1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2008 Red Hat. All rights reserved.
4 */
5
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
14 #include "ctree.h"
15 #include "free-space-cache.h"
16 #include "transaction.h"
17 #include "disk-io.h"
18 #include "extent_io.h"
19 #include "inode-map.h"
20 #include "volumes.h"
21 #include "space-info.h"
22 #include "delalloc-space.h"
23 #include "block-group.h"
24
25 #define BITS_PER_BITMAP (PAGE_SIZE * 8UL)
26 #define MAX_CACHE_BYTES_PER_GIG SZ_32K
27
28 struct btrfs_trim_range {
29 u64 start;
30 u64 bytes;
31 struct list_head list;
32 };
33
34 static int link_free_space(struct btrfs_free_space_ctl *ctl,
35 struct btrfs_free_space *info);
36 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
37 struct btrfs_free_space *info);
38 static int btrfs_wait_cache_io_root(struct btrfs_root *root,
39 struct btrfs_trans_handle *trans,
40 struct btrfs_io_ctl *io_ctl,
41 struct btrfs_path *path);
42
__lookup_free_space_inode(struct btrfs_root * root,struct btrfs_path * path,u64 offset)43 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
44 struct btrfs_path *path,
45 u64 offset)
46 {
47 struct btrfs_fs_info *fs_info = root->fs_info;
48 struct btrfs_key key;
49 struct btrfs_key location;
50 struct btrfs_disk_key disk_key;
51 struct btrfs_free_space_header *header;
52 struct extent_buffer *leaf;
53 struct inode *inode = NULL;
54 unsigned nofs_flag;
55 int ret;
56
57 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
58 key.offset = offset;
59 key.type = 0;
60
61 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
62 if (ret < 0)
63 return ERR_PTR(ret);
64 if (ret > 0) {
65 btrfs_release_path(path);
66 return ERR_PTR(-ENOENT);
67 }
68
69 leaf = path->nodes[0];
70 header = btrfs_item_ptr(leaf, path->slots[0],
71 struct btrfs_free_space_header);
72 btrfs_free_space_key(leaf, header, &disk_key);
73 btrfs_disk_key_to_cpu(&location, &disk_key);
74 btrfs_release_path(path);
75
76 /*
77 * We are often under a trans handle at this point, so we need to make
78 * sure NOFS is set to keep us from deadlocking.
79 */
80 nofs_flag = memalloc_nofs_save();
81 inode = btrfs_iget_path(fs_info->sb, &location, root, NULL, path);
82 btrfs_release_path(path);
83 memalloc_nofs_restore(nofs_flag);
84 if (IS_ERR(inode))
85 return inode;
86
87 mapping_set_gfp_mask(inode->i_mapping,
88 mapping_gfp_constraint(inode->i_mapping,
89 ~(__GFP_FS | __GFP_HIGHMEM)));
90
91 return inode;
92 }
93
lookup_free_space_inode(struct btrfs_block_group_cache * block_group,struct btrfs_path * path)94 struct inode *lookup_free_space_inode(
95 struct btrfs_block_group_cache *block_group,
96 struct btrfs_path *path)
97 {
98 struct btrfs_fs_info *fs_info = block_group->fs_info;
99 struct inode *inode = NULL;
100 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
101
102 spin_lock(&block_group->lock);
103 if (block_group->inode)
104 inode = igrab(block_group->inode);
105 spin_unlock(&block_group->lock);
106 if (inode)
107 return inode;
108
109 inode = __lookup_free_space_inode(fs_info->tree_root, path,
110 block_group->key.objectid);
111 if (IS_ERR(inode))
112 return inode;
113
114 spin_lock(&block_group->lock);
115 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
116 btrfs_info(fs_info, "Old style space inode found, converting.");
117 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
118 BTRFS_INODE_NODATACOW;
119 block_group->disk_cache_state = BTRFS_DC_CLEAR;
120 }
121
122 if (!block_group->iref) {
123 block_group->inode = igrab(inode);
124 block_group->iref = 1;
125 }
126 spin_unlock(&block_group->lock);
127
128 return inode;
129 }
130
__create_free_space_inode(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 ino,u64 offset)131 static int __create_free_space_inode(struct btrfs_root *root,
132 struct btrfs_trans_handle *trans,
133 struct btrfs_path *path,
134 u64 ino, u64 offset)
135 {
136 struct btrfs_key key;
137 struct btrfs_disk_key disk_key;
138 struct btrfs_free_space_header *header;
139 struct btrfs_inode_item *inode_item;
140 struct extent_buffer *leaf;
141 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
142 int ret;
143
144 ret = btrfs_insert_empty_inode(trans, root, path, ino);
145 if (ret)
146 return ret;
147
148 /* We inline crc's for the free disk space cache */
149 if (ino != BTRFS_FREE_INO_OBJECTID)
150 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
151
152 leaf = path->nodes[0];
153 inode_item = btrfs_item_ptr(leaf, path->slots[0],
154 struct btrfs_inode_item);
155 btrfs_item_key(leaf, &disk_key, path->slots[0]);
156 memzero_extent_buffer(leaf, (unsigned long)inode_item,
157 sizeof(*inode_item));
158 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
159 btrfs_set_inode_size(leaf, inode_item, 0);
160 btrfs_set_inode_nbytes(leaf, inode_item, 0);
161 btrfs_set_inode_uid(leaf, inode_item, 0);
162 btrfs_set_inode_gid(leaf, inode_item, 0);
163 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
164 btrfs_set_inode_flags(leaf, inode_item, flags);
165 btrfs_set_inode_nlink(leaf, inode_item, 1);
166 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
167 btrfs_set_inode_block_group(leaf, inode_item, offset);
168 btrfs_mark_buffer_dirty(leaf);
169 btrfs_release_path(path);
170
171 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
172 key.offset = offset;
173 key.type = 0;
174 ret = btrfs_insert_empty_item(trans, root, path, &key,
175 sizeof(struct btrfs_free_space_header));
176 if (ret < 0) {
177 btrfs_release_path(path);
178 return ret;
179 }
180
181 leaf = path->nodes[0];
182 header = btrfs_item_ptr(leaf, path->slots[0],
183 struct btrfs_free_space_header);
184 memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
185 btrfs_set_free_space_key(leaf, header, &disk_key);
186 btrfs_mark_buffer_dirty(leaf);
187 btrfs_release_path(path);
188
189 return 0;
190 }
191
create_free_space_inode(struct btrfs_trans_handle * trans,struct btrfs_block_group_cache * block_group,struct btrfs_path * path)192 int create_free_space_inode(struct btrfs_trans_handle *trans,
193 struct btrfs_block_group_cache *block_group,
194 struct btrfs_path *path)
195 {
196 int ret;
197 u64 ino;
198
199 ret = btrfs_find_free_objectid(trans->fs_info->tree_root, &ino);
200 if (ret < 0)
201 return ret;
202
203 return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
204 ino, block_group->key.objectid);
205 }
206
btrfs_check_trunc_cache_free_space(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * rsv)207 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
208 struct btrfs_block_rsv *rsv)
209 {
210 u64 needed_bytes;
211 int ret;
212
213 /* 1 for slack space, 1 for updating the inode */
214 needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
215 btrfs_calc_metadata_size(fs_info, 1);
216
217 spin_lock(&rsv->lock);
218 if (rsv->reserved < needed_bytes)
219 ret = -ENOSPC;
220 else
221 ret = 0;
222 spin_unlock(&rsv->lock);
223 return ret;
224 }
225
btrfs_truncate_free_space_cache(struct btrfs_trans_handle * trans,struct btrfs_block_group_cache * block_group,struct inode * inode)226 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
227 struct btrfs_block_group_cache *block_group,
228 struct inode *inode)
229 {
230 struct btrfs_root *root = BTRFS_I(inode)->root;
231 int ret = 0;
232 bool locked = false;
233
234 if (block_group) {
235 struct btrfs_path *path = btrfs_alloc_path();
236
237 if (!path) {
238 ret = -ENOMEM;
239 goto fail;
240 }
241 locked = true;
242 mutex_lock(&trans->transaction->cache_write_mutex);
243 if (!list_empty(&block_group->io_list)) {
244 list_del_init(&block_group->io_list);
245
246 btrfs_wait_cache_io(trans, block_group, path);
247 btrfs_put_block_group(block_group);
248 }
249
250 /*
251 * now that we've truncated the cache away, its no longer
252 * setup or written
253 */
254 spin_lock(&block_group->lock);
255 block_group->disk_cache_state = BTRFS_DC_CLEAR;
256 spin_unlock(&block_group->lock);
257 btrfs_free_path(path);
258 }
259
260 btrfs_i_size_write(BTRFS_I(inode), 0);
261 truncate_pagecache(inode, 0);
262
263 /*
264 * We skip the throttling logic for free space cache inodes, so we don't
265 * need to check for -EAGAIN.
266 */
267 ret = btrfs_truncate_inode_items(trans, root, inode,
268 0, BTRFS_EXTENT_DATA_KEY);
269 if (ret)
270 goto fail;
271
272 ret = btrfs_update_inode(trans, root, inode);
273
274 fail:
275 if (locked)
276 mutex_unlock(&trans->transaction->cache_write_mutex);
277 if (ret)
278 btrfs_abort_transaction(trans, ret);
279
280 return ret;
281 }
282
readahead_cache(struct inode * inode)283 static void readahead_cache(struct inode *inode)
284 {
285 struct file_ra_state *ra;
286 unsigned long last_index;
287
288 ra = kzalloc(sizeof(*ra), GFP_NOFS);
289 if (!ra)
290 return;
291
292 file_ra_state_init(ra, inode->i_mapping);
293 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
294
295 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
296
297 kfree(ra);
298 }
299
io_ctl_init(struct btrfs_io_ctl * io_ctl,struct inode * inode,int write)300 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
301 int write)
302 {
303 int num_pages;
304 int check_crcs = 0;
305
306 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
307
308 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
309 check_crcs = 1;
310
311 /* Make sure we can fit our crcs and generation into the first page */
312 if (write && check_crcs &&
313 (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
314 return -ENOSPC;
315
316 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
317
318 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
319 if (!io_ctl->pages)
320 return -ENOMEM;
321
322 io_ctl->num_pages = num_pages;
323 io_ctl->fs_info = btrfs_sb(inode->i_sb);
324 io_ctl->check_crcs = check_crcs;
325 io_ctl->inode = inode;
326
327 return 0;
328 }
329 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
330
io_ctl_free(struct btrfs_io_ctl * io_ctl)331 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
332 {
333 kfree(io_ctl->pages);
334 io_ctl->pages = NULL;
335 }
336
io_ctl_unmap_page(struct btrfs_io_ctl * io_ctl)337 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
338 {
339 if (io_ctl->cur) {
340 io_ctl->cur = NULL;
341 io_ctl->orig = NULL;
342 }
343 }
344
io_ctl_map_page(struct btrfs_io_ctl * io_ctl,int clear)345 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
346 {
347 ASSERT(io_ctl->index < io_ctl->num_pages);
348 io_ctl->page = io_ctl->pages[io_ctl->index++];
349 io_ctl->cur = page_address(io_ctl->page);
350 io_ctl->orig = io_ctl->cur;
351 io_ctl->size = PAGE_SIZE;
352 if (clear)
353 clear_page(io_ctl->cur);
354 }
355
io_ctl_drop_pages(struct btrfs_io_ctl * io_ctl)356 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
357 {
358 int i;
359
360 io_ctl_unmap_page(io_ctl);
361
362 for (i = 0; i < io_ctl->num_pages; i++) {
363 if (io_ctl->pages[i]) {
364 ClearPageChecked(io_ctl->pages[i]);
365 unlock_page(io_ctl->pages[i]);
366 put_page(io_ctl->pages[i]);
367 }
368 }
369 }
370
io_ctl_prepare_pages(struct btrfs_io_ctl * io_ctl,struct inode * inode,int uptodate)371 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
372 int uptodate)
373 {
374 struct page *page;
375 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
376 int i;
377
378 for (i = 0; i < io_ctl->num_pages; i++) {
379 page = find_or_create_page(inode->i_mapping, i, mask);
380 if (!page) {
381 io_ctl_drop_pages(io_ctl);
382 return -ENOMEM;
383 }
384 io_ctl->pages[i] = page;
385 if (uptodate && !PageUptodate(page)) {
386 btrfs_readpage(NULL, page);
387 lock_page(page);
388 if (page->mapping != inode->i_mapping) {
389 btrfs_err(BTRFS_I(inode)->root->fs_info,
390 "free space cache page truncated");
391 io_ctl_drop_pages(io_ctl);
392 return -EIO;
393 }
394 if (!PageUptodate(page)) {
395 btrfs_err(BTRFS_I(inode)->root->fs_info,
396 "error reading free space cache");
397 io_ctl_drop_pages(io_ctl);
398 return -EIO;
399 }
400 }
401 }
402
403 for (i = 0; i < io_ctl->num_pages; i++) {
404 clear_page_dirty_for_io(io_ctl->pages[i]);
405 set_page_extent_mapped(io_ctl->pages[i]);
406 }
407
408 return 0;
409 }
410
io_ctl_set_generation(struct btrfs_io_ctl * io_ctl,u64 generation)411 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
412 {
413 __le64 *val;
414
415 io_ctl_map_page(io_ctl, 1);
416
417 /*
418 * Skip the csum areas. If we don't check crcs then we just have a
419 * 64bit chunk at the front of the first page.
420 */
421 if (io_ctl->check_crcs) {
422 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
423 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
424 } else {
425 io_ctl->cur += sizeof(u64);
426 io_ctl->size -= sizeof(u64) * 2;
427 }
428
429 val = io_ctl->cur;
430 *val = cpu_to_le64(generation);
431 io_ctl->cur += sizeof(u64);
432 }
433
io_ctl_check_generation(struct btrfs_io_ctl * io_ctl,u64 generation)434 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
435 {
436 __le64 *gen;
437
438 /*
439 * Skip the crc area. If we don't check crcs then we just have a 64bit
440 * chunk at the front of the first page.
