• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "transaction.h"
32 #include "btrfs_inode.h"
33 #include "print-tree.h"
34 #include "volumes.h"
35 #include "locking.h"
36 #include "inode-map.h"
37 #include "backref.h"
38 #include "rcu-string.h"
39 #include "send.h"
40 #include "dev-replace.h"
41 #include "props.h"
42 #include "sysfs.h"
43 #include "qgroup.h"
44 #include "tree-log.h"
45 #include "compression.h"
46 #include "space-info.h"
47 #include "delalloc-space.h"
48 #include "block-group.h"
49 
50 #ifdef CONFIG_64BIT
51 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
52  * structures are incorrect, as the timespec structure from userspace
53  * is 4 bytes too small. We define these alternatives here to teach
54  * the kernel about the 32-bit struct packing.
55  */
56 struct btrfs_ioctl_timespec_32 {
57 	__u64 sec;
58 	__u32 nsec;
59 } __attribute__ ((__packed__));
60 
61 struct btrfs_ioctl_received_subvol_args_32 {
62 	char	uuid[BTRFS_UUID_SIZE];	/* in */
63 	__u64	stransid;		/* in */
64 	__u64	rtransid;		/* out */
65 	struct btrfs_ioctl_timespec_32 stime; /* in */
66 	struct btrfs_ioctl_timespec_32 rtime; /* out */
67 	__u64	flags;			/* in */
68 	__u64	reserved[16];		/* in */
69 } __attribute__ ((__packed__));
70 
71 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
72 				struct btrfs_ioctl_received_subvol_args_32)
73 #endif
74 
75 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
76 struct btrfs_ioctl_send_args_32 {
77 	__s64 send_fd;			/* in */
78 	__u64 clone_sources_count;	/* in */
79 	compat_uptr_t clone_sources;	/* in */
80 	__u64 parent_root;		/* in */
81 	__u64 flags;			/* in */
82 	__u64 reserved[4];		/* in */
83 } __attribute__ ((__packed__));
84 
85 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
86 			       struct btrfs_ioctl_send_args_32)
87 #endif
88 
89 static int btrfs_clone(struct inode *src, struct inode *inode,
90 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff,
91 		       int no_time_update);
92 
93 /* Mask out flags that are inappropriate for the given type of inode. */
btrfs_mask_fsflags_for_type(struct inode * inode,unsigned int flags)94 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
95 		unsigned int flags)
96 {
97 	if (S_ISDIR(inode->i_mode))
98 		return flags;
99 	else if (S_ISREG(inode->i_mode))
100 		return flags & ~FS_DIRSYNC_FL;
101 	else
102 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
103 }
104 
105 /*
106  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
107  * ioctl.
108  */
btrfs_inode_flags_to_fsflags(unsigned int flags)109 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
110 {
111 	unsigned int iflags = 0;
112 
113 	if (flags & BTRFS_INODE_SYNC)
114 		iflags |= FS_SYNC_FL;
115 	if (flags & BTRFS_INODE_IMMUTABLE)
116 		iflags |= FS_IMMUTABLE_FL;
117 	if (flags & BTRFS_INODE_APPEND)
118 		iflags |= FS_APPEND_FL;
119 	if (flags & BTRFS_INODE_NODUMP)
120 		iflags |= FS_NODUMP_FL;
121 	if (flags & BTRFS_INODE_NOATIME)
122 		iflags |= FS_NOATIME_FL;
123 	if (flags & BTRFS_INODE_DIRSYNC)
124 		iflags |= FS_DIRSYNC_FL;
125 	if (flags & BTRFS_INODE_NODATACOW)
126 		iflags |= FS_NOCOW_FL;
127 
128 	if (flags & BTRFS_INODE_NOCOMPRESS)
129 		iflags |= FS_NOCOMP_FL;
130 	else if (flags & BTRFS_INODE_COMPRESS)
131 		iflags |= FS_COMPR_FL;
132 
133 	return iflags;
134 }
135 
136 /*
137  * Update inode->i_flags based on the btrfs internal flags.
138  */
btrfs_sync_inode_flags_to_i_flags(struct inode * inode)139 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
140 {
141 	struct btrfs_inode *binode = BTRFS_I(inode);
142 	unsigned int new_fl = 0;
143 
144 	if (binode->flags & BTRFS_INODE_SYNC)
145 		new_fl |= S_SYNC;
146 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
147 		new_fl |= S_IMMUTABLE;
148 	if (binode->flags & BTRFS_INODE_APPEND)
149 		new_fl |= S_APPEND;
150 	if (binode->flags & BTRFS_INODE_NOATIME)
151 		new_fl |= S_NOATIME;
152 	if (binode->flags & BTRFS_INODE_DIRSYNC)
153 		new_fl |= S_DIRSYNC;
154 
155 	set_mask_bits(&inode->i_flags,
156 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
157 		      new_fl);
158 }
159 
btrfs_ioctl_getflags(struct file * file,void __user * arg)160 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
161 {
162 	struct btrfs_inode *binode = BTRFS_I(file_inode(file));
163 	unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags);
164 
165 	if (copy_to_user(arg, &flags, sizeof(flags)))
166 		return -EFAULT;
167 	return 0;
168 }
169 
170 /* Check if @flags are a supported and valid set of FS_*_FL flags */
check_fsflags(unsigned int flags)171 static int check_fsflags(unsigned int flags)
172 {
173 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
174 		      FS_NOATIME_FL | FS_NODUMP_FL | \
175 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
176 		      FS_NOCOMP_FL | FS_COMPR_FL |
177 		      FS_NOCOW_FL))
178 		return -EOPNOTSUPP;
179 
180 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
181 		return -EINVAL;
182 
183 	return 0;
184 }
185 
btrfs_ioctl_setflags(struct file * file,void __user * arg)186 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
187 {
188 	struct inode *inode = file_inode(file);
189 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
190 	struct btrfs_inode *binode = BTRFS_I(inode);
191 	struct btrfs_root *root = binode->root;
192 	struct btrfs_trans_handle *trans;
193 	unsigned int fsflags, old_fsflags;
194 	int ret;
195 	const char *comp = NULL;
196 	u32 binode_flags = binode->flags;
197 
198 	if (!inode_owner_or_capable(inode))
199 		return -EPERM;
200 
201 	if (btrfs_root_readonly(root))
202 		return -EROFS;
203 
204 	if (copy_from_user(&fsflags, arg, sizeof(fsflags)))
205 		return -EFAULT;
206 
207 	ret = check_fsflags(fsflags);
208 	if (ret)
209 		return ret;
210 
211 	ret = mnt_want_write_file(file);
212 	if (ret)
213 		return ret;
214 
215 	inode_lock(inode);
216 
217 	fsflags = btrfs_mask_fsflags_for_type(inode, fsflags);
218 	old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags);
219 	ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
220 	if (ret)
221 		goto out_unlock;
222 
223 	if (fsflags & FS_SYNC_FL)
224 		binode_flags |= BTRFS_INODE_SYNC;
225 	else
226 		binode_flags &= ~BTRFS_INODE_SYNC;
227 	if (fsflags & FS_IMMUTABLE_FL)
228 		binode_flags |= BTRFS_INODE_IMMUTABLE;
229 	else
230 		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
231 	if (fsflags & FS_APPEND_FL)
232 		binode_flags |= BTRFS_INODE_APPEND;
233 	else
234 		binode_flags &= ~BTRFS_INODE_APPEND;
235 	if (fsflags & FS_NODUMP_FL)
236 		binode_flags |= BTRFS_INODE_NODUMP;
237 	else
238 		binode_flags &= ~BTRFS_INODE_NODUMP;
239 	if (fsflags & FS_NOATIME_FL)
240 		binode_flags |= BTRFS_INODE_NOATIME;
241 	else
242 		binode_flags &= ~BTRFS_INODE_NOATIME;
243 	if (fsflags & FS_DIRSYNC_FL)
244 		binode_flags |= BTRFS_INODE_DIRSYNC;
245 	else
246 		binode_flags &= ~BTRFS_INODE_DIRSYNC;
247 	if (fsflags & FS_NOCOW_FL) {
248 		if (S_ISREG(inode->i_mode)) {
249 			/*
250 			 * It's safe to turn csums off here, no extents exist.
251 			 * Otherwise we want the flag to reflect the real COW
252 			 * status of the file and will not set it.
253 			 */
254 			if (inode->i_size == 0)
255 				binode_flags |= BTRFS_INODE_NODATACOW |
256 						BTRFS_INODE_NODATASUM;
257 		} else {
258 			binode_flags |= BTRFS_INODE_NODATACOW;
259 		}
260 	} else {
261 		/*
262 		 * Revert back under same assumptions as above
263 		 */
264 		if (S_ISREG(inode->i_mode)) {
265 			if (inode->i_size == 0)
266 				binode_flags &= ~(BTRFS_INODE_NODATACOW |
267 						  BTRFS_INODE_NODATASUM);
268 		} else {
269 			binode_flags &= ~BTRFS_INODE_NODATACOW;
270 		}
271 	}
272 
273 	/*
274 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
275 	 * flag may be changed automatically if compression code won't make
276 	 * things smaller.
277 	 */
278 	if (fsflags & FS_NOCOMP_FL) {
279 		binode_flags &= ~BTRFS_INODE_COMPRESS;
280 		binode_flags |= BTRFS_INODE_NOCOMPRESS;
281 	} else if (fsflags & FS_COMPR_FL) {
282 
283 		if (IS_SWAPFILE(inode)) {
284 			ret = -ETXTBSY;
285 			goto out_unlock;
286 		}
287 
288 		binode_flags |= BTRFS_INODE_COMPRESS;
289 		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
290 
291 		comp = btrfs_compress_type2str(fs_info->compress_type);
292 		if (!comp || comp[0] == 0)
293 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
294 	} else {
295 		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
296 	}
297 
298 	/*
299 	 * 1 for inode item
300 	 * 2 for properties
301 	 */
302 	trans = btrfs_start_transaction(root, 3);
303 	if (IS_ERR(trans)) {
304 		ret = PTR_ERR(trans);
305 		goto out_unlock;
306 	}
307 
308 	if (comp) {
309 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
310 				     strlen(comp), 0);
311 		if (ret) {
312 			btrfs_abort_transaction(trans, ret);
313 			goto out_end_trans;
314 		}
315 	} else {
316 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
317 				     0, 0);
318 		if (ret && ret != -ENODATA) {
319 			btrfs_abort_transaction(trans, ret);
320 			goto out_end_trans;
321 		}
322 	}
323 
324 	binode->flags = binode_flags;
325 	btrfs_sync_inode_flags_to_i_flags(inode);
326 	inode_inc_iversion(inode);
327 	inode->i_ctime = current_time(inode);
328 	ret = btrfs_update_inode(trans, root, inode);
329 
330  out_end_trans:
331 	btrfs_end_transaction(trans);
332  out_unlock:
333 	inode_unlock(inode);
334 	mnt_drop_write_file(file);
335 	return ret;
336 }
337 
338 /*
339  * Translate btrfs internal inode flags to xflags as expected by the
340  * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are
341  * silently dropped.
342  */
btrfs_inode_flags_to_xflags(unsigned int flags)343 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags)
344 {
345 	unsigned int xflags = 0;
346 
347 	if (flags & BTRFS_INODE_APPEND)
348 		xflags |= FS_XFLAG_APPEND;
349 	if (flags & BTRFS_INODE_IMMUTABLE)
350 		xflags |= FS_XFLAG_IMMUTABLE;
351 	if (flags & BTRFS_INODE_NOATIME)
352 		xflags |= FS_XFLAG_NOATIME;
353 	if (flags & BTRFS_INODE_NODUMP)
354 		xflags |= FS_XFLAG_NODUMP;
355 	if (flags & BTRFS_INODE_SYNC)
356 		xflags |= FS_XFLAG_SYNC;
357 
358 	return xflags;
359 }
360 
361 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */
check_xflags(unsigned int flags)362 static int check_xflags(unsigned int flags)
363 {
364 	if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME |
365 		      FS_XFLAG_NODUMP | FS_XFLAG_SYNC))
366 		return -EOPNOTSUPP;
367 	return 0;
368 }
369 
370 /*
371  * Set the xflags from the internal inode flags. The remaining items of fsxattr
372  * are zeroed.
373  */
btrfs_ioctl_fsgetxattr(struct file * file,void __user * arg)374 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg)
375 {
376 	struct btrfs_inode *binode = BTRFS_I(file_inode(file));
377 	struct fsxattr fa;
378 
379 	simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags));
380 	if (copy_to_user(arg, &fa, sizeof(fa)))
381 		return -EFAULT;
382 
383 	return 0;
384 }
385 
btrfs_ioctl_fssetxattr(struct file * file,void __user * arg)386 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg)
387 {
388 	struct inode *inode = file_inode(file);
389 	struct btrfs_inode *binode = BTRFS_I(inode);
390 	struct btrfs_root *root = binode->root;
391 	struct btrfs_trans_handle *trans;
392 	struct fsxattr fa, old_fa;
393 	unsigned old_flags;
394 	unsigned old_i_flags;
395 	int ret = 0;
396 
397 	if (!inode_owner_or_capable(inode))
398 		return -EPERM;
399 
400 	if (btrfs_root_readonly(root))
401 		return -EROFS;
402 
403 	if (copy_from_user(&fa, arg, sizeof(fa)))
404 		return -EFAULT;
405 
406 	ret = check_xflags(fa.fsx_xflags);
407 	if (ret)
408 		return ret;
409 
410 	if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0)
411 		return -EOPNOTSUPP;
412 
413 	ret = mnt_want_write_file(file);
414 	if (ret)
415 		return ret;
416 
417 	inode_lock(inode);
418 
419 	old_flags = binode->flags;
420 	old_i_flags = inode->i_flags;
421 
422 	simple_fill_fsxattr(&old_fa,
423 			    btrfs_inode_flags_to_xflags(binode->flags));
424 	ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
425 	if (ret)
426 		goto out_unlock;
427 
428 	if (fa.fsx_xflags & FS_XFLAG_SYNC)
429 		binode->flags |= BTRFS_INODE_SYNC;
430 	else
431 		binode->flags &= ~BTRFS_INODE_SYNC;
432 	if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE)
433 		binode->flags |= BTRFS_INODE_IMMUTABLE;
434 	else
435 		binode->flags &= ~BTRFS_INODE_IMMUTABLE;
436 	if (fa.fsx_xflags & FS_XFLAG_APPEND)
437 		binode->flags |= BTRFS_INODE_APPEND;
438 	else
439 		binode->flags &= ~BTRFS_INODE_APPEND;
440 	if (fa.fsx_xflags & FS_XFLAG_NODUMP)
441 		binode->flags |= BTRFS_INODE_NODUMP;
442 	else
443 		binode->flags &= ~BTRFS_INODE_NODUMP;
444 	if (fa.fsx_xflags & FS_XFLAG_NOATIME)
445 		binode->flags |= BTRFS_INODE_NOATIME;
446 	else
447 		binode->flags &= ~BTRFS_INODE_NOATIME;
448 
449 	/* 1 item for the inode */
450 	trans = btrfs_start_transaction(root, 1);
451 	if (IS_ERR(trans)) {
452 		ret = PTR_ERR(trans);
453 		goto out_unlock;
454 	}
455 
456 	btrfs_sync_inode_flags_to_i_flags(inode);
457 	inode_inc_iversion(inode);
458 	inode->i_ctime = current_time(inode);
459 	ret = btrfs_update_inode(trans, root, inode);
460 
461 	btrfs_end_transaction(trans);
462 
463 out_unlock:
464 	if (ret) {
465 		binode->flags = old_flags;
466 		inode->i_flags = old_i_flags;
467 	}
468 
469 	inode_unlock(inode);
470 	mnt_drop_write_file(file);
471 
472 	return ret;
473 }
474 
btrfs_ioctl_getversion(struct file * file,int __user * arg)475 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
476 {
477 	struct inode *inode = file_inode(file);
478 
479 	return put_user(inode->i_generation, arg);
480 }
481 
btrfs_ioctl_fitrim(struct file * file,void __user * arg)482 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
483 {
484 	struct inode *inode = file_inode(file);
485 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
486 	struct btrfs_device *device;
487 	struct request_queue *q;
488 	struct fstrim_range range;
489 	u64 minlen = ULLONG_MAX;
490 	u64 num_devices = 0;
491 	int ret;
492 
493 	if (!capable(CAP_SYS_ADMIN))
494 		return -EPERM;
495 
496 	/*
497 	 * If the fs is mounted with nologreplay, which requires it to be
498 	 * mounted in RO mode as well, we can not allow discard on free space
499 	 * inside block groups, because log trees refer to extents that are not
500 	 * pinned in a block group's free space cache (pinning the extents is
501 	 * precisely the first phase of replaying a log tree).
502 	 */
503 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
504 		return -EROFS;
505 
506 	rcu_read_lock();
507 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
508 				dev_list) {
509 		if (!device->bdev)
510 			continue;
511 		q = bdev_get_queue(device->bdev);
512 		if (blk_queue_discard(q)) {
513 			num_devices++;
514 			minlen = min_t(u64, q->limits.discard_granularity,
515 				     minlen);
516 		}
517 	}
518 	rcu_read_unlock();
519 
520 	if (!num_devices)
521 		return -EOPNOTSUPP;
522 	if (copy_from_user(&range, arg, sizeof(range)))
523 		return -EFAULT;
524 
525 	/*
526 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
527 	 * block group is in the logical address space, which can be any
528 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
529 	 */
530 	if (range.len < fs_info->sb->s_blocksize)
531 		return -EINVAL;
532 
533 	range.minlen = max(range.minlen, minlen);
534 	ret = btrfs_trim_fs(fs_info, &range);
535 	if (ret < 0)
536 		return ret;
537 
538 	if (copy_to_user(arg, &range, sizeof(range)))
539 		return -EFAULT;
540 
541 	return 0;
542 }
543 
btrfs_is_empty_uuid(u8 * uuid)544 int btrfs_is_empty_uuid(u8 *uuid)
545 {
546 	int i;
547 
548 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
549 		if (uuid[i])
550 			return 0;
551 	}
552 	return 1;
553 }
554 
create_subvol(struct inode * dir,struct dentry * dentry,const char * name,int namelen,u64 * async_transid,struct btrfs_qgroup_inherit * inherit)555 static noinline int create_subvol(struct inode *dir,
556 				  struct dentry *dentry,
557 				  const char *name, int namelen,
558 				  u64 *async_transid,
559 				  struct btrfs_qgroup_inherit *inherit)
560 {
561 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
562 	struct btrfs_trans_handle *trans;
563 	struct btrfs_key key;
564 	struct btrfs_root_item *root_item;
565 	struct btrfs_inode_item *inode_item;
566 	struct extent_buffer *leaf;
567 	struct btrfs_root *root = BTRFS_I(dir)->root;
568 	struct btrfs_root *new_root;
569 	struct btrfs_block_rsv block_rsv;
570 	struct timespec64 cur_time = current_time(dir);
571 	struct inode *inode;
572 	int ret;
573 	int err;
574 	u64 objectid;
575 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
576 	u64 index = 0;
577 	uuid_le new_uuid;
578 
579 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
580 	if (!root_item)
581 		return -ENOMEM;
582 
583 	ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
584 	if (ret)
585 		goto fail_free;
586 
587 	/*
588 	 * Don't create subvolume whose level is not zero. Or qgroup will be
589 	 * screwed up since it assumes subvolume qgroup's level to be 0.
590 	 */
591 	if (btrfs_qgroup_level(objectid)) {
592 		ret = -ENOSPC;
593 		goto fail_free;
594 	}
595 
596 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
597 	/*
598 	 * The same as the snapshot creation, please see the comment
599 	 * of create_snapshot().
