, so
928 * last_end can be updated.
929 */
930 last_end = extent_end;
931
932 /*
933 * | ---- range to drop ----- |
934 * | -------- extent -------- |
935 */
936 if (start <= key.offset && end < extent_end) {
937 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
938 ret = -EOPNOTSUPP;
939 break;
940 }
941
942 memcpy(&new_key, &key, sizeof(new_key));
943 new_key.offset = end;
944 btrfs_set_item_key_safe(fs_info, path, &new_key);
945
946 extent_offset += end - key.offset;
947 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
948 btrfs_set_file_extent_num_bytes(leaf, fi,
949 extent_end - end);
950 btrfs_mark_buffer_dirty(leaf);
951 if (update_refs && disk_bytenr > 0)
952 inode_sub_bytes(inode, end - key.offset);
953 break;
954 }
955
956 search_start = extent_end;
957 /*
958 * | ---- range to drop ----- |
959 * | -------- extent -------- |
960 */
961 if (start > key.offset && end >= extent_end) {
962 BUG_ON(del_nr > 0);
963 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
964 ret = -EOPNOTSUPP;
965 break;
966 }
967
968 btrfs_set_file_extent_num_bytes(leaf, fi,
969 start - key.offset);
970 btrfs_mark_buffer_dirty(leaf);
971 if (update_refs && disk_bytenr > 0)
972 inode_sub_bytes(inode, extent_end - start);
973 if (end == extent_end)
974 break;
975
976 path->slots[0]++;
977 goto next_slot;
978 }
979
980 /*
981 * | ---- range to drop ----- |
982 * | ------ extent ------ |
983 */
984 if (start <= key.offset && end >= extent_end) {
985 delete_extent_item:
986 if (del_nr == 0) {
987 del_slot = path->slots[0];
988 del_nr = 1;
989 } else {
990 BUG_ON(del_slot + del_nr != path->slots[0]);
991 del_nr++;
992 }
993
994 if (update_refs &&
995 extent_type == BTRFS_FILE_EXTENT_INLINE) {
996 inode_sub_bytes(inode,
997 extent_end - key.offset);
998 extent_end = ALIGN(extent_end,
999 fs_info->sectorsize);
1000 } else if (update_refs && disk_bytenr > 0) {
1001 btrfs_init_generic_ref(&ref,
1002 BTRFS_DROP_DELAYED_REF,
1003 disk_bytenr, num_bytes, 0);
1004 btrfs_init_data_ref(&ref,
1005 root->root_key.objectid,
1006 key.objectid,
1007 key.offset - extent_offset);
1008 ret = btrfs_free_extent(trans, &ref);
1009 BUG_ON(ret); /* -ENOMEM */
1010 inode_sub_bytes(inode,
1011 extent_end - key.offset);
1012 }
1013
1014 if (end == extent_end)
1015 break;
1016
1017 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1018 path->slots[0]++;
1019 goto next_slot;
1020 }
1021
1022 ret = btrfs_del_items(trans, root, path, del_slot,
1023 del_nr);
1024 if (ret) {
1025 btrfs_abort_transaction(trans, ret);
1026 break;
1027 }
1028
1029 del_nr = 0;
1030 del_slot = 0;
1031
1032 btrfs_release_path(path);
1033 continue;
1034 }
1035
1036 BUG();
1037 }
1038
1039 if (!ret && del_nr > 0) {
1040 /*
1041 * Set path->slots[0] to first slot, so that after the delete
1042 * if items are move off from our leaf to its immediate left or
1043 * right neighbor leafs, we end up with a correct and adjusted
1044 * path->slots[0] for our insertion (if replace_extent != 0).
1045 */
1046 path->slots[0] = del_slot;
1047 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1048 if (ret)
1049 btrfs_abort_transaction(trans, ret);
1050 }
1051
1052 leaf = path->nodes[0];
1053 /*
1054 * If btrfs_del_items() was called, it might have deleted a leaf, in
1055 * which case it unlocked our path, so check path->locks[0] matches a
1056 * write lock.
1057 */
1058 if (!ret && replace_extent && leafs_visited == 1 &&
1059 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1060 path->locks[0] == BTRFS_WRITE_LOCK) &&
1061 btrfs_leaf_free_space(leaf) >=
1062 sizeof(struct btrfs_item) + extent_item_size) {
1063
1064 key.objectid = ino;
1065 key.type = BTRFS_EXTENT_DATA_KEY;
1066 key.offset = start;
1067 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1068 struct btrfs_key slot_key;
1069
1070 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1071 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1072 path->slots[0]++;
1073 }
1074 setup_items_for_insert(root, path, &key,
1075 &extent_item_size,
1076 extent_item_size,
1077 sizeof(struct btrfs_item) +
1078 extent_item_size, 1);
1079 *key_inserted = 1;
1080 }
1081
1082 if (!replace_extent || !(*key_inserted))
1083 btrfs_release_path(path);
1084 if (drop_end)
1085 *drop_end = found ? min(end, last_end) : end;
1086 return ret;
1087 }
1088
btrfs_drop_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,u64 start,u64 end,int drop_cache)1089 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1090 struct btrfs_root *root, struct inode *inode, u64 start,
1091 u64 end, int drop_cache)
1092 {
1093 struct btrfs_path *path;
1094 int ret;
1095
1096 path = btrfs_alloc_path();
1097 if (!path)
1098 return -ENOMEM;
1099 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1100 drop_cache, 0, 0, NULL);
1101 btrfs_free_path(path);
1102 return ret;
1103 }
1104
extent_mergeable(struct extent_buffer * leaf,int slot,u64 objectid,u64 bytenr,u64 orig_offset,u64 * start,u64 * end)1105 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1106 u64 objectid, u64 bytenr, u64 orig_offset,
1107 u64 *start, u64 *end)
1108 {
1109 struct btrfs_file_extent_item *fi;
1110 struct btrfs_key key;
1111 u64 extent_end;
1112
1113 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1114 return 0;
1115
1116 btrfs_item_key_to_cpu(leaf, &key, slot);
1117 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1118 return 0;
1119
1120 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1121 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1122 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1123 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1124 btrfs_file_extent_compression(leaf, fi) ||
1125 btrfs_file_extent_encryption(leaf, fi) ||
1126 btrfs_file_extent_other_encoding(leaf, fi))
1127 return 0;
1128
1129 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1130 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1131 return 0;
1132
1133 *start = key.offset;
1134 *end = extent_end;
1135 return 1;
1136 }
1137
1138 /*
1139 * Mark extent in the range start - end as written.
1140 *
1141 * This changes extent type from 'pre-allocated' to 'regular'. If only
1142 * part of extent is marked as written, the extent will be split into
1143 * two or three.
1144 */
btrfs_mark_extent_written(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 start,u64 end)1145 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1146 struct btrfs_inode *inode, u64 start, u64 end)
1147 {
1148 struct btrfs_fs_info *fs_info = trans->fs_info;
1149 struct btrfs_root *root = inode->root;
1150 struct extent_buffer *leaf;
1151 struct btrfs_path *path;
1152 struct btrfs_file_extent_item *fi;
1153 struct btrfs_ref ref = { 0 };
1154 struct btrfs_key key;
1155 struct btrfs_key new_key;
1156 u64 bytenr;
1157 u64 num_bytes;
1158 u64 extent_end;
1159 u64 orig_offset;
1160 u64 other_start;
1161 u64 other_end;
1162 u64 split;
1163 int del_nr = 0;
1164 int del_slot = 0;
1165 int recow;
1166 int ret;
1167 u64 ino = btrfs_ino(inode);
1168
1169 path = btrfs_alloc_path();
1170 if (!path)
1171 return -ENOMEM;
1172 again:
1173 recow = 0;
1174 split = start;
1175 key.objectid = ino;
1176 key.type = BTRFS_EXTENT_DATA_KEY;
1177 key.offset = split;
1178
1179 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1180 if (ret < 0)
1181 goto out;
1182 if (ret > 0 && path->slots[0] > 0)
1183 path->slots[0]--;
1184
1185 leaf = path->nodes[0];
1186 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1187 if (key.objectid != ino ||
1188 key.type != BTRFS_EXTENT_DATA_KEY) {
1189 ret = -EINVAL;
1190 btrfs_abort_transaction(trans, ret);
1191 goto out;
1192 }
1193 fi = btrfs_item_ptr(leaf, path->slots[0],
1194 struct btrfs_file_extent_item);
1195 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1196 ret = -EINVAL;
1197 btrfs_abort_transaction(trans, ret);
1198 goto out;
1199 }
1200 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1201 if (key.offset > start || extent_end < end) {
1202 ret = -EINVAL;
1203 btrfs_abort_transaction(trans, ret);
1204 goto out;
1205 }
1206
1207 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1208 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1209 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1210 memcpy(&new_key, &key, sizeof(new_key));
1211
1212 if (start == key.offset && end < extent_end) {
1213 other_start = 0;
1214 other_end = start;
1215 if (extent_mergeable(leaf, path->slots[0] - 1,
1216 ino, bytenr, orig_offset,
1217 &other_start, &other_end)) {
1218 new_key.offset = end;
1219 btrfs_set_item_key_safe(fs_info, path, &new_key);
1220 fi = btrfs_item_ptr(leaf, path->slots[0],
1221 struct btrfs_file_extent_item);
1222 btrfs_set_file_extent_generation(leaf, fi,
1223 trans->transid);
1224 btrfs_set_file_extent_num_bytes(leaf, fi,
1225 extent_end - end);
1226 btrfs_set_file_extent_offset(leaf, fi,
1227 end - orig_offset);
1228 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1229 struct btrfs_file_extent_item);
1230 btrfs_set_file_extent_generation(leaf, fi,
1231 trans->transid);