441 */
442 if (io_ctl->check_crcs) {
443 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
444 io_ctl->size -= sizeof(u64) +
445 (sizeof(u32) * io_ctl->num_pages);
446 } else {
447 io_ctl->cur += sizeof(u64);
448 io_ctl->size -= sizeof(u64) * 2;
449 }
450
451 gen = io_ctl->cur;
452 if (le64_to_cpu(*gen) != generation) {
453 btrfs_err_rl(io_ctl->fs_info,
454 "space cache generation (%llu) does not match inode (%llu)",
455 *gen, generation);
456 io_ctl_unmap_page(io_ctl);
457 return -EIO;
458 }
459 io_ctl->cur += sizeof(u64);
460 return 0;
461 }
462
io_ctl_set_crc(struct btrfs_io_ctl * io_ctl,int index)463 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
464 {
465 u32 *tmp;
466 u32 crc = ~(u32)0;
467 unsigned offset = 0;
468
469 if (!io_ctl->check_crcs) {
470 io_ctl_unmap_page(io_ctl);
471 return;
472 }
473
474 if (index == 0)
475 offset = sizeof(u32) * io_ctl->num_pages;
476
477 crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
478 btrfs_crc32c_final(crc, (u8 *)&crc);
479 io_ctl_unmap_page(io_ctl);
480 tmp = page_address(io_ctl->pages[0]);
481 tmp += index;
482 *tmp = crc;
483 }
484
io_ctl_check_crc(struct btrfs_io_ctl * io_ctl,int index)485 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
486 {
487 u32 *tmp, val;
488 u32 crc = ~(u32)0;
489 unsigned offset = 0;
490
491 if (!io_ctl->check_crcs) {
492 io_ctl_map_page(io_ctl, 0);
493 return 0;
494 }
495
496 if (index == 0)
497 offset = sizeof(u32) * io_ctl->num_pages;
498
499 tmp = page_address(io_ctl->pages[0]);
500 tmp += index;
501 val = *tmp;
502
503 io_ctl_map_page(io_ctl, 0);
504 crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
505 btrfs_crc32c_final(crc, (u8 *)&crc);
506 if (val != crc) {
507 btrfs_err_rl(io_ctl->fs_info,
508 "csum mismatch on free space cache");
509 io_ctl_unmap_page(io_ctl);
510 return -EIO;
511 }
512
513 return 0;
514 }
515
io_ctl_add_entry(struct btrfs_io_ctl * io_ctl,u64 offset,u64 bytes,void * bitmap)516 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
517 void *bitmap)
518 {
519 struct btrfs_free_space_entry *entry;
520
521 if (!io_ctl->cur)
522 return -ENOSPC;
523
524 entry = io_ctl->cur;
525 entry->offset = cpu_to_le64(offset);
526 entry->bytes = cpu_to_le64(bytes);
527 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
528 BTRFS_FREE_SPACE_EXTENT;
529 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
530 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
531
532 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
533 return 0;
534
535 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
536
537 /* No more pages to map */
538 if (io_ctl->index >= io_ctl->num_pages)
539 return 0;
540
541 /* map the next page */
542 io_ctl_map_page(io_ctl, 1);
543 return 0;
544 }
545
io_ctl_add_bitmap(struct btrfs_io_ctl * io_ctl,void * bitmap)546 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
547 {
548 if (!io_ctl->cur)
549 return -ENOSPC;
550
551 /*
552 * If we aren't at the start of the current page, unmap this one and
553 * map the next one if there is any left.
554 */
555 if (io_ctl->cur != io_ctl->orig) {
556 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
557 if (io_ctl->index >= io_ctl->num_pages)
558 return -ENOSPC;
559 io_ctl_map_page(io_ctl, 0);
560 }
561
562 copy_page(io_ctl->cur, bitmap);
563 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
564 if (io_ctl->index < io_ctl->num_pages)
565 io_ctl_map_page(io_ctl, 0);
566 return 0;
567 }
568
io_ctl_zero_remaining_pages(struct btrfs_io_ctl * io_ctl)569 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
570 {
571 /*
572 * If we're not on the boundary we know we've modified the page and we
573 * need to crc the page.
574 */
575 if (io_ctl->cur != io_ctl->orig)
576 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
577 else
578 io_ctl_unmap_page(io_ctl);
579
580 while (io_ctl->index < io_ctl->num_pages) {
581 io_ctl_map_page(io_ctl, 1);
582 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
583 }
584 }
585
io_ctl_read_entry(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space * entry,u8 * type)586 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
587 struct btrfs_free_space *entry, u8 *type)
588 {
589 struct btrfs_free_space_entry *e;
590 int ret;
591
592 if (!io_ctl->cur) {
593 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
594 if (ret)
595 return ret;
596 }
597
598 e = io_ctl->cur;
599 entry->offset = le64_to_cpu(e->offset);
600 entry->bytes = le64_to_cpu(e->bytes);
601 *type = e->type;
602 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
603 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
604
605 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
606 return 0;
607
608 io_ctl_unmap_page(io_ctl);
609
610 return 0;
611 }
612
io_ctl_read_bitmap(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space * entry)613 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
614 struct btrfs_free_space *entry)
615 {
616 int ret;
617
618 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
619 if (ret)
620 return ret;
621
622 copy_page(entry->bitmap, io_ctl->cur);
623 io_ctl_unmap_page(io_ctl);
624
625 return 0;
626 }
627
628 /*
629 * Since we attach pinned extents after the fact we can have contiguous sections
630 * of free space that are split up in entries. This poses a problem with the
631 * tree logging stuff since it could have allocated across what appears to be 2
632 * entries since we would have merged the entries when adding the pinned extents
633 * back to the free space cache. So run through the space cache that we just
634 * loaded and merge contiguous entries. This will make the log replay stuff not
635 * blow up and it will make for nicer allocator behavior.
636 */
merge_space_tree(struct btrfs_free_space_ctl * ctl)637 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
638 {
639 struct btrfs_free_space *e, *prev = NULL;
640 struct rb_node *n;
641
642 again:
643 spin_lock(&ctl->tree_lock);
644 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
645 e = rb_entry(n, struct btrfs_free_space, offset_index);
646 if (!prev)
647 goto next;
648 if (e->bitmap || prev->bitmap)
649 goto next;
650 if (prev->offset + prev->bytes == e->offset) {
651 unlink_free_space(ctl, prev);
652 unlink_free_space(ctl, e);
653 prev->bytes += e->bytes;
654 kmem_cache_free(btrfs_free_space_cachep, e);
655 link_free_space(ctl, prev);
656 prev = NULL;
657 spin_unlock(&ctl->tree_lock);
658 goto again;
659 }
660 next:
661 prev = e;
662 }
663 spin_unlock(&ctl->tree_lock);
664 }
665
__load_free_space_cache(struct btrfs_root * root,struct inode * inode,struct btrfs_free_space_ctl * ctl,struct btrfs_path * path,u64 offset)666 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
667 struct btrfs_free_space_ctl *ctl,
668 struct btrfs_path *path, u64 offset)
669 {
670 struct btrfs_fs_info *fs_info = root->fs_info;
671 struct btrfs_free_space_header *header;
672 struct extent_buffer *leaf;
673 struct btrfs_io_ctl io_ctl;
674 struct btrfs_key key;
675 struct btrfs_free_space *e, *n;
676 LIST_HEAD(bitmaps);
677 u64 num_entries;
678 u64 num_bitmaps;
679 u64 generation;
680 u8 type;
681 int ret = 0;
682
683 /* Nothing in the space cache, goodbye */
684 if (!i_size_read(inode))
685 return 0;
686
687 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
688 key.offset = offset;
689 key.type = 0;
690
691 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
692 if (ret < 0)
693 return 0;
694 else if (ret > 0) {
695 btrfs_release_path(path);
696 return 0;
697 }
698
699 ret = -1;
700
701 leaf = path->nodes[0];
702 header = btrfs_item_ptr(leaf, path->slots[0],
703 struct btrfs_free_space_header);
704 num_entries = btrfs_free_space_entries(leaf, header);
705 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
706 generation = btrfs_free_space_generation(leaf, header);
707 btrfs_release_path(path);
708
709 if (!BTRFS_I(inode)->generation) {
710 btrfs_info(fs_info,
711 "the free space cache file (%llu) is invalid, skip it",
712 offset);
713 return 0;
714 }
715
716 if (BTRFS_I(inode)->generation != generation) {
717 btrfs_err(fs_info,
718 "free space inode generation (%llu) did not match free space cache generation (%llu)",
719 BTRFS_I(inode)->generation, generation);
720 return 0;
721 }
722
723 if (!num_entries)
724 return 0;
725
726 ret = io_ctl_init(&io_ctl, inode, 0);
727 if (ret)
728 return ret;
729
730 readahead_cache(inode);
731
732 ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
733 if (ret)
734 goto out;
735
736 ret = io_ctl_check_crc(&io_ctl, 0);
737 if (ret)
738 goto free_cache;
739
740 ret = io_ctl_check_generation(&io_ctl, generation);
741 if (ret)
742 goto free_cache;
743
744 while (num_entries) {
745 e = kmem_cache_zalloc(btrfs_free_space_cachep,
746 GFP_NOFS);
747 if (!e)
748 goto free_cache;
749
750 ret = io_ctl_read_entry(&io_ctl, e, &type);
751 if (ret) {
752 kmem_cache_free(btrfs_free_space_cachep, e);
753 goto free_cache;
754 }
755
756 if (!e->bytes) {
757 kmem_cache_free(btrfs_free_space_cachep, e);
758 goto free_cache;
759 }
760
761 if (type == BTRFS_FREE_SPACE_EXTENT) {
762 spin_lock(&ctl->tree_lock);
763 ret = link_free_space(ctl, e);
764 spin_unlock(&ctl->tree_lock);
765 if (ret) {
766 btrfs_err(fs_info,
767 "Duplicate entries in free space cache, dumping");
768 kmem_cache_free(btrfs_free_space_cachep, e);
769 goto free_cache;
770 }
771 } else {
772 ASSERT(num_bitmaps);
773 num_bitmaps--;
774 e->bitmap = kmem_cache_zalloc(
775 btrfs_free_space_bitmap_cachep, GFP_NOFS);
776 if (!e->bitmap) {
777 kmem_cache_free(
778 btrfs_free_space_cachep, e);
779 goto free_cache;
780 }
781 spin_lock(&ctl->tree_lock);
782 ret = link_free_space(ctl, e);
783 ctl->total_bitmaps++;
784 ctl->op->recalc_thresholds(ctl);
785 spin_unlock(&ctl->tree_lock);
786 if (ret) {
787 btrfs_err(fs_info,
788 "Duplicate entries in free space cache, dumping");
789 kmem_cache_free(btrfs_free_space_cachep, e);
790 goto free_cache;
791 }
792 list_add_tail(&e->list, &bitmaps);
793 }
794
795 num_entries--;
796 }
797
798 io_ctl_unmap_page(&io_ctl);
799
800 /*
801 * We add the bitmaps at the end of the entries in order that
802 * the bitmap entries are added to the cache.
803 */
804 list_for_each_entry_safe(e, n, &bitmaps, list) {
805 list_del_init(&e->list);
806 ret = io_ctl_read_bitmap(&io_ctl, e);
807 if (ret)
808 goto free_cache;
809 }
810
811 io_ctl_drop_pages(&io_ctl);
812 merge_space_tree(ctl);
813 ret = 1;
814 out:
815 io_ctl_free(&io_ctl);
816 return ret;
817 free_cache:
818 io_ctl_drop_pages(&io_ctl);
819 __btrfs_remove_free_space_cache(ctl);
820 goto out;
821 }
822
load_free_space_cache(struct btrfs_block_group_cache * block_group)823 int load_free_space_cache(struct btrfs_block_group_cache *block_group)
824 {
825 struct btrfs_fs_info *fs_info = block_group->fs_info;
826 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
827 struct inode *inode;
828 struct btrfs_path *path;
829 int ret = 0;
830 bool matched;
831 u64 used = btrfs_block_group_used(&block_group->item);
832
833 /*
834 * If this block group has been marked to be cleared for one reason or
835 * another then we can't trust the on disk cache, so just return.
836 */
837 spin_lock(&block_group->lock);
838 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
839 spin_unlock(&block_group->lock);
840 return 0;
841 }
842 spin_unlock(&block_group->lock);
843
844 path = btrfs_alloc_path();
845 if (!path)
846 return 0;
847 path->search_commit_root = 1;
848 path->skip_locking = 1;
849
850 /*
851 * We must pass a path with search_commit_root set to btrfs_iget in
852 * order to avoid a deadlock when allocating extents for the tree root.
853 *
854 * When we are COWing an extent buffer from the tree root, when looking
855 * for a free extent, at extent-tree.c:find_free_extent(), we can find
856 * block group without its free space cache loaded. When we find one
857 * we must load its space cache which requires reading its free space
858 * cache's inode item from the root tree. If this inode item is located
859 * in the same leaf that we started COWing before, then we end up in
860 * deadlock on the extent buffer (trying to read lock it when we
861 * previously write locked it).
862 *
863 * It's safe to read the inode item using the commit root because
864 * block groups, once loaded, stay in memory forever (until they are
865 * removed) as well as their space caches once loaded. New block groups
866 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
867 * we will never try to read their inode item while the fs is mounted.
868 */
869 inode = lookup_free_space_inode(block_group, path);
870 if (IS_ERR(inode)) {
871 btrfs_free_path(path);
872 return 0;
873 }
874
875 /* We may have converted the inode and made the cache invalid. */
876 spin_lock(&block_group->lock);
877 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
878 spin_unlock(&block_group->lock);
879 btrfs_free_path(path);
880 goto out;
881 }
882 spin_unlock(&block_group->lock);
883
884 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
885 path, block_group->key.objectid);
886 btrfs_free_path(path);
887 if (ret <= 0)
888 goto out;
889
890 spin_lock(&ctl->tree_lock);
891 matched = (ctl->free_space == (block_group->key.offset - used -
892 block_group->bytes_super));
893 spin_unlock(&ctl->tree_lock);
894
895 if (!matched) {
896 __btrfs_remove_free_space_cache(ctl);
897 btrfs_warn(fs_info,
898 "block group %llu has wrong amount of free space",
899 block_group->key.objectid);
900 ret = -1;
901 }
902 out:
903 if (ret < 0) {
904 /* This cache is bogus, make sure it gets cleared */
905 spin_lock(&block_group->lock);
906 block_group->disk_cache_state = BTRFS_DC_CLEAR;
907 spin_unlock(&block_group->lock);
908 ret = 0;
909
910 btrfs_warn(fs_info,
911 "failed to load free space cache for block group %llu, rebuilding it now",
912 block_group->key.objectid);
913 }
914
915 iput(inode);
916 return ret;
917 }
918
919 static noinline_for_stack
write_cache_extent_entries(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space_ctl * ctl,struct btrfs_block_group_cache * block_group,int * entries,int * bitmaps,struct list_head * bitmap_list)920 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
921 struct btrfs_free_space_ctl *ctl,
922 struct btrfs_block_group_cache *block_group,
923 int *entries, int *bitmaps,
924 struct list_head *bitmap_list)
925 {
926 int ret;
927 struct btrfs_free_cluster *cluster = NULL;
928 struct btrfs_free_cluster *cluster_locked = NULL;
929 struct rb_node *node = rb_first(&ctl->free_space_offset);
930 struct btrfs_trim_range *trim_entry;
931
932 /* Get the cluster for this block_group if it exists */
933 if (block_group && !list_empty(&block_group->cluster_list)) {
934 cluster = list_entry(block_group->cluster_list.next,
935 struct btrfs_free_cluster,
936 block_group_list);
937 }
938
939 if (!node && cluster) {
940 cluster_locked = cluster;
941 spin_lock(&cluster_locked->lock);
942 node = rb_first(&cluster->root);
943 cluster = NULL;
944 }
945
946 /* Write out the extent entries */
947 while (node) {
948 struct btrfs_free_space *e;
949
950 e = rb_entry(node, struct btrfs_free_space, offset_index);
951 *entries += 1;
952
953 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
954 e->bitmap);
955 if (ret)
956 goto fail;
957
958 if (e->bitmap) {
959 list_add_tail(&e->list, bitmap_list);
960 *bitmaps += 1;
961 }
962 node = rb_next(node);
963 if (!node && cluster) {
964 node = rb_first(&cluster->root);
965 cluster_locked = cluster;
966 spin_lock(&cluster_locked->lock);
967 cluster = NULL;
968 }
969 }
970 if (cluster_locked) {
971 spin_unlock(&cluster_locked->lock);
972 cluster_locked = NULL;
973 }
974
975 /*
976 * Make sure we don't miss any range that was removed from our rbtree
977 * because trimming is running. Otherwise after a umount+mount (or crash
978 * after committing the transaction) we would leak free space and get
979 * an inconsistent free space cache report from fsck.