600 	 */
601 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
602 	if (ret)
603 		goto fail_free;
604 
605 	trans = btrfs_start_transaction(root, 0);
606 	if (IS_ERR(trans)) {
607 		ret = PTR_ERR(trans);
608 		btrfs_subvolume_release_metadata(fs_info, &block_rsv);
609 		goto fail_free;
610 	}
611 	trans->block_rsv = &block_rsv;
612 	trans->bytes_reserved = block_rsv.size;
613 
614 	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
615 	if (ret)
616 		goto fail;
617 
618 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
619 	if (IS_ERR(leaf)) {
620 		ret = PTR_ERR(leaf);
621 		goto fail;
622 	}
623 
624 	btrfs_mark_buffer_dirty(leaf);
625 
626 	inode_item = &root_item->inode;
627 	btrfs_set_stack_inode_generation(inode_item, 1);
628 	btrfs_set_stack_inode_size(inode_item, 3);
629 	btrfs_set_stack_inode_nlink(inode_item, 1);
630 	btrfs_set_stack_inode_nbytes(inode_item,
631 				     fs_info->nodesize);
632 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
633 
634 	btrfs_set_root_flags(root_item, 0);
635 	btrfs_set_root_limit(root_item, 0);
636 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
637 
638 	btrfs_set_root_bytenr(root_item, leaf->start);
639 	btrfs_set_root_generation(root_item, trans->transid);
640 	btrfs_set_root_level(root_item, 0);
641 	btrfs_set_root_refs(root_item, 1);
642 	btrfs_set_root_used(root_item, leaf->len);
643 	btrfs_set_root_last_snapshot(root_item, 0);
644 
645 	btrfs_set_root_generation_v2(root_item,
646 			btrfs_root_generation(root_item));
647 	uuid_le_gen(&new_uuid);
648 	memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
649 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
650 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
651 	root_item->ctime = root_item->otime;
652 	btrfs_set_root_ctransid(root_item, trans->transid);
653 	btrfs_set_root_otransid(root_item, trans->transid);
654 
655 	btrfs_tree_unlock(leaf);
656 	free_extent_buffer(leaf);
657 	leaf = NULL;
658 
659 	btrfs_set_root_dirid(root_item, new_dirid);
660 
661 	key.objectid = objectid;
662 	key.offset = 0;
663 	key.type = BTRFS_ROOT_ITEM_KEY;
664 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
665 				root_item);
666 	if (ret)
667 		goto fail;
668 
669 	key.offset = (u64)-1;
670 	new_root = btrfs_read_fs_root_no_name(fs_info, &key);
671 	if (IS_ERR(new_root)) {
672 		ret = PTR_ERR(new_root);
673 		btrfs_abort_transaction(trans, ret);
674 		goto fail;
675 	}
676 
677 	btrfs_record_root_in_trans(trans, new_root);
678 
679 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
680 	if (ret) {
681 		/* We potentially lose an unused inode item here */
682 		btrfs_abort_transaction(trans, ret);
683 		goto fail;
684 	}
685 
686 	mutex_lock(&new_root->objectid_mutex);
687 	new_root->highest_objectid = new_dirid;
688 	mutex_unlock(&new_root->objectid_mutex);
689 
690 	/*
691 	 * insert the directory item
692 	 */
693 	ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
694 	if (ret) {
695 		btrfs_abort_transaction(trans, ret);
696 		goto fail;
697 	}
698 
699 	ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
700 				    BTRFS_FT_DIR, index);
701 	if (ret) {
702 		btrfs_abort_transaction(trans, ret);
703 		goto fail;
704 	}
705 
706 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
707 	ret = btrfs_update_inode(trans, root, dir);
708 	if (ret) {
709 		btrfs_abort_transaction(trans, ret);
710 		goto fail;
711 	}
712 
713 	ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
714 				 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
715 	if (ret) {
716 		btrfs_abort_transaction(trans, ret);
717 		goto fail;
718 	}
719 
720 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
721 				  BTRFS_UUID_KEY_SUBVOL, objectid);
722 	if (ret)
723 		btrfs_abort_transaction(trans, ret);
724 
725 fail:
726 	kfree(root_item);
727 	trans->block_rsv = NULL;
728 	trans->bytes_reserved = 0;
729 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
730 
731 	if (async_transid) {
732 		*async_transid = trans->transid;
733 		err = btrfs_commit_transaction_async(trans, 1);
734 		if (err)
735 			err = btrfs_commit_transaction(trans);
736 	} else {
737 		err = btrfs_commit_transaction(trans);
738 	}
739 	if (err && !ret)
740 		ret = err;
741 
742 	if (!ret) {
743 		inode = btrfs_lookup_dentry(dir, dentry);
744 		if (IS_ERR(inode))
745 			return PTR_ERR(inode);
746 		d_instantiate(dentry, inode);
747 	}
748 	return ret;
749 
750 fail_free:
751 	kfree(root_item);
752 	return ret;
753 }
754 
create_snapshot(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,u64 * async_transid,bool readonly,struct btrfs_qgroup_inherit * inherit)755 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
756 			   struct dentry *dentry,
757 			   u64 *async_transid, bool readonly,
758 			   struct btrfs_qgroup_inherit *inherit)
759 {
760 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
761 	struct inode *inode;
762 	struct btrfs_pending_snapshot *pending_snapshot;
763 	struct btrfs_trans_handle *trans;
764 	int ret;
765 	bool snapshot_force_cow = false;
766 
767 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
768 		return -EINVAL;
769 
770 	if (atomic_read(&root->nr_swapfiles)) {
771 		btrfs_warn(fs_info,
772 			   "cannot snapshot subvolume with active swapfile");
773 		return -ETXTBSY;
774 	}
775 
776 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
777 	if (!pending_snapshot)
778 		return -ENOMEM;
779 
780 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
781 			GFP_KERNEL);
782 	pending_snapshot->path = btrfs_alloc_path();
783 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
784 		ret = -ENOMEM;
785 		goto free_pending;
786 	}
787 
788 	/*
789 	 * Force new buffered writes to reserve space even when NOCOW is
790 	 * possible. This is to avoid later writeback (running dealloc) to
791 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
792 	 */
793 	atomic_inc(&root->will_be_snapshotted);
794 	smp_mb__after_atomic();
795 	/* wait for no snapshot writes */
796 	wait_event(root->subv_writers->wait,
797 		   percpu_counter_sum(&root->subv_writers->counter) == 0);
798 
799 	ret = btrfs_start_delalloc_snapshot(root);
800 	if (ret)
801 		goto dec_and_free;
802 
803 	/*
804 	 * All previous writes have started writeback in NOCOW mode, so now
805 	 * we force future writes to fallback to COW mode during snapshot
806 	 * creation.
807 	 */
808 	atomic_inc(&root->snapshot_force_cow);
809 	snapshot_force_cow = true;
810 
811 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
812 
813 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
814 			     BTRFS_BLOCK_RSV_TEMP);
815 	/*
816 	 * 1 - parent dir inode
817 	 * 2 - dir entries
818 	 * 1 - root item
819 	 * 2 - root ref/backref
820 	 * 1 - root of snapshot
821 	 * 1 - UUID item
822 	 */
823 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
824 					&pending_snapshot->block_rsv, 8,
825 					false);
826 	if (ret)
827 		goto dec_and_free;
828 
829 	pending_snapshot->dentry = dentry;
830 	pending_snapshot->root = root;
831 	pending_snapshot->readonly = readonly;
832 	pending_snapshot->dir = dir;
833 	pending_snapshot->inherit = inherit;
834 
835 	trans = btrfs_start_transaction(root, 0);
836 	if (IS_ERR(trans)) {
837 		ret = PTR_ERR(trans);
838 		goto fail;
839 	}
840 
841 	spin_lock(&fs_info->trans_lock);
842 	list_add(&pending_snapshot->list,
843 		 &trans->transaction->pending_snapshots);
844 	spin_unlock(&fs_info->trans_lock);
845 	if (async_transid) {
846 		*async_transid = trans->transid;
847 		ret = btrfs_commit_transaction_async(trans, 1);
848 		if (ret)
849 			ret = btrfs_commit_transaction(trans);
850 	} else {
851 		ret = btrfs_commit_transaction(trans);
852 	}
853 	if (ret)
854 		goto fail;
855 
856 	ret = pending_snapshot->error;
857 	if (ret)
858 		goto fail;
859 
860 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
861 	if (ret)
862 		goto fail;
863 
864 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
865 	if (IS_ERR(inode)) {
866 		ret = PTR_ERR(inode);
867 		goto fail;
868 	}
869 
870 	d_instantiate(dentry, inode);
871 	ret = 0;
872 fail:
873 	btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
874 dec_and_free:
875 	if (snapshot_force_cow)
876 		atomic_dec(&root->snapshot_force_cow);
877 	if (atomic_dec_and_test(&root->will_be_snapshotted))
878 		wake_up_var(&root->will_be_snapshotted);
879 free_pending:
880 	kfree(pending_snapshot->root_item);
881 	btrfs_free_path(pending_snapshot->path);
882 	kfree(pending_snapshot);
883 
884 	return ret;
885 }
886 
887 /*  copy of may_delete in fs/namei.c()
888  *	Check whether we can remove a link victim from directory dir, check
889  *  whether the type of victim is right.
890  *  1. We can't do it if dir is read-only (done in permission())
891  *  2. We should have write and exec permissions on dir
892  *  3. We can't remove anything from append-only dir
893  *  4. We can't do anything with immutable dir (done in permission())
894  *  5. If the sticky bit on dir is set we should either
895  *	a. be owner of dir, or
896  *	b. be owner of victim, or
897  *	c. have CAP_FOWNER capability
898  *  6. If the victim is append-only or immutable we can't do anything with
899  *     links pointing to it.
900  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
901  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
902  *  9. We can't remove a root or mountpoint.
903  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
904  *     nfs_async_unlink().
905  */
906 
btrfs_may_delete(struct inode * dir,struct dentry * victim,int isdir)907 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
908 {
909 	int error;
910 
911 	if (d_really_is_negative(victim))
912 		return -ENOENT;
913 
914 	BUG_ON(d_inode(victim->d_parent) != dir);
915 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
916 
917 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
918 	if (error)
919 		return error;
920 	if (IS_APPEND(dir))
921 		return -EPERM;
922 	if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
923 	    IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
924 		return -EPERM;
925 	if (isdir) {
926 		if (!d_is_dir(victim))
927 			return -ENOTDIR;
928 		if (IS_ROOT(victim))
929 			return -EBUSY;
930 	} else if (d_is_dir(victim))
931 		return -EISDIR;
932 	if (IS_DEADDIR(dir))
933 		return -ENOENT;
934 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
935 		return -EBUSY;
936 	return 0;
937 }
938 
939 /* copy of may_create in fs/namei.c() */
btrfs_may_create(struct inode * dir,struct dentry * child)940 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
941 {
942 	if (d_really_is_positive(child))
943 		return -EEXIST;
944 	if (IS_DEADDIR(dir))
945 		return -ENOENT;
946 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
947 }
948 
949 /*
950  * Create a new subvolume below @parent.  This is largely modeled after
951  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
952  * inside this filesystem so it's quite a bit simpler.
953  */
btrfs_mksubvol(const struct path * parent,const char * name,int namelen,struct btrfs_root * snap_src,u64 * async_transid,bool readonly,struct btrfs_qgroup_inherit * inherit)954 static noinline int btrfs_mksubvol(const struct path *parent,
955 				   const char *name, int namelen,
956 				   struct btrfs_root *snap_src,
957 				   u64 *async_transid, bool readonly,
958 				   struct btrfs_qgroup_inherit *inherit)
959 {
960 	struct inode *dir = d_inode(parent->dentry);
961 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
962 	struct dentry *dentry;
963 	int error;
964 
965 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
966 	if (error == -EINTR)
967 		return error;
968 
969 	dentry = lookup_one_len(name, parent->dentry, namelen);
970 	error = PTR_ERR(dentry);
971 	if (IS_ERR(dentry))
972 		goto out_unlock;
973 
974 	error = btrfs_may_create(dir, dentry);
975 	if (error)
976 		goto out_dput;
977 
978 	/*
979 	 * even if this name doesn't exist, we may get hash collisions.
980 	 * check for them now when we can safely fail
981 	 */
982 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
983 					       dir->i_ino, name,
984 					       namelen);
985 	if (error)
986 		goto out_dput;
987 
988 	down_read(&fs_info->subvol_sem);
989 
990 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
991 		goto out_up_read;
992 
993 	if (snap_src) {
994 		error = create_snapshot(snap_src, dir, dentry,
995 					async_transid, readonly, inherit);
996 	} else {
997 		error = create_subvol(dir, dentry, name, namelen,
998 				      async_transid, inherit);
999 	}
1000 	if (!error)
1001 		fsnotify_mkdir(dir, dentry);
1002 out_up_read:
1003 	up_read(&fs_info->subvol_sem);
1004 out_dput:
1005 	dput(dentry);
1006 out_unlock:
1007 	inode_unlock(dir);
1008 	return error;
1009 }
1010 
1011 /*
1012  * When we're defragging a range, we don't want to kick it off again
1013  * if it is really just waiting for delalloc to send it down.
1014  * If we find a nice big extent or delalloc range for the bytes in the
1015  * file you want to defrag, we return 0 to let you know to skip this
1016  * part of the file
1017  */
check_defrag_in_cache(struct inode * inode,u64 offset,u32 thresh)1018 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
1019 {
1020 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1021 	struct extent_map *em = NULL;
1022 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1023 	u64 end;
1024 
1025 	read_lock(&em_tree->lock);
1026 	em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
1027 	read_unlock(&em_tree->lock);
1028 
1029 	if (em) {
1030 		end = extent_map_end(em);
1031 		free_extent_map(em);
1032 		if (end - offset > thresh)
1033 			return 0;
1034 	}
1035 	/* if we already have a nice delalloc here, just stop */
1036 	thresh /= 2;
1037 	end = count_range_bits(io_tree, &offset, offset + thresh,
1038 			       thresh, EXTENT_DELALLOC, 1);
1039 	if (end >= thresh)
1040 		return 0;
1041 	return 1;
1042 }
1043 
1044 /*
1045  * helper function to walk through a file and find extents
1046  * newer than a specific transid, and smaller than thresh.
1047  *
1048  * This is used by the defragging code to find new and small
1049  * extents
1050  */
find_new_extents(struct btrfs_root * root,struct inode * inode,u64 newer_than,u64 * off,u32 thresh)1051 static int find_new_extents(struct btrfs_root *root,
1052 			    struct inode *inode, u64 newer_than,
1053 			    u64 *off, u32 thresh)
1054 {
1055 	struct btrfs_path *path;
1056 	struct btrfs_key min_key;
1057 	struct extent_buffer *leaf;
1058 	struct btrfs_file_extent_item *extent;
1059 	int type;
1060 	int ret;
1061 	u64 ino = btrfs_ino(BTRFS_I(inode));
1062 
1063 	path = btrfs_alloc_path();
1064 	if (!path)
1065 		return -ENOMEM;
1066 
1067 	min_key.objectid = ino;
1068 	min_key.type = BTRFS_EXTENT_DATA_KEY;
1069 	min_key.offset = *off;
1070 
1071 	while (1) {
1072 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
1073 		if (ret != 0)
1074 			goto none;
1075 process_slot:
1076 		if (min_key.objectid != ino)
1077 			goto none;
1078 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1079 			goto none;
1080 
1081 		leaf = path->nodes[0];
1082 		extent = btrfs_item_ptr(leaf, path->slots[0],
1083 					struct btrfs_file_extent_item);
1084 
1085 		type = btrfs_file_extent_type(leaf, extent);
1086 		if (type == BTRFS_FILE_EXTENT_REG &&
1087 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1088 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
1089 			*off = min_key.offset;
1090 			btrfs_free_path(path);
1091 			return 0;
1092 		}
1093 
1094 		path->slots[0]++;
1095 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
1096 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1097 			goto process_slot;
1098 		}
1099 
1100 		if (min_key.offset == (u64)-1)
1101 			goto none;
1102 
1103 		min_key.offset++;
1104 		btrfs_release_path(path);
1105 	}
1106 none:
1107 	btrfs_free_path(path);
1108 	return -ENOENT;
1109 }
1110 
defrag_lookup_extent(struct inode * inode,u64 start)1111 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1112 {
1113 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1114 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1115 	struct extent_map *em;
1116 	u64 len = PAGE_SIZE;
1117 
1118 	/*
1119 	 * hopefully we have this extent in the tree already, try without
1120 	 * the full extent lock
1121 	 */
1122 	read_lock(&em_tree->lock);
1123 	em = lookup_extent_mapping(em_tree, start, len);
1124 	read_unlock(&em_tree->lock);
1125 
1126 	if (!em) {
1127 		struct extent_state *cached = NULL;
1128 		u64 end = start + len - 1;
1129 
1130 		/* get the big lock and read metadata off disk */
1131 		lock_extent_bits(io_tree, start, end, &cached);
1132 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
1133 		unlock_extent_cached(io_tree, start, end, &cached);
1134 
1135 		if (IS_ERR(em))
1136 			return NULL;
1137 	}
1138 
1139 	return em;
1140 }
1141 
defrag_check_next_extent(struct inode * inode,struct extent_map * em)1142 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1143 {
1144 	struct extent_map *next;
1145 	bool ret = true;
1146 
1147 	/* this is the last extent */
1148 	if (em->start + em->len >= i_size_read(inode))
1149 		return false;
1150 
1151 	next = defrag_lookup_extent(inode, em->start + em->len);
1152 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1153 		ret = false;
1154 	else if ((em->block_start + em->block_len == next->block_start) &&
1155 		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1156 		ret = false;
1157 
1158 	free_extent_map(next);
1159 	return ret;
1160 }
1161 
should_defrag_range(struct inode * inode,u64 start,u32 thresh,u64 * last_len,u64 * skip,u64 * defrag_end,int compress)1162 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1163 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1164 			       int compress)
1165 {
1166 	struct extent_map *em;
1167 	int ret = 1;
1168 	bool next_mergeable = true;
1169 	bool prev_mergeable = true;
1170 
1171 	/*
1172 	 * make sure that once we start defragging an extent, we keep on
1173 	 * defragging it
1174 	 */
1175 	if (start < *defrag_end)
1176 		return 1;
1177 
1178 	*skip = 0;
1179 
1180 	em = defrag_lookup_extent(inode, start);
1181 	if (!em)
1182 		return 0;
1183 
1184 	/* this will cover holes, and inline extents */
1185 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1186 		ret = 0;
1187 		goto out;
1188 	}
1189 
1190 	if (!*defrag_end)
1191 		prev_mergeable = false;
1192 
1193 	next_mergeable = defrag_check_next_extent(inode, em);
1194 	/*
1195 	 * we hit a real extent, if it is big or the next extent is not a
1196 	 * real extent, don't bother defragging it
1197 	 */
1198 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1199 	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1200 		ret = 0;
1201 out:
1202 	/*
1203 	 * last_len ends up being a counter of how many bytes we've defragged.
1204 	 * every time we choose not to defrag an extent, we reset *last_len
1205 	 * so that the next tiny extent will force a defrag.
1206 	 *
1207 	 * The end result of this is that tiny extents before a single big
1208 	 * extent will force at least part of that big extent to be defragged.
1209 	 */
1210 	if (ret) {
1211 		*defrag_end = extent_map_end(em);
1212 	} else {
1213 		*last_len = 0;
1214 		*skip = extent_map_end(em);
1215 		*defrag_end = 0;
1216 	}
1217 
1218 	free_extent_map(em);
1219 	return ret;
1220 }
1221 
1222 /*
1223  * it doesn't do much good to defrag one or two pages
1224  * at a time.  This pulls in a nice chunk of pages
1225  * to COW and defrag.
1226  *
1227  * It also makes sure the delalloc code has enough
1228  * dirty data to avoid making new small extents as part
1229  * of the defrag
1230  *
1231  * It's a good idea to start RA on this range
1232  * before calling this.
1233  */
cluster_pages_for_defrag(struct inode * inode,struct page ** pages,unsigned long start_index,unsigned long num_pages)1234 static int cluster_pages_for_defrag(struct inode *inode,
1235 				    struct page **pages,
1236 				    unsigned long start_index,
1237 				    unsigned long num_pages)
1238 {
1239 	unsigned long file_end;
1240 	u64 isize = i_size_read(inode);
1241 	u64 page_start;
1242 	u64 page_end;
1243 	u64 page_cnt;
1244 	int ret;
1245 	int i;
1246 	int i_done;
1247 	struct btrfs_ordered_extent *ordered;
1248 	struct extent_state *cached_state = NULL;
1249 	struct extent_io_tree *tree;
1250 	struct extent_changeset *data_reserved = NULL;
1251 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1252 
1253 	file_end = (isize - 1) >> PAGE_SHIFT;
1254 	if (!isize || start_index > file_end)
1255 		return 0;
1256 
1257 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1258 
1259 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
1260 			start_index << PAGE_SHIFT,
1261 			page_cnt << PAGE_SHIFT);
1262 	if (ret)
1263 		return ret;
1264 	i_done = 0;
1265 	tree = &BTRFS_I(inode)->io_tree;
1266 
1267 	/* step one, lock all the pages */
1268 	for (i = 0; i < page_cnt; i++) {
1269 		struct page *page;
1270 again:
1271 		page = find_or_create_page(inode->i_mapping,
1272 					   start_index + i, mask);
1273 		if (!page)
1274 			break;
1275 
1276 		page_start = page_offset(page);
1277 		page_end = page_start + PAGE_SIZE - 1;
1278 		while (1) {
1279 			lock_extent_bits(tree, page_start, page_end,
1280 					 &cached_state);
1281 			ordered = btrfs_lookup_ordered_extent(inode,
1282 							      page_start);
1283 			unlock_extent_cached(tree, page_start, page_end,
1284 					     &cached_state);
1285 			if (!ordered)
1286 				break;
1287 
1288 			unlock_page(page);
1289 			btrfs_start_ordered_extent(inode, ordered, 1);
1290 			btrfs_put_ordered_extent(ordered);
1291 			lock_page(page);
1292 			/*
1293 			 * we unlocked the page above, so we need check if
1294 			 * it was released or not.