1232 btrfs_set_file_extent_num_bytes(leaf, fi,
1233 end - other_start);
1234 btrfs_mark_buffer_dirty(leaf);
1235 goto out;
1236 }
1237 }
1238
1239 if (start > key.offset && end == extent_end) {
1240 other_start = end;
1241 other_end = 0;
1242 if (extent_mergeable(leaf, path->slots[0] + 1,
1243 ino, bytenr, orig_offset,
1244 &other_start, &other_end)) {
1245 fi = btrfs_item_ptr(leaf, path->slots[0],
1246 struct btrfs_file_extent_item);
1247 btrfs_set_file_extent_num_bytes(leaf, fi,
1248 start - key.offset);
1249 btrfs_set_file_extent_generation(leaf, fi,
1250 trans->transid);
1251 path->slots[0]++;
1252 new_key.offset = start;
1253 btrfs_set_item_key_safe(fs_info, path, &new_key);
1254
1255 fi = btrfs_item_ptr(leaf, path->slots[0],
1256 struct btrfs_file_extent_item);
1257 btrfs_set_file_extent_generation(leaf, fi,
1258 trans->transid);
1259 btrfs_set_file_extent_num_bytes(leaf, fi,
1260 other_end - start);
1261 btrfs_set_file_extent_offset(leaf, fi,
1262 start - orig_offset);
1263 btrfs_mark_buffer_dirty(leaf);
1264 goto out;
1265 }
1266 }
1267
1268 while (start > key.offset || end < extent_end) {
1269 if (key.offset == start)
1270 split = end;
1271
1272 new_key.offset = split;
1273 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1274 if (ret == -EAGAIN) {
1275 btrfs_release_path(path);
1276 goto again;
1277 }
1278 if (ret < 0) {
1279 btrfs_abort_transaction(trans, ret);
1280 goto out;
1281 }
1282
1283 leaf = path->nodes[0];
1284 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1285 struct btrfs_file_extent_item);
1286 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1287 btrfs_set_file_extent_num_bytes(leaf, fi,
1288 split - key.offset);
1289
1290 fi = btrfs_item_ptr(leaf, path->slots[0],
1291 struct btrfs_file_extent_item);
1292
1293 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1294 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1295 btrfs_set_file_extent_num_bytes(leaf, fi,
1296 extent_end - split);
1297 btrfs_mark_buffer_dirty(leaf);
1298
1299 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1300 num_bytes, 0);
1301 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1302 orig_offset);
1303 ret = btrfs_inc_extent_ref(trans, &ref);
1304 if (ret) {
1305 btrfs_abort_transaction(trans, ret);
1306 goto out;
1307 }
1308
1309 if (split == start) {
1310 key.offset = start;
1311 } else {
1312 if (start != key.offset) {
1313 ret = -EINVAL;
1314 btrfs_abort_transaction(trans, ret);
1315 goto out;
1316 }
1317 path->slots[0]--;
1318 extent_end = end;
1319 }
1320 recow = 1;
1321 }
1322
1323 other_start = end;
1324 other_end = 0;
1325 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1326 num_bytes, 0);
1327 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1328 if (extent_mergeable(leaf, path->slots[0] + 1,
1329 ino, bytenr, orig_offset,
1330 &other_start, &other_end)) {
1331 if (recow) {
1332 btrfs_release_path(path);
1333 goto again;
1334 }
1335 extent_end = other_end;
1336 del_slot = path->slots[0] + 1;
1337 del_nr++;
1338 ret = btrfs_free_extent(trans, &ref);
1339 if (ret) {
1340 btrfs_abort_transaction(trans, ret);
1341 goto out;
1342 }
1343 }
1344 other_start = 0;
1345 other_end = start;
1346 if (extent_mergeable(leaf, path->slots[0] - 1,
1347 ino, bytenr, orig_offset,
1348 &other_start, &other_end)) {
1349 if (recow) {
1350 btrfs_release_path(path);
1351 goto again;
1352 }
1353 key.offset = other_start;
1354 del_slot = path->slots[0];
1355 del_nr++;
1356 ret = btrfs_free_extent(trans, &ref);
1357 if (ret) {
1358 btrfs_abort_transaction(trans, ret);
1359 goto out;
1360 }
1361 }
1362 if (del_nr == 0) {
1363 fi = btrfs_item_ptr(leaf, path->slots[0],
1364 struct btrfs_file_extent_item);
1365 btrfs_set_file_extent_type(leaf, fi,
1366 BTRFS_FILE_EXTENT_REG);
1367 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1368 btrfs_mark_buffer_dirty(leaf);
1369 } else {
1370 fi = btrfs_item_ptr(leaf, del_slot - 1,
1371 struct btrfs_file_extent_item);
1372 btrfs_set_file_extent_type(leaf, fi,
1373 BTRFS_FILE_EXTENT_REG);
1374 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1375 btrfs_set_file_extent_num_bytes(leaf, fi,
1376 extent_end - key.offset);
1377 btrfs_mark_buffer_dirty(leaf);
1378
1379 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1380 if (ret < 0) {
1381 btrfs_abort_transaction(trans, ret);
1382 goto out;
1383 }
1384 }
1385 out:
1386 btrfs_free_path(path);
1387 return 0;
1388 }
1389
1390 /*
1391 * on error we return an unlocked page and the error value
1392 * on success we return a locked page and 0
1393 */
prepare_uptodate_page(struct inode * inode,struct page * page,u64 pos,bool force_uptodate)1394 static int prepare_uptodate_page(struct inode *inode,
1395 struct page *page, u64 pos,
1396 bool force_uptodate)
1397 {
1398 int ret = 0;
1399
1400 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1401 !PageUptodate(page)) {
1402 ret = btrfs_readpage(NULL, page);
1403 if (ret)
1404 return ret;
1405 lock_page(page);
1406 if (!PageUptodate(page)) {
1407 unlock_page(page);
1408 return -EIO;
1409 }
1410 if (page->mapping != inode->i_mapping) {
1411 unlock_page(page);
1412 return -EAGAIN;
1413 }
1414 }
1415 return 0;
1416 }
1417
1418 /*
1419 * this just gets pages into the page cache and locks them down.
1420 */
prepare_pages(struct inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,bool force_uptodate)1421 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1422 size_t num_pages, loff_t pos,
1423 size_t write_bytes, bool force_uptodate)
1424 {
1425 int i;
1426 unsigned long index = pos >> PAGE_SHIFT;
1427 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1428 int err = 0;
1429 int faili;
1430
1431 for (i = 0; i < num_pages; i++) {
1432 again:
1433 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1434 mask | __GFP_WRITE);
1435 if (!pages[i]) {
1436 faili = i - 1;
1437 err = -ENOMEM;
1438 goto fail;
1439 }
1440
1441 if (i == 0)
1442 err = prepare_uptodate_page(inode, pages[i], pos,
1443 force_uptodate);
1444 if (!err && i == num_pages - 1)
1445 err = prepare_uptodate_page(inode, pages[i],
1446 pos + write_bytes, false);
1447 if (err) {
1448 put_page(pages[i]);
1449 if (err == -EAGAIN) {
1450 err = 0;
1451 goto again;
1452 }
1453 faili = i - 1;
1454 goto fail;
1455 }
1456 wait_on_page_writeback(pages[i]);
1457 }
1458
1459 return 0;
1460 fail:
1461 while (faili >= 0) {
1462 unlock_page(pages[faili]);
1463 put_page(pages[faili]);
1464 faili--;
1465 }
1466 return err;
1467
1468 }
1469
1470 /*
1471 * This function locks the extent and properly waits for data=ordered extents
1472 * to finish before allowing the pages to be modified if need.
1473 *
1474 * The return value:
1475 * 1 - the extent is locked
1476 * 0 - the extent is not locked, and everything is OK
1477 * -EAGAIN - need re-prepare the pages
1478 * the other < 0 number - Something wrong happens
1479 */
1480 static noinline int
lock_and_cleanup_extent_if_need(struct btrfs_inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,u64 * lockstart,u64 * lockend,struct extent_state ** cached_state)1481 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1482 size_t num_pages, loff_t pos,
1483 size_t write_bytes,
1484 u64 *lockstart, u64 *lockend,
1485 struct extent_state **cached_state)
1486 {
1487 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1488 u64 start_pos;
1489 u64 last_pos;
1490 int i;
1491 int ret = 0;
1492
1493 start_pos = round_down(pos, fs_info->sectorsize);
1494 last_pos = start_pos
1495 + round_up(pos + write_bytes - start_pos,
1496 fs_info->sectorsize) - 1;
1497
1498 if (start_pos < inode->vfs_inode.i_size) {
1499 struct btrfs_ordered_extent *ordered;
1500
1501 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1502 cached_state);
1503 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1504 last_pos - start_pos + 1);
1505 if (ordered &&
1506 ordered->file_offset + ordered->len > start_pos &&
1507 ordered->file_offset <= last_pos) {
1508 unlock_extent_cached(&inode->io_tree, start_pos,
1509 last_pos, cached_state);
1510 for (i = 0; i < num_pages; i++) {
1511 unlock_page(pages[i]);
1512 put_page(pages[i]);
1513 }
1514 btrfs_start_ordered_extent(&inode->vfs_inode,
1515 ordered, 1);
1516 btrfs_put_ordered_extent(ordered);
1517 return -EAGAIN;
1518 }
1519 if (ordered)
1520 btrfs_put_ordered_extent(ordered);
1521
1522 *lockstart = start_pos;
1523 *lockend = last_pos;
1524 ret = 1;
1525 }
1526
1527 /*
1528 * It's possible the pages are dirty right now, but we don't want
1529 * to clean them yet because copy_from_user may catch a page fault
1530 * and we might have to fall back to one page at a time. If that
1531 * happens, we'll unlock these pages and we'd have a window where
1532 * reclaim could sneak in and drop the once-dirty page on the floor
1533 * without writing it.
1534 *
1535 * We have the pages locked and the extent range locked, so there's
1536 * no way someone can start IO on any dirty pages in this range.
1537 *
1538 * We'll call btrfs_dirty_pages() later on, and that will flip around
1539 * delalloc bits and dirty the pages as required.