980 */
981 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
982 ret = io_ctl_add_entry(io_ctl, trim_entry->start,
983 trim_entry->bytes, NULL);
984 if (ret)
985 goto fail;
986 *entries += 1;
987 }
988
989 return 0;
990 fail:
991 if (cluster_locked)
992 spin_unlock(&cluster_locked->lock);
993 return -ENOSPC;
994 }
995
996 static noinline_for_stack int
update_cache_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,u64 offset,int entries,int bitmaps)997 update_cache_item(struct btrfs_trans_handle *trans,
998 struct btrfs_root *root,
999 struct inode *inode,
1000 struct btrfs_path *path, u64 offset,
1001 int entries, int bitmaps)
1002 {
1003 struct btrfs_key key;
1004 struct btrfs_free_space_header *header;
1005 struct extent_buffer *leaf;
1006 int ret;
1007
1008 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1009 key.offset = offset;
1010 key.type = 0;
1011
1012 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1013 if (ret < 0) {
1014 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1015 EXTENT_DELALLOC, 0, 0, NULL);
1016 goto fail;
1017 }
1018 leaf = path->nodes[0];
1019 if (ret > 0) {
1020 struct btrfs_key found_key;
1021 ASSERT(path->slots[0]);
1022 path->slots[0]--;
1023 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1024 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1025 found_key.offset != offset) {
1026 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1027 inode->i_size - 1, EXTENT_DELALLOC, 0,
1028 0, NULL);
1029 btrfs_release_path(path);
1030 goto fail;
1031 }
1032 }
1033
1034 BTRFS_I(inode)->generation = trans->transid;
1035 header = btrfs_item_ptr(leaf, path->slots[0],
1036 struct btrfs_free_space_header);
1037 btrfs_set_free_space_entries(leaf, header, entries);
1038 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1039 btrfs_set_free_space_generation(leaf, header, trans->transid);
1040 btrfs_mark_buffer_dirty(leaf);
1041 btrfs_release_path(path);
1042
1043 return 0;
1044
1045 fail:
1046 return -1;
1047 }
1048
write_pinned_extent_entries(struct btrfs_block_group_cache * block_group,struct btrfs_io_ctl * io_ctl,int * entries)1049 static noinline_for_stack int write_pinned_extent_entries(
1050 struct btrfs_block_group_cache *block_group,
1051 struct btrfs_io_ctl *io_ctl,
1052 int *entries)
1053 {
1054 u64 start, extent_start, extent_end, len;
1055 struct extent_io_tree *unpin = NULL;
1056 int ret;
1057
1058 if (!block_group)
1059 return 0;
1060
1061 /*
1062 * We want to add any pinned extents to our free space cache
1063 * so we don't leak the space
1064 *
1065 * We shouldn't have switched the pinned extents yet so this is the
1066 * right one
1067 */
1068 unpin = block_group->fs_info->pinned_extents;
1069
1070 start = block_group->key.objectid;
1071
1072 while (start < block_group->key.objectid + block_group->key.offset) {
1073 ret = find_first_extent_bit(unpin, start,
1074 &extent_start, &extent_end,
1075 EXTENT_DIRTY, NULL);
1076 if (ret)
1077 return 0;
1078
1079 /* This pinned extent is out of our range */
1080 if (extent_start >= block_group->key.objectid +
1081 block_group->key.offset)
1082 return 0;
1083
1084 extent_start = max(extent_start, start);
1085 extent_end = min(block_group->key.objectid +
1086 block_group->key.offset, extent_end + 1);
1087 len = extent_end - extent_start;
1088
1089 *entries += 1;
1090 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1091 if (ret)
1092 return -ENOSPC;
1093
1094 start = extent_end;
1095 }
1096
1097 return 0;
1098 }
1099
1100 static noinline_for_stack int
write_bitmap_entries(struct btrfs_io_ctl * io_ctl,struct list_head * bitmap_list)1101 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1102 {
1103 struct btrfs_free_space *entry, *next;
1104 int ret;
1105
1106 /* Write out the bitmaps */
1107 list_for_each_entry_safe(entry, next, bitmap_list, list) {
1108 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1109 if (ret)
1110 return -ENOSPC;
1111 list_del_init(&entry->list);
1112 }
1113
1114 return 0;
1115 }
1116
flush_dirty_cache(struct inode * inode)1117 static int flush_dirty_cache(struct inode *inode)
1118 {
1119 int ret;
1120
1121 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1122 if (ret)
1123 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1124 EXTENT_DELALLOC, 0, 0, NULL);
1125
1126 return ret;
1127 }
1128
1129 static void noinline_for_stack
cleanup_bitmap_list(struct list_head * bitmap_list)1130 cleanup_bitmap_list(struct list_head *bitmap_list)
1131 {
1132 struct btrfs_free_space *entry, *next;
1133
1134 list_for_each_entry_safe(entry, next, bitmap_list, list)
1135 list_del_init(&entry->list);
1136 }
1137
1138 static void noinline_for_stack
cleanup_write_cache_enospc(struct inode * inode,struct btrfs_io_ctl * io_ctl,struct extent_state ** cached_state)1139 cleanup_write_cache_enospc(struct inode *inode,
1140 struct btrfs_io_ctl *io_ctl,
1141 struct extent_state **cached_state)
1142 {
1143 io_ctl_drop_pages(io_ctl);
1144 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1145 i_size_read(inode) - 1, cached_state);
1146 }
1147
__btrfs_wait_cache_io(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_block_group_cache * block_group,struct btrfs_io_ctl * io_ctl,struct btrfs_path * path,u64 offset)1148 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1149 struct btrfs_trans_handle *trans,
1150 struct btrfs_block_group_cache *block_group,
1151 struct btrfs_io_ctl *io_ctl,
1152 struct btrfs_path *path, u64 offset)
1153 {
1154 int ret;
1155 struct inode *inode = io_ctl->inode;
1156
1157 if (!inode)
1158 return 0;
1159
1160 /* Flush the dirty pages in the cache file. */
1161 ret = flush_dirty_cache(inode);
1162 if (ret)
1163 goto out;
1164
1165 /* Update the cache item to tell everyone this cache file is valid. */
1166 ret = update_cache_item(trans, root, inode, path, offset,
1167 io_ctl->entries, io_ctl->bitmaps);
1168 out:
1169 io_ctl_free(io_ctl);
1170 if (ret) {
1171 invalidate_inode_pages2(inode->i_mapping);
1172 BTRFS_I(inode)->generation = 0;
1173 if (block_group) {
1174 #ifdef DEBUG
1175 btrfs_err(root->fs_info,
1176 "failed to write free space cache for block group %llu",
1177 block_group->key.objectid);
1178 #endif
1179 }
1180 }
1181 btrfs_update_inode(trans, root, inode);
1182
1183 if (block_group) {
1184 /* the dirty list is protected by the dirty_bgs_lock */
1185 spin_lock(&trans->transaction->dirty_bgs_lock);
1186
1187 /* the disk_cache_state is protected by the block group lock */
1188 spin_lock(&block_group->lock);
1189
1190 /*
1191 * only mark this as written if we didn't get put back on
1192 * the dirty list while waiting for IO. Otherwise our
1193 * cache state won't be right, and we won't get written again
1194 */
1195 if (!ret && list_empty(&block_group->dirty_list))
1196 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1197 else if (ret)
1198 block_group->disk_cache_state = BTRFS_DC_ERROR;
1199
1200 spin_unlock(&block_group->lock);
1201 spin_unlock(&trans->transaction->dirty_bgs_lock);
1202 io_ctl->inode = NULL;
1203 iput(inode);
1204 }
1205
1206 return ret;
1207
1208 }
1209
btrfs_wait_cache_io_root(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_io_ctl * io_ctl,struct btrfs_path * path)1210 static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1211 struct btrfs_trans_handle *trans,
1212 struct btrfs_io_ctl *io_ctl,
1213 struct btrfs_path *path)
1214 {
1215 return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1216 }
1217
btrfs_wait_cache_io(struct btrfs_trans_handle * trans,struct btrfs_block_group_cache * block_group,struct btrfs_path * path)1218 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1219 struct btrfs_block_group_cache *block_group,
1220 struct btrfs_path *path)
1221 {
1222 return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1223 block_group, &block_group->io_ctl,
1224 path, block_group->key.objectid);
1225 }
1226
1227 /**
1228 * __btrfs_write_out_cache - write out cached info to an inode
1229 * @root - the root the inode belongs to
1230 * @ctl - the free space cache we are going to write out
1231 * @block_group - the block_group for this cache if it belongs to a block_group
1232 * @trans - the trans handle
1233 *
1234 * This function writes out a free space cache struct to disk for quick recovery
1235 * on mount. This will return 0 if it was successful in writing the cache out,
1236 * or an errno if it was not.
1237 */
__btrfs_write_out_cache(struct btrfs_root * root,struct inode * inode,struct btrfs_free_space_ctl * ctl,struct btrfs_block_group_cache * block_group,struct btrfs_io_ctl * io_ctl,struct btrfs_trans_handle * trans)1238 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1239 struct btrfs_free_space_ctl *ctl,
1240 struct btrfs_block_group_cache *block_group,
1241 struct btrfs_io_ctl *io_ctl,
1242 struct btrfs_trans_handle *trans)
1243 {
1244 struct extent_state *cached_state = NULL;
1245 LIST_HEAD(bitmap_list);
1246 int entries = 0;
1247 int bitmaps = 0;
1248 int ret;
1249 int must_iput = 0;
1250
1251 if (!i_size_read(inode))
1252 return -EIO;
1253
1254 WARN_ON(io_ctl->pages);
1255 ret = io_ctl_init(io_ctl, inode, 1);
1256 if (ret)
1257 return ret;
1258
1259 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1260 down_write(&block_group->data_rwsem);
1261 spin_lock(&block_group->lock);
1262 if (block_group->delalloc_bytes) {
1263 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1264 spin_unlock(&block_group->lock);
1265 up_write(&block_group->data_rwsem);
1266 BTRFS_I(inode)->generation = 0;
1267 ret = 0;
1268 must_iput = 1;
1269 goto out;
1270 }
1271 spin_unlock(&block_group->lock);
1272 }
1273
1274 /* Lock all pages first so we can lock the extent safely. */
1275 ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1276 if (ret)
1277 goto out_unlock;
1278
1279 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1280 &cached_state);
1281
1282 io_ctl_set_generation(io_ctl, trans->transid);
1283
1284 mutex_lock(&ctl->cache_writeout_mutex);
1285 /* Write out the extent entries in the free space cache */
1286 spin_lock(&ctl->tree_lock);
1287 ret = write_cache_extent_entries(io_ctl, ctl,
1288 block_group, &entries, &bitmaps,
1289 &bitmap_list);
1290 if (ret)
1291 goto out_nospc_locked;
1292
1293 /*
1294 * Some spaces that are freed in the current transaction are pinned,
1295 * they will be added into free space cache after the transaction is
1296 * committed, we shouldn't lose them.
1297 *
1298 * If this changes while we are working we'll get added back to
1299 * the dirty list and redo it. No locking needed
1300 */
1301 ret = write_pinned_extent_entries(block_group, io_ctl, &entries);
1302 if (ret)
1303 goto out_nospc_locked;
1304
1305 /*
1306 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1307 * locked while doing it because a concurrent trim can be manipulating
1308 * or freeing the bitmap.
1309 */
1310 ret = write_bitmap_entries(io_ctl, &bitmap_list);
1311 spin_unlock(&ctl->tree_lock);
1312 mutex_unlock(&ctl->cache_writeout_mutex);
1313 if (ret)
1314 goto out_nospc;
1315
1316 /* Zero out the rest of the pages just to make sure */
1317 io_ctl_zero_remaining_pages(io_ctl);
1318
1319 /* Everything is written out, now we dirty the pages in the file. */
1320 ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
1321 i_size_read(inode), &cached_state);
1322 if (ret)
1323 goto out_nospc;
1324
1325 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1326 up_write(&block_group->data_rwsem);
1327 /*
1328 * Release the pages and unlock the extent, we will flush
1329 * them out later
1330 */
1331 io_ctl_drop_pages(io_ctl);
1332
1333 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1334 i_size_read(inode) - 1, &cached_state);
1335
1336 /*
1337 * at this point the pages are under IO and we're happy,
1338 * The caller is responsible for waiting on them and updating the
1339 * the cache and the inode
1340 */
1341 io_ctl->entries = entries;
1342 io_ctl->bitmaps = bitmaps;
1343
1344 ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1345 if (ret)
1346 goto out;
1347
1348 return 0;
1349
1350 out:
1351 io_ctl->inode = NULL;
1352 io_ctl_free(io_ctl);
1353 if (ret) {
1354 invalidate_inode_pages2(inode->i_mapping);
1355 BTRFS_I(inode)->generation = 0;
1356 }
1357 btrfs_update_inode(trans, root, inode);
1358 if (must_iput)
1359 iput(inode);
1360 return ret;
1361
1362 out_nospc_locked:
1363 cleanup_bitmap_list(&bitmap_list);
1364 spin_unlock(&ctl->tree_lock);
1365 mutex_unlock(&ctl->cache_writeout_mutex);
1366
1367 out_nospc:
1368 cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1369
1370 out_unlock:
1371 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1372 up_write(&block_group->data_rwsem);
1373
1374 goto out;
1375 }
1376
btrfs_write_out_cache(struct btrfs_trans_handle * trans,struct btrfs_block_group_cache * block_group,struct btrfs_path * path)1377 int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1378 struct btrfs_block_group_cache *block_group,
1379 struct btrfs_path *path)
1380 {
1381 struct btrfs_fs_info *fs_info = trans->fs_info;
1382 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1383 struct inode *inode;
1384 int ret = 0;
1385
1386 spin_lock(&block_group->lock);
1387 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1388 spin_unlock(&block_group->lock);
1389 return 0;
1390 }
1391 spin_unlock(&block_group->lock);
1392
1393 inode = lookup_free_space_inode(block_group, path);
1394 if (IS_ERR(inode))
1395 return 0;
1396
1397 ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1398 block_group, &block_group->io_ctl, trans);
1399 if (ret) {
1400 #ifdef DEBUG
1401 btrfs_err(fs_info,
1402 "failed to write free space cache for block group %llu",
1403 block_group->key.objectid);
1404 #endif
1405 spin_lock(&block_group->lock);
1406 block_group->disk_cache_state = BTRFS_DC_ERROR;
1407 spin_unlock(&block_group->lock);
1408
1409 block_group->io_ctl.inode = NULL;
1410 iput(inode);
1411 }
1412
1413 /*
1414 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1415 * to wait for IO and put the inode
1416 */
1417
1418 return ret;
1419 }
1420
offset_to_bit(u64 bitmap_start,u32 unit,u64 offset)1421 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1422 u64 offset)
1423 {
1424 ASSERT(offset >= bitmap_start);
1425 offset -= bitmap_start;
1426 return (unsigned long)(div_u64(offset, unit));
1427 }
1428
bytes_to_bits(u64 bytes,u32 unit)1429 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1430 {
1431 return (unsigned long)(div_u64(bytes, unit));
1432 }
1433
offset_to_bitmap(struct btrfs_free_space_ctl * ctl,u64 offset)1434 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1435 u64 offset)
1436 {
1437 u64 bitmap_start;
1438 u64 bytes_per_bitmap;
1439
1440 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1441 bitmap_start = offset - ctl->start;
1442 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1443 bitmap_start *= bytes_per_bitmap;
1444 bitmap_start += ctl->start;
1445
1446 return bitmap_start;
1447 }
1448
tree_insert_offset(struct rb_root * root,u64 offset,struct rb_node * node,int bitmap)1449 static int tree_insert_offset(struct rb_root *root, u64 offset,
1450 struct rb_node *node, int bitmap)
1451 {
1452 struct rb_node **p = &root->rb_node;
1453 struct rb_node *parent = NULL;
1454 struct btrfs_free_space *info;
1455
1456 while (*p) {
1457 parent = *p;
1458 info = rb_entry(parent, struct btrfs_free_space, offset_index);
1459
1460 if (offset < info->offset) {
1461 p = &(*p)->rb_left;
1462 } else if (offset > info->offset) {
1463 p = &(*p)->rb_right;
1464 } else {
1465 /*
1466 * we could have a bitmap entry and an extent entry
1467 * share the same offset. If this is the case, we want
1468 * the extent entry to always be found first if we do a
1469 * linear search through the tree, since we want to have
1470 * the quickest allocation time, and allocating from an
1471 * extent is faster than allocating from a bitmap. So
1472 * if we're inserting a bitmap and we find an entry at
1473 * this offset, we want to go right, or after this entry
1474 * logically. If we are inserting an extent and we've
1475 * found a bitmap, we want to go left, or before
1476 * logically.