1295 			 */
1296 			if (page->mapping != inode->i_mapping) {
1297 				unlock_page(page);
1298 				put_page(page);
1299 				goto again;
1300 			}
1301 		}
1302 
1303 		if (!PageUptodate(page)) {
1304 			btrfs_readpage(NULL, page);
1305 			lock_page(page);
1306 			if (!PageUptodate(page)) {
1307 				unlock_page(page);
1308 				put_page(page);
1309 				ret = -EIO;
1310 				break;
1311 			}
1312 		}
1313 
1314 		if (page->mapping != inode->i_mapping) {
1315 			unlock_page(page);
1316 			put_page(page);
1317 			goto again;
1318 		}
1319 
1320 		pages[i] = page;
1321 		i_done++;
1322 	}
1323 	if (!i_done || ret)
1324 		goto out;
1325 
1326 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
1327 		goto out;
1328 
1329 	/*
1330 	 * so now we have a nice long stream of locked
1331 	 * and up to date pages, lets wait on them
1332 	 */
1333 	for (i = 0; i < i_done; i++)
1334 		wait_on_page_writeback(pages[i]);
1335 
1336 	page_start = page_offset(pages[0]);
1337 	page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1338 
1339 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1340 			 page_start, page_end - 1, &cached_state);
1341 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1342 			  page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1343 			  EXTENT_DEFRAG, 0, 0, &cached_state);
1344 
1345 	if (i_done != page_cnt) {
1346 		spin_lock(&BTRFS_I(inode)->lock);
1347 		btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1348 		spin_unlock(&BTRFS_I(inode)->lock);
1349 		btrfs_delalloc_release_space(inode, data_reserved,
1350 				start_index << PAGE_SHIFT,
1351 				(page_cnt - i_done) << PAGE_SHIFT, true);
1352 	}
1353 
1354 
1355 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1356 			  &cached_state);
1357 
1358 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1359 			     page_start, page_end - 1, &cached_state);
1360 
1361 	for (i = 0; i < i_done; i++) {
1362 		clear_page_dirty_for_io(pages[i]);
1363 		ClearPageChecked(pages[i]);
1364 		set_page_extent_mapped(pages[i]);
1365 		set_page_dirty(pages[i]);
1366 		unlock_page(pages[i]);
1367 		put_page(pages[i]);
1368 	}
1369 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1370 	extent_changeset_free(data_reserved);
1371 	return i_done;
1372 out:
1373 	for (i = 0; i < i_done; i++) {
1374 		unlock_page(pages[i]);
1375 		put_page(pages[i]);
1376 	}
1377 	btrfs_delalloc_release_space(inode, data_reserved,
1378 			start_index << PAGE_SHIFT,
1379 			page_cnt << PAGE_SHIFT, true);
1380 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1381 	extent_changeset_free(data_reserved);
1382 	return ret;
1383 
1384 }
1385 
btrfs_defrag_file(struct inode * inode,struct file * file,struct btrfs_ioctl_defrag_range_args * range,u64 newer_than,unsigned long max_to_defrag)1386 int btrfs_defrag_file(struct inode *inode, struct file *file,
1387 		      struct btrfs_ioctl_defrag_range_args *range,
1388 		      u64 newer_than, unsigned long max_to_defrag)
1389 {
1390 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1391 	struct btrfs_root *root = BTRFS_I(inode)->root;
1392 	struct file_ra_state *ra = NULL;
1393 	unsigned long last_index;
1394 	u64 isize = i_size_read(inode);
1395 	u64 last_len = 0;
1396 	u64 skip = 0;
1397 	u64 defrag_end = 0;
1398 	u64 newer_off = range->start;
1399 	unsigned long i;
1400 	unsigned long ra_index = 0;
1401 	int ret;
1402 	int defrag_count = 0;
1403 	int compress_type = BTRFS_COMPRESS_ZLIB;
1404 	u32 extent_thresh = range->extent_thresh;
1405 	unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1406 	unsigned long cluster = max_cluster;
1407 	u64 new_align = ~((u64)SZ_128K - 1);
1408 	struct page **pages = NULL;
1409 	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1410 
1411 	if (isize == 0)
1412 		return 0;
1413 
1414 	if (range->start >= isize)
1415 		return -EINVAL;
1416 
1417 	if (do_compress) {
1418 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1419 			return -EINVAL;
1420 		if (range->compress_type)
1421 			compress_type = range->compress_type;
1422 	}
1423 
1424 	if (extent_thresh == 0)
1425 		extent_thresh = SZ_256K;
1426 
1427 	/*
1428 	 * If we were not given a file, allocate a readahead context. As
1429 	 * readahead is just an optimization, defrag will work without it so
1430 	 * we don't error out.
1431 	 */
1432 	if (!file) {
1433 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1434 		if (ra)
1435 			file_ra_state_init(ra, inode->i_mapping);
1436 	} else {
1437 		ra = &file->f_ra;
1438 	}
1439 
1440 	pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1441 	if (!pages) {
1442 		ret = -ENOMEM;
1443 		goto out_ra;
1444 	}
1445 
1446 	/* find the last page to defrag */
1447 	if (range->start + range->len > range->start) {
1448 		last_index = min_t(u64, isize - 1,
1449 			 range->start + range->len - 1) >> PAGE_SHIFT;
1450 	} else {
1451 		last_index = (isize - 1) >> PAGE_SHIFT;
1452 	}
1453 
1454 	if (newer_than) {
1455 		ret = find_new_extents(root, inode, newer_than,
1456 				       &newer_off, SZ_64K);
1457 		if (!ret) {
1458 			range->start = newer_off;
1459 			/*
1460 			 * we always align our defrag to help keep
1461 			 * the extents in the file evenly spaced
1462 			 */
1463 			i = (newer_off & new_align) >> PAGE_SHIFT;
1464 		} else
1465 			goto out_ra;
1466 	} else {
1467 		i = range->start >> PAGE_SHIFT;
1468 	}
1469 	if (!max_to_defrag)
1470 		max_to_defrag = last_index - i + 1;
1471 
1472 	/*
1473 	 * make writeback starts from i, so the defrag range can be
1474 	 * written sequentially.
1475 	 */
1476 	if (i < inode->i_mapping->writeback_index)
1477 		inode->i_mapping->writeback_index = i;
1478 
1479 	while (i <= last_index && defrag_count < max_to_defrag &&
1480 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1481 		/*
1482 		 * make sure we stop running if someone unmounts
1483 		 * the FS
1484 		 */
1485 		if (!(inode->i_sb->s_flags & SB_ACTIVE))
1486 			break;
1487 
1488 		if (btrfs_defrag_cancelled(fs_info)) {
1489 			btrfs_debug(fs_info, "defrag_file cancelled");
1490 			ret = -EAGAIN;
1491 			break;
1492 		}
1493 
1494 		if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1495 					 extent_thresh, &last_len, &skip,
1496 					 &defrag_end, do_compress)){
1497 			unsigned long next;
1498 			/*
1499 			 * the should_defrag function tells us how much to skip
1500 			 * bump our counter by the suggested amount
1501 			 */
1502 			next = DIV_ROUND_UP(skip, PAGE_SIZE);
1503 			i = max(i + 1, next);
1504 			continue;
1505 		}
1506 
1507 		if (!newer_than) {
1508 			cluster = (PAGE_ALIGN(defrag_end) >>
1509 				   PAGE_SHIFT) - i;
1510 			cluster = min(cluster, max_cluster);
1511 		} else {
1512 			cluster = max_cluster;
1513 		}
1514 
1515 		if (i + cluster > ra_index) {
1516 			ra_index = max(i, ra_index);
1517 			if (ra)
1518 				page_cache_sync_readahead(inode->i_mapping, ra,
1519 						file, ra_index, cluster);
1520 			ra_index += cluster;
1521 		}
1522 
1523 		inode_lock(inode);
1524 		if (IS_SWAPFILE(inode)) {
1525 			ret = -ETXTBSY;
1526 		} else {
1527 			if (do_compress)
1528 				BTRFS_I(inode)->defrag_compress = compress_type;
1529 			ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1530 		}
1531 		if (ret < 0) {
1532 			inode_unlock(inode);
1533 			goto out_ra;
1534 		}
1535 
1536 		defrag_count += ret;
1537 		balance_dirty_pages_ratelimited(inode->i_mapping);
1538 		inode_unlock(inode);
1539 
1540 		if (newer_than) {
1541 			if (newer_off == (u64)-1)
1542 				break;
1543 
1544 			if (ret > 0)
1545 				i += ret;
1546 
1547 			newer_off = max(newer_off + 1,
1548 					(u64)i << PAGE_SHIFT);
1549 
1550 			ret = find_new_extents(root, inode, newer_than,
1551 					       &newer_off, SZ_64K);
1552 			if (!ret) {
1553 				range->start = newer_off;
1554 				i = (newer_off & new_align) >> PAGE_SHIFT;
1555 			} else {
1556 				break;
1557 			}
1558 		} else {
1559 			if (ret > 0) {
1560 				i += ret;
1561 				last_len += ret << PAGE_SHIFT;
1562 			} else {
1563 				i++;
1564 				last_len = 0;
1565 			}
1566 		}
1567 	}
1568 
1569 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1570 		filemap_flush(inode->i_mapping);
1571 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1572 			     &BTRFS_I(inode)->runtime_flags))
1573 			filemap_flush(inode->i_mapping);
1574 	}
1575 
1576 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1577 		btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1578 	} else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1579 		btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1580 	}
1581 
1582 	ret = defrag_count;
1583 
1584 out_ra:
1585 	if (do_compress) {
1586 		inode_lock(inode);
1587 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1588 		inode_unlock(inode);
1589 	}
1590 	if (!file)
1591 		kfree(ra);
1592 	kfree(pages);
1593 	return ret;
1594 }
1595 
btrfs_ioctl_resize(struct file * file,void __user * arg)1596 static noinline int btrfs_ioctl_resize(struct file *file,
1597 					void __user *arg)
1598 {
1599 	struct inode *inode = file_inode(file);
1600 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1601 	u64 new_size;
1602 	u64 old_size;
1603 	u64 devid = 1;
1604 	struct btrfs_root *root = BTRFS_I(inode)->root;
1605 	struct btrfs_ioctl_vol_args *vol_args;
1606 	struct btrfs_trans_handle *trans;
1607 	struct btrfs_device *device = NULL;
1608 	char *sizestr;
1609 	char *retptr;
1610 	char *devstr = NULL;
1611 	int ret = 0;
1612 	int mod = 0;
1613 
1614 	if (!capable(CAP_SYS_ADMIN))
1615 		return -EPERM;
1616 
1617 	ret = mnt_want_write_file(file);
1618 	if (ret)
1619 		return ret;
1620 
1621 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
1622 		mnt_drop_write_file(file);
1623 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1624 	}
1625 
1626 	vol_args = memdup_user(arg, sizeof(*vol_args));
1627 	if (IS_ERR(vol_args)) {
1628 		ret = PTR_ERR(vol_args);
1629 		goto out;
1630 	}
1631 
1632 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1633 
1634 	sizestr = vol_args->name;
1635 	devstr = strchr(sizestr, ':');
1636 	if (devstr) {
1637 		sizestr = devstr + 1;
1638 		*devstr = '\0';
1639 		devstr = vol_args->name;
1640 		ret = kstrtoull(devstr, 10, &devid);
1641 		if (ret)
1642 			goto out_free;
1643 		if (!devid) {
1644 			ret = -EINVAL;
1645 			goto out_free;
1646 		}
1647 		btrfs_info(fs_info, "resizing devid %llu", devid);
1648 	}
1649 
1650 	device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
1651 	if (!device) {
1652 		btrfs_info(fs_info, "resizer unable to find device %llu",
1653 			   devid);
1654 		ret = -ENODEV;
1655 		goto out_free;
1656 	}
1657 
1658 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1659 		btrfs_info(fs_info,
1660 			   "resizer unable to apply on readonly device %llu",
1661 		       devid);
1662 		ret = -EPERM;
1663 		goto out_free;
1664 	}
1665 
1666 	if (!strcmp(sizestr, "max"))
1667 		new_size = device->bdev->bd_inode->i_size;
1668 	else {
1669 		if (sizestr[0] == '-') {
1670 			mod = -1;
1671 			sizestr++;
1672 		} else if (sizestr[0] == '+') {
1673 			mod = 1;
1674 			sizestr++;
1675 		}
1676 		new_size = memparse(sizestr, &retptr);
1677 		if (*retptr != '\0' || new_size == 0) {
1678 			ret = -EINVAL;
1679 			goto out_free;
1680 		}
1681 	}
1682 
1683 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1684 		ret = -EPERM;
1685 		goto out_free;
1686 	}
1687 
1688 	old_size = btrfs_device_get_total_bytes(device);
1689 
1690 	if (mod < 0) {
1691 		if (new_size > old_size) {
1692 			ret = -EINVAL;
1693 			goto out_free;
1694 		}
1695 		new_size = old_size - new_size;
1696 	} else if (mod > 0) {
1697 		if (new_size > ULLONG_MAX - old_size) {
1698 			ret = -ERANGE;
1699 			goto out_free;
1700 		}
1701 		new_size = old_size + new_size;
1702 	}
1703 
1704 	if (new_size < SZ_256M) {
1705 		ret = -EINVAL;
1706 		goto out_free;
1707 	}
1708 	if (new_size > device->bdev->bd_inode->i_size) {
1709 		ret = -EFBIG;
1710 		goto out_free;
1711 	}
1712 
1713 	new_size = round_down(new_size, fs_info->sectorsize);
1714 
1715 	btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1716 			  rcu_str_deref(device->name), new_size);
1717 
1718 	if (new_size > old_size) {
1719 		trans = btrfs_start_transaction(root, 0);
1720 		if (IS_ERR(trans)) {
1721 			ret = PTR_ERR(trans);
1722 			goto out_free;
1723 		}
1724 		ret = btrfs_grow_device(trans, device, new_size);
1725 		btrfs_commit_transaction(trans);
1726 	} else if (new_size < old_size) {
1727 		ret = btrfs_shrink_device(device, new_size);
1728 	} /* equal, nothing need to do */
1729 
1730 out_free:
1731 	kfree(vol_args);
1732 out:
1733 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
1734 	mnt_drop_write_file(file);
1735 	return ret;
1736 }
1737 
btrfs_ioctl_snap_create_transid(struct file * file,const char * name,unsigned long fd,int subvol,u64 * transid,bool readonly,struct btrfs_qgroup_inherit * inherit)1738 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1739 				const char *name, unsigned long fd, int subvol,
1740 				u64 *transid, bool readonly,
1741 				struct btrfs_qgroup_inherit *inherit)
1742 {
1743 	int namelen;
1744 	int ret = 0;
1745 
1746 	if (!S_ISDIR(file_inode(file)->i_mode))
1747 		return -ENOTDIR;
1748 
1749 	ret = mnt_want_write_file(file);
1750 	if (ret)
1751 		goto out;
1752 
1753 	namelen = strlen(name);
1754 	if (strchr(name, '/')) {
1755 		ret = -EINVAL;
1756 		goto out_drop_write;
1757 	}
1758 
1759 	if (name[0] == '.' &&
1760 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1761 		ret = -EEXIST;
1762 		goto out_drop_write;
1763 	}
1764 
1765 	if (subvol) {
1766 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1767 				     NULL, transid, readonly, inherit);
1768 	} else {
1769 		struct fd src = fdget(fd);
1770 		struct inode *src_inode;
1771 		if (!src.file) {
1772 			ret = -EINVAL;
1773 			goto out_drop_write;
1774 		}
1775 
1776 		src_inode = file_inode(src.file);
1777 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1778 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1779 				   "Snapshot src from another FS");
1780 			ret = -EXDEV;
1781 		} else if (!inode_owner_or_capable(src_inode)) {
1782 			/*
1783 			 * Subvolume creation is not restricted, but snapshots
1784 			 * are limited to own subvolumes only
1785 			 */
1786 			ret = -EPERM;
1787 		} else {
1788 			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1789 					     BTRFS_I(src_inode)->root,
1790 					     transid, readonly, inherit);
1791 		}
1792 		fdput(src);
1793 	}
1794 out_drop_write:
1795 	mnt_drop_write_file(file);
1796 out:
1797 	return ret;
1798 }
1799 
btrfs_ioctl_snap_create(struct file * file,void __user * arg,int subvol)1800 static noinline int btrfs_ioctl_snap_create(struct file *file,
1801 					    void __user *arg, int subvol)
1802 {
1803 	struct btrfs_ioctl_vol_args *vol_args;
1804 	int ret;
1805 
1806 	if (!S_ISDIR(file_inode(file)->i_mode))
1807 		return -ENOTDIR;
1808 
1809 	vol_args = memdup_user(arg, sizeof(*vol_args));
1810 	if (IS_ERR(vol_args))
1811 		return PTR_ERR(vol_args);
1812 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1813 
1814 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1815 					      vol_args->fd, subvol,
1816 					      NULL, false, NULL);
1817 
1818 	kfree(vol_args);
1819 	return ret;
1820 }
1821 
btrfs_ioctl_snap_create_v2(struct file * file,void __user * arg,int subvol)1822 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1823 					       void __user *arg, int subvol)
1824 {
1825 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1826 	int ret;
1827 	u64 transid = 0;
1828 	u64 *ptr = NULL;
1829 	bool readonly = false;
1830 	struct btrfs_qgroup_inherit *inherit = NULL;
1831 
1832 	if (!S_ISDIR(file_inode(file)->i_mode))
1833 		return -ENOTDIR;
1834 
1835 	vol_args = memdup_user(arg, sizeof(*vol_args));
1836 	if (IS_ERR(vol_args))
1837 		return PTR_ERR(vol_args);
1838 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1839 
1840 	if (vol_args->flags &
1841 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1842 	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1843 		ret = -EOPNOTSUPP;
1844 		goto free_args;
1845 	}
1846 
1847 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1848 		struct inode *inode = file_inode(file);
1849 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1850 
1851 		btrfs_warn(fs_info,
1852 "SNAP_CREATE_V2 ioctl with CREATE_ASYNC is deprecated and will be removed in kernel 5.7");
1853 
1854 		ptr = &transid;
1855 	}
1856 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1857 		readonly = true;
1858 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1859 		if (vol_args->size > PAGE_SIZE) {
1860 			ret = -EINVAL;
1861 			goto free_args;
1862 		}
1863 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1864 		if (IS_ERR(inherit)) {
1865 			ret = PTR_ERR(inherit);
1866 			goto free_args;
1867 		}
1868 	}
1869 
1870 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1871 					      vol_args->fd, subvol, ptr,
1872 					      readonly, inherit);
1873 	if (ret)
1874 		goto free_inherit;
1875 
1876 	if (ptr && copy_to_user(arg +
1877 				offsetof(struct btrfs_ioctl_vol_args_v2,
1878 					transid),
1879 				ptr, sizeof(*ptr)))
1880 		ret = -EFAULT;
1881 
1882 free_inherit:
1883 	kfree(inherit);
1884 free_args:
1885 	kfree(vol_args);
1886 	return ret;
1887 }
1888 
btrfs_ioctl_subvol_getflags(struct file * file,void __user * arg)1889 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1890 						void __user *arg)
1891 {
1892 	struct inode *inode = file_inode(file);
1893 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1894 	struct btrfs_root *root = BTRFS_I(inode)->root;
1895 	int ret = 0;
1896 	u64 flags = 0;
1897 
1898 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1899 		return -EINVAL;
1900 
1901 	down_read(&fs_info->subvol_sem);
1902 	if (btrfs_root_readonly(root))
1903 		flags |= BTRFS_SUBVOL_RDONLY;
1904 	up_read(&fs_info->subvol_sem);
1905 
1906 	if (copy_to_user(arg, &flags, sizeof(flags)))
1907 		ret = -EFAULT;
1908 
1909 	return ret;
1910 }
1911 
btrfs_ioctl_subvol_setflags(struct file * file,void __user * arg)1912 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1913 					      void __user *arg)
1914 {
1915 	struct inode *inode = file_inode(file);
1916 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1917 	struct btrfs_root *root = BTRFS_I(inode)->root;
1918 	struct btrfs_trans_handle *trans;
1919 	u64 root_flags;
1920 	u64 flags;
1921 	int ret = 0;
1922 
1923 	if (!inode_owner_or_capable(inode))
1924 		return -EPERM;
1925 
1926 	ret = mnt_want_write_file(file);
1927 	if (ret)
1928 		goto out;
1929 
1930 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1931 		ret = -EINVAL;
1932 		goto out_drop_write;
1933 	}
1934 
1935 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1936 		ret = -EFAULT;