1540 */
1541 for (i = 0; i < num_pages; i++) {
1542 set_page_extent_mapped(pages[i]);
1543 WARN_ON(!PageLocked(pages[i]));
1544 }
1545
1546 return ret;
1547 }
1548
check_can_nocow(struct btrfs_inode * inode,loff_t pos,size_t * write_bytes)1549 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1550 size_t *write_bytes)
1551 {
1552 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1553 struct btrfs_root *root = inode->root;
1554 u64 lockstart, lockend;
1555 u64 num_bytes;
1556 int ret;
1557
1558 ret = btrfs_start_write_no_snapshotting(root);
1559 if (!ret)
1560 return -EAGAIN;
1561
1562 lockstart = round_down(pos, fs_info->sectorsize);
1563 lockend = round_up(pos + *write_bytes,
1564 fs_info->sectorsize) - 1;
1565
1566 btrfs_lock_and_flush_ordered_range(&inode->io_tree, inode, lockstart,
1567 lockend, NULL);
1568
1569 num_bytes = lockend - lockstart + 1;
1570 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1571 NULL, NULL, NULL);
1572 if (ret <= 0) {
1573 ret = 0;
1574 btrfs_end_write_no_snapshotting(root);
1575 } else {
1576 *write_bytes = min_t(size_t, *write_bytes ,
1577 num_bytes - pos + lockstart);
1578 }
1579
1580 unlock_extent(&inode->io_tree, lockstart, lockend);
1581
1582 return ret;
1583 }
1584
btrfs_buffered_write(struct kiocb * iocb,struct iov_iter * i)1585 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1586 struct iov_iter *i)
1587 {
1588 struct file *file = iocb->ki_filp;
1589 loff_t pos = iocb->ki_pos;
1590 struct inode *inode = file_inode(file);
1591 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1592 struct btrfs_root *root = BTRFS_I(inode)->root;
1593 struct page **pages = NULL;
1594 struct extent_changeset *data_reserved = NULL;
1595 u64 release_bytes = 0;
1596 u64 lockstart;
1597 u64 lockend;
1598 size_t num_written = 0;
1599 int nrptrs;
1600 int ret = 0;
1601 bool only_release_metadata = false;
1602 bool force_page_uptodate = false;
1603
1604 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1605 PAGE_SIZE / (sizeof(struct page *)));
1606 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1607 nrptrs = max(nrptrs, 8);
1608 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1609 if (!pages)
1610 return -ENOMEM;
1611
1612 while (iov_iter_count(i) > 0) {
1613 struct extent_state *cached_state = NULL;
1614 size_t offset = offset_in_page(pos);
1615 size_t sector_offset;
1616 size_t write_bytes = min(iov_iter_count(i),
1617 nrptrs * (size_t)PAGE_SIZE -
1618 offset);
1619 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1620 PAGE_SIZE);
1621 size_t reserve_bytes;
1622 size_t dirty_pages;
1623 size_t copied;
1624 size_t dirty_sectors;
1625 size_t num_sectors;
1626 int extents_locked;
1627
1628 WARN_ON(num_pages > nrptrs);
1629
1630 /*
1631 * Fault pages before locking them in prepare_pages
1632 * to avoid recursive lock
1633 */
1634 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1635 ret = -EFAULT;
1636 break;
1637 }
1638
1639 only_release_metadata = false;
1640 sector_offset = pos & (fs_info->sectorsize - 1);
1641 reserve_bytes = round_up(write_bytes + sector_offset,
1642 fs_info->sectorsize);
1643
1644 extent_changeset_release(data_reserved);
1645 ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1646 write_bytes);
1647 if (ret < 0) {
1648 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1649 BTRFS_INODE_PREALLOC)) &&
1650 check_can_nocow(BTRFS_I(inode), pos,
1651 &write_bytes) > 0) {
1652 /*
1653 * For nodata cow case, no need to reserve
1654 * data space.
1655 */
1656 only_release_metadata = true;
1657 /*
1658 * our prealloc extent may be smaller than
1659 * write_bytes, so scale down.
1660 */
1661 num_pages = DIV_ROUND_UP(write_bytes + offset,
1662 PAGE_SIZE);
1663 reserve_bytes = round_up(write_bytes +
1664 sector_offset,
1665 fs_info->sectorsize);
1666 } else {
1667 break;
1668 }
1669 }
1670
1671 WARN_ON(reserve_bytes == 0);
1672 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1673 reserve_bytes);
1674 if (ret) {
1675 if (!only_release_metadata)
1676 btrfs_free_reserved_data_space(inode,
1677 data_reserved, pos,
1678 write_bytes);
1679 else
1680 btrfs_end_write_no_snapshotting(root);
1681 break;
1682 }
1683
1684 release_bytes = reserve_bytes;
1685 again:
1686 /*
1687 * This is going to setup the pages array with the number of
1688 * pages we want, so we don't really need to worry about the
1689 * contents of pages from loop to loop
1690 */
1691 ret = prepare_pages(inode, pages, num_pages,
1692 pos, write_bytes,
1693 force_page_uptodate);
1694 if (ret) {
1695 btrfs_delalloc_release_extents(BTRFS_I(inode),
1696 reserve_bytes);
1697 break;
1698 }
1699
1700 extents_locked = lock_and_cleanup_extent_if_need(
1701 BTRFS_I(inode), pages,
1702 num_pages, pos, write_bytes, &lockstart,
1703 &lockend, &cached_state);
1704 if (extents_locked < 0) {
1705 if (extents_locked == -EAGAIN)
1706 goto again;
1707 btrfs_delalloc_release_extents(BTRFS_I(inode),
1708 reserve_bytes);
1709 ret = extents_locked;
1710 break;
1711 }
1712
1713 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1714
1715 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1716 dirty_sectors = round_up(copied + sector_offset,
1717 fs_info->sectorsize);
1718 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1719
1720 /*
1721 * if we have trouble faulting in the pages, fall
1722 * back to one page at a time
1723 */
1724 if (copied < write_bytes)
1725 nrptrs = 1;
1726
1727 if (copied == 0) {
1728 force_page_uptodate = true;
1729 dirty_sectors = 0;
1730 dirty_pages = 0;
1731 } else {
1732 force_page_uptodate = false;
1733 dirty_pages = DIV_ROUND_UP(copied + offset,
1734 PAGE_SIZE);
1735 }
1736
1737 if (num_sectors > dirty_sectors) {
1738 /* release everything except the sectors we dirtied */
1739 release_bytes -= dirty_sectors <<
1740 fs_info->sb->s_blocksize_bits;
1741 if (only_release_metadata) {
1742 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1743 release_bytes, true);
1744 } else {
1745 u64 __pos;
1746
1747 __pos = round_down(pos,
1748 fs_info->sectorsize) +
1749 (dirty_pages << PAGE_SHIFT);
1750 btrfs_delalloc_release_space(inode,
1751 data_reserved, __pos,
1752 release_bytes, true);
1753 }
1754 }
1755
1756 release_bytes = round_up(copied + sector_offset,
1757 fs_info->sectorsize);
1758
1759 if (copied > 0)
1760 ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1761 pos, copied, &cached_state);
1762
1763 /*
1764 * If we have not locked the extent range, because the range's
1765 * start offset is >= i_size, we might still have a non-NULL
1766 * cached extent state, acquired while marking the extent range
1767 * as delalloc through btrfs_dirty_pages(). Therefore free any
1768 * possible cached extent state to avoid a memory leak.
1769 */
1770 if (extents_locked)
1771 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1772 lockstart, lockend, &cached_state);
1773 else
1774 free_extent_state(cached_state);
1775
1776 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1777 if (ret) {
1778 btrfs_drop_pages(pages, num_pages);
1779 break;
1780 }
1781
1782 release_bytes = 0;
1783 if (only_release_metadata)
1784 btrfs_end_write_no_snapshotting(root);
1785
1786 if (only_release_metadata && copied > 0) {
1787 lockstart = round_down(pos,
1788 fs_info->sectorsize);
1789 lockend = round_up(pos + copied,
1790 fs_info->sectorsize) - 1;
1791
1792 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1793 lockend, EXTENT_NORESERVE, NULL,
1794 NULL, GFP_NOFS);
1795 }
1796
1797 btrfs_drop_pages(pages, num_pages);
1798
1799 cond_resched();
1800
1801 balance_dirty_pages_ratelimited(inode->i_mapping);
1802 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1803 btrfs_btree_balance_dirty(fs_info);
1804
1805 pos += copied;
1806 num_written += copied;
1807 }
1808
1809 kfree(pages);
1810
1811 if (release_bytes) {
1812 if (only_release_metadata) {
1813 btrfs_end_write_no_snapshotting(root);
1814 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1815 release_bytes, true);
1816 } else {
1817 btrfs_delalloc_release_space(inode, data_reserved,
1818 round_down(pos, fs_info->sectorsize),
1819 release_bytes, true);
1820 }
1821 }
1822
1823 extent_changeset_free(data_reserved);
1824 return num_written ? num_written : ret;
1825 }
1826
__btrfs_direct_write(struct kiocb * iocb,struct iov_iter * from)1827 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1828 {
1829 struct file *file = iocb->ki_filp;
1830 struct inode *inode = file_inode(file);
1831 loff_t pos;
1832 ssize_t written;
1833 ssize_t written_buffered;
1834 loff_t endbyte;
1835 int err;
1836
1837 written = generic_file_direct_write(iocb, from);
1838
1839 if (written < 0 || !iov_iter_count(from))
1840 return written;
1841
1842 pos = iocb->ki_pos;
1843 written_buffered = btrfs_buffered_write(iocb, from);
1844 if (written_buffered < 0) {
1845 err = written_buffered;
1846 goto out;
1847 }
1848 /*
1849 * Ensure all data is persisted. We want the next direct IO read to be
1850 * able to read what was just written.
1851 */
1852 endbyte = pos + written_buffered - 1;
1853 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1854 if (err)
1855 goto out;
1856 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1857 if (err)
1858 goto out;
1859 written += written_buffered;
1860 iocb->ki_pos = pos + written_buffered;
1861 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1862 endbyte >> PAGE_SHIFT);
1863 out:
1864 return written ? written : err;
1865 }
1866
update_time_for_write(struct inode * inode)1867 static void update_time_for_write(struct inode *inode)
1868 {
1869 struct timespec64 now;
1870
1871 if (IS_NOCMTIME(inode))
1872 return;
1873
1874 now = current_time(inode);
1875 if (!timespec64_equal(&inode->i_mtime, &now))
1876 inode->i_mtime = now;
1877
1878 if (!timespec64_equal(&inode->i_ctime, &now))
1879 inode->i_ctime = now;
1880
1881 if (IS_I_VERSION(inode))
1882 inode_inc_iversion(inode);
1883 }
1884
btrfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1885 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1886 struct iov_iter *from)
1887 {
1888 struct file *file = iocb->ki_filp;
1889 struct inode *inode = file_inode(file);
1890 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1891 struct btrfs_root *root = BTRFS_I(inode)->root;
1892 u64 start_pos;
1893 u64 end_pos;
1894 ssize_t num_written = 0;
1895 const bool sync = iocb->ki_flags & IOCB_DSYNC;
1896 ssize_t err;
1897 loff_t pos;
1898 size_t count;
1899 loff_t oldsize;
1900 int clean_page = 0;
1901
1902 if (!(iocb->ki_flags & IOCB_DIRECT) &&
1903 (iocb->ki_flags & IOCB_NOWAIT))
1904 return -EOPNOTSUPP;
1905
1906 if (iocb->ki_flags & IOCB_NOWAIT) {
1907 if (!inode_trylock(inode))
1908 return -EAGAIN;
1909 } else {
1910 inode_lock(inode);
1911 }
1912
1913 err = generic_write_checks(iocb, from);
1914 if (err <= 0) {
1915 inode_unlock(inode);
1916 return err;
1917 }
1918
1919 pos = iocb->ki_pos;
1920 count = iov_iter_count(from);
1921 if (iocb->ki_flags & IOCB_NOWAIT) {
1922 /*
1923 * We will allocate space in case nodatacow is not set,
1924 * so bail
1925 */
1926 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1927 BTRFS_INODE_PREALLOC)) ||
1928 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1929 inode_unlock(inode);
1930 return -EAGAIN;
1931 }
1932 }
1933
1934 current->backing_dev_info = inode_to_bdi(inode);
1935 err = file_remove_privs(file);
1936 if (err) {
1937 inode_unlock(inode);
1938 goto out;
1939 }
1940
1941 /*
1942 * If BTRFS flips readonly due to some impossible error
1943 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1944 * although we have opened a file as writable, we have
1945 * to stop this write operation to ensure FS consistency.