1477 */
1478 if (bitmap) {
1479 if (info->bitmap) {
1480 WARN_ON_ONCE(1);
1481 return -EEXIST;
1482 }
1483 p = &(*p)->rb_right;
1484 } else {
1485 if (!info->bitmap) {
1486 WARN_ON_ONCE(1);
1487 return -EEXIST;
1488 }
1489 p = &(*p)->rb_left;
1490 }
1491 }
1492 }
1493
1494 rb_link_node(node, parent, p);
1495 rb_insert_color(node, root);
1496
1497 return 0;
1498 }
1499
1500 /*
1501 * searches the tree for the given offset.
1502 *
1503 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1504 * want a section that has at least bytes size and comes at or after the given
1505 * offset.
1506 */
1507 static struct btrfs_free_space *
tree_search_offset(struct btrfs_free_space_ctl * ctl,u64 offset,int bitmap_only,int fuzzy)1508 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1509 u64 offset, int bitmap_only, int fuzzy)
1510 {
1511 struct rb_node *n = ctl->free_space_offset.rb_node;
1512 struct btrfs_free_space *entry, *prev = NULL;
1513
1514 /* find entry that is closest to the 'offset' */
1515 while (1) {
1516 if (!n) {
1517 entry = NULL;
1518 break;
1519 }
1520
1521 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1522 prev = entry;
1523
1524 if (offset < entry->offset)
1525 n = n->rb_left;
1526 else if (offset > entry->offset)
1527 n = n->rb_right;
1528 else
1529 break;
1530 }
1531
1532 if (bitmap_only) {
1533 if (!entry)
1534 return NULL;
1535 if (entry->bitmap)
1536 return entry;
1537
1538 /*
1539 * bitmap entry and extent entry may share same offset,
1540 * in that case, bitmap entry comes after extent entry.
1541 */
1542 n = rb_next(n);
1543 if (!n)
1544 return NULL;
1545 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1546 if (entry->offset != offset)
1547 return NULL;
1548
1549 WARN_ON(!entry->bitmap);
1550 return entry;
1551 } else if (entry) {
1552 if (entry->bitmap) {
1553 /*
1554 * if previous extent entry covers the offset,
1555 * we should return it instead of the bitmap entry
1556 */
1557 n = rb_prev(&entry->offset_index);
1558 if (n) {
1559 prev = rb_entry(n, struct btrfs_free_space,
1560 offset_index);
1561 if (!prev->bitmap &&
1562 prev->offset + prev->bytes > offset)
1563 entry = prev;
1564 }
1565 }
1566 return entry;
1567 }
1568
1569 if (!prev)
1570 return NULL;
1571
1572 /* find last entry before the 'offset' */
1573 entry = prev;
1574 if (entry->offset > offset) {
1575 n = rb_prev(&entry->offset_index);
1576 if (n) {
1577 entry = rb_entry(n, struct btrfs_free_space,
1578 offset_index);
1579 ASSERT(entry->offset <= offset);
1580 } else {
1581 if (fuzzy)
1582 return entry;
1583 else
1584 return NULL;
1585 }
1586 }
1587
1588 if (entry->bitmap) {
1589 n = rb_prev(&entry->offset_index);
1590 if (n) {
1591 prev = rb_entry(n, struct btrfs_free_space,
1592 offset_index);
1593 if (!prev->bitmap &&
1594 prev->offset + prev->bytes > offset)
1595 return prev;
1596 }
1597 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1598 return entry;
1599 } else if (entry->offset + entry->bytes > offset)
1600 return entry;
1601
1602 if (!fuzzy)
1603 return NULL;
1604
1605 while (1) {
1606 if (entry->bitmap) {
1607 if (entry->offset + BITS_PER_BITMAP *
1608 ctl->unit > offset)
1609 break;
1610 } else {
1611 if (entry->offset + entry->bytes > offset)
1612 break;
1613 }
1614
1615 n = rb_next(&entry->offset_index);
1616 if (!n)
1617 return NULL;
1618 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1619 }
1620 return entry;
1621 }
1622
1623 static inline void
__unlink_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1624 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1625 struct btrfs_free_space *info)
1626 {
1627 rb_erase(&info->offset_index, &ctl->free_space_offset);
1628 ctl->free_extents--;
1629 }
1630
unlink_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1631 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1632 struct btrfs_free_space *info)
1633 {
1634 __unlink_free_space(ctl, info);
1635 ctl->free_space -= info->bytes;
1636 }
1637
link_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1638 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1639 struct btrfs_free_space *info)
1640 {
1641 int ret = 0;
1642
1643 ASSERT(info->bytes || info->bitmap);
1644 ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1645 &info->offset_index, (info->bitmap != NULL));
1646 if (ret)
1647 return ret;
1648
1649 ctl->free_space += info->bytes;
1650 ctl->free_extents++;
1651 return ret;
1652 }
1653
recalculate_thresholds(struct btrfs_free_space_ctl * ctl)1654 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1655 {
1656 struct btrfs_block_group_cache *block_group = ctl->private;
1657 u64 max_bytes;
1658 u64 bitmap_bytes;
1659 u64 extent_bytes;
1660 u64 size = block_group->key.offset;
1661 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1662 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1663
1664 max_bitmaps = max_t(u64, max_bitmaps, 1);
1665
1666 ASSERT(ctl->total_bitmaps <= max_bitmaps);
1667
1668 /*
1669 * The goal is to keep the total amount of memory used per 1gb of space
1670 * at or below 32k, so we need to adjust how much memory we allow to be
1671 * used by extent based free space tracking
1672 */
1673 if (size < SZ_1G)
1674 max_bytes = MAX_CACHE_BYTES_PER_GIG;
1675 else
1676 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1677
1678 /*
1679 * we want to account for 1 more bitmap than what we have so we can make
1680 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1681 * we add more bitmaps.
1682 */
1683 bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
1684
1685 if (bitmap_bytes >= max_bytes) {
1686 ctl->extents_thresh = 0;
1687 return;
1688 }
1689
1690 /*
1691 * we want the extent entry threshold to always be at most 1/2 the max
1692 * bytes we can have, or whatever is less than that.
1693 */
1694 extent_bytes = max_bytes - bitmap_bytes;
1695 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1696
1697 ctl->extents_thresh =
1698 div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1699 }
1700
__bitmap_clear_bits(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes)1701 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1702 struct btrfs_free_space *info,
1703 u64 offset, u64 bytes)
1704 {
1705 unsigned long start, count;
1706
1707 start = offset_to_bit(info->offset, ctl->unit, offset);
1708 count = bytes_to_bits(bytes, ctl->unit);
1709 ASSERT(start + count <= BITS_PER_BITMAP);
1710
1711 bitmap_clear(info->bitmap, start, count);
1712
1713 info->bytes -= bytes;
1714 if (info->max_extent_size > ctl->unit)
1715 info->max_extent_size = 0;
1716 }
1717
bitmap_clear_bits(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes)1718 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1719 struct btrfs_free_space *info, u64 offset,
1720 u64 bytes)
1721 {
1722 __bitmap_clear_bits(ctl, info, offset, bytes);
1723 ctl->free_space -= bytes;
1724 }
1725
bitmap_set_bits(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes)1726 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1727 struct btrfs_free_space *info, u64 offset,
1728 u64 bytes)
1729 {
1730 unsigned long start, count;
1731
1732 start = offset_to_bit(info->offset, ctl->unit, offset);
1733 count = bytes_to_bits(bytes, ctl->unit);
1734 ASSERT(start + count <= BITS_PER_BITMAP);
1735
1736 bitmap_set(info->bitmap, start, count);
1737
1738 info->bytes += bytes;
1739 ctl->free_space += bytes;
1740 }
1741
1742 /*
1743 * If we can not find suitable extent, we will use bytes to record
1744 * the size of the max extent.
1745 */
search_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info,u64 * offset,u64 * bytes,bool for_alloc)1746 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1747 struct btrfs_free_space *bitmap_info, u64 *offset,
1748 u64 *bytes, bool for_alloc)
1749 {
1750 unsigned long found_bits = 0;
1751 unsigned long max_bits = 0;
1752 unsigned long bits, i;
1753 unsigned long next_zero;
1754 unsigned long extent_bits;
1755
1756 /*
1757 * Skip searching the bitmap if we don't have a contiguous section that
1758 * is large enough for this allocation.
1759 */
1760 if (for_alloc &&
1761 bitmap_info->max_extent_size &&
1762 bitmap_info->max_extent_size < *bytes) {
1763 *bytes = bitmap_info->max_extent_size;
1764 return -1;
1765 }
1766
1767 i = offset_to_bit(bitmap_info->offset, ctl->unit,
1768 max_t(u64, *offset, bitmap_info->offset));
1769 bits = bytes_to_bits(*bytes, ctl->unit);
1770
1771 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1772 if (for_alloc && bits == 1) {
1773 found_bits = 1;
1774 break;
1775 }
1776 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1777 BITS_PER_BITMAP, i);
1778 extent_bits = next_zero - i;
1779 if (extent_bits >= bits) {
1780 found_bits = extent_bits;
1781 break;
1782 } else if (extent_bits > max_bits) {
1783 max_bits = extent_bits;
1784 }
1785 i = next_zero;
1786 }
1787
1788 if (found_bits) {
1789 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1790 *bytes = (u64)(found_bits) * ctl->unit;
1791 return 0;
1792 }
1793
1794 *bytes = (u64)(max_bits) * ctl->unit;
1795 bitmap_info->max_extent_size = *bytes;
1796 return -1;
1797 }
1798
get_max_extent_size(struct btrfs_free_space * entry)1799 static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
1800 {
1801 if (entry->bitmap)
1802 return entry->max_extent_size;
1803 return entry->bytes;
1804 }
1805
1806 /* Cache the size of the max extent in bytes */
1807 static struct btrfs_free_space *
find_free_space(struct btrfs_free_space_ctl * ctl,u64 * offset,u64 * bytes,unsigned long align,u64 * max_extent_size)1808 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1809 unsigned long align, u64 *max_extent_size)
1810 {
1811 struct btrfs_free_space *entry;
1812 struct rb_node *node;
1813 u64 tmp;
1814 u64 align_off;
1815 int ret;
1816
1817 if (!ctl->free_space_offset.rb_node)
1818 goto out;
1819
1820 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1821 if (!entry)
1822 goto out;
1823
1824 for (node = &entry->offset_index; node; node = rb_next(node)) {
1825 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1826 if (entry->bytes < *bytes) {
1827 *max_extent_size = max(get_max_extent_size(entry),
1828 *max_extent_size);
1829 continue;
1830 }
1831
1832 /* make sure the space returned is big enough
1833 * to match our requested alignment
1834 */
1835 if (*bytes >= align) {
1836 tmp = entry->offset - ctl->start + align - 1;
1837 tmp = div64_u64(tmp, align);
1838 tmp = tmp * align + ctl->start;
1839 align_off = tmp - entry->offset;
1840 } else {
1841 align_off = 0;
1842 tmp = entry->offset;
1843 }
1844
1845 if (entry->bytes < *bytes + align_off) {
1846 *max_extent_size = max(get_max_extent_size(entry),
1847 *max_extent_size);
1848 continue;
1849 }
1850
1851 if (entry->bitmap) {
1852 u64 size = *bytes;
1853
1854 ret = search_bitmap(ctl, entry, &tmp, &size, true);
1855 if (!ret) {
1856 *offset = tmp;
1857 *bytes = size;
1858 return entry;
1859 } else {
1860 *max_extent_size =
1861 max(get_max_extent_size(entry),
1862 *max_extent_size);
1863 }
1864 continue;
1865 }
1866
1867 *offset = tmp;
1868 *bytes = entry->bytes - align_off;
1869 return entry;
1870 }
1871 out:
1872 return NULL;
1873 }
1874
add_new_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset)1875 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1876 struct btrfs_free_space *info, u64 offset)
1877 {
1878 info->offset = offset_to_bitmap(ctl, offset);
1879 info->bytes = 0;
1880 INIT_LIST_HEAD(&info->list);
1881 link_free_space(ctl, info);
1882 ctl->total_bitmaps++;
1883
1884 ctl->op->recalc_thresholds(ctl);
1885 }
1886
free_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info)1887 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1888 struct btrfs_free_space *bitmap_info)
1889 {
1890 unlink_free_space(ctl, bitmap_info);
1891 kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
1892 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1893 ctl->total_bitmaps--;
1894 ctl->op->recalc_thresholds(ctl);
1895 }
1896
remove_from_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info,u64 * offset,u64 * bytes)1897 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1898 struct btrfs_free_space *bitmap_info,
1899 u64 *offset, u64 *bytes)
1900 {
1901 u64 end;
1902 u64 search_start, search_bytes;
1903 int ret;
1904
1905 again:
1906 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1907
1908 /*
1909 * We need to search for bits in this bitmap. We could only cover some
1910 * of the extent in this bitmap thanks to how we add space, so we need
1911 * to search for as much as it as we can and clear that amount, and then
1912 * go searching for the next bit.