1937 		goto out_drop_write;
1938 	}
1939 
1940 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1941 		ret = -EINVAL;
1942 		goto out_drop_write;
1943 	}
1944 
1945 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1946 		ret = -EOPNOTSUPP;
1947 		goto out_drop_write;
1948 	}
1949 
1950 	down_write(&fs_info->subvol_sem);
1951 
1952 	/* nothing to do */
1953 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1954 		goto out_drop_sem;
1955 
1956 	root_flags = btrfs_root_flags(&root->root_item);
1957 	if (flags & BTRFS_SUBVOL_RDONLY) {
1958 		btrfs_set_root_flags(&root->root_item,
1959 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1960 	} else {
1961 		/*
1962 		 * Block RO -> RW transition if this subvolume is involved in
1963 		 * send
1964 		 */
1965 		spin_lock(&root->root_item_lock);
1966 		if (root->send_in_progress == 0) {
1967 			btrfs_set_root_flags(&root->root_item,
1968 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1969 			spin_unlock(&root->root_item_lock);
1970 		} else {
1971 			spin_unlock(&root->root_item_lock);
1972 			btrfs_warn(fs_info,
1973 				   "Attempt to set subvolume %llu read-write during send",
1974 				   root->root_key.objectid);
1975 			ret = -EPERM;
1976 			goto out_drop_sem;
1977 		}
1978 	}
1979 
1980 	trans = btrfs_start_transaction(root, 1);
1981 	if (IS_ERR(trans)) {
1982 		ret = PTR_ERR(trans);
1983 		goto out_reset;
1984 	}
1985 
1986 	ret = btrfs_update_root(trans, fs_info->tree_root,
1987 				&root->root_key, &root->root_item);
1988 	if (ret < 0) {
1989 		btrfs_end_transaction(trans);
1990 		goto out_reset;
1991 	}
1992 
1993 	ret = btrfs_commit_transaction(trans);
1994 
1995 out_reset:
1996 	if (ret)
1997 		btrfs_set_root_flags(&root->root_item, root_flags);
1998 out_drop_sem:
1999 	up_write(&fs_info->subvol_sem);
2000 out_drop_write:
2001 	mnt_drop_write_file(file);
2002 out:
2003 	return ret;
2004 }
2005 
key_in_sk(struct btrfs_key * key,struct btrfs_ioctl_search_key * sk)2006 static noinline int key_in_sk(struct btrfs_key *key,
2007 			      struct btrfs_ioctl_search_key *sk)
2008 {
2009 	struct btrfs_key test;
2010 	int ret;
2011 
2012 	test.objectid = sk->min_objectid;
2013 	test.type = sk->min_type;
2014 	test.offset = sk->min_offset;
2015 
2016 	ret = btrfs_comp_cpu_keys(key, &test);
2017 	if (ret < 0)
2018 		return 0;
2019 
2020 	test.objectid = sk->max_objectid;
2021 	test.type = sk->max_type;
2022 	test.offset = sk->max_offset;
2023 
2024 	ret = btrfs_comp_cpu_keys(key, &test);
2025 	if (ret > 0)
2026 		return 0;
2027 	return 1;
2028 }
2029 
copy_to_sk(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_ioctl_search_key * sk,size_t * buf_size,char __user * ubuf,unsigned long * sk_offset,int * num_found)2030 static noinline int copy_to_sk(struct btrfs_path *path,
2031 			       struct btrfs_key *key,
2032 			       struct btrfs_ioctl_search_key *sk,
2033 			       size_t *buf_size,
2034 			       char __user *ubuf,
2035 			       unsigned long *sk_offset,
2036 			       int *num_found)
2037 {
2038 	u64 found_transid;
2039 	struct extent_buffer *leaf;
2040 	struct btrfs_ioctl_search_header sh;
2041 	struct btrfs_key test;
2042 	unsigned long item_off;
2043 	unsigned long item_len;
2044 	int nritems;
2045 	int i;
2046 	int slot;
2047 	int ret = 0;
2048 
2049 	leaf = path->nodes[0];
2050 	slot = path->slots[0];
2051 	nritems = btrfs_header_nritems(leaf);
2052 
2053 	if (btrfs_header_generation(leaf) > sk->max_transid) {
2054 		i = nritems;
2055 		goto advance_key;
2056 	}
2057 	found_transid = btrfs_header_generation(leaf);
2058 
2059 	for (i = slot; i < nritems; i++) {
2060 		item_off = btrfs_item_ptr_offset(leaf, i);
2061 		item_len = btrfs_item_size_nr(leaf, i);
2062 
2063 		btrfs_item_key_to_cpu(leaf, key, i);
2064 		if (!key_in_sk(key, sk))
2065 			continue;
2066 
2067 		if (sizeof(sh) + item_len > *buf_size) {
2068 			if (*num_found) {
2069 				ret = 1;
2070 				goto out;
2071 			}
2072 
2073 			/*
2074 			 * return one empty item back for v1, which does not
2075 			 * handle -EOVERFLOW
2076 			 */
2077 
2078 			*buf_size = sizeof(sh) + item_len;
2079 			item_len = 0;
2080 			ret = -EOVERFLOW;
2081 		}
2082 
2083 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2084 			ret = 1;
2085 			goto out;
2086 		}
2087 
2088 		sh.objectid = key->objectid;
2089 		sh.offset = key->offset;
2090 		sh.type = key->type;
2091 		sh.len = item_len;
2092 		sh.transid = found_transid;
2093 
2094 		/* copy search result header */
2095 		if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2096 			ret = -EFAULT;
2097 			goto out;
2098 		}
2099 
2100 		*sk_offset += sizeof(sh);
2101 
2102 		if (item_len) {
2103 			char __user *up = ubuf + *sk_offset;
2104 			/* copy the item */
2105 			if (read_extent_buffer_to_user(leaf, up,
2106 						       item_off, item_len)) {
2107 				ret = -EFAULT;
2108 				goto out;
2109 			}
2110 
2111 			*sk_offset += item_len;
2112 		}
2113 		(*num_found)++;
2114 
2115 		if (ret) /* -EOVERFLOW from above */
2116 			goto out;
2117 
2118 		if (*num_found >= sk->nr_items) {
2119 			ret = 1;
2120 			goto out;
2121 		}
2122 	}
2123 advance_key:
2124 	ret = 0;
2125 	test.objectid = sk->max_objectid;
2126 	test.type = sk->max_type;
2127 	test.offset = sk->max_offset;
2128 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2129 		ret = 1;
2130 	else if (key->offset < (u64)-1)
2131 		key->offset++;
2132 	else if (key->type < (u8)-1) {
2133 		key->offset = 0;
2134 		key->type++;
2135 	} else if (key->objectid < (u64)-1) {
2136 		key->offset = 0;
2137 		key->type = 0;
2138 		key->objectid++;
2139 	} else
2140 		ret = 1;
2141 out:
2142 	/*
2143 	 *  0: all items from this leaf copied, continue with next
2144 	 *  1: * more items can be copied, but unused buffer is too small
2145 	 *     * all items were found
2146 	 *     Either way, it will stops the loop which iterates to the next
2147 	 *     leaf
2148 	 *  -EOVERFLOW: item was to large for buffer
2149 	 *  -EFAULT: could not copy extent buffer back to userspace
2150 	 */
2151 	return ret;
2152 }
2153 
search_ioctl(struct inode * inode,struct btrfs_ioctl_search_key * sk,size_t * buf_size,char __user * ubuf)2154 static noinline int search_ioctl(struct inode *inode,
2155 				 struct btrfs_ioctl_search_key *sk,
2156 				 size_t *buf_size,
2157 				 char __user *ubuf)
2158 {
2159 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2160 	struct btrfs_root *root;
2161 	struct btrfs_key key;
2162 	struct btrfs_path *path;
2163 	int ret;
2164 	int num_found = 0;
2165 	unsigned long sk_offset = 0;
2166 
2167 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2168 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2169 		return -EOVERFLOW;
2170 	}
2171 
2172 	path = btrfs_alloc_path();
2173 	if (!path)
2174 		return -ENOMEM;
2175 
2176 	if (sk->tree_id == 0) {
2177 		/* search the root of the inode that was passed */
2178 		root = BTRFS_I(inode)->root;
2179 	} else {
2180 		key.objectid = sk->tree_id;
2181 		key.type = BTRFS_ROOT_ITEM_KEY;
2182 		key.offset = (u64)-1;
2183 		root = btrfs_read_fs_root_no_name(info, &key);
2184 		if (IS_ERR(root)) {
2185 			btrfs_free_path(path);
2186 			return PTR_ERR(root);
2187 		}
2188 	}
2189 
2190 	key.objectid = sk->min_objectid;
2191 	key.type = sk->min_type;
2192 	key.offset = sk->min_offset;
2193 
2194 	while (1) {
2195 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2196 		if (ret != 0) {
2197 			if (ret > 0)
2198 				ret = 0;
2199 			goto err;
2200 		}
2201 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2202 				 &sk_offset, &num_found);
2203 		btrfs_release_path(path);
2204 		if (ret)
2205 			break;
2206 
2207 	}
2208 	if (ret > 0)
2209 		ret = 0;
2210 err:
2211 	sk->nr_items = num_found;
2212 	btrfs_free_path(path);
2213 	return ret;
2214 }
2215 
btrfs_ioctl_tree_search(struct file * file,void __user * argp)2216 static noinline int btrfs_ioctl_tree_search(struct file *file,
2217 					   void __user *argp)
2218 {
2219 	struct btrfs_ioctl_search_args __user *uargs;
2220 	struct btrfs_ioctl_search_key sk;
2221 	struct inode *inode;
2222 	int ret;
2223 	size_t buf_size;
2224 
2225 	if (!capable(CAP_SYS_ADMIN))
2226 		return -EPERM;
2227 
2228 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2229 
2230 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2231 		return -EFAULT;
2232 
2233 	buf_size = sizeof(uargs->buf);
2234 
2235 	inode = file_inode(file);
2236 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2237 
2238 	/*
2239 	 * In the origin implementation an overflow is handled by returning a
2240 	 * search header with a len of zero, so reset ret.
2241 	 */
2242 	if (ret == -EOVERFLOW)
2243 		ret = 0;
2244 
2245 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2246 		ret = -EFAULT;
2247 	return ret;
2248 }
2249 
btrfs_ioctl_tree_search_v2(struct file * file,void __user * argp)2250 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2251 					       void __user *argp)
2252 {
2253 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2254 	struct btrfs_ioctl_search_args_v2 args;
2255 	struct inode *inode;
2256 	int ret;
2257 	size_t buf_size;
2258 	const size_t buf_limit = SZ_16M;
2259 
2260 	if (!capable(CAP_SYS_ADMIN))
2261 		return -EPERM;
2262 
2263 	/* copy search header and buffer size */
2264 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2265 	if (copy_from_user(&args, uarg, sizeof(args)))
2266 		return -EFAULT;
2267 
2268 	buf_size = args.buf_size;
2269 
2270 	/* limit result size to 16MB */
2271 	if (buf_size > buf_limit)
2272 		buf_size = buf_limit;
2273 
2274 	inode = file_inode(file);
2275 	ret = search_ioctl(inode, &args.key, &buf_size,
2276 			   (char __user *)(&uarg->buf[0]));
2277 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2278 		ret = -EFAULT;
2279 	else if (ret == -EOVERFLOW &&
2280 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2281 		ret = -EFAULT;
2282 
2283 	return ret;
2284 }
2285 
2286 /*
2287  * Search INODE_REFs to identify path name of 'dirid' directory
2288  * in a 'tree_id' tree. and sets path name to 'name'.
2289  */
btrfs_search_path_in_tree(struct btrfs_fs_info * info,u64 tree_id,u64 dirid,char * name)2290 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2291 				u64 tree_id, u64 dirid, char *name)
2292 {
2293 	struct btrfs_root *root;
2294 	struct btrfs_key key;
2295 	char *ptr;
2296 	int ret = -1;
2297 	int slot;
2298 	int len;
2299 	int total_len = 0;
2300 	struct btrfs_inode_ref *iref;
2301 	struct extent_buffer *l;
2302 	struct btrfs_path *path;
2303 
2304 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2305 		name[0]='\0';
2306 		return 0;
2307 	}
2308 
2309 	path = btrfs_alloc_path();
2310 	if (!path)
2311 		return -ENOMEM;
2312 
2313 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2314 
2315 	key.objectid = tree_id;
2316 	key.type = BTRFS_ROOT_ITEM_KEY;
2317 	key.offset = (u64)-1;
2318 	root = btrfs_read_fs_root_no_name(info, &key);
2319 	if (IS_ERR(root)) {
2320 		ret = PTR_ERR(root);
2321 		goto out;
2322 	}
2323 
2324 	key.objectid = dirid;
2325 	key.type = BTRFS_INODE_REF_KEY;
2326 	key.offset = (u64)-1;
2327 
2328 	while (1) {
2329 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2330 		if (ret < 0)
2331 			goto out;
2332 		else if (ret > 0) {
2333 			ret = btrfs_previous_item(root, path, dirid,
2334 						  BTRFS_INODE_REF_KEY);
2335 			if (ret < 0)
2336 				goto out;
2337 			else if (ret > 0) {
2338 				ret = -ENOENT;
2339 				goto out;
2340 			}
2341 		}
2342 
2343 		l = path->nodes[0];
2344 		slot = path->slots[0];
2345 		btrfs_item_key_to_cpu(l, &key, slot);
2346 
2347 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2348 		len = btrfs_inode_ref_name_len(l, iref);
2349 		ptr -= len + 1;
2350 		total_len += len + 1;
2351 		if (ptr < name) {
2352 			ret = -ENAMETOOLONG;
2353 			goto out;
2354 		}
2355 
2356 		*(ptr + len) = '/';
2357 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2358 
2359 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2360 			break;
2361 
2362 		btrfs_release_path(path);
2363 		key.objectid = key.offset;
2364 		key.offset = (u64)-1;
2365 		dirid = key.objectid;
2366 	}
2367 	memmove(name, ptr, total_len);
2368 	name[total_len] = '\0';
2369 	ret = 0;
2370 out:
2371 	btrfs_free_path(path);
2372 	return ret;
2373 }
2374 
btrfs_search_path_in_tree_user(struct inode * inode,struct btrfs_ioctl_ino_lookup_user_args * args)2375 static int btrfs_search_path_in_tree_user(struct inode *inode,
2376 				struct btrfs_ioctl_ino_lookup_user_args *args)
2377 {
2378 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2379 	struct super_block *sb = inode->i_sb;
2380 	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2381 	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2382 	u64 dirid = args->dirid;
2383 	unsigned long item_off;
2384 	unsigned long item_len;
2385 	struct btrfs_inode_ref *iref;
2386 	struct btrfs_root_ref *rref;
2387 	struct btrfs_root *root;
2388 	struct btrfs_path *path;
2389 	struct btrfs_key key, key2;
2390 	struct extent_buffer *leaf;
2391 	struct inode *temp_inode;
2392 	char *ptr;
2393 	int slot;
2394 	int len;
2395 	int total_len = 0;
2396 	int ret;
2397 
2398 	path = btrfs_alloc_path();
2399 	if (!path)
2400 		return -ENOMEM;
2401 
2402 	/*
2403 	 * If the bottom subvolume does not exist directly under upper_limit,
2404 	 * construct the path in from the bottom up.
2405 	 */
2406 	if (dirid != upper_limit.objectid) {
2407 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2408 
2409 		key.objectid = treeid;
2410 		key.type = BTRFS_ROOT_ITEM_KEY;
2411 		key.offset = (u64)-1;
2412 		root = btrfs_read_fs_root_no_name(fs_info, &key);
2413 		if (IS_ERR(root)) {
2414 			ret = PTR_ERR(root);
2415 			goto out;
2416 		}
2417 
2418 		key.objectid = dirid;
2419 		key.type = BTRFS_INODE_REF_KEY;
2420 		key.offset = (u64)-1;
2421 		while (1) {
2422 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2423 			if (ret < 0) {
2424 				goto out;
2425 			} else if (ret > 0) {
2426 				ret = btrfs_previous_item(root, path, dirid,
2427 							  BTRFS_INODE_REF_KEY);
2428 				if (ret < 0) {
2429 					goto out;
2430 				} else if (ret > 0) {
2431 					ret = -ENOENT;
2432 					goto out;
2433 				}
2434 			}
2435 
2436 			leaf = path->nodes[0];
2437 			slot = path->slots[0];
2438 			btrfs_item_key_to_cpu(leaf, &key, slot);
2439 
2440 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2441 			len = btrfs_inode_ref_name_len(leaf, iref);
2442 			ptr -= len + 1;
2443 			total_len += len + 1;
2444 			if (ptr < args->path) {
2445 				ret = -ENAMETOOLONG;
2446 				goto out;
2447 			}
2448 
2449 			*(ptr + len) = '/';
2450 			read_extent_buffer(leaf, ptr,
2451 					(unsigned long)(iref + 1), len);
2452 
2453 			/* Check the read+exec permission of this directory */
2454 			ret = btrfs_previous_item(root, path, dirid,
2455 						  BTRFS_INODE_ITEM_KEY);
2456 			if (ret < 0) {
2457 				goto out;
2458 			} else if (ret > 0) {
2459 				ret = -ENOENT;
2460 				goto out;
2461 			}
2462 
2463 			leaf = path->nodes[0];
2464 			slot = path->slots[0];
2465 			btrfs_item_key_to_cpu(leaf, &key2, slot);
2466 			if (key2.objectid != dirid) {
2467 				ret = -ENOENT;
2468 				goto out;
2469 			}
2470 
2471 			temp_inode = btrfs_iget(sb, &key2, root, NULL);
2472 			if (IS_ERR(temp_inode)) {
2473 				ret = PTR_ERR(temp_inode);
2474 				goto out;
2475 			}
2476 			ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC);
2477 			iput(temp_inode);
2478 			if (ret) {
2479 				ret = -EACCES;
2480 				goto out;
2481 			}
2482 
2483 			if (key.offset == upper_limit.objectid)
2484 				break;
2485 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2486 				ret = -EACCES;
2487 				goto out;
2488 			}
2489 
2490 			btrfs_release_path(path);
2491 			key.objectid = key.offset;
2492 			key.offset = (u64)-1;
2493 			dirid = key.objectid;
2494 		}
2495 
2496 		memmove(args->path, ptr, total_len);
2497 		args->path[total_len] = '\0';
2498 		btrfs_release_path(path);
2499 	}
2500 
2501 	/* Get the bottom subvolume's name from ROOT_REF */
2502 	root = fs_info->tree_root;
2503 	key.objectid = treeid;
2504 	key.type = BTRFS_ROOT_REF_KEY;
2505 	key.offset = args->treeid;
2506 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2507 	if (ret < 0) {
2508 		goto out;
2509 	} else if (ret > 0) {
2510 		ret = -ENOENT;
2511 		goto out;
2512 	}
2513 
2514 	leaf = path->nodes[0];
2515 	slot = path->slots[0];
2516 	btrfs_item_key_to_cpu(leaf, &key, slot);
2517 
2518 	item_off = btrfs_item_ptr_offset(leaf, slot);
2519 	item_len = btrfs_item_size_nr(leaf, slot);
2520 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2521 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2522 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2523 		ret = -EINVAL;
2524 		goto out;
2525 	}
2526 
2527 	/* Copy subvolume's name */
2528 	item_off += sizeof(struct btrfs_root_ref);
2529 	item_len -= sizeof(struct btrfs_root_ref);
2530 	read_extent_buffer(leaf, args->name, item_off, item_len);
2531 	args->name[item_len] = 0;
2532 
2533 out:
2534 	btrfs_free_path(path);
2535 	return ret;
2536 }
2537 
btrfs_ioctl_ino_lookup(struct file * file,void __user * argp)2538 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2539 					   void __user *argp)
2540 {
2541 	struct btrfs_ioctl_ino_lookup_args *args;
2542 	struct inode *inode;
2543 	int ret = 0;
2544 
2545 	args = memdup_user(argp, sizeof(*args));
2546 	if (IS_ERR(args))
2547 		return PTR_ERR(args);
2548 
2549 	inode = file_inode(file);
2550 
2551 	/*
2552 	 * Unprivileged query to obtain the containing subvolume root id. The
2553 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2554 	 */
2555 	if (args->treeid == 0)
2556 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2557 
2558 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2559 		args->name[0] = 0;
2560 		goto out;
2561 	}
2562 
2563 	if (!capable(CAP_SYS_ADMIN)) {
2564 		ret = -EPERM;
2565 		goto out;
2566 	}
2567 
2568 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2569 					args->treeid, args->objectid,
2570 					args->name);
2571 
2572 out:
2573 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2574 		ret = -EFAULT;
2575 
2576 	kfree(args);
2577 	return ret;
2578 }
2579 
2580 /*
2581  * Version of ino_lookup ioctl (unprivileged)
2582  *
2583  * The main differences from ino_lookup ioctl are:
2584  *
2585  *   1. Read + Exec permission will be checked using inode_permission() during
2586  *      path construction. -EACCES will be returned in case of failure.
2587  *   2. Path construction will be stopped at the inode number which corresponds
2588  *      to the fd with which this ioctl is called. If constructed path does not
2589  *      exist under fd's inode, -EACCES will be returned.
2590  *   3. The name of bottom subvolume is also searched and filled.