1946 */
1947 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1948 inode_unlock(inode);
1949 err = -EROFS;
1950 goto out;
1951 }
1952
1953 /*
1954 * We reserve space for updating the inode when we reserve space for the
1955 * extent we are going to write, so we will enospc out there. We don't
1956 * need to start yet another transaction to update the inode as we will
1957 * update the inode when we finish writing whatever data we write.
1958 */
1959 update_time_for_write(inode);
1960
1961 start_pos = round_down(pos, fs_info->sectorsize);
1962 oldsize = i_size_read(inode);
1963 if (start_pos > oldsize) {
1964 /* Expand hole size to cover write data, preventing empty gap */
1965 end_pos = round_up(pos + count,
1966 fs_info->sectorsize);
1967 err = btrfs_cont_expand(inode, oldsize, end_pos);
1968 if (err) {
1969 inode_unlock(inode);
1970 goto out;
1971 }
1972 if (start_pos > round_up(oldsize, fs_info->sectorsize))
1973 clean_page = 1;
1974 }
1975
1976 if (sync)
1977 atomic_inc(&BTRFS_I(inode)->sync_writers);
1978
1979 if (iocb->ki_flags & IOCB_DIRECT) {
1980 num_written = __btrfs_direct_write(iocb, from);
1981 } else {
1982 num_written = btrfs_buffered_write(iocb, from);
1983 if (num_written > 0)
1984 iocb->ki_pos = pos + num_written;
1985 if (clean_page)
1986 pagecache_isize_extended(inode, oldsize,
1987 i_size_read(inode));
1988 }
1989
1990 inode_unlock(inode);
1991
1992 /*
1993 * We also have to set last_sub_trans to the current log transid,
1994 * otherwise subsequent syncs to a file that's been synced in this
1995 * transaction will appear to have already occurred.
1996 */
1997 spin_lock(&BTRFS_I(inode)->lock);
1998 BTRFS_I(inode)->last_sub_trans = root->log_transid;
1999 spin_unlock(&BTRFS_I(inode)->lock);
2000 if (num_written > 0)
2001 num_written = generic_write_sync(iocb, num_written);
2002
2003 if (sync)
2004 atomic_dec(&BTRFS_I(inode)->sync_writers);
2005 out:
2006 current->backing_dev_info = NULL;
2007 return num_written ? num_written : err;
2008 }
2009
btrfs_release_file(struct inode * inode,struct file * filp)2010 int btrfs_release_file(struct inode *inode, struct file *filp)
2011 {
2012 struct btrfs_file_private *private = filp->private_data;
2013
2014 if (private && private->filldir_buf)
2015 kfree(private->filldir_buf);
2016 kfree(private);
2017 filp->private_data = NULL;
2018
2019 /*
2020 * ordered_data_close is set by setattr when we are about to truncate
2021 * a file from a non-zero size to a zero size. This tries to
2022 * flush down new bytes that may have been written if the
2023 * application were using truncate to replace a file in place.
2024 */
2025 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2026 &BTRFS_I(inode)->runtime_flags))
2027 filemap_flush(inode->i_mapping);
2028 return 0;
2029 }
2030
start_ordered_ops(struct inode * inode,loff_t start,loff_t end)2031 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2032 {
2033 int ret;
2034 struct blk_plug plug;
2035
2036 /*
2037 * This is only called in fsync, which would do synchronous writes, so
2038 * a plug can merge adjacent IOs as much as possible. Esp. in case of
2039 * multiple disks using raid profile, a large IO can be split to
2040 * several segments of stripe length (currently 64K).
2041 */
2042 blk_start_plug(&plug);
2043 atomic_inc(&BTRFS_I(inode)->sync_writers);
2044 ret = btrfs_fdatawrite_range(inode, start, end);
2045 atomic_dec(&BTRFS_I(inode)->sync_writers);
2046 blk_finish_plug(&plug);
2047
2048 return ret;
2049 }
2050
2051 /*
2052 * fsync call for both files and directories. This logs the inode into
2053 * the tree log instead of forcing full commits whenever possible.
2054 *
2055 * It needs to call filemap_fdatawait so that all ordered extent updates are
2056 * in the metadata btree are up to date for copying to the log.
2057 *
2058 * It drops the inode mutex before doing the tree log commit. This is an
2059 * important optimization for directories because holding the mutex prevents
2060 * new operations on the dir while we write to disk.
2061 */
btrfs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)2062 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2063 {
2064 struct dentry *dentry = file_dentry(file);
2065 struct inode *inode = d_inode(dentry);
2066 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2067 struct btrfs_root *root = BTRFS_I(inode)->root;
2068 struct btrfs_trans_handle *trans;
2069 struct btrfs_log_ctx ctx;
2070 int ret = 0, err;
2071
2072 trace_btrfs_sync_file(file, datasync);
2073
2074 btrfs_init_log_ctx(&ctx, inode);
2075
2076 /*
2077 * We write the dirty pages in the range and wait until they complete
2078 * out of the ->i_mutex. If so, we can flush the dirty pages by
2079 * multi-task, and make the performance up. See
2080 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2081 */
2082 ret = start_ordered_ops(inode, start, end);
2083 if (ret)
2084 goto out;
2085
2086 inode_lock(inode);
2087
2088 /*
2089 * We take the dio_sem here because the tree log stuff can race with
2090 * lockless dio writes and get an extent map logged for an extent we
2091 * never waited on. We need it this high up for lockdep reasons.
2092 */
2093 down_write(&BTRFS_I(inode)->dio_sem);
2094
2095 atomic_inc(&root->log_batch);
2096
2097 /*
2098 * If the inode needs a full sync, make sure we use a full range to
2099 * avoid log tree corruption, due to hole detection racing with ordered
2100 * extent completion for adjacent ranges, and assertion failures during
2101 * hole detection. Do this while holding the inode lock, to avoid races
2102 * with other tasks.
2103 */
2104 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2105 &BTRFS_I(inode)->runtime_flags)) {
2106 start = 0;
2107 end = LLONG_MAX;
2108 }
2109
2110 /*
2111 * Before we acquired the inode's lock, someone may have dirtied more
2112 * pages in the target range. We need to make sure that writeback for
2113 * any such pages does not start while we are logging the inode, because
2114 * if it does, any of the following might happen when we are not doing a
2115 * full inode sync:
2116 *
2117 * 1) We log an extent after its writeback finishes but before its
2118 * checksums are added to the csum tree, leading to -EIO errors
2119 * when attempting to read the extent after a log replay.
2120 *
2121 * 2) We can end up logging an extent before its writeback finishes.
2122 * Therefore after the log replay we will have a file extent item
2123 * pointing to an unwritten extent (and no data checksums as well).
2124 *
2125 * So trigger writeback for any eventual new dirty pages and then we
2126 * wait for all ordered extents to complete below.
2127 */
2128 ret = start_ordered_ops(inode, start, end);
2129 if (ret) {
2130 inode_unlock(inode);
2131 goto out;
2132 }
2133
2134 /*
2135 * We have to do this here to avoid the priority inversion of waiting on
2136 * IO of a lower priority task while holding a transaction open.
2137 *
2138 * Also, the range length can be represented by u64, we have to do the
2139 * typecasts to avoid signed overflow if it's [0, LLONG_MAX].
2140 */
2141 ret = btrfs_wait_ordered_range(inode, start, (u64)end - (u64)start + 1);
2142 if (ret) {
2143 up_write(&BTRFS_I(inode)->dio_sem);
2144 inode_unlock(inode);
2145 goto out;
2146 }
2147 atomic_inc(&root->log_batch);
2148
2149 smp_mb();
2150 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2151 BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) {
2152 /*
2153 * We've had everything committed since the last time we were
2154 * modified so clear this flag in case it was set for whatever
2155 * reason, it's no longer relevant.
2156 */
2157 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2158 &BTRFS_I(inode)->runtime_flags);
2159 /*
2160 * An ordered extent might have started before and completed
2161 * already with io errors, in which case the inode was not
2162 * updated and we end up here. So check the inode's mapping
2163 * for any errors that might have happened since we last
2164 * checked called fsync.
2165 */
2166 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2167 up_write(&BTRFS_I(inode)->dio_sem);
2168 inode_unlock(inode);
2169 goto out;
2170 }
2171
2172 /*
2173 * We use start here because we will need to wait on the IO to complete
2174 * in btrfs_sync_log, which could require joining a transaction (for
2175 * example checking cross references in the nocow path). If we use join
2176 * here we could get into a situation where we're waiting on IO to
2177 * happen that is blocked on a transaction trying to commit. With start
2178 * we inc the extwriter counter, so we wait for all extwriters to exit
2179 * before we start blocking joiners. This comment is to keep somebody
2180 * from thinking they are super smart and changing this to
2181 * btrfs_join_transaction *cough*Josef*cough*.
2182 */
2183 trans = btrfs_start_transaction(root, 0);
2184 if (IS_ERR(trans)) {
2185 ret = PTR_ERR(trans);
2186 up_write(&BTRFS_I(inode)->dio_sem);
2187 inode_unlock(inode);
2188 goto out;
2189 }
2190
2191 ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx);
2192 if (ret < 0) {
2193 /* Fallthrough and commit/free transaction. */
2194 ret = 1;
2195 }
2196
2197 /* we've logged all the items and now have a consistent
2198 * version of the file in the log. It is possible that
2199 * someone will come in and modify the file, but that's
2200 * fine because the log is consistent on disk, and we
2201 * have references to all of the file's extents
2202 *
2203 * It is possible that someone will come in and log the
2204 * file again, but that will end up using the synchronization
2205 * inside btrfs_sync_log to keep things safe.