1913 */
1914 search_start = *offset;
1915 search_bytes = ctl->unit;
1916 search_bytes = min(search_bytes, end - search_start + 1);
1917 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1918 false);
1919 if (ret < 0 || search_start != *offset)
1920 return -EINVAL;
1921
1922 /* We may have found more bits than what we need */
1923 search_bytes = min(search_bytes, *bytes);
1924
1925 /* Cannot clear past the end of the bitmap */
1926 search_bytes = min(search_bytes, end - search_start + 1);
1927
1928 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1929 *offset += search_bytes;
1930 *bytes -= search_bytes;
1931
1932 if (*bytes) {
1933 struct rb_node *next = rb_next(&bitmap_info->offset_index);
1934 if (!bitmap_info->bytes)
1935 free_bitmap(ctl, bitmap_info);
1936
1937 /*
1938 * no entry after this bitmap, but we still have bytes to
1939 * remove, so something has gone wrong.
1940 */
1941 if (!next)
1942 return -EINVAL;
1943
1944 bitmap_info = rb_entry(next, struct btrfs_free_space,
1945 offset_index);
1946
1947 /*
1948 * if the next entry isn't a bitmap we need to return to let the
1949 * extent stuff do its work.
1950 */
1951 if (!bitmap_info->bitmap)
1952 return -EAGAIN;
1953
1954 /*
1955 * Ok the next item is a bitmap, but it may not actually hold
1956 * the information for the rest of this free space stuff, so
1957 * look for it, and if we don't find it return so we can try
1958 * everything over again.
1959 */
1960 search_start = *offset;
1961 search_bytes = ctl->unit;
1962 ret = search_bitmap(ctl, bitmap_info, &search_start,
1963 &search_bytes, false);
1964 if (ret < 0 || search_start != *offset)
1965 return -EAGAIN;
1966
1967 goto again;
1968 } else if (!bitmap_info->bytes)
1969 free_bitmap(ctl, bitmap_info);
1970
1971 return 0;
1972 }
1973
add_bytes_to_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes)1974 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1975 struct btrfs_free_space *info, u64 offset,
1976 u64 bytes)
1977 {
1978 u64 bytes_to_set = 0;
1979 u64 end;
1980
1981 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1982
1983 bytes_to_set = min(end - offset, bytes);
1984
1985 bitmap_set_bits(ctl, info, offset, bytes_to_set);
1986
1987 /*
1988 * We set some bytes, we have no idea what the max extent size is
1989 * anymore.
1990 */
1991 info->max_extent_size = 0;
1992
1993 return bytes_to_set;
1994
1995 }
1996
use_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1997 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1998 struct btrfs_free_space *info)
1999 {
2000 struct btrfs_block_group_cache *block_group = ctl->private;
2001 struct btrfs_fs_info *fs_info = block_group->fs_info;
2002 bool forced = false;
2003
2004 #ifdef CONFIG_BTRFS_DEBUG
2005 if (btrfs_should_fragment_free_space(block_group))
2006 forced = true;
2007 #endif
2008
2009 /*
2010 * If we are below the extents threshold then we can add this as an
2011 * extent, and don't have to deal with the bitmap
2012 */
2013 if (!forced && ctl->free_extents < ctl->extents_thresh) {
2014 /*
2015 * If this block group has some small extents we don't want to
2016 * use up all of our free slots in the cache with them, we want
2017 * to reserve them to larger extents, however if we have plenty
2018 * of cache left then go ahead an dadd them, no sense in adding
2019 * the overhead of a bitmap if we don't have to.
2020 */
2021 if (info->bytes <= fs_info->sectorsize * 4) {
2022 if (ctl->free_extents * 2 <= ctl->extents_thresh)
2023 return false;
2024 } else {
2025 return false;
2026 }
2027 }
2028
2029 /*
2030 * The original block groups from mkfs can be really small, like 8
2031 * megabytes, so don't bother with a bitmap for those entries. However
2032 * some block groups can be smaller than what a bitmap would cover but
2033 * are still large enough that they could overflow the 32k memory limit,
2034 * so allow those block groups to still be allowed to have a bitmap
2035 * entry.
2036 */
2037 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
2038 return false;
2039
2040 return true;
2041 }
2042
2043 static const struct btrfs_free_space_op free_space_op = {
2044 .recalc_thresholds = recalculate_thresholds,
2045 .use_bitmap = use_bitmap,
2046 };
2047
insert_into_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)2048 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2049 struct btrfs_free_space *info)
2050 {
2051 struct btrfs_free_space *bitmap_info;
2052 struct btrfs_block_group_cache *block_group = NULL;
2053 int added = 0;
2054 u64 bytes, offset, bytes_added;
2055 int ret;
2056
2057 bytes = info->bytes;
2058 offset = info->offset;
2059
2060 if (!ctl->op->use_bitmap(ctl, info))
2061 return 0;
2062
2063 if (ctl->op == &free_space_op)
2064 block_group = ctl->private;
2065 again:
2066 /*
2067 * Since we link bitmaps right into the cluster we need to see if we
2068 * have a cluster here, and if so and it has our bitmap we need to add
2069 * the free space to that bitmap.
2070 */
2071 if (block_group && !list_empty(&block_group->cluster_list)) {
2072 struct btrfs_free_cluster *cluster;
2073 struct rb_node *node;
2074 struct btrfs_free_space *entry;
2075
2076 cluster = list_entry(block_group->cluster_list.next,
2077 struct btrfs_free_cluster,
2078 block_group_list);
2079 spin_lock(&cluster->lock);
2080 node = rb_first(&cluster->root);
2081 if (!node) {
2082 spin_unlock(&cluster->lock);
2083 goto no_cluster_bitmap;
2084 }
2085
2086 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2087 if (!entry->bitmap) {
2088 spin_unlock(&cluster->lock);
2089 goto no_cluster_bitmap;
2090 }
2091
2092 if (entry->offset == offset_to_bitmap(ctl, offset)) {
2093 bytes_added = add_bytes_to_bitmap(ctl, entry,
2094 offset, bytes);
2095 bytes -= bytes_added;
2096 offset += bytes_added;
2097 }
2098 spin_unlock(&cluster->lock);
2099 if (!bytes) {
2100 ret = 1;
2101 goto out;
2102 }
2103 }
2104
2105 no_cluster_bitmap:
2106 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2107 1, 0);
2108 if (!bitmap_info) {
2109 ASSERT(added == 0);
2110 goto new_bitmap;
2111 }
2112
2113 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
2114 bytes -= bytes_added;
2115 offset += bytes_added;
2116 added = 0;
2117
2118 if (!bytes) {
2119 ret = 1;
2120 goto out;
2121 } else
2122 goto again;
2123
2124 new_bitmap:
2125 if (info && info->bitmap) {
2126 add_new_bitmap(ctl, info, offset);
2127 added = 1;
2128 info = NULL;
2129 goto again;
2130 } else {
2131 spin_unlock(&ctl->tree_lock);
2132
2133 /* no pre-allocated info, allocate a new one */
2134 if (!info) {
2135 info = kmem_cache_zalloc(btrfs_free_space_cachep,
2136 GFP_NOFS);
2137 if (!info) {
2138 spin_lock(&ctl->tree_lock);
2139 ret = -ENOMEM;
2140 goto out;
2141 }
2142 }
2143
2144 /* allocate the bitmap */
2145 info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2146 GFP_NOFS);
2147 spin_lock(&ctl->tree_lock);
2148 if (!info->bitmap) {
2149 ret = -ENOMEM;
2150 goto out;
2151 }
2152 goto again;
2153 }
2154
2155 out:
2156 if (info) {
2157 if (info->bitmap)
2158 kmem_cache_free(btrfs_free_space_bitmap_cachep,
2159 info->bitmap);
2160 kmem_cache_free(btrfs_free_space_cachep, info);
2161 }
2162
2163 return ret;
2164 }
2165
try_merge_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2166 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2167 struct btrfs_free_space *info, bool update_stat)
2168 {
2169 struct btrfs_free_space *left_info;
2170 struct btrfs_free_space *right_info;
2171 bool merged = false;
2172 u64 offset = info->offset;
2173 u64 bytes = info->bytes;
2174
2175 /*
2176 * first we want to see if there is free space adjacent to the range we
2177 * are adding, if there is remove that struct and add a new one to
2178 * cover the entire range
2179 */
2180 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2181 if (right_info && rb_prev(&right_info->offset_index))
2182 left_info = rb_entry(rb_prev(&right_info->offset_index),
2183 struct btrfs_free_space, offset_index);
2184 else
2185 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2186
2187 if (right_info && !right_info->bitmap) {
2188 if (update_stat)
2189 unlink_free_space(ctl, right_info);
2190 else
2191 __unlink_free_space(ctl, right_info);
2192 info->bytes += right_info->bytes;
2193 kmem_cache_free(btrfs_free_space_cachep, right_info);
2194 merged = true;
2195 }
2196
2197 if (left_info && !left_info->bitmap &&
2198 left_info->offset + left_info->bytes == offset) {
2199 if (update_stat)
2200 unlink_free_space(ctl, left_info);
2201 else
2202 __unlink_free_space(ctl, left_info);
2203 info->offset = left_info->offset;
2204 info->bytes += left_info->bytes;
2205 kmem_cache_free(btrfs_free_space_cachep, left_info);
2206 merged = true;
2207 }
2208
2209 return merged;
2210 }
2211
steal_from_bitmap_to_end(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2212 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2213 struct btrfs_free_space *info,
2214 bool update_stat)
2215 {
2216 struct btrfs_free_space *bitmap;
2217 unsigned long i;
2218 unsigned long j;
2219 const u64 end = info->offset + info->bytes;
2220 const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2221 u64 bytes;
2222
2223 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2224 if (!bitmap)
2225 return false;
2226
2227 i = offset_to_bit(bitmap->offset, ctl->unit, end);
2228 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2229 if (j == i)
2230 return false;
2231 bytes = (j - i) * ctl->unit;
2232 info->bytes += bytes;
2233
2234 if (update_stat)
2235 bitmap_clear_bits(ctl, bitmap, end, bytes);
2236 else
2237 __bitmap_clear_bits(ctl, bitmap, end, bytes);
2238
2239 if (!bitmap->bytes)
2240 free_bitmap(ctl, bitmap);
2241
2242 return true;
2243 }
2244
steal_from_bitmap_to_front(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2245 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2246 struct btrfs_free_space *info,
2247 bool update_stat)
2248 {
2249 struct btrfs_free_space *bitmap;
2250 u64 bitmap_offset;
2251 unsigned long i;
2252 unsigned long j;
2253 unsigned long prev_j;
2254 u64 bytes;
2255
2256 bitmap_offset = offset_to_bitmap(ctl, info->offset);
2257 /* If we're on a boundary, try the previous logical bitmap. */
2258 if (bitmap_offset == info->offset) {
2259 if (info->offset == 0)
2260 return false;
2261 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2262 }
2263
2264 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2265 if (!bitmap)
2266 return false;
2267
2268 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2269 j = 0;
2270 prev_j = (unsigned long)-1;
2271 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2272 if (j > i)
2273 break;
2274 prev_j = j;
2275 }
2276 if (prev_j == i)
2277 return false;
2278
2279 if (prev_j == (unsigned long)-1)
2280 bytes = (i + 1) * ctl->unit;
2281 else
2282 bytes = (i - prev_j) * ctl->unit;
2283
2284 info->offset -= bytes;
2285 info->bytes += bytes;
2286
2287 if (update_stat)
2288 bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2289 else
2290 __bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2291
2292 if (!bitmap->bytes)
2293 free_bitmap(ctl, bitmap);
2294
2295 return true;
2296 }
2297
2298 /*
2299 * We prefer always to allocate from extent entries, both for clustered and
2300 * non-clustered allocation requests. So when attempting to add a new extent
2301 * entry, try to see if there's adjacent free space in bitmap entries, and if
2302 * there is, migrate that space from the bitmaps to the extent.
2303 * Like this we get better chances of satisfying space allocation requests
2304 * because we attempt to satisfy them based on a single cache entry, and never
2305 * on 2 or more entries - even if the entries represent a contiguous free space
2306 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2307 * ends).
2308 */
steal_from_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2309 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2310 struct btrfs_free_space *info,
2311 bool update_stat)
2312 {
2313 /*
2314 * Only work with disconnected entries, as we can change their offset,
2315 * and must be extent entries.
2316 */
2317 ASSERT(!info->bitmap);
2318 ASSERT(RB_EMPTY_NODE(&info->offset_index));
2319
2320 if (ctl->total_bitmaps > 0) {
2321 bool stole_end;
2322 bool stole_front = false;
2323
2324 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2325 if (ctl->total_bitmaps > 0)
2326 stole_front = steal_from_bitmap_to_front(ctl, info,
2327 update_stat);
2328
2329 if (stole_end || stole_front)
2330 try_merge_free_space(ctl, info, update_stat);
2331 }
2332 }
2333
__btrfs_add_free_space(struct btrfs_fs_info * fs_info,struct btrfs_free_space_ctl * ctl,u64 offset,u64 bytes)2334 int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2335 struct btrfs_free_space_ctl *ctl,
2336 u64 offset, u64 bytes)
2337 {
2338 struct btrfs_free_space *info;
2339 int ret = 0;
2340
2341 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2342 if (!info)
2343 return -ENOMEM;
2344
2345 info->offset = offset;
2346 info->bytes = bytes;
2347 RB_CLEAR_NODE(&info->offset_index);
2348
2349 spin_lock(&ctl->tree_lock);
2350
2351 if (try_merge_free_space(ctl, info, true))
2352 goto link;
2353
2354 /*
2355 * There was no extent directly to the left or right of this new
2356 * extent then we know we're going to have to allocate a new extent, so
2357 * before we do that see if we need to drop this into a bitmap
2358 */
2359 ret = insert_into_bitmap(ctl, info);
2360 if (ret < 0) {
2361 goto out;
2362 } else if (ret) {
2363 ret = 0;
2364 goto out;
2365 }
2366 link:
2367 /*
2368 * Only steal free space from adjacent bitmaps if we're sure we're not
2369 * going to add the new free space to existing bitmap entries - because
2370 * that would mean unnecessary work that would be reverted. Therefore
2371 * attempt to steal space from bitmaps if we're adding an extent entry.