2591  */
btrfs_ioctl_ino_lookup_user(struct file * file,void __user * argp)2592 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2593 {
2594 	struct btrfs_ioctl_ino_lookup_user_args *args;
2595 	struct inode *inode;
2596 	int ret;
2597 
2598 	args = memdup_user(argp, sizeof(*args));
2599 	if (IS_ERR(args))
2600 		return PTR_ERR(args);
2601 
2602 	inode = file_inode(file);
2603 
2604 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2605 	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2606 		/*
2607 		 * The subvolume does not exist under fd with which this is
2608 		 * called
2609 		 */
2610 		kfree(args);
2611 		return -EACCES;
2612 	}
2613 
2614 	ret = btrfs_search_path_in_tree_user(inode, args);
2615 
2616 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2617 		ret = -EFAULT;
2618 
2619 	kfree(args);
2620 	return ret;
2621 }
2622 
2623 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
btrfs_ioctl_get_subvol_info(struct file * file,void __user * argp)2624 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2625 {
2626 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2627 	struct btrfs_fs_info *fs_info;
2628 	struct btrfs_root *root;
2629 	struct btrfs_path *path;
2630 	struct btrfs_key key;
2631 	struct btrfs_root_item *root_item;
2632 	struct btrfs_root_ref *rref;
2633 	struct extent_buffer *leaf;
2634 	unsigned long item_off;
2635 	unsigned long item_len;
2636 	struct inode *inode;
2637 	int slot;
2638 	int ret = 0;
2639 
2640 	path = btrfs_alloc_path();
2641 	if (!path)
2642 		return -ENOMEM;
2643 
2644 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2645 	if (!subvol_info) {
2646 		btrfs_free_path(path);
2647 		return -ENOMEM;
2648 	}
2649 
2650 	inode = file_inode(file);
2651 	fs_info = BTRFS_I(inode)->root->fs_info;
2652 
2653 	/* Get root_item of inode's subvolume */
2654 	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2655 	key.type = BTRFS_ROOT_ITEM_KEY;
2656 	key.offset = (u64)-1;
2657 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2658 	if (IS_ERR(root)) {
2659 		ret = PTR_ERR(root);
2660 		goto out;
2661 	}
2662 	root_item = &root->root_item;
2663 
2664 	subvol_info->treeid = key.objectid;
2665 
2666 	subvol_info->generation = btrfs_root_generation(root_item);
2667 	subvol_info->flags = btrfs_root_flags(root_item);
2668 
2669 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2670 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2671 						    BTRFS_UUID_SIZE);
2672 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2673 						    BTRFS_UUID_SIZE);
2674 
2675 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2676 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2677 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2678 
2679 	subvol_info->otransid = btrfs_root_otransid(root_item);
2680 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2681 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2682 
2683 	subvol_info->stransid = btrfs_root_stransid(root_item);
2684 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2685 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2686 
2687 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2688 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2689 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2690 
2691 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2692 		/* Search root tree for ROOT_BACKREF of this subvolume */
2693 		root = fs_info->tree_root;
2694 
2695 		key.type = BTRFS_ROOT_BACKREF_KEY;
2696 		key.offset = 0;
2697 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2698 		if (ret < 0) {
2699 			goto out;
2700 		} else if (path->slots[0] >=
2701 			   btrfs_header_nritems(path->nodes[0])) {
2702 			ret = btrfs_next_leaf(root, path);
2703 			if (ret < 0) {
2704 				goto out;
2705 			} else if (ret > 0) {
2706 				ret = -EUCLEAN;
2707 				goto out;
2708 			}
2709 		}
2710 
2711 		leaf = path->nodes[0];
2712 		slot = path->slots[0];
2713 		btrfs_item_key_to_cpu(leaf, &key, slot);
2714 		if (key.objectid == subvol_info->treeid &&
2715 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2716 			subvol_info->parent_id = key.offset;
2717 
2718 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2719 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2720 
2721 			item_off = btrfs_item_ptr_offset(leaf, slot)
2722 					+ sizeof(struct btrfs_root_ref);
2723 			item_len = btrfs_item_size_nr(leaf, slot)
2724 					- sizeof(struct btrfs_root_ref);
2725 			read_extent_buffer(leaf, subvol_info->name,
2726 					   item_off, item_len);
2727 		} else {
2728 			ret = -ENOENT;
2729 			goto out;
2730 		}
2731 	}
2732 
2733 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2734 		ret = -EFAULT;
2735 
2736 out:
2737 	btrfs_free_path(path);
2738 	kzfree(subvol_info);
2739 	return ret;
2740 }
2741 
2742 /*
2743  * Return ROOT_REF information of the subvolume containing this inode
2744  * except the subvolume name.
2745  */
btrfs_ioctl_get_subvol_rootref(struct file * file,void __user * argp)2746 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2747 {
2748 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2749 	struct btrfs_root_ref *rref;
2750 	struct btrfs_root *root;
2751 	struct btrfs_path *path;
2752 	struct btrfs_key key;
2753 	struct extent_buffer *leaf;
2754 	struct inode *inode;
2755 	u64 objectid;
2756 	int slot;
2757 	int ret;
2758 	u8 found;
2759 
2760 	path = btrfs_alloc_path();
2761 	if (!path)
2762 		return -ENOMEM;
2763 
2764 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2765 	if (IS_ERR(rootrefs)) {
2766 		btrfs_free_path(path);
2767 		return PTR_ERR(rootrefs);
2768 	}
2769 
2770 	inode = file_inode(file);
2771 	root = BTRFS_I(inode)->root->fs_info->tree_root;
2772 	objectid = BTRFS_I(inode)->root->root_key.objectid;
2773 
2774 	key.objectid = objectid;
2775 	key.type = BTRFS_ROOT_REF_KEY;
2776 	key.offset = rootrefs->min_treeid;
2777 	found = 0;
2778 
2779 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2780 	if (ret < 0) {
2781 		goto out;
2782 	} else if (path->slots[0] >=
2783 		   btrfs_header_nritems(path->nodes[0])) {
2784 		ret = btrfs_next_leaf(root, path);
2785 		if (ret < 0) {
2786 			goto out;
2787 		} else if (ret > 0) {
2788 			ret = -EUCLEAN;
2789 			goto out;
2790 		}
2791 	}
2792 	while (1) {
2793 		leaf = path->nodes[0];
2794 		slot = path->slots[0];
2795 
2796 		btrfs_item_key_to_cpu(leaf, &key, slot);
2797 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2798 			ret = 0;
2799 			goto out;
2800 		}
2801 
2802 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2803 			ret = -EOVERFLOW;
2804 			goto out;
2805 		}
2806 
2807 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2808 		rootrefs->rootref[found].treeid = key.offset;
2809 		rootrefs->rootref[found].dirid =
2810 				  btrfs_root_ref_dirid(leaf, rref);
2811 		found++;
2812 
2813 		ret = btrfs_next_item(root, path);
2814 		if (ret < 0) {
2815 			goto out;
2816 		} else if (ret > 0) {
2817 			ret = -EUCLEAN;
2818 			goto out;
2819 		}
2820 	}
2821 
2822 out:
2823 	if (!ret || ret == -EOVERFLOW) {
2824 		rootrefs->num_items = found;
2825 		/* update min_treeid for next search */
2826 		if (found)
2827 			rootrefs->min_treeid =
2828 				rootrefs->rootref[found - 1].treeid + 1;
2829 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2830 			ret = -EFAULT;
2831 	}
2832 
2833 	kfree(rootrefs);
2834 	btrfs_free_path(path);
2835 
2836 	return ret;
2837 }
2838 
btrfs_ioctl_snap_destroy(struct file * file,void __user * arg)2839 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2840 					     void __user *arg)
2841 {
2842 	struct dentry *parent = file->f_path.dentry;
2843 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2844 	struct dentry *dentry;
2845 	struct inode *dir = d_inode(parent);
2846 	struct inode *inode;
2847 	struct btrfs_root *root = BTRFS_I(dir)->root;
2848 	struct btrfs_root *dest = NULL;
2849 	struct btrfs_ioctl_vol_args *vol_args;
2850 	int namelen;
2851 	int err = 0;
2852 
2853 	if (!S_ISDIR(dir->i_mode))
2854 		return -ENOTDIR;
2855 
2856 	vol_args = memdup_user(arg, sizeof(*vol_args));
2857 	if (IS_ERR(vol_args))
2858 		return PTR_ERR(vol_args);
2859 
2860 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2861 	namelen = strlen(vol_args->name);
2862 	if (strchr(vol_args->name, '/') ||
2863 	    strncmp(vol_args->name, "..", namelen) == 0) {
2864 		err = -EINVAL;
2865 		goto out;
2866 	}
2867 
2868 	err = mnt_want_write_file(file);
2869 	if (err)
2870 		goto out;
2871 
2872 
2873 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2874 	if (err == -EINTR)
2875 		goto out_drop_write;
2876 	dentry = lookup_one_len(vol_args->name, parent, namelen);
2877 	if (IS_ERR(dentry)) {
2878 		err = PTR_ERR(dentry);
2879 		goto out_unlock_dir;
2880 	}
2881 
2882 	if (d_really_is_negative(dentry)) {
2883 		err = -ENOENT;
2884 		goto out_dput;
2885 	}
2886 
2887 	inode = d_inode(dentry);
2888 	dest = BTRFS_I(inode)->root;
2889 	if (!capable(CAP_SYS_ADMIN)) {
2890 		/*
2891 		 * Regular user.  Only allow this with a special mount
2892 		 * option, when the user has write+exec access to the
2893 		 * subvol root, and when rmdir(2) would have been
2894 		 * allowed.
2895 		 *
2896 		 * Note that this is _not_ check that the subvol is
2897 		 * empty or doesn't contain data that we wouldn't
2898 		 * otherwise be able to delete.
2899 		 *
2900 		 * Users who want to delete empty subvols should try
2901 		 * rmdir(2).
2902 		 */
2903 		err = -EPERM;
2904 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2905 			goto out_dput;
2906 
2907 		/*
2908 		 * Do not allow deletion if the parent dir is the same
2909 		 * as the dir to be deleted.  That means the ioctl
2910 		 * must be called on the dentry referencing the root
2911 		 * of the subvol, not a random directory contained
2912 		 * within it.
2913 		 */
2914 		err = -EINVAL;
2915 		if (root == dest)
2916 			goto out_dput;
2917 
2918 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2919 		if (err)
2920 			goto out_dput;
2921 	}
2922 
2923 	/* check if subvolume may be deleted by a user */
2924 	err = btrfs_may_delete(dir, dentry, 1);
2925 	if (err)
2926 		goto out_dput;
2927 
2928 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2929 		err = -EINVAL;
2930 		goto out_dput;
2931 	}
2932 
2933 	inode_lock(inode);
2934 	err = btrfs_delete_subvolume(dir, dentry);
2935 	inode_unlock(inode);
2936 	if (!err) {
2937 		fsnotify_rmdir(dir, dentry);
2938 		d_delete(dentry);
2939 	}
2940 
2941 out_dput:
2942 	dput(dentry);
2943 out_unlock_dir:
2944 	inode_unlock(dir);
2945 out_drop_write:
2946 	mnt_drop_write_file(file);
2947 out:
2948 	kfree(vol_args);
2949 	return err;
2950 }
2951 
btrfs_ioctl_defrag(struct file * file,void __user * argp)2952 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2953 {
2954 	struct inode *inode = file_inode(file);
2955 	struct btrfs_root *root = BTRFS_I(inode)->root;
2956 	struct btrfs_ioctl_defrag_range_args *range;
2957 	int ret;
2958 
2959 	ret = mnt_want_write_file(file);
2960 	if (ret)
2961 		return ret;
2962 
2963 	if (btrfs_root_readonly(root)) {
2964 		ret = -EROFS;
2965 		goto out;
2966 	}
2967 
2968 	switch (inode->i_mode & S_IFMT) {
2969 	case S_IFDIR:
2970 		if (!capable(CAP_SYS_ADMIN)) {
2971 			ret = -EPERM;
2972 			goto out;
2973 		}
2974 		ret = btrfs_defrag_root(root);
2975 		break;
2976 	case S_IFREG:
2977 		/*
2978 		 * Note that this does not check the file descriptor for write
2979 		 * access. This prevents defragmenting executables that are
2980 		 * running and allows defrag on files open in read-only mode.
2981 		 */
2982 		if (!capable(CAP_SYS_ADMIN) &&
2983 		    inode_permission(inode, MAY_WRITE)) {
2984 			ret = -EPERM;
2985 			goto out;
2986 		}
2987 
2988 		range = kzalloc(sizeof(*range), GFP_KERNEL);
2989 		if (!range) {
2990 			ret = -ENOMEM;
2991 			goto out;
2992 		}
2993 
2994 		if (argp) {
2995 			if (copy_from_user(range, argp,
2996 					   sizeof(*range))) {
2997 				ret = -EFAULT;
2998 				kfree(range);
2999 				goto out;
3000 			}
3001 			/* compression requires us to start the IO */
3002 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3003 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
3004 				range->extent_thresh = (u32)-1;
3005 			}
3006 		} else {
3007 			/* the rest are all set to zero by kzalloc */
3008 			range->len = (u64)-1;
3009 		}
3010 		ret = btrfs_defrag_file(file_inode(file), file,
3011 					range, BTRFS_OLDEST_GENERATION, 0);
3012 		if (ret > 0)
3013 			ret = 0;
3014 		kfree(range);
3015 		break;
3016 	default:
3017 		ret = -EINVAL;
3018 	}
3019 out:
3020 	mnt_drop_write_file(file);
3021 	return ret;
3022 }
3023 
btrfs_ioctl_add_dev(struct btrfs_fs_info * fs_info,void __user * arg)3024 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3025 {
3026 	struct btrfs_ioctl_vol_args *vol_args;
3027 	int ret;
3028 
3029 	if (!capable(CAP_SYS_ADMIN))
3030 		return -EPERM;
3031 
3032 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
3033 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3034 
3035 	vol_args = memdup_user(arg, sizeof(*vol_args));
3036 	if (IS_ERR(vol_args)) {
3037 		ret = PTR_ERR(vol_args);
3038 		goto out;
3039 	}
3040 
3041 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3042 	ret = btrfs_init_new_device(fs_info, vol_args->name);
3043 
3044 	if (!ret)
3045 		btrfs_info(fs_info, "disk added %s", vol_args->name);
3046 
3047 	kfree(vol_args);
3048 out:
3049 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3050 	return ret;
3051 }
3052 
btrfs_ioctl_rm_dev_v2(struct file * file,void __user * arg)3053 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3054 {
3055 	struct inode *inode = file_inode(file);
3056 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3057 	struct btrfs_ioctl_vol_args_v2 *vol_args;
3058 	int ret;
3059 
3060 	if (!capable(CAP_SYS_ADMIN))
3061 		return -EPERM;
3062 
3063 	ret = mnt_want_write_file(file);
3064 	if (ret)
3065 		return ret;
3066 
3067 	vol_args = memdup_user(arg, sizeof(*vol_args));
3068 	if (IS_ERR(vol_args)) {
3069 		ret = PTR_ERR(vol_args);
3070 		goto err_drop;
3071 	}
3072 
3073 	/* Check for compatibility reject unknown flags */
3074 	if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) {
3075 		ret = -EOPNOTSUPP;
3076 		goto out;
3077 	}
3078 
3079 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3080 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3081 		goto out;
3082 	}
3083 
3084 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3085 		ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
3086 	} else {
3087 		vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3088 		ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3089 	}
3090 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3091 
3092 	if (!ret) {
3093 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3094 			btrfs_info(fs_info, "device deleted: id %llu",
3095 					vol_args->devid);
3096 		else
3097 			btrfs_info(fs_info, "device deleted: %s",
3098 					vol_args->name);
3099 	}
3100 out:
3101 	kfree(vol_args);
3102 err_drop:
3103 	mnt_drop_write_file(file);
3104 	return ret;
3105 }
3106 
btrfs_ioctl_rm_dev(struct file * file,void __user * arg)3107 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3108 {
3109 	struct inode *inode = file_inode(file);
3110 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3111 	struct btrfs_ioctl_vol_args *vol_args;
3112 	int ret;
3113 
3114 	if (!capable(CAP_SYS_ADMIN))
3115 		return -EPERM;
3116 
3117 	ret = mnt_want_write_file(file);
3118 	if (ret)
3119 		return ret;
3120 
3121 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3122 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3123 		goto out_drop_write;
3124 	}
3125 
3126 	vol_args = memdup_user(arg, sizeof(*vol_args));
3127 	if (IS_ERR(vol_args)) {
3128 		ret = PTR_ERR(vol_args);
3129 		goto out;
3130 	}
3131 
3132 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3133 	ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3134 
3135 	if (!ret)
3136 		btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3137 	kfree(vol_args);
3138 out:
3139 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3140 out_drop_write:
3141 	mnt_drop_write_file(file);
3142 
3143 	return ret;
3144 }
3145 
btrfs_ioctl_fs_info(struct btrfs_fs_info * fs_info,void __user * arg)3146 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3147 				void __user *arg)
3148 {
3149 	struct btrfs_ioctl_fs_info_args *fi_args;
3150 	struct btrfs_device *device;
3151 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3152 	int ret = 0;
3153 
3154 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
3155 	if (!fi_args)
3156 		return -ENOMEM;
3157 
3158 	rcu_read_lock();
3159 	fi_args->num_devices = fs_devices->num_devices;
3160 
3161 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3162 		if (device->devid > fi_args->max_id)
3163 			fi_args->max_id = device->devid;
3164 	}
3165 	rcu_read_unlock();
3166 
3167 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3168 	fi_args->nodesize = fs_info->nodesize;
3169 	fi_args->sectorsize = fs_info->sectorsize;
3170 	fi_args->clone_alignment = fs_info->sectorsize;
3171 
3172 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3173 		ret = -EFAULT;
3174 
3175 	kfree(fi_args);
3176 	return ret;
3177 }
3178 
btrfs_ioctl_dev_info(struct btrfs_fs_info * fs_info,void __user * arg)3179 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3180 				 void __user *arg)
3181 {
3182 	struct btrfs_ioctl_dev_info_args *di_args;
3183 	struct btrfs_device *dev;
3184 	int ret = 0;
3185 	char *s_uuid = NULL;
3186 
3187 	di_args = memdup_user(arg, sizeof(*di_args));
3188 	if (IS_ERR(di_args))
3189 		return PTR_ERR(di_args);
3190 
3191 	if (!btrfs_is_empty_uuid(di_args->uuid))
3192 		s_uuid = di_args->uuid;
3193 
3194 	rcu_read_lock();
3195 	dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
3196 				NULL, true);
3197 
3198 	if (!dev) {
3199 		ret = -ENODEV;
3200 		goto out;
3201 	}
3202 
3203 	di_args->devid = dev->devid;
3204 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3205 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3206 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3207 	if (dev->name) {
3208 		strncpy(di_args->path, rcu_str_deref(dev->name),
3209 				sizeof(di_args->path) - 1);
3210 		di_args->path[sizeof(di_args->path) - 1] = 0;
3211 	} else {
3212 		di_args->path[0] = '\0';
3213 	}
3214 
3215 out:
3216 	rcu_read_unlock();
3217 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3218 		ret = -EFAULT;
3219 
3220 	kfree(di_args);
3221 	return ret;
3222 }
3223 
btrfs_double_extent_unlock(struct inode * inode1,u64 loff1,struct inode * inode2,u64 loff2,u64 len)3224 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
3225 				       struct inode *inode2, u64 loff2, u64 len)
3226 {
3227 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
3228 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
3229 }
3230 
btrfs_double_extent_lock(struct inode * inode1,u64 loff1,struct inode * inode2,u64 loff2,u64 len)3231 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
3232 				     struct inode *inode2, u64 loff2, u64 len)
3233 {
3234 	if (inode1 < inode2) {
3235 		swap(inode1, inode2);
3236 		swap(loff1, loff2);
3237 	} else if (inode1 == inode2 && loff2 < loff1) {
3238 		swap(loff1, loff2);
3239 	}
3240 	lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
3241 	lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
3242 }
3243 
btrfs_extent_same_range(struct inode * src,u64 loff,u64 len,struct inode * dst,u64 dst_loff)3244 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
3245 				   struct inode *dst, u64 dst_loff)
3246 {
3247 	int ret;
3248 
3249 	/*
3250 	 * Lock destination range to serialize with concurrent readpages() and
3251 	 * source range to serialize with relocation.