2206 */
2207 up_write(&BTRFS_I(inode)->dio_sem);
2208 inode_unlock(inode);
2209
2210 if (ret != BTRFS_NO_LOG_SYNC) {
2211 if (!ret) {
2212 ret = btrfs_sync_log(trans, root, &ctx);
2213 if (!ret) {
2214 ret = btrfs_end_transaction(trans);
2215 goto out;
2216 }
2217 }
2218 ret = btrfs_commit_transaction(trans);
2219 } else {
2220 ret = btrfs_end_transaction(trans);
2221 }
2222 out:
2223 ASSERT(list_empty(&ctx.list));
2224 err = file_check_and_advance_wb_err(file);
2225 if (!ret)
2226 ret = err;
2227 return ret > 0 ? -EIO : ret;
2228 }
2229
2230 static const struct vm_operations_struct btrfs_file_vm_ops = {
2231 .fault = filemap_fault,
2232 .map_pages = filemap_map_pages,
2233 .page_mkwrite = btrfs_page_mkwrite,
2234 };
2235
btrfs_file_mmap(struct file * filp,struct vm_area_struct * vma)2236 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2237 {
2238 struct address_space *mapping = filp->f_mapping;
2239
2240 if (!mapping->a_ops->readpage)
2241 return -ENOEXEC;
2242
2243 file_accessed(filp);
2244 vma->vm_ops = &btrfs_file_vm_ops;
2245
2246 return 0;
2247 }
2248
hole_mergeable(struct btrfs_inode * inode,struct extent_buffer * leaf,int slot,u64 start,u64 end)2249 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2250 int slot, u64 start, u64 end)
2251 {
2252 struct btrfs_file_extent_item *fi;
2253 struct btrfs_key key;
2254
2255 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2256 return 0;
2257
2258 btrfs_item_key_to_cpu(leaf, &key, slot);
2259 if (key.objectid != btrfs_ino(inode) ||
2260 key.type != BTRFS_EXTENT_DATA_KEY)
2261 return 0;
2262
2263 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2264
2265 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2266 return 0;
2267
2268 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2269 return 0;
2270
2271 if (key.offset == end)
2272 return 1;
2273 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2274 return 1;
2275 return 0;
2276 }
2277
fill_holes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,u64 offset,u64 end)2278 static int fill_holes(struct btrfs_trans_handle *trans,
2279 struct btrfs_inode *inode,
2280 struct btrfs_path *path, u64 offset, u64 end)
2281 {
2282 struct btrfs_fs_info *fs_info = trans->fs_info;
2283 struct btrfs_root *root = inode->root;
2284 struct extent_buffer *leaf;
2285 struct btrfs_file_extent_item *fi;
2286 struct extent_map *hole_em;
2287 struct extent_map_tree *em_tree = &inode->extent_tree;
2288 struct btrfs_key key;
2289 int ret;
2290
2291 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2292 goto out;
2293
2294 key.objectid = btrfs_ino(inode);
2295 key.type = BTRFS_EXTENT_DATA_KEY;
2296 key.offset = offset;
2297
2298 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2299 if (ret <= 0) {
2300 /*
2301 * We should have dropped this offset, so if we find it then
2302 * something has gone horribly wrong.
2303 */
2304 if (ret == 0)
2305 ret = -EINVAL;
2306 return ret;
2307 }
2308
2309 leaf = path->nodes[0];
2310 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2311 u64 num_bytes;
2312
2313 path->slots[0]--;
2314 fi = btrfs_item_ptr(leaf, path->slots[0],
2315 struct btrfs_file_extent_item);
2316 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2317 end - offset;
2318 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2319 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2320 btrfs_set_file_extent_offset(leaf, fi, 0);
2321 btrfs_mark_buffer_dirty(leaf);
2322 goto out;
2323 }
2324
2325 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2326 u64 num_bytes;
2327
2328 key.offset = offset;
2329 btrfs_set_item_key_safe(fs_info, path, &key);
2330 fi = btrfs_item_ptr(leaf, path->slots[0],
2331 struct btrfs_file_extent_item);
2332 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2333 offset;
2334 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2335 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2336 btrfs_set_file_extent_offset(leaf, fi, 0);
2337 btrfs_mark_buffer_dirty(leaf);
2338 goto out;
2339 }
2340 btrfs_release_path(path);
2341
2342 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2343 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2344 if (ret)
2345 return ret;
2346
2347 out:
2348 btrfs_release_path(path);
2349
2350 hole_em = alloc_extent_map();
2351 if (!hole_em) {
2352 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2353 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2354 } else {
2355 hole_em->start = offset;
2356 hole_em->len = end - offset;
2357 hole_em->ram_bytes = hole_em->len;
2358 hole_em->orig_start = offset;
2359
2360 hole_em->block_start = EXTENT_MAP_HOLE;
2361 hole_em->block_len = 0;
2362 hole_em->orig_block_len = 0;
2363 hole_em->bdev = fs_info->fs_devices->latest_bdev;
2364 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2365 hole_em->generation = trans->transid;
2366
2367 do {
2368 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2369 write_lock(&em_tree->lock);
2370 ret = add_extent_mapping(em_tree, hole_em, 1);
2371 write_unlock(&em_tree->lock);
2372 } while (ret == -EEXIST);
2373 free_extent_map(hole_em);
2374 if (ret)
2375 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2376 &inode->runtime_flags);
2377 }
2378
2379 return 0;
2380 }
2381
2382 /*
2383 * Find a hole extent on given inode and change start/len to the end of hole
2384 * extent.(hole/vacuum extent whose em->start <= start &&
2385 * em->start + em->len > start)
2386 * When a hole extent is found, return 1 and modify start/len.
2387 */
find_first_non_hole(struct inode * inode,u64 * start,u64 * len)2388 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2389 {
2390 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2391 struct extent_map *em;
2392 int ret = 0;
2393
2394 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2395 round_down(*start, fs_info->sectorsize),
2396 round_up(*len, fs_info->sectorsize), 0);
2397 if (IS_ERR(em))
2398 return PTR_ERR(em);
2399
2400 /* Hole or vacuum extent(only exists in no-hole mode) */
2401 if (em->block_start == EXTENT_MAP_HOLE) {
2402 ret = 1;
2403 *len = em->start + em->len > *start + *len ?
2404 0 : *start + *len - em->start - em->len;
2405 *start = em->start + em->len;
2406 }
2407 free_extent_map(em);
2408 return ret;
2409 }
2410
btrfs_punch_hole_lock_range(struct inode * inode,const u64 lockstart,const u64 lockend,struct extent_state ** cached_state)2411 static int btrfs_punch_hole_lock_range(struct inode *inode,
2412 const u64 lockstart,
2413 const u64 lockend,
2414 struct extent_state **cached_state)
2415 {
2416 while (1) {
2417 struct btrfs_ordered_extent *ordered;
2418 int ret;
2419
2420 truncate_pagecache_range(inode, lockstart, lockend);
2421
2422 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2423 cached_state);
2424 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2425
2426 /*
2427 * We need to make sure we have no ordered extents in this range
2428 * and nobody raced in and read a page in this range, if we did
2429 * we need to try again.
2430 */
2431 if ((!ordered ||
2432 (ordered->file_offset + ordered->len <= lockstart ||
2433 ordered->file_offset > lockend)) &&
2434 !filemap_range_has_page(inode->i_mapping,
2435 lockstart, lockend)) {
2436 if (ordered)
2437 btrfs_put_ordered_extent(ordered);
2438 break;
2439 }
2440 if (ordered)
2441 btrfs_put_ordered_extent(ordered);
2442 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2443 lockend, cached_state);
2444 ret = btrfs_wait_ordered_range(inode, lockstart,
2445 lockend - lockstart + 1);
2446 if (ret)
2447 return ret;
2448 }
2449 return 0;
2450 }
2451
btrfs_insert_clone_extent(struct btrfs_trans_handle * trans,struct inode * inode,struct btrfs_path * path,struct btrfs_clone_extent_info * clone_info,const u64 clone_len)2452 static int btrfs_insert_clone_extent(struct btrfs_trans_handle *trans,
2453 struct inode *inode,
2454 struct btrfs_path *path,
2455 struct btrfs_clone_extent_info *clone_info,
2456 const u64 clone_len)
2457 {
2458 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2459 struct btrfs_root *root = BTRFS_I(inode)->root;
2460 struct btrfs_file_extent_item *extent;
2461 struct extent_buffer *leaf;
2462 struct btrfs_key key;
2463 int slot;
2464 struct btrfs_ref ref = { 0 };
2465 u64 ref_offset;
2466 int ret;
2467
2468 if (clone_len == 0)
2469 return 0;
2470
2471 if (clone_info->disk_offset == 0 &&
2472 btrfs_fs_incompat(fs_info, NO_HOLES))
2473 return 0;
2474
2475 key.objectid = btrfs_ino(BTRFS_I(inode));
2476 key.type = BTRFS_EXTENT_DATA_KEY;
2477 key.offset = clone_info->file_offset;
2478 ret = btrfs_insert_empty_item(trans, root, path, &key,
2479 clone_info->item_size);
2480 if (ret)
2481 return ret;
2482 leaf = path->nodes[0];
2483 slot = path->slots[0];
2484 write_extent_buffer(leaf, clone_info->extent_buf,
2485 btrfs_item_ptr_offset(leaf, slot),
2486 clone_info->item_size);
2487 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2488 btrfs_set_file_extent_offset(leaf, extent, clone_info->data_offset);
2489 btrfs_set_file_extent_num_bytes(leaf, extent, clone_len);
2490 btrfs_mark_buffer_dirty(leaf);
2491 btrfs_release_path(path);
2492
2493 /* If it's a hole, nothing more needs to be done. */
2494 if (clone_info->disk_offset == 0)
2495 return 0;
2496
2497 inode_add_bytes(inode, clone_len);
2498 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2499 clone_info->disk_offset,
2500 clone_info->disk_len, 0);
2501 ref_offset = clone_info->file_offset - clone_info->data_offset;
2502 btrfs_init_data_ref(&ref, root->root_key.objectid,
2503 btrfs_ino(BTRFS_I(inode)), ref_offset);
2504 ret = btrfs_inc_extent_ref(trans, &ref);
2505
2506 return ret;
2507 }
2508
2509 /*
2510 * The respective range must have been previously locked, as well as the inode.
2511 * The end offset is inclusive (last byte of the range).
2512 * @clone_info is NULL for fallocate's hole punching and non-NULL for extent
2513 * cloning.
2514 * When cloning, we don't want to end up in a state where we dropped extents
2515 * without inserting a new one, so we must abort the transaction to avoid a
2516 * corruption.