2372 */
2373 steal_from_bitmap(ctl, info, true);
2374
2375 ret = link_free_space(ctl, info);
2376 if (ret)
2377 kmem_cache_free(btrfs_free_space_cachep, info);
2378 out:
2379 spin_unlock(&ctl->tree_lock);
2380
2381 if (ret) {
2382 btrfs_crit(fs_info, "unable to add free space :%d", ret);
2383 ASSERT(ret != -EEXIST);
2384 }
2385
2386 return ret;
2387 }
2388
btrfs_add_free_space(struct btrfs_block_group_cache * block_group,u64 bytenr,u64 size)2389 int btrfs_add_free_space(struct btrfs_block_group_cache *block_group,
2390 u64 bytenr, u64 size)
2391 {
2392 return __btrfs_add_free_space(block_group->fs_info,
2393 block_group->free_space_ctl,
2394 bytenr, size);
2395 }
2396
btrfs_remove_free_space(struct btrfs_block_group_cache * block_group,u64 offset,u64 bytes)2397 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2398 u64 offset, u64 bytes)
2399 {
2400 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2401 struct btrfs_free_space *info;
2402 int ret;
2403 bool re_search = false;
2404
2405 spin_lock(&ctl->tree_lock);
2406
2407 again:
2408 ret = 0;
2409 if (!bytes)
2410 goto out_lock;
2411
2412 info = tree_search_offset(ctl, offset, 0, 0);
2413 if (!info) {
2414 /*
2415 * oops didn't find an extent that matched the space we wanted
2416 * to remove, look for a bitmap instead
2417 */
2418 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2419 1, 0);
2420 if (!info) {
2421 /*
2422 * If we found a partial bit of our free space in a
2423 * bitmap but then couldn't find the other part this may
2424 * be a problem, so WARN about it.
2425 */
2426 WARN_ON(re_search);
2427 goto out_lock;
2428 }
2429 }
2430
2431 re_search = false;
2432 if (!info->bitmap) {
2433 unlink_free_space(ctl, info);
2434 if (offset == info->offset) {
2435 u64 to_free = min(bytes, info->bytes);
2436
2437 info->bytes -= to_free;
2438 info->offset += to_free;
2439 if (info->bytes) {
2440 ret = link_free_space(ctl, info);
2441 WARN_ON(ret);
2442 } else {
2443 kmem_cache_free(btrfs_free_space_cachep, info);
2444 }
2445
2446 offset += to_free;
2447 bytes -= to_free;
2448 goto again;
2449 } else {
2450 u64 old_end = info->bytes + info->offset;
2451
2452 info->bytes = offset - info->offset;
2453 ret = link_free_space(ctl, info);
2454 WARN_ON(ret);
2455 if (ret)
2456 goto out_lock;
2457
2458 /* Not enough bytes in this entry to satisfy us */
2459 if (old_end < offset + bytes) {
2460 bytes -= old_end - offset;
2461 offset = old_end;
2462 goto again;
2463 } else if (old_end == offset + bytes) {
2464 /* all done */
2465 goto out_lock;
2466 }
2467 spin_unlock(&ctl->tree_lock);
2468
2469 ret = btrfs_add_free_space(block_group, offset + bytes,
2470 old_end - (offset + bytes));
2471 WARN_ON(ret);
2472 goto out;
2473 }
2474 }
2475
2476 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2477 if (ret == -EAGAIN) {
2478 re_search = true;
2479 goto again;
2480 }
2481 out_lock:
2482 spin_unlock(&ctl->tree_lock);
2483 out:
2484 return ret;
2485 }
2486
btrfs_dump_free_space(struct btrfs_block_group_cache * block_group,u64 bytes)2487 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2488 u64 bytes)
2489 {
2490 struct btrfs_fs_info *fs_info = block_group->fs_info;
2491 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2492 struct btrfs_free_space *info;
2493 struct rb_node *n;
2494 int count = 0;
2495
2496 spin_lock(&ctl->tree_lock);
2497 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2498 info = rb_entry(n, struct btrfs_free_space, offset_index);
2499 if (info->bytes >= bytes && !block_group->ro)
2500 count++;
2501 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2502 info->offset, info->bytes,
2503 (info->bitmap) ? "yes" : "no");
2504 }
2505 spin_unlock(&ctl->tree_lock);
2506 btrfs_info(fs_info, "block group has cluster?: %s",
2507 list_empty(&block_group->cluster_list) ? "no" : "yes");
2508 btrfs_info(fs_info,
2509 "%d blocks of free space at or bigger than bytes is", count);
2510 }
2511
btrfs_init_free_space_ctl(struct btrfs_block_group_cache * block_group)2512 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2513 {
2514 struct btrfs_fs_info *fs_info = block_group->fs_info;
2515 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2516
2517 spin_lock_init(&ctl->tree_lock);
2518 ctl->unit = fs_info->sectorsize;
2519 ctl->start = block_group->key.objectid;
2520 ctl->private = block_group;
2521 ctl->op = &free_space_op;
2522 INIT_LIST_HEAD(&ctl->trimming_ranges);
2523 mutex_init(&ctl->cache_writeout_mutex);
2524
2525 /*
2526 * we only want to have 32k of ram per block group for keeping
2527 * track of free space, and if we pass 1/2 of that we want to
2528 * start converting things over to using bitmaps
2529 */
2530 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2531 }
2532
2533 /*
2534 * for a given cluster, put all of its extents back into the free
2535 * space cache. If the block group passed doesn't match the block group
2536 * pointed to by the cluster, someone else raced in and freed the
2537 * cluster already. In that case, we just return without changing anything
2538 */
2539 static int
__btrfs_return_cluster_to_free_space(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster)2540 __btrfs_return_cluster_to_free_space(
2541 struct btrfs_block_group_cache *block_group,
2542 struct btrfs_free_cluster *cluster)
2543 {
2544 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2545 struct btrfs_free_space *entry;
2546 struct rb_node *node;
2547
2548 spin_lock(&cluster->lock);
2549 if (cluster->block_group != block_group)
2550 goto out;
2551
2552 cluster->block_group = NULL;
2553 cluster->window_start = 0;
2554 list_del_init(&cluster->block_group_list);
2555
2556 node = rb_first(&cluster->root);
2557 while (node) {
2558 bool bitmap;
2559
2560 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2561 node = rb_next(&entry->offset_index);
2562 rb_erase(&entry->offset_index, &cluster->root);
2563 RB_CLEAR_NODE(&entry->offset_index);
2564
2565 bitmap = (entry->bitmap != NULL);
2566 if (!bitmap) {
2567 try_merge_free_space(ctl, entry, false);
2568 steal_from_bitmap(ctl, entry, false);
2569 }
2570 tree_insert_offset(&ctl->free_space_offset,
2571 entry->offset, &entry->offset_index, bitmap);
2572 }
2573 cluster->root = RB_ROOT;
2574
2575 out:
2576 spin_unlock(&cluster->lock);
2577 btrfs_put_block_group(block_group);
2578 return 0;
2579 }
2580
__btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl * ctl)2581 static void __btrfs_remove_free_space_cache_locked(
2582 struct btrfs_free_space_ctl *ctl)
2583 {
2584 struct btrfs_free_space *info;
2585 struct rb_node *node;
2586
2587 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2588 info = rb_entry(node, struct btrfs_free_space, offset_index);
2589 if (!info->bitmap) {
2590 unlink_free_space(ctl, info);
2591 kmem_cache_free(btrfs_free_space_cachep, info);
2592 } else {
2593 free_bitmap(ctl, info);
2594 }
2595
2596 cond_resched_lock(&ctl->tree_lock);
2597 }
2598 }
2599
__btrfs_remove_free_space_cache(struct btrfs_free_space_ctl * ctl)2600 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2601 {
2602 spin_lock(&ctl->tree_lock);
2603 __btrfs_remove_free_space_cache_locked(ctl);
2604 spin_unlock(&ctl->tree_lock);
2605 }
2606
btrfs_remove_free_space_cache(struct btrfs_block_group_cache * block_group)2607 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2608 {
2609 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2610 struct btrfs_free_cluster *cluster;
2611 struct list_head *head;
2612
2613 spin_lock(&ctl->tree_lock);
2614 while ((head = block_group->cluster_list.next) !=
2615 &block_group->cluster_list) {
2616 cluster = list_entry(head, struct btrfs_free_cluster,
2617 block_group_list);
2618
2619 WARN_ON(cluster->block_group != block_group);
2620 __btrfs_return_cluster_to_free_space(block_group, cluster);
2621
2622 cond_resched_lock(&ctl->tree_lock);
2623 }
2624 __btrfs_remove_free_space_cache_locked(ctl);
2625 spin_unlock(&ctl->tree_lock);
2626
2627 }
2628
btrfs_find_space_for_alloc(struct btrfs_block_group_cache * block_group,u64 offset,u64 bytes,u64 empty_size,u64 * max_extent_size)2629 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2630 u64 offset, u64 bytes, u64 empty_size,
2631 u64 *max_extent_size)
2632 {
2633 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2634 struct btrfs_free_space *entry = NULL;
2635 u64 bytes_search = bytes + empty_size;
2636 u64 ret = 0;
2637 u64 align_gap = 0;
2638 u64 align_gap_len = 0;
2639
2640 spin_lock(&ctl->tree_lock);
2641 entry = find_free_space(ctl, &offset, &bytes_search,
2642 block_group->full_stripe_len, max_extent_size);
2643 if (!entry)
2644 goto out;
2645
2646 ret = offset;
2647 if (entry->bitmap) {
2648 bitmap_clear_bits(ctl, entry, offset, bytes);
2649 if (!entry->bytes)
2650 free_bitmap(ctl, entry);
2651 } else {
2652 unlink_free_space(ctl, entry);
2653 align_gap_len = offset - entry->offset;
2654 align_gap = entry->offset;
2655
2656 entry->offset = offset + bytes;
2657 WARN_ON(entry->bytes < bytes + align_gap_len);
2658
2659 entry->bytes -= bytes + align_gap_len;
2660 if (!entry->bytes)
2661 kmem_cache_free(btrfs_free_space_cachep, entry);
2662 else
2663 link_free_space(ctl, entry);
2664 }
2665 out:
2666 spin_unlock(&ctl->tree_lock);
2667
2668 if (align_gap_len)
2669 __btrfs_add_free_space(block_group->fs_info, ctl,
2670 align_gap, align_gap_len);
2671 return ret;
2672 }
2673
2674 /*
2675 * given a cluster, put all of its extents back into the free space
2676 * cache. If a block group is passed, this function will only free
2677 * a cluster that belongs to the passed block group.
2678 *
2679 * Otherwise, it'll get a reference on the block group pointed to by the
2680 * cluster and remove the cluster from it.
2681 */
btrfs_return_cluster_to_free_space(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster)2682 int btrfs_return_cluster_to_free_space(
2683 struct btrfs_block_group_cache *block_group,
2684 struct btrfs_free_cluster *cluster)
2685 {
2686 struct btrfs_free_space_ctl *ctl;
2687 int ret;
2688
2689 /* first, get a safe pointer to the block group */
2690 spin_lock(&cluster->lock);
2691 if (!block_group) {
2692 block_group = cluster->block_group;
2693 if (!block_group) {
2694 spin_unlock(&cluster->lock);
2695 return 0;
2696 }
2697 } else if (cluster->block_group != block_group) {
2698 /* someone else has already freed it don't redo their work */
2699 spin_unlock(&cluster->lock);
2700 return 0;
2701 }
2702 atomic_inc(&block_group->count);
2703 spin_unlock(&cluster->lock);
2704
2705 ctl = block_group->free_space_ctl;
2706
2707 /* now return any extents the cluster had on it */
2708 spin_lock(&ctl->tree_lock);
2709 ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2710 spin_unlock(&ctl->tree_lock);
2711
2712 /* finally drop our ref */
2713 btrfs_put_block_group(block_group);
2714 return ret;
2715 }
2716
btrfs_alloc_from_bitmap(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,struct btrfs_free_space * entry,u64 bytes,u64 min_start,u64 * max_extent_size)2717 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2718 struct btrfs_free_cluster *cluster,
2719 struct btrfs_free_space *entry,
2720 u64 bytes, u64 min_start,
2721 u64 *max_extent_size)
2722 {
2723 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2724 int err;
2725 u64 search_start = cluster->window_start;
2726 u64 search_bytes = bytes;
2727 u64 ret = 0;
2728
2729 search_start = min_start;
2730 search_bytes = bytes;
2731
2732 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2733 if (err) {
2734 *max_extent_size = max(get_max_extent_size(entry),
2735 *max_extent_size);
2736 return 0;
2737 }
2738
2739 ret = search_start;
2740 __bitmap_clear_bits(ctl, entry, ret, bytes);
2741
2742 return ret;
2743 }
2744
2745 /*
2746 * given a cluster, try to allocate 'bytes' from it, returns 0
2747 * if it couldn't find anything suitably large, or a logical disk offset
2748 * if things worked out
2749 */
btrfs_alloc_from_cluster(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,u64 bytes,u64 min_start,u64 * max_extent_size)2750 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2751 struct btrfs_free_cluster *cluster, u64 bytes,
2752 u64 min_start, u64 *max_extent_size)
2753 {
2754 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2755 struct btrfs_free_space *entry = NULL;
2756 struct rb_node *node;
2757 u64 ret = 0;
2758
2759 spin_lock(&cluster->lock);
2760 if (bytes > cluster->max_size)
2761 goto out;
2762
2763 if (cluster->block_group != block_group)
2764 goto out;
2765
2766 node = rb_first(&cluster->root);
2767 if (!node)
2768 goto out;
2769
2770 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2771 while (1) {
2772 if (entry->bytes < bytes)
2773 *max_extent_size = max(get_max_extent_size(entry),
2774 *max_extent_size);
2775
2776 if (entry->bytes < bytes ||
2777 (!entry->bitmap && entry->offset < min_start)) {
2778 node = rb_next(&entry->offset_index);
2779 if (!node)
2780 break;
2781 entry = rb_entry(node, struct btrfs_free_space,
2782 offset_index);
2783 continue;
2784 }
2785
2786 if (entry->bitmap) {
2787 ret = btrfs_alloc_from_bitmap(block_group,
2788 cluster, entry, bytes,
2789 cluster->window_start,
2790 max_extent_size);
2791 if (ret == 0) {
2792 node = rb_next(&entry->offset_index);
2793 if (!node)
2794 break;
2795 entry = rb_entry(node, struct btrfs_free_space,
2796 offset_index);
2797 continue;
2798 }
2799 cluster->window_start += bytes;
2800 } else {
2801 ret = entry->offset;
2802
2803 entry->offset += bytes;
2804 entry->bytes -= bytes;
2805 }
2806
2807 if (entry->bytes == 0)
2808 rb_erase(&entry->offset_index, &cluster->root);
2809 break;
2810 }
2811 out:
2812 spin_unlock(&cluster->lock);
2813
2814 if (!ret)
2815 return 0;
2816
2817 spin_lock(&ctl->tree_lock);
2818
2819 ctl->free_space -= bytes;
2820 if (entry->bytes == 0) {
2821 ctl->free_extents--;
2822 if (entry->bitmap) {
2823 kmem_cache_free(btrfs_free_space_bitmap_cachep,
2824 entry->bitmap);
2825 ctl->total_bitmaps--;
2826 ctl->op->recalc_thresholds(ctl);
2827 }
2828 kmem_cache_free(btrfs_free_space_cachep, entry);
2829 }
2830
2831 spin_unlock(&ctl->tree_lock);
2832
2833 return ret;
2834 }
2835
btrfs_bitmap_cluster(struct btrfs_block_group_cache * block_group,struct btrfs_free_space * entry,struct btrfs_free_cluster * cluster,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)2836 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2837 struct btrfs_free_space *entry,
2838 struct btrfs_free_cluster *cluster,
2839 u64 offset, u64 bytes,
2840 u64 cont1_bytes, u64 min_bytes)
2841 {
2842 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2843 unsigned long next_zero;
2844 unsigned long i;
2845 unsigned long want_bits;
2846 unsigned long min_bits;
2847 unsigned long found_bits;
2848 unsigned long max_bits = 0;
2849 unsigned long start = 0;
2850 unsigned long total_found = 0;
2851 int ret;
2852
2853 i = offset_to_bit(entry->offset, ctl->unit,
2854 max_t(u64, offset, entry->offset));
2855 want_bits = bytes_to_bits(bytes, ctl->unit);
2856 min_bits = bytes_to_bits(min_bytes, ctl->unit);
2857
2858 /*
2859 * Don't bother looking for a cluster in this bitmap if it's heavily
2860 * fragmented.