3252 	 */
3253 	btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
3254 	ret = btrfs_clone(src, dst, loff, len, len, dst_loff, 1);
3255 	btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3256 
3257 	return ret;
3258 }
3259 
3260 #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
3261 
btrfs_extent_same(struct inode * src,u64 loff,u64 olen,struct inode * dst,u64 dst_loff)3262 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3263 			     struct inode *dst, u64 dst_loff)
3264 {
3265 	int ret;
3266 	u64 i, tail_len, chunk_count;
3267 	struct btrfs_root *root_dst = BTRFS_I(dst)->root;
3268 
3269 	spin_lock(&root_dst->root_item_lock);
3270 	if (root_dst->send_in_progress) {
3271 		btrfs_warn_rl(root_dst->fs_info,
3272 "cannot deduplicate to root %llu while send operations are using it (%d in progress)",
3273 			      root_dst->root_key.objectid,
3274 			      root_dst->send_in_progress);
3275 		spin_unlock(&root_dst->root_item_lock);
3276 		return -EAGAIN;
3277 	}
3278 	root_dst->dedupe_in_progress++;
3279 	spin_unlock(&root_dst->root_item_lock);
3280 
3281 	tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
3282 	chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
3283 
3284 	for (i = 0; i < chunk_count; i++) {
3285 		ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
3286 					      dst, dst_loff);
3287 		if (ret)
3288 			goto out;
3289 
3290 		loff += BTRFS_MAX_DEDUPE_LEN;
3291 		dst_loff += BTRFS_MAX_DEDUPE_LEN;
3292 	}
3293 
3294 	if (tail_len > 0)
3295 		ret = btrfs_extent_same_range(src, loff, tail_len, dst,
3296 					      dst_loff);
3297 out:
3298 	spin_lock(&root_dst->root_item_lock);
3299 	root_dst->dedupe_in_progress--;
3300 	spin_unlock(&root_dst->root_item_lock);
3301 
3302 	return ret;
3303 }
3304 
clone_finish_inode_update(struct btrfs_trans_handle * trans,struct inode * inode,u64 endoff,const u64 destoff,const u64 olen,int no_time_update)3305 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3306 				     struct inode *inode,
3307 				     u64 endoff,
3308 				     const u64 destoff,
3309 				     const u64 olen,
3310 				     int no_time_update)
3311 {
3312 	struct btrfs_root *root = BTRFS_I(inode)->root;
3313 	int ret;
3314 
3315 	inode_inc_iversion(inode);
3316 	if (!no_time_update)
3317 		inode->i_mtime = inode->i_ctime = current_time(inode);
3318 	/*
3319 	 * We round up to the block size at eof when determining which
3320 	 * extents to clone above, but shouldn't round up the file size.
3321 	 */
3322 	if (endoff > destoff + olen)
3323 		endoff = destoff + olen;
3324 	if (endoff > inode->i_size)
3325 		btrfs_i_size_write(BTRFS_I(inode), endoff);
3326 
3327 	ret = btrfs_update_inode(trans, root, inode);
3328 	if (ret) {
3329 		btrfs_abort_transaction(trans, ret);
3330 		btrfs_end_transaction(trans);
3331 		goto out;
3332 	}
3333 	ret = btrfs_end_transaction(trans);
3334 out:
3335 	return ret;
3336 }
3337 
3338 /*
3339  * Make sure we do not end up inserting an inline extent into a file that has
3340  * already other (non-inline) extents. If a file has an inline extent it can
3341  * not have any other extents and the (single) inline extent must start at the
3342  * file offset 0. Failing to respect these rules will lead to file corruption,
3343  * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3344  *
3345  * We can have extents that have been already written to disk or we can have
3346  * dirty ranges still in delalloc, in which case the extent maps and items are
3347  * created only when we run delalloc, and the delalloc ranges might fall outside
3348  * the range we are currently locking in the inode's io tree. So we check the
3349  * inode's i_size because of that (i_size updates are done while holding the
3350  * i_mutex, which we are holding here).
3351  * We also check to see if the inode has a size not greater than "datal" but has
3352  * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3353  * protected against such concurrent fallocate calls by the i_mutex).
3354  *
3355  * If the file has no extents but a size greater than datal, do not allow the
3356  * copy because we would need turn the inline extent into a non-inline one (even
3357  * with NO_HOLES enabled). If we find our destination inode only has one inline
3358  * extent, just overwrite it with the source inline extent if its size is less
3359  * than the source extent's size, or we could copy the source inline extent's
3360  * data into the destination inode's inline extent if the later is greater then
3361  * the former.
3362  */
clone_copy_inline_extent(struct inode * dst,struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_key * new_key,const u64 drop_start,const u64 datal,const u64 skip,const u64 size,char * inline_data)3363 static int clone_copy_inline_extent(struct inode *dst,
3364 				    struct btrfs_trans_handle *trans,
3365 				    struct btrfs_path *path,
3366 				    struct btrfs_key *new_key,
3367 				    const u64 drop_start,
3368 				    const u64 datal,
3369 				    const u64 skip,
3370 				    const u64 size,
3371 				    char *inline_data)
3372 {
3373 	struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3374 	struct btrfs_root *root = BTRFS_I(dst)->root;
3375 	const u64 aligned_end = ALIGN(new_key->offset + datal,
3376 				      fs_info->sectorsize);
3377 	int ret;
3378 	struct btrfs_key key;
3379 
3380 	if (new_key->offset > 0)
3381 		return -EOPNOTSUPP;
3382 
3383 	key.objectid = btrfs_ino(BTRFS_I(dst));
3384 	key.type = BTRFS_EXTENT_DATA_KEY;
3385 	key.offset = 0;
3386 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3387 	if (ret < 0) {
3388 		return ret;
3389 	} else if (ret > 0) {
3390 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3391 			ret = btrfs_next_leaf(root, path);
3392 			if (ret < 0)
3393 				return ret;
3394 			else if (ret > 0)
3395 				goto copy_inline_extent;
3396 		}
3397 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3398 		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3399 		    key.type == BTRFS_EXTENT_DATA_KEY) {
3400 			ASSERT(key.offset > 0);
3401 			return -EOPNOTSUPP;
3402 		}
3403 	} else if (i_size_read(dst) <= datal) {
3404 		struct btrfs_file_extent_item *ei;
3405 		u64 ext_len;
3406 
3407 		/*
3408 		 * If the file size is <= datal, make sure there are no other
3409 		 * extents following (can happen do to an fallocate call with
3410 		 * the flag FALLOC_FL_KEEP_SIZE).
3411 		 */
3412 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3413 				    struct btrfs_file_extent_item);
3414 		/*
3415 		 * If it's an inline extent, it can not have other extents
3416 		 * following it.
3417 		 */
3418 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
3419 		    BTRFS_FILE_EXTENT_INLINE)
3420 			goto copy_inline_extent;
3421 
3422 		ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3423 		if (ext_len > aligned_end)
3424 			return -EOPNOTSUPP;
3425 
3426 		ret = btrfs_next_item(root, path);
3427 		if (ret < 0) {
3428 			return ret;
3429 		} else if (ret == 0) {
3430 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3431 					      path->slots[0]);
3432 			if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3433 			    key.type == BTRFS_EXTENT_DATA_KEY)
3434 				return -EOPNOTSUPP;
3435 		}
3436 	}
3437 
3438 copy_inline_extent:
3439 	/*
3440 	 * We have no extent items, or we have an extent at offset 0 which may
3441 	 * or may not be inlined. All these cases are dealt the same way.
3442 	 */
3443 	if (i_size_read(dst) > datal) {
3444 		/*
3445 		 * If the destination inode has an inline extent...
3446 		 * This would require copying the data from the source inline
3447 		 * extent into the beginning of the destination's inline extent.
3448 		 * But this is really complex, both extents can be compressed
3449 		 * or just one of them, which would require decompressing and
3450 		 * re-compressing data (which could increase the new compressed
3451 		 * size, not allowing the compressed data to fit anymore in an
3452 		 * inline extent).
3453 		 * So just don't support this case for now (it should be rare,
3454 		 * we are not really saving space when cloning inline extents).
3455 		 */
3456 		return -EOPNOTSUPP;
3457 	}
3458 
3459 	btrfs_release_path(path);
3460 	ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3461 	if (ret)
3462 		return ret;
3463 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3464 	if (ret)
3465 		return ret;
3466 
3467 	if (skip) {
3468 		const u32 start = btrfs_file_extent_calc_inline_size(0);
3469 
3470 		memmove(inline_data + start, inline_data + start + skip, datal);
3471 	}
3472 
3473 	write_extent_buffer(path->nodes[0], inline_data,
3474 			    btrfs_item_ptr_offset(path->nodes[0],
3475 						  path->slots[0]),
3476 			    size);
3477 	inode_add_bytes(dst, datal);
3478 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(dst)->runtime_flags);
3479 
3480 	return 0;
3481 }
3482 
3483 /**
3484  * btrfs_clone() - clone a range from inode file to another
3485  *
3486  * @src: Inode to clone from
3487  * @inode: Inode to clone to
3488  * @off: Offset within source to start clone from
3489  * @olen: Original length, passed by user, of range to clone
3490  * @olen_aligned: Block-aligned value of olen
3491  * @destoff: Offset within @inode to start clone
3492  * @no_time_update: Whether to update mtime/ctime on the target inode
3493  */
btrfs_clone(struct inode * src,struct inode * inode,const u64 off,const u64 olen,const u64 olen_aligned,const u64 destoff,int no_time_update)3494 static int btrfs_clone(struct inode *src, struct inode *inode,
3495 		       const u64 off, const u64 olen, const u64 olen_aligned,
3496 		       const u64 destoff, int no_time_update)
3497 {
3498 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3499 	struct btrfs_root *root = BTRFS_I(inode)->root;
3500 	struct btrfs_path *path = NULL;
3501 	struct extent_buffer *leaf;
3502 	struct btrfs_trans_handle *trans;
3503 	char *buf = NULL;
3504 	struct btrfs_key key;
3505 	u32 nritems;
3506 	int slot;
3507 	int ret;
3508 	const u64 len = olen_aligned;
3509 	u64 last_dest_end = destoff;
3510 
3511 	ret = -ENOMEM;
3512 	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
3513 	if (!buf)
3514 		return ret;
3515 
3516 	path = btrfs_alloc_path();
3517 	if (!path) {
3518 		kvfree(buf);
3519 		return ret;
3520 	}
3521 
3522 	path->reada = READA_FORWARD;
3523 	/* clone data */
3524 	key.objectid = btrfs_ino(BTRFS_I(src));
3525 	key.type = BTRFS_EXTENT_DATA_KEY;
3526 	key.offset = off;
3527 
3528 	while (1) {
3529 		u64 next_key_min_offset = key.offset + 1;
3530 		struct btrfs_file_extent_item *extent;
3531 		int type;
3532 		u32 size;
3533 		struct btrfs_key new_key;
3534 		u64 disko = 0, diskl = 0;
3535 		u64 datao = 0, datal = 0;
3536 		u8 comp;
3537 		u64 drop_start;
3538 
3539 		/*
3540 		 * note the key will change type as we walk through the
3541 		 * tree.
3542 		 */
3543 		path->leave_spinning = 1;
3544 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3545 				0, 0);
3546 		if (ret < 0)
3547 			goto out;
3548 		/*
3549 		 * First search, if no extent item that starts at offset off was
3550 		 * found but the previous item is an extent item, it's possible
3551 		 * it might overlap our target range, therefore process it.
3552 		 */
3553 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3554 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3555 					      path->slots[0] - 1);
3556 			if (key.type == BTRFS_EXTENT_DATA_KEY)
3557 				path->slots[0]--;
3558 		}
3559 
3560 		nritems = btrfs_header_nritems(path->nodes[0]);
3561 process_slot:
3562 		if (path->slots[0] >= nritems) {
3563 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3564 			if (ret < 0)
3565 				goto out;
3566 			if (ret > 0)
3567 				break;
3568 			nritems = btrfs_header_nritems(path->nodes[0]);
3569 		}
3570 		leaf = path->nodes[0];
3571 		slot = path->slots[0];
3572 
3573 		btrfs_item_key_to_cpu(leaf, &key, slot);
3574 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
3575 		    key.objectid != btrfs_ino(BTRFS_I(src)))
3576 			break;
3577 
3578 		ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
3579 
3580 		extent = btrfs_item_ptr(leaf, slot,
3581 					struct btrfs_file_extent_item);
3582 		comp = btrfs_file_extent_compression(leaf, extent);
3583 		type = btrfs_file_extent_type(leaf, extent);
3584 		if (type == BTRFS_FILE_EXTENT_REG ||
3585 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
3586 			disko = btrfs_file_extent_disk_bytenr(leaf, extent);
3587 			diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
3588 			datao = btrfs_file_extent_offset(leaf, extent);
3589 			datal = btrfs_file_extent_num_bytes(leaf, extent);
3590 		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3591 			/* Take upper bound, may be compressed */
3592 			datal = btrfs_file_extent_ram_bytes(leaf, extent);
3593 		}
3594 
3595 		/*
3596 		 * The first search might have left us at an extent item that
3597 		 * ends before our target range's start, can happen if we have
3598 		 * holes and NO_HOLES feature enabled.
3599 		 */
3600 		if (key.offset + datal <= off) {
3601 			path->slots[0]++;
3602 			goto process_slot;
3603 		} else if (key.offset >= off + len) {
3604 			break;
3605 		}
3606 		next_key_min_offset = key.offset + datal;
3607 		size = btrfs_item_size_nr(leaf, slot);
3608 		read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
3609 				   size);
3610 
3611 		btrfs_release_path(path);
3612 		path->leave_spinning = 0;
3613 
3614 		memcpy(&new_key, &key, sizeof(new_key));
3615 		new_key.objectid = btrfs_ino(BTRFS_I(inode));
3616 		if (off <= key.offset)
3617 			new_key.offset = key.offset + destoff - off;
3618 		else
3619 			new_key.offset = destoff;
3620 
3621 		/*
3622 		 * Deal with a hole that doesn't have an extent item that
3623 		 * represents it (NO_HOLES feature enabled).
3624 		 * This hole is either in the middle of the cloning range or at
3625 		 * the beginning (fully overlaps it or partially overlaps it).
3626 		 */
3627 		if (new_key.offset != last_dest_end)
3628 			drop_start = last_dest_end;
3629 		else
3630 			drop_start = new_key.offset;
3631 
3632 		if (type == BTRFS_FILE_EXTENT_REG ||
3633 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
3634 			struct btrfs_clone_extent_info clone_info;
3635 
3636 			/*
3637 			 *    a  | --- range to clone ---|  b
3638 			 * | ------------- extent ------------- |
3639 			 */
3640 
3641 			/* Subtract range b */
3642 			if (key.offset + datal > off + len)
3643 				datal = off + len - key.offset;
3644 
3645 			/* Subtract range a */
3646 			if (off > key.offset) {
3647 				datao += off - key.offset;
3648 				datal -= off - key.offset;
3649 			}
3650 
3651 			clone_info.disk_offset = disko;
3652 			clone_info.disk_len = diskl;
3653 			clone_info.data_offset = datao;
3654 			clone_info.data_len = datal;
3655 			clone_info.file_offset = new_key.offset;
3656 			clone_info.extent_buf = buf;
3657 			clone_info.item_size = size;
3658 			ret = btrfs_punch_hole_range(inode, path,
3659 						     drop_start,
3660 						     new_key.offset + datal - 1,
3661 						     &clone_info, &trans);
3662 			if (ret)
3663 				goto out;
3664 		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3665 			u64 skip = 0;
3666 			u64 trim = 0;
3667 
3668 			if (off > key.offset) {
3669 				skip = off - key.offset;
3670 				new_key.offset += skip;
3671 			}
3672 
3673 			if (key.offset + datal > off + len)
3674 				trim = key.offset + datal - (off + len);
3675 
3676 			if (comp && (skip || trim)) {
3677 				ret = -EINVAL;
3678 				goto out;
3679 			}
3680 			size -= skip + trim;
3681 			datal -= skip + trim;
3682 
3683 			/*
3684 			 * If our extent is inline, we know we will drop or
3685 			 * adjust at most 1 extent item in the destination root.
3686 			 *
3687 			 * 1 - adjusting old extent (we may have to split it)
3688 			 * 1 - add new extent
3689 			 * 1 - inode update
3690 			 */
3691 			trans = btrfs_start_transaction(root, 3);
3692 			if (IS_ERR(trans)) {
3693 				ret = PTR_ERR(trans);
3694 				goto out;
3695 			}
3696 
3697 			ret = clone_copy_inline_extent(inode, trans, path,
3698 						       &new_key, drop_start,
3699 						       datal, skip, size, buf);
3700 			if (ret) {
3701 				if (ret != -EOPNOTSUPP)
3702 					btrfs_abort_transaction(trans, ret);
3703 				btrfs_end_transaction(trans);
3704 				goto out;
3705 			}
3706 		}
3707 
3708 		btrfs_release_path(path);
3709 
3710 		last_dest_end = ALIGN(new_key.offset + datal,
3711 				      fs_info->sectorsize);
3712 		ret = clone_finish_inode_update(trans, inode, last_dest_end,
3713 						destoff, olen, no_time_update);
3714 		if (ret)
3715 			goto out;
3716 		if (new_key.offset + datal >= destoff + len)
3717 			break;
3718 
3719 		btrfs_release_path(path);
3720 		key.offset = next_key_min_offset;
3721 
3722 		if (fatal_signal_pending(current)) {
3723 			ret = -EINTR;
3724 			goto out;
3725 		}
3726 	}
3727 	ret = 0;
3728 
3729 	if (last_dest_end < destoff + len) {
3730 		/*
3731 		 * We have an implicit hole that fully or partially overlaps our
3732 		 * cloning range at its end. This means that we either have the
3733 		 * NO_HOLES feature enabled or the implicit hole happened due to
3734 		 * mixing buffered and direct IO writes against this file.
3735 		 */
3736 		btrfs_release_path(path);
3737 		path->leave_spinning = 0;
3738 
3739 		ret = btrfs_punch_hole_range(inode, path,
3740 					     last_dest_end, destoff + len - 1,
3741 					     NULL, &trans);
3742 		if (ret)
3743 			goto out;
3744 
3745 		ret = clone_finish_inode_update(trans, inode, destoff + len,
3746 						destoff, olen, no_time_update);
3747 	}
3748 
3749 out:
3750 	btrfs_free_path(path);
3751 	kvfree(buf);
3752 	return ret;
3753 }
3754 
btrfs_clone_files(struct file * file,struct file * file_src,u64 off,u64 olen,u64 destoff)3755 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3756 					u64 off, u64 olen, u64 destoff)
3757 {
3758 	struct inode *inode = file_inode(file);
3759 	struct inode *src = file_inode(file_src);
3760 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3761 	int ret;
3762 	u64 len = olen;
3763 	u64 bs = fs_info->sb->s_blocksize;
3764 
3765 	/*
3766 	 * TODO:
3767 	 * - split compressed inline extents.  annoying: we need to
3768 	 *   decompress into destination's address_space (the file offset
3769 	 *   may change, so source mapping won't do), then recompress (or
3770 	 *   otherwise reinsert) a subrange.
3771 	 *
3772 	 * - split destination inode's inline extents.  The inline extents can
3773 	 *   be either compressed or non-compressed.
3774 	 */
3775 
3776 	/*
3777 	 * VFS's generic_remap_file_range_prep() protects us from cloning the
3778 	 * eof block into the middle of a file, which would result in corruption
3779 	 * if the file size is not blocksize aligned. So we don't need to check
3780 	 * for that case here.
3781 	 */
3782 	if (off + len == src->i_size)
3783 		len = ALIGN(src->i_size, bs) - off;
3784 
3785 	if (destoff > inode->i_size) {
3786 		const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
3787 
3788 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3789 		if (ret)
3790 			return ret;
3791 		/*
3792 		 * We may have truncated the last block if the inode's size is
3793 		 * not sector size aligned, so we need to wait for writeback to
3794 		 * complete before proceeding further, otherwise we can race
3795 		 * with cloning and attempt to increment a reference to an
3796 		 * extent that no longer exists (writeback completed right after
3797 		 * we found the previous extent covering eof and before we
3798 		 * attempted to increment its reference count).
3799 		 */
3800 		ret = btrfs_wait_ordered_range(inode, wb_start,
3801 					       destoff - wb_start);
3802 		if (ret)
3803 			return ret;
3804 	}
3805 
3806 	/*
3807 	 * Lock destination range to serialize with concurrent readpages() and
3808 	 * source range to serialize with relocation.
3809 	 */
3810 	btrfs_double_extent_lock(src, off, inode, destoff, len);
3811 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3812 	btrfs_double_extent_unlock(src, off, inode, destoff, len);
3813 	/*
3814 	 * Truncate page cache pages so that future reads will see the cloned
3815 	 * data immediately and not the previous data.