2517 */
btrfs_punch_hole_range(struct inode * inode,struct btrfs_path * path,const u64 start,const u64 end,struct btrfs_clone_extent_info * clone_info,struct btrfs_trans_handle ** trans_out)2518 int btrfs_punch_hole_range(struct inode *inode, struct btrfs_path *path,
2519 const u64 start, const u64 end,
2520 struct btrfs_clone_extent_info *clone_info,
2521 struct btrfs_trans_handle **trans_out)
2522 {
2523 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2524 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2525 u64 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2526 struct btrfs_root *root = BTRFS_I(inode)->root;
2527 struct btrfs_trans_handle *trans = NULL;
2528 struct btrfs_block_rsv *rsv;
2529 unsigned int rsv_count;
2530 u64 cur_offset;
2531 u64 drop_end;
2532 u64 len = end - start;
2533 int ret = 0;
2534
2535 if (end <= start)
2536 return -EINVAL;
2537
2538 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2539 if (!rsv) {
2540 ret = -ENOMEM;
2541 goto out;
2542 }
2543 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2544 rsv->failfast = 1;
2545
2546 /*
2547 * 1 - update the inode
2548 * 1 - removing the extents in the range
2549 * 1 - adding the hole extent if no_holes isn't set or if we are cloning
2550 * an extent
2551 */
2552 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || clone_info)
2553 rsv_count = 3;
2554 else
2555 rsv_count = 2;
2556
2557 trans = btrfs_start_transaction(root, rsv_count);
2558 if (IS_ERR(trans)) {
2559 ret = PTR_ERR(trans);
2560 trans = NULL;
2561 goto out_free;
2562 }
2563
2564 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2565 min_size, false);
2566 BUG_ON(ret);
2567 trans->block_rsv = rsv;
2568
2569 cur_offset = start;
2570 while (cur_offset < end) {
2571 ret = __btrfs_drop_extents(trans, root, inode, path,
2572 cur_offset, end + 1, &drop_end,
2573 1, 0, 0, NULL);
2574 if (ret != -ENOSPC) {
2575 /*
2576 * When cloning we want to avoid transaction aborts when
2577 * nothing was done and we are attempting to clone parts
2578 * of inline extents, in such cases -EOPNOTSUPP is
2579 * returned by __btrfs_drop_extents() without having
2580 * changed anything in the file.
2581 */
2582 if (clone_info && ret && ret != -EOPNOTSUPP)
2583 btrfs_abort_transaction(trans, ret);
2584 break;
2585 }
2586
2587 trans->block_rsv = &fs_info->trans_block_rsv;
2588
2589 if (!clone_info && cur_offset < drop_end &&
2590 cur_offset < ino_size) {
2591 ret = fill_holes(trans, BTRFS_I(inode), path,
2592 cur_offset, drop_end);
2593 if (ret) {
2594 /*
2595 * If we failed then we didn't insert our hole
2596 * entries for the area we dropped, so now the
2597 * fs is corrupted, so we must abort the
2598 * transaction.
2599 */
2600 btrfs_abort_transaction(trans, ret);
2601 break;
2602 }
2603 }
2604
2605 if (clone_info && drop_end > clone_info->file_offset) {
2606 u64 clone_len = drop_end - clone_info->file_offset;
2607
2608 ret = btrfs_insert_clone_extent(trans, inode, path,
2609 clone_info, clone_len);
2610 if (ret) {
2611 btrfs_abort_transaction(trans, ret);
2612 break;
2613 }
2614 clone_info->data_len -= clone_len;
2615 clone_info->data_offset += clone_len;
2616 clone_info->file_offset += clone_len;
2617 }
2618
2619 cur_offset = drop_end;
2620
2621 ret = btrfs_update_inode(trans, root, inode);
2622 if (ret)
2623 break;
2624
2625 btrfs_end_transaction(trans);
2626 btrfs_btree_balance_dirty(fs_info);
2627
2628 trans = btrfs_start_transaction(root, rsv_count);
2629 if (IS_ERR(trans)) {
2630 ret = PTR_ERR(trans);
2631 trans = NULL;
2632 break;
2633 }
2634
2635 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2636 rsv, min_size, false);
2637 BUG_ON(ret); /* shouldn't happen */
2638 trans->block_rsv = rsv;
2639
2640 if (!clone_info) {
2641 ret = find_first_non_hole(inode, &cur_offset, &len);
2642 if (unlikely(ret < 0))
2643 break;
2644 if (ret && !len) {
2645 ret = 0;
2646 break;
2647 }
2648 }
2649 }
2650
2651 /*
2652 * If we were cloning, force the next fsync to be a full one since we
2653 * we replaced (or just dropped in the case of cloning holes when
2654 * NO_HOLES is enabled) extents and extent maps.
2655 * This is for the sake of simplicity, and cloning into files larger
2656 * than 16Mb would force the full fsync any way (when
2657 * try_release_extent_mapping() is invoked during page cache truncation.
2658 */
2659 if (clone_info)
2660 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2661 &BTRFS_I(inode)->runtime_flags);
2662
2663 if (ret)
2664 goto out_trans;
2665
2666 trans->block_rsv = &fs_info->trans_block_rsv;
2667 /*
2668 * If we are using the NO_HOLES feature we might have had already an
2669 * hole that overlaps a part of the region [lockstart, lockend] and
2670 * ends at (or beyond) lockend. Since we have no file extent items to
2671 * represent holes, drop_end can be less than lockend and so we must
2672 * make sure we have an extent map representing the existing hole (the
2673 * call to __btrfs_drop_extents() might have dropped the existing extent
2674 * map representing the existing hole), otherwise the fast fsync path
2675 * will not record the existence of the hole region
2676 * [existing_hole_start, lockend].
2677 */
2678 if (drop_end <= end)
2679 drop_end = end + 1;
2680 /*
2681 * Don't insert file hole extent item if it's for a range beyond eof
2682 * (because it's useless) or if it represents a 0 bytes range (when
2683 * cur_offset == drop_end).
2684 */
2685 if (!clone_info && cur_offset < ino_size && cur_offset < drop_end) {
2686 ret = fill_holes(trans, BTRFS_I(inode), path,
2687 cur_offset, drop_end);
2688 if (ret) {
2689 /* Same comment as above. */
2690 btrfs_abort_transaction(trans, ret);
2691 goto out_trans;
2692 }
2693 }
2694 if (clone_info) {
2695 ret = btrfs_insert_clone_extent(trans, inode, path, clone_info,
2696 clone_info->data_len);
2697 if (ret) {
2698 btrfs_abort_transaction(trans, ret);
2699 goto out_trans;
2700 }
2701 }
2702
2703 out_trans:
2704 if (!trans)
2705 goto out_free;
2706
2707 trans->block_rsv = &fs_info->trans_block_rsv;
2708 if (ret)
2709 btrfs_end_transaction(trans);
2710 else
2711 *trans_out = trans;
2712 out_free:
2713 btrfs_free_block_rsv(fs_info, rsv);
2714 out:
2715 return ret;
2716 }
2717
btrfs_punch_hole(struct inode * inode,loff_t offset,loff_t len)2718 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2719 {
2720 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2721 struct btrfs_root *root = BTRFS_I(inode)->root;
2722 struct extent_state *cached_state = NULL;
2723 struct btrfs_path *path;
2724 struct btrfs_trans_handle *trans = NULL;
2725 u64 lockstart;
2726 u64 lockend;
2727 u64 tail_start;
2728 u64 tail_len;
2729 u64 orig_start = offset;
2730 int ret = 0;
2731 bool same_block;
2732 u64 ino_size;
2733 bool truncated_block = false;
2734 bool updated_inode = false;
2735
2736 ret = btrfs_wait_ordered_range(inode, offset, len);
2737 if (ret)
2738 return ret;
2739
2740 inode_lock(inode);
2741 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2742 ret = find_first_non_hole(inode, &offset, &len);
2743 if (ret < 0)
2744 goto out_only_mutex;
2745 if (ret && !len) {
2746 /* Already in a large hole */
2747 ret = 0;
2748 goto out_only_mutex;
2749 }
2750
2751 lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2752 lockend = round_down(offset + len,
2753 btrfs_inode_sectorsize(inode)) - 1;
2754 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2755 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2756 /*
2757 * We needn't truncate any block which is beyond the end of the file
2758 * because we are sure there is no data there.
2759 */
2760 /*
2761 * Only do this if we are in the same block and we aren't doing the
2762 * entire block.
2763 */
2764 if (same_block && len < fs_info->sectorsize) {
2765 if (offset < ino_size) {
2766 truncated_block = true;
2767 ret = btrfs_truncate_block(inode, offset, len, 0);
2768 } else {
2769 ret = 0;
2770 }
2771 goto out_only_mutex;
2772 }
2773
2774 /* zero back part of the first block */
2775 if (offset < ino_size) {
2776 truncated_block = true;
2777 ret = btrfs_truncate_block(inode, offset, 0, 0);
2778 if (ret) {
2779 inode_unlock(inode);
2780 return ret;
2781 }
2782 }
2783
2784 /* Check the aligned pages after the first unaligned page,
2785 * if offset != orig_start, which means the first unaligned page
2786 * including several following pages are already in holes,
2787 * the extra check can be skipped */
2788 if (offset == orig_start) {
2789 /* after truncate page, check hole again */
2790 len = offset + len - lockstart;
2791 offset = lockstart;
2792 ret = find_first_non_hole(inode, &offset, &len);
2793 if (ret < 0)
2794 goto out_only_mutex;
2795 if (ret && !len) {
2796 ret = 0;
2797 goto out_only_mutex;
2798 }
2799 lockstart = offset;
2800 }
2801
2802 /* Check the tail unaligned part is in a hole */
2803 tail_start = lockend + 1;
2804 tail_len = offset + len - tail_start;
2805 if (tail_len) {
2806 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2807 if (unlikely(ret < 0))
2808 goto out_only_mutex;
2809 if (!ret) {
2810 /* zero the front end of the last page */
2811 if (tail_start + tail_len < ino_size) {
2812 truncated_block = true;
2813 ret = btrfs_truncate_block(inode,
2814 tail_start + tail_len,
2815 0, 1);
2816 if (ret)
2817 goto out_only_mutex;
2818 }
2819 }
2820 }
2821
2822 if (lockend < lockstart) {
2823 ret = 0;
2824 goto out_only_mutex;
2825 }
2826
2827 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2828 &cached_state);
2829 if (ret)
2830 goto out_only_mutex;
2831
2832 path = btrfs_alloc_path();
2833 if (!path) {
2834 ret = -ENOMEM;
2835 goto out;
2836 }
2837
2838 ret = btrfs_punch_hole_range(inode, path, lockstart, lockend, NULL,
2839 &trans);
2840 btrfs_free_path(path);
2841 if (ret)
2842 goto out;
2843
2844 ASSERT(trans != NULL);
2845 inode_inc_iversion(inode);
2846 inode->i_mtime = inode->i_ctime = current_time(inode);
2847 ret = btrfs_update_inode(trans, root, inode);
2848 updated_inode = true;
2849 btrfs_end_transaction(trans);
2850 btrfs_btree_balance_dirty(fs_info);
2851 out:
2852 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2853 &cached_state);
2854 out_only_mutex:
2855 if (!updated_inode && truncated_block && !ret) {
2856 /*
2857 * If we only end up zeroing part of a page, we still need to
2858 * update the inode item, so that all the time fields are
2859 * updated as well as the necessary btrfs inode in memory fields
2860 * for detecting, at fsync time, if the inode isn't yet in the
2861 * log tree or it's there but not up to date.