2861 */
2862 if (entry->max_extent_size &&
2863 entry->max_extent_size < cont1_bytes)
2864 return -ENOSPC;
2865 again:
2866 found_bits = 0;
2867 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2868 next_zero = find_next_zero_bit(entry->bitmap,
2869 BITS_PER_BITMAP, i);
2870 if (next_zero - i >= min_bits) {
2871 found_bits = next_zero - i;
2872 if (found_bits > max_bits)
2873 max_bits = found_bits;
2874 break;
2875 }
2876 if (next_zero - i > max_bits)
2877 max_bits = next_zero - i;
2878 i = next_zero;
2879 }
2880
2881 if (!found_bits) {
2882 entry->max_extent_size = (u64)max_bits * ctl->unit;
2883 return -ENOSPC;
2884 }
2885
2886 if (!total_found) {
2887 start = i;
2888 cluster->max_size = 0;
2889 }
2890
2891 total_found += found_bits;
2892
2893 if (cluster->max_size < found_bits * ctl->unit)
2894 cluster->max_size = found_bits * ctl->unit;
2895
2896 if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2897 i = next_zero + 1;
2898 goto again;
2899 }
2900
2901 cluster->window_start = start * ctl->unit + entry->offset;
2902 rb_erase(&entry->offset_index, &ctl->free_space_offset);
2903 ret = tree_insert_offset(&cluster->root, entry->offset,
2904 &entry->offset_index, 1);
2905 ASSERT(!ret); /* -EEXIST; Logic error */
2906
2907 trace_btrfs_setup_cluster(block_group, cluster,
2908 total_found * ctl->unit, 1);
2909 return 0;
2910 }
2911
2912 /*
2913 * This searches the block group for just extents to fill the cluster with.
2914 * Try to find a cluster with at least bytes total bytes, at least one
2915 * extent of cont1_bytes, and other clusters of at least min_bytes.
2916 */
2917 static noinline int
setup_cluster_no_bitmap(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,struct list_head * bitmaps,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)2918 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2919 struct btrfs_free_cluster *cluster,
2920 struct list_head *bitmaps, u64 offset, u64 bytes,
2921 u64 cont1_bytes, u64 min_bytes)
2922 {
2923 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2924 struct btrfs_free_space *first = NULL;
2925 struct btrfs_free_space *entry = NULL;
2926 struct btrfs_free_space *last;
2927 struct rb_node *node;
2928 u64 window_free;
2929 u64 max_extent;
2930 u64 total_size = 0;
2931
2932 entry = tree_search_offset(ctl, offset, 0, 1);
2933 if (!entry)
2934 return -ENOSPC;
2935
2936 /*
2937 * We don't want bitmaps, so just move along until we find a normal
2938 * extent entry.
2939 */
2940 while (entry->bitmap || entry->bytes < min_bytes) {
2941 if (entry->bitmap && list_empty(&entry->list))
2942 list_add_tail(&entry->list, bitmaps);
2943 node = rb_next(&entry->offset_index);
2944 if (!node)
2945 return -ENOSPC;
2946 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2947 }
2948
2949 window_free = entry->bytes;
2950 max_extent = entry->bytes;
2951 first = entry;
2952 last = entry;
2953
2954 for (node = rb_next(&entry->offset_index); node;
2955 node = rb_next(&entry->offset_index)) {
2956 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2957
2958 if (entry->bitmap) {
2959 if (list_empty(&entry->list))
2960 list_add_tail(&entry->list, bitmaps);
2961 continue;
2962 }
2963
2964 if (entry->bytes < min_bytes)
2965 continue;
2966
2967 last = entry;
2968 window_free += entry->bytes;
2969 if (entry->bytes > max_extent)
2970 max_extent = entry->bytes;
2971 }
2972
2973 if (window_free < bytes || max_extent < cont1_bytes)
2974 return -ENOSPC;
2975
2976 cluster->window_start = first->offset;
2977
2978 node = &first->offset_index;
2979
2980 /*
2981 * now we've found our entries, pull them out of the free space
2982 * cache and put them into the cluster rbtree
2983 */
2984 do {
2985 int ret;
2986
2987 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2988 node = rb_next(&entry->offset_index);
2989 if (entry->bitmap || entry->bytes < min_bytes)
2990 continue;
2991
2992 rb_erase(&entry->offset_index, &ctl->free_space_offset);
2993 ret = tree_insert_offset(&cluster->root, entry->offset,
2994 &entry->offset_index, 0);
2995 total_size += entry->bytes;
2996 ASSERT(!ret); /* -EEXIST; Logic error */
2997 } while (node && entry != last);
2998
2999 cluster->max_size = max_extent;
3000 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3001 return 0;
3002 }
3003
3004 /*
3005 * This specifically looks for bitmaps that may work in the cluster, we assume
3006 * that we have already failed to find extents that will work.
3007 */
3008 static noinline int
setup_cluster_bitmap(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,struct list_head * bitmaps,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)3009 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
3010 struct btrfs_free_cluster *cluster,
3011 struct list_head *bitmaps, u64 offset, u64 bytes,
3012 u64 cont1_bytes, u64 min_bytes)
3013 {
3014 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3015 struct btrfs_free_space *entry = NULL;
3016 int ret = -ENOSPC;
3017 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3018
3019 if (ctl->total_bitmaps == 0)
3020 return -ENOSPC;
3021
3022 /*
3023 * The bitmap that covers offset won't be in the list unless offset
3024 * is just its start offset.
3025 */
3026 if (!list_empty(bitmaps))
3027 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3028
3029 if (!entry || entry->offset != bitmap_offset) {
3030 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3031 if (entry && list_empty(&entry->list))
3032 list_add(&entry->list, bitmaps);
3033 }
3034
3035 list_for_each_entry(entry, bitmaps, list) {
3036 if (entry->bytes < bytes)
3037 continue;
3038 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3039 bytes, cont1_bytes, min_bytes);
3040 if (!ret)
3041 return 0;
3042 }
3043
3044 /*
3045 * The bitmaps list has all the bitmaps that record free space
3046 * starting after offset, so no more search is required.
3047 */
3048 return -ENOSPC;
3049 }
3050
3051 /*
3052 * here we try to find a cluster of blocks in a block group. The goal
3053 * is to find at least bytes+empty_size.
3054 * We might not find them all in one contiguous area.
3055 *
3056 * returns zero and sets up cluster if things worked out, otherwise
3057 * it returns -enospc
3058 */
btrfs_find_space_cluster(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,u64 offset,u64 bytes,u64 empty_size)3059 int btrfs_find_space_cluster(struct btrfs_block_group_cache *block_group,
3060 struct btrfs_free_cluster *cluster,
3061 u64 offset, u64 bytes, u64 empty_size)
3062 {
3063 struct btrfs_fs_info *fs_info = block_group->fs_info;
3064 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3065 struct btrfs_free_space *entry, *tmp;
3066 LIST_HEAD(bitmaps);
3067 u64 min_bytes;
3068 u64 cont1_bytes;
3069 int ret;
3070
3071 /*
3072 * Choose the minimum extent size we'll require for this
3073 * cluster. For SSD_SPREAD, don't allow any fragmentation.
3074 * For metadata, allow allocates with smaller extents. For
3075 * data, keep it dense.
3076 */
3077 if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3078 cont1_bytes = min_bytes = bytes + empty_size;
3079 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3080 cont1_bytes = bytes;
3081 min_bytes = fs_info->sectorsize;
3082 } else {
3083 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3084 min_bytes = fs_info->sectorsize;
3085 }
3086
3087 spin_lock(&ctl->tree_lock);
3088
3089 /*
3090 * If we know we don't have enough space to make a cluster don't even
3091 * bother doing all the work to try and find one.
3092 */
3093 if (ctl->free_space < bytes) {
3094 spin_unlock(&ctl->tree_lock);
3095 return -ENOSPC;
3096 }
3097
3098 spin_lock(&cluster->lock);
3099
3100 /* someone already found a cluster, hooray */
3101 if (cluster->block_group) {
3102 ret = 0;
3103 goto out;
3104 }
3105
3106 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3107 min_bytes);
3108
3109 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3110 bytes + empty_size,
3111 cont1_bytes, min_bytes);
3112 if (ret)
3113 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3114 offset, bytes + empty_size,
3115 cont1_bytes, min_bytes);
3116
3117 /* Clear our temporary list */
3118 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3119 list_del_init(&entry->list);
3120
3121 if (!ret) {
3122 atomic_inc(&block_group->count);
3123 list_add_tail(&cluster->block_group_list,
3124 &block_group->cluster_list);
3125 cluster->block_group = block_group;
3126 } else {
3127 trace_btrfs_failed_cluster_setup(block_group);
3128 }
3129 out:
3130 spin_unlock(&cluster->lock);
3131 spin_unlock(&ctl->tree_lock);
3132
3133 return ret;
3134 }
3135
3136 /*
3137 * simple code to zero out a cluster
3138 */
btrfs_init_free_cluster(struct btrfs_free_cluster * cluster)3139 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3140 {
3141 spin_lock_init(&cluster->lock);
3142 spin_lock_init(&cluster->refill_lock);
3143 cluster->root = RB_ROOT;
3144 cluster->max_size = 0;
3145 cluster->fragmented = false;
3146 INIT_LIST_HEAD(&cluster->block_group_list);
3147 cluster->block_group = NULL;
3148 }
3149
do_trimming(struct btrfs_block_group_cache * block_group,u64 * total_trimmed,u64 start,u64 bytes,u64 reserved_start,u64 reserved_bytes,struct btrfs_trim_range * trim_entry)3150 static int do_trimming(struct btrfs_block_group_cache *block_group,
3151 u64 *total_trimmed, u64 start, u64 bytes,
3152 u64 reserved_start, u64 reserved_bytes,
3153 struct btrfs_trim_range *trim_entry)
3154 {
3155 struct btrfs_space_info *space_info = block_group->space_info;
3156 struct btrfs_fs_info *fs_info = block_group->fs_info;
3157 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3158 int ret;
3159 int update = 0;
3160 u64 trimmed = 0;
3161
3162 spin_lock(&space_info->lock);
3163 spin_lock(&block_group->lock);
3164 if (!block_group->ro) {
3165 block_group->reserved += reserved_bytes;
3166 space_info->bytes_reserved += reserved_bytes;
3167 update = 1;
3168 }
3169 spin_unlock(&block_group->lock);
3170 spin_unlock(&space_info->lock);
3171
3172 ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3173 if (!ret)
3174 *total_trimmed += trimmed;
3175
3176 mutex_lock(&ctl->cache_writeout_mutex);
3177 btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3178 list_del(&trim_entry->list);
3179 mutex_unlock(&ctl->cache_writeout_mutex);
3180
3181 if (update) {
3182 spin_lock(&space_info->lock);
3183 spin_lock(&block_group->lock);
3184 if (block_group->ro)
3185 space_info->bytes_readonly += reserved_bytes;
3186 block_group->reserved -= reserved_bytes;
3187 space_info->bytes_reserved -= reserved_bytes;
3188 spin_unlock(&block_group->lock);
3189 spin_unlock(&space_info->lock);
3190 }
3191
3192 return ret;
3193 }
3194
trim_no_bitmap(struct btrfs_block_group_cache * block_group,u64 * total_trimmed,u64 start,u64 end,u64 minlen)3195 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3196 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3197 {
3198 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3199 struct btrfs_free_space *entry;
3200 struct rb_node *node;
3201 int ret = 0;
3202 u64 extent_start;
3203 u64 extent_bytes;
3204 u64 bytes;
3205
3206 while (start < end) {
3207 struct btrfs_trim_range trim_entry;
3208
3209 mutex_lock(&ctl->cache_writeout_mutex);
3210 spin_lock(&ctl->tree_lock);
3211
3212 if (ctl->free_space < minlen) {
3213 spin_unlock(&ctl->tree_lock);
3214 mutex_unlock(&ctl->cache_writeout_mutex);
3215 break;
3216 }
3217
3218 entry = tree_search_offset(ctl, start, 0, 1);
3219 if (!entry) {
3220 spin_unlock(&ctl->tree_lock);
3221 mutex_unlock(&ctl->cache_writeout_mutex);
3222 break;
3223 }
3224
3225 /* skip bitmaps */
3226 while (entry->bitmap) {
3227 node = rb_next(&entry->offset_index);
3228 if (!node) {
3229 spin_unlock(&ctl->tree_lock);
3230 mutex_unlock(&ctl->cache_writeout_mutex);
3231 goto out;
3232 }
3233 entry = rb_entry(node, struct btrfs_free_space,
3234 offset_index);
3235 }
3236
3237 if (entry->offset >= end) {
3238 spin_unlock(&ctl->tree_lock);
3239 mutex_unlock(&ctl->cache_writeout_mutex);
3240 break;
3241 }
3242
3243 extent_start = entry->offset;
3244 extent_bytes = entry->bytes;
3245 start = max(start, extent_start);
3246 bytes = min(extent_start + extent_bytes, end) - start;
3247 if (bytes < minlen) {
3248 spin_unlock(&ctl->tree_lock);
3249 mutex_unlock(&ctl->cache_writeout_mutex);
3250 goto next;
3251 }
3252
3253 unlink_free_space(ctl, entry);
3254 kmem_cache_free(btrfs_free_space_cachep, entry);
3255
3256 spin_unlock(&ctl->tree_lock);
3257 trim_entry.start = extent_start;
3258 trim_entry.bytes = extent_bytes;
3259 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3260 mutex_unlock(&ctl->cache_writeout_mutex);
3261
3262 ret = do_trimming(block_group, total_trimmed, start, bytes,
3263 extent_start, extent_bytes, &trim_entry);
3264 if (ret)
3265 break;
3266 next:
3267 start += bytes;
3268
3269 if (fatal_signal_pending(current)) {
3270 ret = -ERESTARTSYS;
3271 break;
3272 }
3273
3274 cond_resched();
3275 }
3276 out:
3277 return ret;
3278 }
3279
trim_bitmaps(struct btrfs_block_group_cache * block_group,u64 * total_trimmed,u64 start,u64 end,u64 minlen)3280 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3281 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3282 {
3283 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3284 struct btrfs_free_space *entry;
3285 int ret = 0;
3286 int ret2;
3287 u64 bytes;
3288 u64 offset = offset_to_bitmap(ctl, start);
3289
3290 while (offset < end) {
3291 bool next_bitmap = false;
3292 struct btrfs_trim_range trim_entry;
3293
3294 mutex_lock(&ctl->cache_writeout_mutex);
3295 spin_lock(&ctl->tree_lock);
3296
3297 if (ctl->free_space < minlen) {
3298 spin_unlock(&ctl->tree_lock);
3299 mutex_unlock(&ctl->cache_writeout_mutex);
3300 break;
3301 }
3302
3303 entry = tree_search_offset(ctl, offset, 1, 0);
3304 if (!entry) {
3305 spin_unlock(&ctl->tree_lock);
3306 mutex_unlock(&ctl->cache_writeout_mutex);
3307 next_bitmap = true;
3308 goto next;
3309 }
3310
3311 bytes = minlen;
3312 ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3313 if (ret2 || start >= end) {
3314 spin_unlock(&ctl->tree_lock);
3315 mutex_unlock(&ctl->cache_writeout_mutex);
3316 next_bitmap = true;
3317 goto next;
3318 }
3319
3320 bytes = min(bytes, end - start);
3321 if (bytes < minlen) {
3322 spin_unlock(&ctl->tree_lock);
3323 mutex_unlock(&ctl->cache_writeout_mutex);
3324 goto next;
3325 }
3326
3327 bitmap_clear_bits(ctl, entry, start, bytes);
3328 if (entry->bytes == 0)
3329 free_bitmap(ctl, entry);
3330
3331 spin_unlock(&ctl->tree_lock);
3332 trim_entry.start = start;
3333 trim_entry.bytes = bytes;
3334 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3335 mutex_unlock(&ctl->cache_writeout_mutex);
3336
3337 ret = do_trimming(block_group, total_trimmed, start, bytes,
3338 start, bytes, &trim_entry);
3339 if (ret)
3340 break;
3341 next:
3342 if (next_bitmap) {
3343 offset += BITS_PER_BITMAP * ctl->unit;
3344 } else {
3345 start += bytes;
3346 if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3347 offset += BITS_PER_BITMAP * ctl->unit;
3348 }
3349
3350 if (fatal_signal_pending(current)) {
3351 ret = -ERESTARTSYS;
3352 break;
3353 }
3354
3355 cond_resched();
3356 }
3357
3358 return ret;
3359 }
3360
btrfs_get_block_group_trimming(struct btrfs_block_group_cache * cache)3361 void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
3362 {
3363 atomic_inc(&cache->trimming);
3364 }
3365
btrfs_put_block_group_trimming(struct btrfs_block_group_cache * block_group)3366 void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
3367 {
3368 struct btrfs_fs_info *fs_info = block_group->fs_info;
3369 struct extent_map_tree *em_tree;
3370 struct extent_map *em;
3371 bool cleanup;
3372
3373 spin_lock(&block_group->lock);
3374 cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3375 block_group->removed);
3376 spin_unlock(&block_group->lock);
3377
3378 if (cleanup) {
3379 mutex_lock(&fs_info->chunk_mutex);
3380 em_tree = &fs_info->mapping_tree;
3381 write_lock(&em_tree->lock);
3382 em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3383 1);
3384 BUG_ON(!em); /* logic error, can't happen */
3385 remove_extent_mapping(em_tree, em);
3386 write_unlock(&em_tree->lock);
3387 mutex_unlock(&fs_info->chunk_mutex);
3388
3389 /* once for us and once for the tree */
3390 free_extent_map(em);
3391 free_extent_map(em);
3392
3393 /*
3394 * We've left one free space entry and other tasks trimming
3395 * this block group have left 1 entry each one. Free them.