3816 	 */
3817 	truncate_inode_pages_range(&inode->i_data,
3818 				round_down(destoff, PAGE_SIZE),
3819 				round_up(destoff + len, PAGE_SIZE) - 1);
3820 
3821 	return ret;
3822 }
3823 
btrfs_remap_file_range_prep(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,loff_t * len,unsigned int remap_flags)3824 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
3825 				       struct file *file_out, loff_t pos_out,
3826 				       loff_t *len, unsigned int remap_flags)
3827 {
3828 	struct inode *inode_in = file_inode(file_in);
3829 	struct inode *inode_out = file_inode(file_out);
3830 	u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize;
3831 	bool same_inode = inode_out == inode_in;
3832 	u64 wb_len;
3833 	int ret;
3834 
3835 	if (!(remap_flags & REMAP_FILE_DEDUP)) {
3836 		struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
3837 
3838 		if (btrfs_root_readonly(root_out))
3839 			return -EROFS;
3840 
3841 		if (file_in->f_path.mnt != file_out->f_path.mnt ||
3842 		    inode_in->i_sb != inode_out->i_sb)
3843 			return -EXDEV;
3844 	}
3845 
3846 	/* don't make the dst file partly checksummed */
3847 	if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
3848 	    (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
3849 		return -EINVAL;
3850 	}
3851 
3852 	/*
3853 	 * Now that the inodes are locked, we need to start writeback ourselves
3854 	 * and can not rely on the writeback from the VFS's generic helper
3855 	 * generic_remap_file_range_prep() because:
3856 	 *
3857 	 * 1) For compression we must call filemap_fdatawrite_range() range
3858 	 *    twice (btrfs_fdatawrite_range() does it for us), and the generic
3859 	 *    helper only calls it once;
3860 	 *
3861 	 * 2) filemap_fdatawrite_range(), called by the generic helper only
3862 	 *    waits for the writeback to complete, i.e. for IO to be done, and
3863 	 *    not for the ordered extents to complete. We need to wait for them
3864 	 *    to complete so that new file extent items are in the fs tree.
3865 	 */
3866 	if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
3867 		wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
3868 	else
3869 		wb_len = ALIGN(*len, bs);
3870 
3871 	/*
3872 	 * Since we don't lock ranges, wait for ongoing lockless dio writes (as
3873 	 * any in progress could create its ordered extents after we wait for
3874 	 * existing ordered extents below).
3875 	 */
3876 	inode_dio_wait(inode_in);
3877 	if (!same_inode)
3878 		inode_dio_wait(inode_out);
3879 
3880 	/*
3881 	 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
3882 	 *
3883 	 * Btrfs' back references do not have a block level granularity, they
3884 	 * work at the whole extent level.
3885 	 * NOCOW buffered write without data space reserved may not be able
3886 	 * to fall back to CoW due to lack of data space, thus could cause
3887 	 * data loss.
3888 	 *
3889 	 * Here we take a shortcut by flushing the whole inode, so that all
3890 	 * nocow write should reach disk as nocow before we increase the
3891 	 * reference of the extent. We could do better by only flushing NOCOW
3892 	 * data, but that needs extra accounting.
3893 	 *
3894 	 * Also we don't need to check ASYNC_EXTENT, as async extent will be
3895 	 * CoWed anyway, not affecting nocow part.
3896 	 */
3897 	ret = filemap_flush(inode_in->i_mapping);
3898 	if (ret < 0)
3899 		return ret;
3900 
3901 	ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs),
3902 				       wb_len);
3903 	if (ret < 0)
3904 		return ret;
3905 	ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs),
3906 				       wb_len);
3907 	if (ret < 0)
3908 		return ret;
3909 
3910 	return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
3911 					    len, remap_flags);
3912 }
3913 
btrfs_remap_file_range(struct file * src_file,loff_t off,struct file * dst_file,loff_t destoff,loff_t len,unsigned int remap_flags)3914 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
3915 		struct file *dst_file, loff_t destoff, loff_t len,
3916 		unsigned int remap_flags)
3917 {
3918 	struct inode *src_inode = file_inode(src_file);
3919 	struct inode *dst_inode = file_inode(dst_file);
3920 	bool same_inode = dst_inode == src_inode;
3921 	int ret;
3922 
3923 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
3924 		return -EINVAL;
3925 
3926 	if (same_inode)
3927 		inode_lock(src_inode);
3928 	else
3929 		lock_two_nondirectories(src_inode, dst_inode);
3930 
3931 	ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
3932 					  &len, remap_flags);
3933 	if (ret < 0 || len == 0)
3934 		goto out_unlock;
3935 
3936 	if (remap_flags & REMAP_FILE_DEDUP)
3937 		ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
3938 	else
3939 		ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
3940 
3941 out_unlock:
3942 	if (same_inode)
3943 		inode_unlock(src_inode);
3944 	else
3945 		unlock_two_nondirectories(src_inode, dst_inode);
3946 
3947 	return ret < 0 ? ret : len;
3948 }
3949 
btrfs_ioctl_default_subvol(struct file * file,void __user * argp)3950 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3951 {
3952 	struct inode *inode = file_inode(file);
3953 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3954 	struct btrfs_root *root = BTRFS_I(inode)->root;
3955 	struct btrfs_root *new_root;
3956 	struct btrfs_dir_item *di;
3957 	struct btrfs_trans_handle *trans;
3958 	struct btrfs_path *path;
3959 	struct btrfs_key location;
3960 	struct btrfs_disk_key disk_key;
3961 	u64 objectid = 0;
3962 	u64 dir_id;
3963 	int ret;
3964 
3965 	if (!capable(CAP_SYS_ADMIN))
3966 		return -EPERM;
3967 
3968 	ret = mnt_want_write_file(file);
3969 	if (ret)
3970 		return ret;
3971 
3972 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3973 		ret = -EFAULT;
3974 		goto out;
3975 	}
3976 
3977 	if (!objectid)
3978 		objectid = BTRFS_FS_TREE_OBJECTID;
3979 
3980 	location.objectid = objectid;
3981 	location.type = BTRFS_ROOT_ITEM_KEY;
3982 	location.offset = (u64)-1;
3983 
3984 	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
3985 	if (IS_ERR(new_root)) {
3986 		ret = PTR_ERR(new_root);
3987 		goto out;
3988 	}
3989 	if (!is_fstree(new_root->root_key.objectid)) {
3990 		ret = -ENOENT;
3991 		goto out;
3992 	}
3993 
3994 	path = btrfs_alloc_path();
3995 	if (!path) {
3996 		ret = -ENOMEM;
3997 		goto out;
3998 	}
3999 	path->leave_spinning = 1;
4000 
4001 	trans = btrfs_start_transaction(root, 1);
4002 	if (IS_ERR(trans)) {
4003 		btrfs_free_path(path);
4004 		ret = PTR_ERR(trans);
4005 		goto out;
4006 	}
4007 
4008 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4009 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
4010 				   dir_id, "default", 7, 1);
4011 	if (IS_ERR_OR_NULL(di)) {
4012 		btrfs_free_path(path);
4013 		btrfs_end_transaction(trans);
4014 		btrfs_err(fs_info,
4015 			  "Umm, you don't have the default diritem, this isn't going to work");
4016 		ret = -ENOENT;
4017 		goto out;
4018 	}
4019 
4020 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4021 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4022 	btrfs_mark_buffer_dirty(path->nodes[0]);
4023 	btrfs_free_path(path);
4024 
4025 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
4026 	btrfs_end_transaction(trans);
4027 out:
4028 	mnt_drop_write_file(file);
4029 	return ret;
4030 }
4031 
get_block_group_info(struct list_head * groups_list,struct btrfs_ioctl_space_info * space)4032 static void get_block_group_info(struct list_head *groups_list,
4033 				 struct btrfs_ioctl_space_info *space)
4034 {
4035 	struct btrfs_block_group_cache *block_group;
4036 
4037 	space->total_bytes = 0;
4038 	space->used_bytes = 0;
4039 	space->flags = 0;
4040 	list_for_each_entry(block_group, groups_list, list) {
4041 		space->flags = block_group->flags;
4042 		space->total_bytes += block_group->key.offset;
4043 		space->used_bytes +=
4044 			btrfs_block_group_used(&block_group->item);
4045 	}
4046 }
4047 
btrfs_ioctl_space_info(struct btrfs_fs_info * fs_info,void __user * arg)4048 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
4049 				   void __user *arg)
4050 {
4051 	struct btrfs_ioctl_space_args space_args;
4052 	struct btrfs_ioctl_space_info space;
4053 	struct btrfs_ioctl_space_info *dest;
4054 	struct btrfs_ioctl_space_info *dest_orig;
4055 	struct btrfs_ioctl_space_info __user *user_dest;
4056 	struct btrfs_space_info *info;
4057 	static const u64 types[] = {
4058 		BTRFS_BLOCK_GROUP_DATA,
4059 		BTRFS_BLOCK_GROUP_SYSTEM,
4060 		BTRFS_BLOCK_GROUP_METADATA,
4061 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
4062 	};
4063 	int num_types = 4;
4064 	int alloc_size;
4065 	int ret = 0;
4066 	u64 slot_count = 0;
4067 	int i, c;
4068 
4069 	if (copy_from_user(&space_args,
4070 			   (struct btrfs_ioctl_space_args __user *)arg,
4071 			   sizeof(space_args)))
4072 		return -EFAULT;
4073 
4074 	for (i = 0; i < num_types; i++) {
4075 		struct btrfs_space_info *tmp;
4076 
4077 		info = NULL;
4078 		rcu_read_lock();
4079 		list_for_each_entry_rcu(tmp, &fs_info->space_info,
4080 					list) {
4081 			if (tmp->flags == types[i]) {
4082 				info = tmp;
4083 				break;
4084 			}
4085 		}
4086 		rcu_read_unlock();
4087 
4088 		if (!info)
4089 			continue;
4090 
4091 		down_read(&info->groups_sem);
4092 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4093 			if (!list_empty(&info->block_groups[c]))
4094 				slot_count++;
4095 		}
4096 		up_read(&info->groups_sem);
4097 	}
4098 
4099 	/*
4100 	 * Global block reserve, exported as a space_info
4101 	 */
4102 	slot_count++;
4103 
4104 	/* space_slots == 0 means they are asking for a count */
4105 	if (space_args.space_slots == 0) {
4106 		space_args.total_spaces = slot_count;
4107 		goto out;
4108 	}
4109 
4110 	slot_count = min_t(u64, space_args.space_slots, slot_count);
4111 
4112 	alloc_size = sizeof(*dest) * slot_count;
4113 
4114 	/* we generally have at most 6 or so space infos, one for each raid
4115 	 * level.  So, a whole page should be more than enough for everyone
4116 	 */
4117 	if (alloc_size > PAGE_SIZE)
4118 		return -ENOMEM;
4119 
4120 	space_args.total_spaces = 0;
4121 	dest = kmalloc(alloc_size, GFP_KERNEL);
4122 	if (!dest)
4123 		return -ENOMEM;
4124 	dest_orig = dest;
4125 
4126 	/* now we have a buffer to copy into */
4127 	for (i = 0; i < num_types; i++) {
4128 		struct btrfs_space_info *tmp;
4129 
4130 		if (!slot_count)
4131 			break;
4132 
4133 		info = NULL;
4134 		rcu_read_lock();
4135 		list_for_each_entry_rcu(tmp, &fs_info->space_info,
4136 					list) {
4137 			if (tmp->flags == types[i]) {
4138 				info = tmp;
4139 				break;
4140 			}
4141 		}
4142 		rcu_read_unlock();
4143 
4144 		if (!info)
4145 			continue;
4146 		down_read(&info->groups_sem);
4147 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4148 			if (!list_empty(&info->block_groups[c])) {
4149 				get_block_group_info(&info->block_groups[c],
4150 						     &space);
4151 				memcpy(dest, &space, sizeof(space));
4152 				dest++;
4153 				space_args.total_spaces++;
4154 				slot_count--;
4155 			}
4156 			if (!slot_count)
4157 				break;
4158 		}
4159 		up_read(&info->groups_sem);
4160 	}
4161 
4162 	/*
4163 	 * Add global block reserve
4164 	 */
4165 	if (slot_count) {
4166 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4167 
4168 		spin_lock(&block_rsv->lock);
4169 		space.total_bytes = block_rsv->size;
4170 		space.used_bytes = block_rsv->size - block_rsv->reserved;
4171 		spin_unlock(&block_rsv->lock);
4172 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4173 		memcpy(dest, &space, sizeof(space));
4174 		space_args.total_spaces++;
4175 	}
4176 
4177 	user_dest = (struct btrfs_ioctl_space_info __user *)
4178 		(arg + sizeof(struct btrfs_ioctl_space_args));
4179 
4180 	if (copy_to_user(user_dest, dest_orig, alloc_size))
4181 		ret = -EFAULT;
4182 
4183 	kfree(dest_orig);
4184 out:
4185 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4186 		ret = -EFAULT;
4187 
4188 	return ret;
4189 }
4190 
btrfs_ioctl_start_sync(struct btrfs_root * root,void __user * argp)4191 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4192 					    void __user *argp)
4193 {
4194 	struct btrfs_trans_handle *trans;
4195 	u64 transid;
4196 	int ret;
4197 
4198 	trans = btrfs_attach_transaction_barrier(root);
4199 	if (IS_ERR(trans)) {
4200 		if (PTR_ERR(trans) != -ENOENT)
4201 			return PTR_ERR(trans);
4202 
4203 		/* No running transaction, don't bother */
4204 		transid = root->fs_info->last_trans_committed;
4205 		goto out;
4206 	}
4207 	transid = trans->transid;
4208 	ret = btrfs_commit_transaction_async(trans, 0);
4209 	if (ret) {
4210 		btrfs_end_transaction(trans);
4211 		return ret;
4212 	}
4213 out:
4214 	if (argp)
4215 		if (copy_to_user(argp, &transid, sizeof(transid)))
4216 			return -EFAULT;
4217 	return 0;
4218 }
4219 
btrfs_ioctl_wait_sync(struct btrfs_fs_info * fs_info,void __user * argp)4220 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4221 					   void __user *argp)
4222 {
4223 	u64 transid;
4224 
4225 	if (argp) {
4226 		if (copy_from_user(&transid, argp, sizeof(transid)))
4227 			return -EFAULT;
4228 	} else {
4229 		transid = 0;  /* current trans */
4230 	}
4231 	return btrfs_wait_for_commit(fs_info, transid);
4232 }
4233 
btrfs_ioctl_scrub(struct file * file,void __user * arg)4234 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4235 {
4236 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4237 	struct btrfs_ioctl_scrub_args *sa;
4238 	int ret;
4239 
4240 	if (!capable(CAP_SYS_ADMIN))
4241 		return -EPERM;
4242 
4243 	sa = memdup_user(arg, sizeof(*sa));
4244 	if (IS_ERR(sa))
4245 		return PTR_ERR(sa);
4246 
4247 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4248 		ret = mnt_want_write_file(file);
4249 		if (ret)
4250 			goto out;
4251 	}
4252 
4253 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4254 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4255 			      0);
4256 
4257 	/*
4258 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
4259 	 * error. This is important as it allows user space to know how much
4260 	 * progress scrub has done. For example, if scrub is canceled we get
4261 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
4262 	 * space. Later user space can inspect the progress from the structure
4263 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
4264 	 * previously (btrfs-progs does this).
4265 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
4266 	 * then return -EFAULT to signal the structure was not copied or it may
4267 	 * be corrupt and unreliable due to a partial copy.
4268 	 */
4269 	if (copy_to_user(arg, sa, sizeof(*sa)))
4270 		ret = -EFAULT;
4271 
4272 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
4273 		mnt_drop_write_file(file);
4274 out:
4275 	kfree(sa);
4276 	return ret;
4277 }
4278 
btrfs_ioctl_scrub_cancel(struct btrfs_fs_info * fs_info)4279 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4280 {
4281 	if (!capable(CAP_SYS_ADMIN))
4282 		return -EPERM;
4283 
4284 	return btrfs_scrub_cancel(fs_info);
4285 }
4286 
btrfs_ioctl_scrub_progress(struct btrfs_fs_info * fs_info,void __user * arg)4287 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4288 				       void __user *arg)
4289 {
4290 	struct btrfs_ioctl_scrub_args *sa;
4291 	int ret;
4292 
4293 	if (!capable(CAP_SYS_ADMIN))
4294 		return -EPERM;
4295 
4296 	sa = memdup_user(arg, sizeof(*sa));
4297 	if (IS_ERR(sa))
4298 		return PTR_ERR(sa);
4299 
4300 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4301 
4302 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4303 		ret = -EFAULT;
4304 
4305 	kfree(sa);
4306 	return ret;
4307 }
4308 
btrfs_ioctl_get_dev_stats(struct btrfs_fs_info * fs_info,void __user * arg)4309 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4310 				      void __user *arg)
4311 {
4312 	struct btrfs_ioctl_get_dev_stats *sa;
4313 	int ret;
4314 
4315 	sa = memdup_user(arg, sizeof(*sa));
4316 	if (IS_ERR(sa))
4317 		return PTR_ERR(sa);
4318 
4319 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4320 		kfree(sa);
4321 		return -EPERM;
4322 	}
4323 
4324 	ret = btrfs_get_dev_stats(fs_info, sa);
4325 
4326 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4327 		ret = -EFAULT;
4328 
4329 	kfree(sa);
4330 	return ret;
4331 }
4332 
btrfs_ioctl_dev_replace(struct btrfs_fs_info * fs_info,void __user * arg)4333 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4334 				    void __user *arg)
4335 {
4336 	struct btrfs_ioctl_dev_replace_args *p;
4337 	int ret;
4338 
4339 	if (!capable(CAP_SYS_ADMIN))
4340 		return -EPERM;
4341 
4342 	p = memdup_user(arg, sizeof(*p));
4343 	if (IS_ERR(p))
4344 		return PTR_ERR(p);
4345 
4346 	switch (p->cmd) {
4347 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4348 		if (sb_rdonly(fs_info->sb)) {
4349 			ret = -EROFS;
4350 			goto out;
4351 		}
4352 		if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4353 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4354 		} else {
4355 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4356 			clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4357 		}
4358 		break;
4359 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4360 		btrfs_dev_replace_status(fs_info, p);
4361 		ret = 0;
4362 		break;
4363 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4364 		p->result = btrfs_dev_replace_cancel(fs_info);
4365 		ret = 0;
4366 		break;
4367 	default:
4368 		ret = -EINVAL;
4369 		break;
4370 	}
4371 
4372 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
4373 		ret = -EFAULT;
4374 out:
4375 	kfree(p);
4376 	return ret;
4377 }
4378 
btrfs_ioctl_ino_to_path(struct btrfs_root * root,void __user * arg)4379 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4380 {
4381 	int ret = 0;
4382 	int i;
4383 	u64 rel_ptr;
4384 	int size;
4385 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
4386 	struct inode_fs_paths *ipath = NULL;
4387 	struct btrfs_path *path;
4388 
4389 	if (!capable(CAP_DAC_READ_SEARCH))
4390 		return -EPERM;
4391 
4392 	path = btrfs_alloc_path();
4393 	if (!path) {
4394 		ret = -ENOMEM;
4395 		goto out;
4396 	}
4397 
4398 	ipa = memdup_user(arg, sizeof(*ipa));
4399 	if (IS_ERR(ipa)) {
4400 		ret = PTR_ERR(ipa);
4401 		ipa = NULL;
4402 		goto out;
4403 	}
4404 
4405 	size = min_t(u32, ipa->size, 4096);
4406 	ipath = init_ipath(size, root, path);
4407 	if (IS_ERR(ipath)) {
4408 		ret = PTR_ERR(ipath);
4409 		ipath = NULL;
4410 		goto out;
4411 	}
4412 
4413 	ret = paths_from_inode(ipa->inum, ipath);
4414 	if (ret < 0)
4415 		goto out;
4416 
4417 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4418 		rel_ptr = ipath->fspath->val[i] -
4419 			  (u64)(unsigned long)ipath->fspath->val;
4420 		ipath->fspath->val[i] = rel_ptr;
4421 	}
4422 
4423 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
4424 			   ipath->fspath, size);
4425 	if (ret) {
4426 		ret = -EFAULT;
4427 		goto out;
4428 	}
4429 
4430 out:
4431 	btrfs_free_path(path);
4432 	free_ipath(ipath);
4433 	kfree(ipa);
4434 
4435 	return ret;
4436 }
4437 
build_ino_list(u64 inum,u64 offset,u64 root,void * ctx)4438 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4439 {
4440 	struct btrfs_data_container *inodes = ctx;
4441 	const size_t c = 3 * sizeof(u64);
4442 
4443 	if (inodes->bytes_left >= c) {
4444 		inodes->bytes_left -= c;
4445 		inodes->val[inodes->elem_cnt] = inum;
4446 		inodes->val[inodes->elem_cnt + 1] = offset;
4447 		inodes->val[inodes->elem_cnt + 2] = root;
4448 		inodes->elem_cnt += 3;
4449 	} else {
4450 		inodes->bytes_missing += c - inodes->bytes_left;
4451 		inodes->bytes_left = 0;
4452 		inodes->elem_missed += 3;
4453 	}
4454 
4455 	return 0;
4456 }
4457 
btrfs_ioctl_logical_to_ino(struct btrfs_fs_info * fs_info,void __user * arg,int version)4458 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4459 					void __user *arg, int version)
4460 {
4461 	int ret = 0;
4462 	int size;
4463 	struct btrfs_ioctl_logical_ino_args *loi;
4464 	struct btrfs_data_container *inodes = NULL;
4465 	struct btrfs_path *path = NULL;
4466 	bool ignore_offset;
4467 
4468 	if (!capable(CAP_SYS_ADMIN))
4469 		return -EPERM;
4470 
4471 	loi = memdup_user(arg, sizeof(*loi));
4472 	if (IS_ERR(loi))
4473 		return PTR_ERR(loi);
4474 
4475 	if (version == 1) {
4476 		ignore_offset = false;
4477 		size = min_t(u32, loi->size, SZ_64K);
4478 	} else {
4479 		/* All reserved bits must be 0 for now */
4480 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
4481 			ret = -EINVAL;
4482 			goto out_loi;
4483 		}
4484 		/* Only accept flags we have defined so far */
4485 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
4486 			ret = -EINVAL;
4487 			goto out_loi;
4488 		}
4489 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
4490 		size = min_t(u32, loi->size, SZ_16M);
4491 	}
4492 
4493 	path = btrfs_alloc_path();
4494 	if (!path) {
4495 		ret = -ENOMEM;
4496 		goto out;
4497 	}
4498 
4499 	inodes = init_data_container(size);
4500 	if (IS_ERR(inodes)) {
4501 		ret = PTR_ERR(inodes);
4502 		inodes = NULL;
4503 		goto out;
4504 	}
4505 
4506 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4507 					  build_ino_list, inodes, ignore_offset);
4508 	if (ret == -EINVAL)
4509 		ret = -ENOENT;
4510 	if (ret < 0)
4511 		goto out;
4512 
4513 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
4514 			   size);
4515 	if (ret)
4516 		ret = -EFAULT;
4517 
4518 out:
4519 	btrfs_free_path(path);
4520 	kvfree(inodes);
4521 out_loi:
4522 	kfree(loi);
4523 
4524 	return ret;
4525 }
4526 
btrfs_update_ioctl_balance_args(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_balance_args * bargs)4527 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
4528 			       struct btrfs_ioctl_balance_args *bargs)
4529 {
4530 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4531 
4532 	bargs->flags = bctl->flags;
4533 
4534 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
4535 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4536 	if (atomic_read(&fs_info->balance_pause_req))
4537 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4538 	if (atomic_read(&fs_info->balance_cancel_req))
4539 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4540 
4541 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4542 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4543 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4544 
4545 	spin_lock(&fs_info->balance_lock);
4546 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4547 	spin_unlock(&fs_info->balance_lock);
4548 }
4549 
btrfs_ioctl_balance(struct file * file,void __user * arg)4550 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4551 {
4552 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4553 	struct btrfs_fs_info *fs_info = root->fs_info;
4554 	struct btrfs_ioctl_balance_args *bargs;
4555 	struct btrfs_balance_control *bctl;
4556 	bool need_unlock; /* for mut. excl. ops lock */
4557 	int ret;
4558 
4559 	if (!capable(CAP_SYS_ADMIN))
4560 		return -EPERM;
4561 
4562 	ret = mnt_want_write_file(file);
4563 	if (ret)
4564 		return ret;
4565 
4566 again:
4567 	if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4568 		mutex_lock(&fs_info->balance_mutex);
4569 		need_unlock = true;
4570 		goto locked;
4571 	}
4572 
4573 	/*
4574 	 * mut. excl. ops lock is locked.  Three possibilities:
4575 	 *   (1) some other op is running
4576 	 *   (2) balance is running
4577 	 *   (3) balance is paused -- special case (think resume)
4578 	 */
4579 	mutex_lock(&fs_info->balance_mutex);
4580 	if (fs_info->balance_ctl) {
4581 		/* this is either (2) or (3) */
4582 		if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4583 			mutex_unlock(&fs_info->balance_mutex);
4584 			/*
4585 			 * Lock released to allow other waiters to continue,
4586 			 * we'll reexamine the status again.