2862 */
2863 struct timespec64 now = current_time(inode);
2864
2865 inode_inc_iversion(inode);
2866 inode->i_mtime = now;
2867 inode->i_ctime = now;
2868 trans = btrfs_start_transaction(root, 1);
2869 if (IS_ERR(trans)) {
2870 ret = PTR_ERR(trans);
2871 } else {
2872 int ret2;
2873
2874 ret = btrfs_update_inode(trans, root, inode);
2875 ret2 = btrfs_end_transaction(trans);
2876 if (!ret)
2877 ret = ret2;
2878 }
2879 }
2880 inode_unlock(inode);
2881 return ret;
2882 }
2883
2884 /* Helper structure to record which range is already reserved */
2885 struct falloc_range {
2886 struct list_head list;
2887 u64 start;
2888 u64 len;
2889 };
2890
2891 /*
2892 * Helper function to add falloc range
2893 *
2894 * Caller should have locked the larger range of extent containing
2895 * [start, len)
2896 */
add_falloc_range(struct list_head * head,u64 start,u64 len)2897 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2898 {
2899 struct falloc_range *prev = NULL;
2900 struct falloc_range *range = NULL;
2901
2902 if (list_empty(head))
2903 goto insert;
2904
2905 /*
2906 * As fallocate iterate by bytenr order, we only need to check
2907 * the last range.
2908 */
2909 prev = list_entry(head->prev, struct falloc_range, list);
2910 if (prev->start + prev->len == start) {
2911 prev->len += len;
2912 return 0;
2913 }
2914 insert:
2915 range = kmalloc(sizeof(*range), GFP_KERNEL);
2916 if (!range)
2917 return -ENOMEM;
2918 range->start = start;
2919 range->len = len;
2920 list_add_tail(&range->list, head);
2921 return 0;
2922 }
2923
btrfs_fallocate_update_isize(struct inode * inode,const u64 end,const int mode)2924 static int btrfs_fallocate_update_isize(struct inode *inode,
2925 const u64 end,
2926 const int mode)
2927 {
2928 struct btrfs_trans_handle *trans;
2929 struct btrfs_root *root = BTRFS_I(inode)->root;
2930 int ret;
2931 int ret2;
2932
2933 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2934 return 0;
2935
2936 trans = btrfs_start_transaction(root, 1);
2937 if (IS_ERR(trans))
2938 return PTR_ERR(trans);
2939
2940 inode->i_ctime = current_time(inode);
2941 i_size_write(inode, end);
2942 btrfs_ordered_update_i_size(inode, end, NULL);
2943 ret = btrfs_update_inode(trans, root, inode);
2944 ret2 = btrfs_end_transaction(trans);
2945
2946 return ret ? ret : ret2;
2947 }
2948
2949 enum {
2950 RANGE_BOUNDARY_WRITTEN_EXTENT,
2951 RANGE_BOUNDARY_PREALLOC_EXTENT,
2952 RANGE_BOUNDARY_HOLE,
2953 };
2954
btrfs_zero_range_check_range_boundary(struct inode * inode,u64 offset)2955 static int btrfs_zero_range_check_range_boundary(struct inode *inode,
2956 u64 offset)
2957 {
2958 const u64 sectorsize = btrfs_inode_sectorsize(inode);
2959 struct extent_map *em;
2960 int ret;
2961
2962 offset = round_down(offset, sectorsize);
2963 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize, 0);
2964 if (IS_ERR(em))
2965 return PTR_ERR(em);
2966
2967 if (em->block_start == EXTENT_MAP_HOLE)
2968 ret = RANGE_BOUNDARY_HOLE;
2969 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2970 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2971 else
2972 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2973
2974 free_extent_map(em);
2975 return ret;
2976 }
2977
btrfs_zero_range(struct inode * inode,loff_t offset,loff_t len,const int mode)2978 static int btrfs_zero_range(struct inode *inode,
2979 loff_t offset,
2980 loff_t len,
2981 const int mode)
2982 {
2983 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2984 struct extent_map *em;
2985 struct extent_changeset *data_reserved = NULL;
2986 int ret;
2987 u64 alloc_hint = 0;
2988 const u64 sectorsize = btrfs_inode_sectorsize(inode);
2989 u64 alloc_start = round_down(offset, sectorsize);
2990 u64 alloc_end = round_up(offset + len, sectorsize);
2991 u64 bytes_to_reserve = 0;
2992 bool space_reserved = false;
2993
2994 inode_dio_wait(inode);
2995
2996 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2997 alloc_start, alloc_end - alloc_start, 0);
2998 if (IS_ERR(em)) {
2999 ret = PTR_ERR(em);
3000 goto out;
3001 }
3002
3003 /*
3004 * Avoid hole punching and extent allocation for some cases. More cases
3005 * could be considered, but these are unlikely common and we keep things
3006 * as simple as possible for now. Also, intentionally, if the target
3007 * range contains one or more prealloc extents together with regular
3008 * extents and holes, we drop all the existing extents and allocate a
3009 * new prealloc extent, so that we get a larger contiguous disk extent.
3010 */
3011 if (em->start <= alloc_start &&
3012 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3013 const u64 em_end = em->start + em->len;
3014
3015 if (em_end >= offset + len) {
3016 /*
3017 * The whole range is already a prealloc extent,
3018 * do nothing except updating the inode's i_size if
3019 * needed.
3020 */
3021 free_extent_map(em);
3022 ret = btrfs_fallocate_update_isize(inode, offset + len,
3023 mode);
3024 goto out;
3025 }
3026 /*
3027 * Part of the range is already a prealloc extent, so operate
3028 * only on the remaining part of the range.
3029 */
3030 alloc_start = em_end;
3031 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3032 len = offset + len - alloc_start;
3033 offset = alloc_start;
3034 alloc_hint = em->block_start + em->len;
3035 }
3036 free_extent_map(em);
3037
3038 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3039 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3040 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
3041 alloc_start, sectorsize, 0);
3042 if (IS_ERR(em)) {
3043 ret = PTR_ERR(em);
3044 goto out;
3045 }
3046
3047 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3048 free_extent_map(em);
3049 ret = btrfs_fallocate_update_isize(inode, offset + len,
3050 mode);
3051 goto out;
3052 }
3053 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3054 free_extent_map(em);
3055 ret = btrfs_truncate_block(inode, offset, len, 0);
3056 if (!ret)
3057 ret = btrfs_fallocate_update_isize(inode,
3058 offset + len,
3059 mode);
3060 return ret;
3061 }
3062 free_extent_map(em);
3063 alloc_start = round_down(offset, sectorsize);
3064 alloc_end = alloc_start + sectorsize;
3065 goto reserve_space;
3066 }
3067
3068 alloc_start = round_up(offset, sectorsize);
3069 alloc_end = round_down(offset + len, sectorsize);
3070
3071 /*
3072 * For unaligned ranges, check the pages at the boundaries, they might
3073 * map to an extent, in which case we need to partially zero them, or
3074 * they might map to a hole, in which case we need our allocation range
3075 * to cover them.
3076 */
3077 if (!IS_ALIGNED(offset, sectorsize)) {
3078 ret = btrfs_zero_range_check_range_boundary(inode, offset);
3079 if (ret < 0)
3080 goto out;
3081 if (ret == RANGE_BOUNDARY_HOLE) {
3082 alloc_start = round_down(offset, sectorsize);
3083 ret = 0;
3084 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3085 ret = btrfs_truncate_block(inode, offset, 0, 0);
3086 if (ret)
3087 goto out;
3088 } else {
3089 ret = 0;
3090 }
3091 }
3092
3093 if (!IS_ALIGNED(offset + len, sectorsize)) {
3094 ret = btrfs_zero_range_check_range_boundary(inode,
3095 offset + len);
3096 if (ret < 0)
3097 goto out;
3098 if (ret == RANGE_BOUNDARY_HOLE) {
3099 alloc_end = round_up(offset + len, sectorsize);
3100 ret = 0;
3101 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3102 ret = btrfs_truncate_block(inode, offset + len, 0, 1);
3103 if (ret)
3104 goto out;
3105 } else {
3106 ret = 0;
3107 }
3108 }
3109
3110 reserve_space:
3111 if (alloc_start < alloc_end) {
3112 struct extent_state *cached_state = NULL;
3113 const u64 lockstart = alloc_start;
3114 const u64 lockend = alloc_end - 1;
3115
3116 bytes_to_reserve = alloc_end - alloc_start;
3117 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3118 bytes_to_reserve);
3119 if (ret < 0)
3120 goto out;
3121 space_reserved = true;
3122 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3123 alloc_start, bytes_to_reserve);
3124 if (ret)
3125 goto out;
3126 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3127 &cached_state);
3128 if (ret)
3129 goto out;
3130 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3131 alloc_end - alloc_start,
3132 i_blocksize(inode),
3133 offset + len, &alloc_hint);
3134 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3135 lockend, &cached_state);
3136 /* btrfs_prealloc_file_range releases reserved space on error */
3137 if (ret) {
3138 space_reserved = false;
3139 goto out;
3140 }
3141 }
3142 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3143 out:
3144 if (ret && space_reserved)
3145 btrfs_free_reserved_data_space(inode, data_reserved,
3146 alloc_start, bytes_to_reserve);
3147 extent_changeset_free(data_reserved);
3148
3149 return ret;
3150 }
3151
btrfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3152 static long btrfs_fallocate(struct file *file, int mode,
3153 loff_t offset, loff_t len)
3154 {
3155 struct inode *inode = file_inode(file);
3156 struct extent_state *cached_state = NULL;
3157 struct extent_changeset *data_reserved = NULL;
3158 struct falloc_range *range;
3159 struct falloc_range *tmp;
3160 struct list_head reserve_list;
3161 u64 cur_offset;
3162 u64 last_byte;
3163 u64 alloc_start;
3164 u64 alloc_end;
3165 u64 alloc_hint = 0;
3166 u64 locked_end;
3167 u64 actual_end = 0;
3168 struct extent_map *em;
3169 int blocksize = btrfs_inode_sectorsize(inode);
3170 int ret;
3171
3172 alloc_start = round_down(offset, blocksize);
3173 alloc_end = round_up(offset + len, blocksize);
3174 cur_offset = alloc_start;
3175
3176 /* Make sure we aren't being give some crap mode */
3177 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3178 FALLOC_FL_ZERO_RANGE))
3179 return -EOPNOTSUPP;
3180
3181 if (mode & FALLOC_FL_PUNCH_HOLE)
3182 return btrfs_punch_hole(inode, offset, len);
3183
3184 /*
3185 * Only trigger disk allocation, don't trigger qgroup reserve
3186 *
3187 * For qgroup space, it will be checked later.