3396 */
3397 __btrfs_remove_free_space_cache(block_group->free_space_ctl);
3398 }
3399 }
3400
btrfs_trim_block_group(struct btrfs_block_group_cache * block_group,u64 * trimmed,u64 start,u64 end,u64 minlen)3401 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3402 u64 *trimmed, u64 start, u64 end, u64 minlen)
3403 {
3404 int ret;
3405
3406 *trimmed = 0;
3407
3408 spin_lock(&block_group->lock);
3409 if (block_group->removed) {
3410 spin_unlock(&block_group->lock);
3411 return 0;
3412 }
3413 btrfs_get_block_group_trimming(block_group);
3414 spin_unlock(&block_group->lock);
3415
3416 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3417 if (ret)
3418 goto out;
3419
3420 ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3421 out:
3422 btrfs_put_block_group_trimming(block_group);
3423 return ret;
3424 }
3425
3426 /*
3427 * Find the left-most item in the cache tree, and then return the
3428 * smallest inode number in the item.
3429 *
3430 * Note: the returned inode number may not be the smallest one in
3431 * the tree, if the left-most item is a bitmap.
3432 */
btrfs_find_ino_for_alloc(struct btrfs_root * fs_root)3433 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3434 {
3435 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3436 struct btrfs_free_space *entry = NULL;
3437 u64 ino = 0;
3438
3439 spin_lock(&ctl->tree_lock);
3440
3441 if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3442 goto out;
3443
3444 entry = rb_entry(rb_first(&ctl->free_space_offset),
3445 struct btrfs_free_space, offset_index);
3446
3447 if (!entry->bitmap) {
3448 ino = entry->offset;
3449
3450 unlink_free_space(ctl, entry);
3451 entry->offset++;
3452 entry->bytes--;
3453 if (!entry->bytes)
3454 kmem_cache_free(btrfs_free_space_cachep, entry);
3455 else
3456 link_free_space(ctl, entry);
3457 } else {
3458 u64 offset = 0;
3459 u64 count = 1;
3460 int ret;
3461
3462 ret = search_bitmap(ctl, entry, &offset, &count, true);
3463 /* Logic error; Should be empty if it can't find anything */
3464 ASSERT(!ret);
3465
3466 ino = offset;
3467 bitmap_clear_bits(ctl, entry, offset, 1);
3468 if (entry->bytes == 0)
3469 free_bitmap(ctl, entry);
3470 }
3471 out:
3472 spin_unlock(&ctl->tree_lock);
3473
3474 return ino;
3475 }
3476
lookup_free_ino_inode(struct btrfs_root * root,struct btrfs_path * path)3477 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3478 struct btrfs_path *path)
3479 {
3480 struct inode *inode = NULL;
3481
3482 spin_lock(&root->ino_cache_lock);
3483 if (root->ino_cache_inode)
3484 inode = igrab(root->ino_cache_inode);
3485 spin_unlock(&root->ino_cache_lock);
3486 if (inode)
3487 return inode;
3488
3489 inode = __lookup_free_space_inode(root, path, 0);
3490 if (IS_ERR(inode))
3491 return inode;
3492
3493 spin_lock(&root->ino_cache_lock);
3494 if (!btrfs_fs_closing(root->fs_info))
3495 root->ino_cache_inode = igrab(inode);
3496 spin_unlock(&root->ino_cache_lock);
3497
3498 return inode;
3499 }
3500
create_free_ino_inode(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_path * path)3501 int create_free_ino_inode(struct btrfs_root *root,
3502 struct btrfs_trans_handle *trans,
3503 struct btrfs_path *path)
3504 {
3505 return __create_free_space_inode(root, trans, path,
3506 BTRFS_FREE_INO_OBJECTID, 0);
3507 }
3508
load_free_ino_cache(struct btrfs_fs_info * fs_info,struct btrfs_root * root)3509 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3510 {
3511 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3512 struct btrfs_path *path;
3513 struct inode *inode;
3514 int ret = 0;
3515 u64 root_gen = btrfs_root_generation(&root->root_item);
3516
3517 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3518 return 0;
3519
3520 /*
3521 * If we're unmounting then just return, since this does a search on the
3522 * normal root and not the commit root and we could deadlock.
3523 */
3524 if (btrfs_fs_closing(fs_info))
3525 return 0;
3526
3527 path = btrfs_alloc_path();
3528 if (!path)
3529 return 0;
3530
3531 inode = lookup_free_ino_inode(root, path);
3532 if (IS_ERR(inode))
3533 goto out;
3534
3535 if (root_gen != BTRFS_I(inode)->generation)
3536 goto out_put;
3537
3538 ret = __load_free_space_cache(root, inode, ctl, path, 0);
3539
3540 if (ret < 0)
3541 btrfs_err(fs_info,
3542 "failed to load free ino cache for root %llu",
3543 root->root_key.objectid);
3544 out_put:
3545 iput(inode);
3546 out:
3547 btrfs_free_path(path);
3548 return ret;
3549 }
3550
btrfs_write_out_ino_cache(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_path * path,struct inode * inode)3551 int btrfs_write_out_ino_cache(struct btrfs_root *root,
3552 struct btrfs_trans_handle *trans,
3553 struct btrfs_path *path,
3554 struct inode *inode)
3555 {
3556 struct btrfs_fs_info *fs_info = root->fs_info;
3557 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3558 int ret;
3559 struct btrfs_io_ctl io_ctl;
3560 bool release_metadata = true;
3561
3562 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3563 return 0;
3564
3565 memset(&io_ctl, 0, sizeof(io_ctl));
3566 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
3567 if (!ret) {
3568 /*
3569 * At this point writepages() didn't error out, so our metadata
3570 * reservation is released when the writeback finishes, at
3571 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3572 * with or without an error.
3573 */
3574 release_metadata = false;
3575 ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3576 }
3577
3578 if (ret) {
3579 if (release_metadata)
3580 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3581 inode->i_size, true);
3582 #ifdef DEBUG
3583 btrfs_err(fs_info,
3584 "failed to write free ino cache for root %llu",
3585 root->root_key.objectid);
3586 #endif
3587 }
3588
3589 return ret;
3590 }
3591
3592 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3593 /*
3594 * Use this if you need to make a bitmap or extent entry specifically, it
3595 * doesn't do any of the merging that add_free_space does, this acts a lot like
3596 * how the free space cache loading stuff works, so you can get really weird
3597 * configurations.
3598 */
test_add_free_space_entry(struct btrfs_block_group_cache * cache,u64 offset,u64 bytes,bool bitmap)3599 int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3600 u64 offset, u64 bytes, bool bitmap)
3601 {
3602 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3603 struct btrfs_free_space *info = NULL, *bitmap_info;
3604 void *map = NULL;
3605 u64 bytes_added;
3606 int ret;
3607
3608 again:
3609 if (!info) {
3610 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3611 if (!info)
3612 return -ENOMEM;
3613 }
3614
3615 if (!bitmap) {
3616 spin_lock(&ctl->tree_lock);
3617 info->offset = offset;
3618 info->bytes = bytes;
3619 info->max_extent_size = 0;
3620 ret = link_free_space(ctl, info);
3621 spin_unlock(&ctl->tree_lock);
3622 if (ret)
3623 kmem_cache_free(btrfs_free_space_cachep, info);
3624 return ret;
3625 }
3626
3627 if (!map) {
3628 map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
3629 if (!map) {
3630 kmem_cache_free(btrfs_free_space_cachep, info);
3631 return -ENOMEM;
3632 }
3633 }
3634
3635 spin_lock(&ctl->tree_lock);
3636 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3637 1, 0);
3638 if (!bitmap_info) {
3639 info->bitmap = map;
3640 map = NULL;
3641 add_new_bitmap(ctl, info, offset);
3642 bitmap_info = info;
3643 info = NULL;
3644 }
3645
3646 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3647
3648 bytes -= bytes_added;
3649 offset += bytes_added;
3650 spin_unlock(&ctl->tree_lock);
3651
3652 if (bytes)
3653 goto again;
3654
3655 if (info)
3656 kmem_cache_free(btrfs_free_space_cachep, info);
3657 if (map)
3658 kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
3659 return 0;
3660 }
3661
3662 /*
3663 * Checks to see if the given range is in the free space cache. This is really
3664 * just used to check the absence of space, so if there is free space in the
3665 * range at all we will return 1.
3666 */
test_check_exists(struct btrfs_block_group_cache * cache,u64 offset,u64 bytes)3667 int test_check_exists(struct btrfs_block_group_cache *cache,
3668 u64 offset, u64 bytes)
3669 {
3670 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3671 struct btrfs_free_space *info;
3672 int ret = 0;
3673
3674 spin_lock(&ctl->tree_lock);
3675 info = tree_search_offset(ctl, offset, 0, 0);
3676 if (!info) {
3677 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3678 1, 0);
3679 if (!info)
3680 goto out;
3681 }
3682
3683 have_info:
3684 if (info->bitmap) {
3685 u64 bit_off, bit_bytes;
3686 struct rb_node *n;
3687 struct btrfs_free_space *tmp;
3688
3689 bit_off = offset;
3690 bit_bytes = ctl->unit;
3691 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3692 if (!ret) {
3693 if (bit_off == offset) {
3694 ret = 1;
3695 goto out;
3696 } else if (bit_off > offset &&
3697 offset + bytes > bit_off) {
3698 ret = 1;
3699 goto out;
3700 }
3701 }
3702
3703 n = rb_prev(&info->offset_index);
3704 while (n) {
3705 tmp = rb_entry(n, struct btrfs_free_space,
3706 offset_index);
3707 if (tmp->offset + tmp->bytes < offset)
3708 break;
3709 if (offset + bytes < tmp->offset) {
3710 n = rb_prev(&tmp->offset_index);
3711 continue;
3712 }
3713 info = tmp;
3714 goto have_info;
3715 }
3716
3717 n = rb_next(&info->offset_index);
3718 while (n) {
3719 tmp = rb_entry(n, struct btrfs_free_space,
3720 offset_index);
3721 if (offset + bytes < tmp->offset)
3722 break;
3723 if (tmp->offset + tmp->bytes < offset) {
3724 n = rb_next(&tmp->offset_index);
3725 continue;
3726 }
3727 info = tmp;
3728 goto have_info;
3729 }
3730
3731 ret = 0;
3732 goto out;
3733 }
3734
3735 if (info->offset == offset) {
3736 ret = 1;
3737 goto out;
3738 }
3739
3740 if (offset > info->offset && offset < info->offset + info->bytes)
3741 ret = 1;
3742 out:
3743 spin_unlock(&ctl->tree_lock);
3744 return ret;
3745 }
3746 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
3747