3188 */
3189 if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3190 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3191 alloc_end - alloc_start);
3192 if (ret < 0)
3193 return ret;
3194 }
3195
3196 inode_lock(inode);
3197
3198 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3199 ret = inode_newsize_ok(inode, offset + len);
3200 if (ret)
3201 goto out;
3202 }
3203
3204 /*
3205 * TODO: Move these two operations after we have checked
3206 * accurate reserved space, or fallocate can still fail but
3207 * with page truncated or size expanded.
3208 *
3209 * But that's a minor problem and won't do much harm BTW.
3210 */
3211 if (alloc_start > inode->i_size) {
3212 ret = btrfs_cont_expand(inode, i_size_read(inode),
3213 alloc_start);
3214 if (ret)
3215 goto out;
3216 } else if (offset + len > inode->i_size) {
3217 /*
3218 * If we are fallocating from the end of the file onward we
3219 * need to zero out the end of the block if i_size lands in the
3220 * middle of a block.
3221 */
3222 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
3223 if (ret)
3224 goto out;
3225 }
3226
3227 /*
3228 * wait for ordered IO before we have any locks. We'll loop again
3229 * below with the locks held.
3230 */
3231 ret = btrfs_wait_ordered_range(inode, alloc_start,
3232 alloc_end - alloc_start);
3233 if (ret)
3234 goto out;
3235
3236 if (mode & FALLOC_FL_ZERO_RANGE) {
3237 ret = btrfs_zero_range(inode, offset, len, mode);
3238 inode_unlock(inode);
3239 return ret;
3240 }
3241
3242 locked_end = alloc_end - 1;
3243 while (1) {
3244 struct btrfs_ordered_extent *ordered;
3245
3246 /* the extent lock is ordered inside the running
3247 * transaction
3248 */
3249 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3250 locked_end, &cached_state);
3251 ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
3252
3253 if (ordered &&
3254 ordered->file_offset + ordered->len > alloc_start &&
3255 ordered->file_offset < alloc_end) {
3256 btrfs_put_ordered_extent(ordered);
3257 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3258 alloc_start, locked_end,
3259 &cached_state);
3260 /*
3261 * we can't wait on the range with the transaction
3262 * running or with the extent lock held
3263 */
3264 ret = btrfs_wait_ordered_range(inode, alloc_start,
3265 alloc_end - alloc_start);
3266 if (ret)
3267 goto out;
3268 } else {
3269 if (ordered)
3270 btrfs_put_ordered_extent(ordered);
3271 break;
3272 }
3273 }
3274
3275 /* First, check if we exceed the qgroup limit */
3276 INIT_LIST_HEAD(&reserve_list);
3277 while (cur_offset < alloc_end) {
3278 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3279 alloc_end - cur_offset, 0);
3280 if (IS_ERR(em)) {
3281 ret = PTR_ERR(em);
3282 break;
3283 }
3284 last_byte = min(extent_map_end(em), alloc_end);
3285 actual_end = min_t(u64, extent_map_end(em), offset + len);
3286 last_byte = ALIGN(last_byte, blocksize);
3287 if (em->block_start == EXTENT_MAP_HOLE ||
3288 (cur_offset >= inode->i_size &&
3289 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3290 ret = add_falloc_range(&reserve_list, cur_offset,
3291 last_byte - cur_offset);
3292 if (ret < 0) {
3293 free_extent_map(em);
3294 break;
3295 }
3296 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3297 cur_offset, last_byte - cur_offset);
3298 if (ret < 0) {
3299 cur_offset = last_byte;
3300 free_extent_map(em);
3301 break;
3302 }
3303 } else {
3304 /*
3305 * Do not need to reserve unwritten extent for this
3306 * range, free reserved data space first, otherwise
3307 * it'll result in false ENOSPC error.
3308 */
3309 btrfs_free_reserved_data_space(inode, data_reserved,
3310 cur_offset, last_byte - cur_offset);
3311 }
3312 free_extent_map(em);
3313 cur_offset = last_byte;
3314 }
3315
3316 /*
3317 * If ret is still 0, means we're OK to fallocate.
3318 * Or just cleanup the list and exit.
3319 */
3320 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3321 if (!ret)
3322 ret = btrfs_prealloc_file_range(inode, mode,
3323 range->start,
3324 range->len, i_blocksize(inode),
3325 offset + len, &alloc_hint);
3326 else
3327 btrfs_free_reserved_data_space(inode,
3328 data_reserved, range->start,
3329 range->len);
3330 list_del(&range->list);
3331 kfree(range);
3332 }
3333 if (ret < 0)
3334 goto out_unlock;
3335
3336 /*
3337 * We didn't need to allocate any more space, but we still extended the
3338 * size of the file so we need to update i_size and the inode item.
3339 */
3340 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3341 out_unlock:
3342 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3343 &cached_state);
3344 out:
3345 inode_unlock(inode);
3346 /* Let go of our reservation. */
3347 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3348 btrfs_free_reserved_data_space(inode, data_reserved,
3349 cur_offset, alloc_end - cur_offset);
3350 extent_changeset_free(data_reserved);
3351 return ret;
3352 }
3353
find_desired_extent(struct inode * inode,loff_t * offset,int whence)3354 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
3355 {
3356 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3357 struct extent_map *em = NULL;
3358 struct extent_state *cached_state = NULL;
3359 u64 lockstart;
3360 u64 lockend;
3361 u64 start;
3362 u64 len;
3363 int ret = 0;
3364
3365 if (inode->i_size == 0)
3366 return -ENXIO;
3367
3368 /*
3369 * *offset can be negative, in this case we start finding DATA/HOLE from
3370 * the very start of the file.
3371 */
3372 start = max_t(loff_t, 0, *offset);
3373
3374 lockstart = round_down(start, fs_info->sectorsize);
3375 lockend = round_up(i_size_read(inode),
3376 fs_info->sectorsize);
3377 if (lockend <= lockstart)
3378 lockend = lockstart + fs_info->sectorsize;
3379 lockend--;
3380 len = lockend - lockstart + 1;
3381
3382 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3383 &cached_state);
3384
3385 while (start < inode->i_size) {
3386 em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
3387 if (IS_ERR(em)) {
3388 ret = PTR_ERR(em);
3389 em = NULL;
3390 break;
3391 }
3392
3393 if (whence == SEEK_HOLE &&
3394 (em->block_start == EXTENT_MAP_HOLE ||
3395 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3396 break;
3397 else if (whence == SEEK_DATA &&
3398 (em->block_start != EXTENT_MAP_HOLE &&
3399 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3400 break;
3401
3402 start = em->start + em->len;
3403 free_extent_map(em);
3404 em = NULL;
3405 cond_resched();
3406 }
3407 free_extent_map(em);
3408 if (!ret) {
3409 if (whence == SEEK_DATA && start >= inode->i_size)
3410 ret = -ENXIO;
3411 else
3412 *offset = min_t(loff_t, start, inode->i_size);
3413 }
3414 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3415 &cached_state);
3416 return ret;
3417 }
3418
btrfs_file_llseek(struct file * file,loff_t offset,int whence)3419 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3420 {
3421 struct inode *inode = file->f_mapping->host;
3422 int ret;
3423
3424 inode_lock(inode);
3425 switch (whence) {
3426 case SEEK_END:
3427 case SEEK_CUR:
3428 offset = generic_file_llseek(file, offset, whence);
3429 goto out;
3430 case SEEK_DATA:
3431 case SEEK_HOLE:
3432 if (offset >= i_size_read(inode)) {
3433 inode_unlock(inode);
3434 return -ENXIO;
3435 }
3436
3437 ret = find_desired_extent(inode, &offset, whence);
3438 if (ret) {
3439 inode_unlock(inode);
3440 return ret;
3441 }
3442 }
3443
3444 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3445 out:
3446 inode_unlock(inode);
3447 return offset;
3448 }
3449
btrfs_file_open(struct inode * inode,struct file * filp)3450 static int btrfs_file_open(struct inode *inode, struct file *filp)
3451 {
3452 filp->f_mode |= FMODE_NOWAIT;
3453 return generic_file_open(inode, filp);
3454 }
3455
3456 const struct file_operations btrfs_file_operations = {
3457 .llseek = btrfs_file_llseek,
3458 .read_iter = generic_file_read_iter,
3459 .splice_read = generic_file_splice_read,
3460 .write_iter = btrfs_file_write_iter,
3461 .mmap = btrfs_file_mmap,
3462 .open = btrfs_file_open,
3463 .release = btrfs_release_file,
3464 .fsync = btrfs_sync_file,
3465 .fallocate = btrfs_fallocate,
3466 .unlocked_ioctl = btrfs_ioctl,
3467 #ifdef CONFIG_COMPAT
3468 .compat_ioctl = btrfs_compat_ioctl,
3469 #endif
3470 .remap_file_range = btrfs_remap_file_range,
3471 };
3472
btrfs_auto_defrag_exit(void)3473 void __cold btrfs_auto_defrag_exit(void)
3474 {
3475 kmem_cache_destroy(btrfs_inode_defrag_cachep);
3476 }
3477
btrfs_auto_defrag_init(void)3478 int __init btrfs_auto_defrag_init(void)
3479 {
3480 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3481 sizeof(struct inode_defrag), 0,
3482 SLAB_MEM_SPREAD,
3483 NULL);
3484 if (!btrfs_inode_defrag_cachep)
3485 return -ENOMEM;
3486
3487 return 0;
3488 }
3489
btrfs_fdatawrite_range(struct inode * inode,loff_t start,loff_t end)3490 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3491 {
3492 int ret;
3493
3494 /*
3495 * So with compression we will find and lock a dirty page and clear the
3496 * first one as dirty, setup an async extent, and immediately return
3497 * with the entire range locked but with nobody actually marked with
3498 * writeback. So we can't just filemap_write_and_wait_range() and
3499 * expect it to work since it will just kick off a thread to do the
3500 * actual work. So we need to call filemap_fdatawrite_range _again_
3501 * since it will wait on the page lock, which won't be unlocked until
3502 * after the pages have been marked as writeback and so we're good to go
3503 * from there. We have to do this otherwise we'll miss the ordered
3504 * extents and that results in badness. Please Josef, do not think you
3505 * know better and pull this out at some point in the future, it is
3506 * right and you are wrong.
3507 */
3508 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3509 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3510 &BTRFS_I(inode)->runtime_flags))
3511 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3512
3513 return ret;
3514 }
3515