4587 			 */
4588 			mutex_lock(&fs_info->balance_mutex);
4589 
4590 			if (fs_info->balance_ctl &&
4591 			    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4592 				/* this is (3) */
4593 				need_unlock = false;
4594 				goto locked;
4595 			}
4596 
4597 			mutex_unlock(&fs_info->balance_mutex);
4598 			goto again;
4599 		} else {
4600 			/* this is (2) */
4601 			mutex_unlock(&fs_info->balance_mutex);
4602 			ret = -EINPROGRESS;
4603 			goto out;
4604 		}
4605 	} else {
4606 		/* this is (1) */
4607 		mutex_unlock(&fs_info->balance_mutex);
4608 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4609 		goto out;
4610 	}
4611 
4612 locked:
4613 	BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4614 
4615 	if (arg) {
4616 		bargs = memdup_user(arg, sizeof(*bargs));
4617 		if (IS_ERR(bargs)) {
4618 			ret = PTR_ERR(bargs);
4619 			goto out_unlock;
4620 		}
4621 
4622 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4623 			if (!fs_info->balance_ctl) {
4624 				ret = -ENOTCONN;
4625 				goto out_bargs;
4626 			}
4627 
4628 			bctl = fs_info->balance_ctl;
4629 			spin_lock(&fs_info->balance_lock);
4630 			bctl->flags |= BTRFS_BALANCE_RESUME;
4631 			spin_unlock(&fs_info->balance_lock);
4632 
4633 			goto do_balance;
4634 		}
4635 	} else {
4636 		bargs = NULL;
4637 	}
4638 
4639 	if (fs_info->balance_ctl) {
4640 		ret = -EINPROGRESS;
4641 		goto out_bargs;
4642 	}
4643 
4644 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4645 	if (!bctl) {
4646 		ret = -ENOMEM;
4647 		goto out_bargs;
4648 	}
4649 
4650 	if (arg) {
4651 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4652 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4653 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4654 
4655 		bctl->flags = bargs->flags;
4656 	} else {
4657 		/* balance everything - no filters */
4658 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4659 	}
4660 
4661 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4662 		ret = -EINVAL;
4663 		goto out_bctl;
4664 	}
4665 
4666 do_balance:
4667 	/*
4668 	 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to
4669 	 * btrfs_balance.  bctl is freed in reset_balance_state, or, if
4670 	 * restriper was paused all the way until unmount, in free_fs_info.
4671 	 * The flag should be cleared after reset_balance_state.
4672 	 */
4673 	need_unlock = false;
4674 
4675 	ret = btrfs_balance(fs_info, bctl, bargs);
4676 	bctl = NULL;
4677 
4678 	if ((ret == 0 || ret == -ECANCELED) && arg) {
4679 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4680 			ret = -EFAULT;
4681 	}
4682 
4683 out_bctl:
4684 	kfree(bctl);
4685 out_bargs:
4686 	kfree(bargs);
4687 out_unlock:
4688 	mutex_unlock(&fs_info->balance_mutex);
4689 	if (need_unlock)
4690 		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4691 out:
4692 	mnt_drop_write_file(file);
4693 	return ret;
4694 }
4695 
btrfs_ioctl_balance_ctl(struct btrfs_fs_info * fs_info,int cmd)4696 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4697 {
4698 	if (!capable(CAP_SYS_ADMIN))
4699 		return -EPERM;
4700 
4701 	switch (cmd) {
4702 	case BTRFS_BALANCE_CTL_PAUSE:
4703 		return btrfs_pause_balance(fs_info);
4704 	case BTRFS_BALANCE_CTL_CANCEL:
4705 		return btrfs_cancel_balance(fs_info);
4706 	}
4707 
4708 	return -EINVAL;
4709 }
4710 
btrfs_ioctl_balance_progress(struct btrfs_fs_info * fs_info,void __user * arg)4711 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4712 					 void __user *arg)
4713 {
4714 	struct btrfs_ioctl_balance_args *bargs;
4715 	int ret = 0;
4716 
4717 	if (!capable(CAP_SYS_ADMIN))
4718 		return -EPERM;
4719 
4720 	mutex_lock(&fs_info->balance_mutex);
4721 	if (!fs_info->balance_ctl) {
4722 		ret = -ENOTCONN;
4723 		goto out;
4724 	}
4725 
4726 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4727 	if (!bargs) {
4728 		ret = -ENOMEM;
4729 		goto out;
4730 	}
4731 
4732 	btrfs_update_ioctl_balance_args(fs_info, bargs);
4733 
4734 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4735 		ret = -EFAULT;
4736 
4737 	kfree(bargs);
4738 out:
4739 	mutex_unlock(&fs_info->balance_mutex);
4740 	return ret;
4741 }
4742 
btrfs_ioctl_quota_ctl(struct file * file,void __user * arg)4743 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4744 {
4745 	struct inode *inode = file_inode(file);
4746 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4747 	struct btrfs_ioctl_quota_ctl_args *sa;
4748 	int ret;
4749 
4750 	if (!capable(CAP_SYS_ADMIN))
4751 		return -EPERM;
4752 
4753 	ret = mnt_want_write_file(file);
4754 	if (ret)
4755 		return ret;
4756 
4757 	sa = memdup_user(arg, sizeof(*sa));
4758 	if (IS_ERR(sa)) {
4759 		ret = PTR_ERR(sa);
4760 		goto drop_write;
4761 	}
4762 
4763 	down_write(&fs_info->subvol_sem);
4764 
4765 	switch (sa->cmd) {
4766 	case BTRFS_QUOTA_CTL_ENABLE:
4767 		ret = btrfs_quota_enable(fs_info);
4768 		break;
4769 	case BTRFS_QUOTA_CTL_DISABLE:
4770 		ret = btrfs_quota_disable(fs_info);
4771 		break;
4772 	default:
4773 		ret = -EINVAL;
4774 		break;
4775 	}
4776 
4777 	kfree(sa);
4778 	up_write(&fs_info->subvol_sem);
4779 drop_write:
4780 	mnt_drop_write_file(file);
4781 	return ret;
4782 }
4783 
btrfs_ioctl_qgroup_assign(struct file * file,void __user * arg)4784 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4785 {
4786 	struct inode *inode = file_inode(file);
4787 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4788 	struct btrfs_root *root = BTRFS_I(inode)->root;
4789 	struct btrfs_ioctl_qgroup_assign_args *sa;
4790 	struct btrfs_trans_handle *trans;
4791 	int ret;
4792 	int err;
4793 
4794 	if (!capable(CAP_SYS_ADMIN))
4795 		return -EPERM;
4796 
4797 	ret = mnt_want_write_file(file);
4798 	if (ret)
4799 		return ret;
4800 
4801 	sa = memdup_user(arg, sizeof(*sa));
4802 	if (IS_ERR(sa)) {
4803 		ret = PTR_ERR(sa);
4804 		goto drop_write;
4805 	}
4806 
4807 	trans = btrfs_join_transaction(root);
4808 	if (IS_ERR(trans)) {
4809 		ret = PTR_ERR(trans);
4810 		goto out;
4811 	}
4812 
4813 	if (sa->assign) {
4814 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4815 	} else {
4816 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4817 	}
4818 
4819 	/* update qgroup status and info */
4820 	err = btrfs_run_qgroups(trans);
4821 	if (err < 0)
4822 		btrfs_handle_fs_error(fs_info, err,
4823 				      "failed to update qgroup status and info");
4824 	err = btrfs_end_transaction(trans);
4825 	if (err && !ret)
4826 		ret = err;
4827 
4828 out:
4829 	kfree(sa);
4830 drop_write:
4831 	mnt_drop_write_file(file);
4832 	return ret;
4833 }
4834 
btrfs_ioctl_qgroup_create(struct file * file,void __user * arg)4835 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4836 {
4837 	struct inode *inode = file_inode(file);
4838 	struct btrfs_root *root = BTRFS_I(inode)->root;
4839 	struct btrfs_ioctl_qgroup_create_args *sa;
4840 	struct btrfs_trans_handle *trans;
4841 	int ret;
4842 	int err;
4843 
4844 	if (!capable(CAP_SYS_ADMIN))
4845 		return -EPERM;
4846 
4847 	ret = mnt_want_write_file(file);
4848 	if (ret)
4849 		return ret;
4850 
4851 	sa = memdup_user(arg, sizeof(*sa));
4852 	if (IS_ERR(sa)) {
4853 		ret = PTR_ERR(sa);
4854 		goto drop_write;
4855 	}
4856 
4857 	if (!sa->qgroupid) {
4858 		ret = -EINVAL;
4859 		goto out;
4860 	}
4861 
4862 	trans = btrfs_join_transaction(root);
4863 	if (IS_ERR(trans)) {
4864 		ret = PTR_ERR(trans);
4865 		goto out;
4866 	}
4867 
4868 	if (sa->create) {
4869 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
4870 	} else {
4871 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4872 	}
4873 
4874 	err = btrfs_end_transaction(trans);
4875 	if (err && !ret)
4876 		ret = err;
4877 
4878 out:
4879 	kfree(sa);
4880 drop_write:
4881 	mnt_drop_write_file(file);
4882 	return ret;
4883 }
4884 
btrfs_ioctl_qgroup_limit(struct file * file,void __user * arg)4885 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4886 {
4887 	struct inode *inode = file_inode(file);
4888 	struct btrfs_root *root = BTRFS_I(inode)->root;
4889 	struct btrfs_ioctl_qgroup_limit_args *sa;
4890 	struct btrfs_trans_handle *trans;
4891 	int ret;
4892 	int err;
4893 	u64 qgroupid;
4894 
4895 	if (!capable(CAP_SYS_ADMIN))
4896 		return -EPERM;
4897 
4898 	ret = mnt_want_write_file(file);
4899 	if (ret)
4900 		return ret;
4901 
4902 	sa = memdup_user(arg, sizeof(*sa));
4903 	if (IS_ERR(sa)) {
4904 		ret = PTR_ERR(sa);
4905 		goto drop_write;
4906 	}
4907 
4908 	trans = btrfs_join_transaction(root);
4909 	if (IS_ERR(trans)) {
4910 		ret = PTR_ERR(trans);
4911 		goto out;
4912 	}
4913 
4914 	qgroupid = sa->qgroupid;
4915 	if (!qgroupid) {
4916 		/* take the current subvol as qgroup */
4917 		qgroupid = root->root_key.objectid;
4918 	}
4919 
4920 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4921 
4922 	err = btrfs_end_transaction(trans);
4923 	if (err && !ret)
4924 		ret = err;
4925 
4926 out:
4927 	kfree(sa);
4928 drop_write:
4929 	mnt_drop_write_file(file);
4930 	return ret;
4931 }
4932 
btrfs_ioctl_quota_rescan(struct file * file,void __user * arg)4933 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4934 {
4935 	struct inode *inode = file_inode(file);
4936 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4937 	struct btrfs_ioctl_quota_rescan_args *qsa;
4938 	int ret;
4939 
4940 	if (!capable(CAP_SYS_ADMIN))
4941 		return -EPERM;
4942 
4943 	ret = mnt_want_write_file(file);
4944 	if (ret)
4945 		return ret;
4946 
4947 	qsa = memdup_user(arg, sizeof(*qsa));
4948 	if (IS_ERR(qsa)) {
4949 		ret = PTR_ERR(qsa);
4950 		goto drop_write;
4951 	}
4952 
4953 	if (qsa->flags) {
4954 		ret = -EINVAL;
4955 		goto out;
4956 	}
4957 
4958 	ret = btrfs_qgroup_rescan(fs_info);
4959 
4960 out:
4961 	kfree(qsa);
4962 drop_write:
4963 	mnt_drop_write_file(file);
4964 	return ret;
4965 }
4966 
btrfs_ioctl_quota_rescan_status(struct file * file,void __user * arg)4967 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
4968 {
4969 	struct inode *inode = file_inode(file);
4970 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4971 	struct btrfs_ioctl_quota_rescan_args *qsa;
4972 	int ret = 0;
4973 
4974 	if (!capable(CAP_SYS_ADMIN))
4975 		return -EPERM;
4976 
4977 	qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
4978 	if (!qsa)
4979 		return -ENOMEM;
4980 
4981 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4982 		qsa->flags = 1;
4983 		qsa->progress = fs_info->qgroup_rescan_progress.objectid;
4984 	}
4985 
4986 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
4987 		ret = -EFAULT;
4988 
4989 	kfree(qsa);
4990 	return ret;
4991 }
4992 
btrfs_ioctl_quota_rescan_wait(struct file * file,void __user * arg)4993 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
4994 {
4995 	struct inode *inode = file_inode(file);
4996 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4997 
4998 	if (!capable(CAP_SYS_ADMIN))
4999 		return -EPERM;
5000 
5001 	return btrfs_qgroup_wait_for_completion(fs_info, true);
5002 }
5003 
_btrfs_ioctl_set_received_subvol(struct file * file,struct btrfs_ioctl_received_subvol_args * sa)5004 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5005 					    struct btrfs_ioctl_received_subvol_args *sa)
5006 {
5007 	struct inode *inode = file_inode(file);
5008 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5009 	struct btrfs_root *root = BTRFS_I(inode)->root;
5010 	struct btrfs_root_item *root_item = &root->root_item;
5011 	struct btrfs_trans_handle *trans;
5012 	struct timespec64 ct = current_time(inode);
5013 	int ret = 0;
5014 	int received_uuid_changed;
5015 
5016 	if (!inode_owner_or_capable(inode))
5017 		return -EPERM;
5018 
5019 	ret = mnt_want_write_file(file);
5020 	if (ret < 0)
5021 		return ret;
5022 
5023 	down_write(&fs_info->subvol_sem);
5024 
5025 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
5026 		ret = -EINVAL;
5027 		goto out;
5028 	}
5029 
5030 	if (btrfs_root_readonly(root)) {
5031 		ret = -EROFS;
5032 		goto out;
5033 	}
5034 
5035 	/*
5036 	 * 1 - root item
5037 	 * 2 - uuid items (received uuid + subvol uuid)
5038 	 */
5039 	trans = btrfs_start_transaction(root, 3);
5040 	if (IS_ERR(trans)) {
5041 		ret = PTR_ERR(trans);
5042 		trans = NULL;
5043 		goto out;
5044 	}
5045 
5046 	sa->rtransid = trans->transid;
5047 	sa->rtime.sec = ct.tv_sec;
5048 	sa->rtime.nsec = ct.tv_nsec;
5049 
5050 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5051 				       BTRFS_UUID_SIZE);
5052 	if (received_uuid_changed &&
5053 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
5054 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
5055 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5056 					  root->root_key.objectid);
5057 		if (ret && ret != -ENOENT) {
5058 		        btrfs_abort_transaction(trans, ret);
5059 		        btrfs_end_transaction(trans);
5060 		        goto out;
5061 		}
5062 	}
5063 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5064 	btrfs_set_root_stransid(root_item, sa->stransid);
5065 	btrfs_set_root_rtransid(root_item, sa->rtransid);
5066 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5067 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5068 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5069 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5070 
5071 	ret = btrfs_update_root(trans, fs_info->tree_root,
5072 				&root->root_key, &root->root_item);
5073 	if (ret < 0) {
5074 		btrfs_end_transaction(trans);
5075 		goto out;
5076 	}
5077 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5078 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
5079 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5080 					  root->root_key.objectid);
5081 		if (ret < 0 && ret != -EEXIST) {
5082 			btrfs_abort_transaction(trans, ret);
5083 			btrfs_end_transaction(trans);
5084 			goto out;
5085 		}
5086 	}
5087 	ret = btrfs_commit_transaction(trans);
5088 out:
5089 	up_write(&fs_info->subvol_sem);
5090 	mnt_drop_write_file(file);
5091 	return ret;
5092 }
5093 
5094 #ifdef CONFIG_64BIT
btrfs_ioctl_set_received_subvol_32(struct file * file,void __user * arg)5095 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5096 						void __user *arg)
5097 {
5098 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5099 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5100 	int ret = 0;
5101 
5102 	args32 = memdup_user(arg, sizeof(*args32));
5103 	if (IS_ERR(args32))
5104 		return PTR_ERR(args32);
5105 
5106 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5107 	if (!args64) {
5108 		ret = -ENOMEM;
5109 		goto out;
5110 	}
5111 
5112 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5113 	args64->stransid = args32->stransid;
5114 	args64->rtransid = args32->rtransid;
5115 	args64->stime.sec = args32->stime.sec;
5116 	args64->stime.nsec = args32->stime.nsec;
5117 	args64->rtime.sec = args32->rtime.sec;
5118 	args64->rtime.nsec = args32->rtime.nsec;
5119 	args64->flags = args32->flags;
5120 
5121 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
5122 	if (ret)
5123 		goto out;
5124 
5125 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5126 	args32->stransid = args64->stransid;
5127 	args32->rtransid = args64->rtransid;
5128 	args32->stime.sec = args64->stime.sec;
5129 	args32->stime.nsec = args64->stime.nsec;
5130 	args32->rtime.sec = args64->rtime.sec;
5131 	args32->rtime.nsec = args64->rtime.nsec;
5132 	args32->flags = args64->flags;
5133 
5134 	ret = copy_to_user(arg, args32, sizeof(*args32));
5135 	if (ret)
5136 		ret = -EFAULT;
5137 
5138 out:
5139 	kfree(args32);
5140 	kfree(args64);
5141 	return ret;
5142 }
5143 #endif
5144 
btrfs_ioctl_set_received_subvol(struct file * file,void __user * arg)5145 static long btrfs_ioctl_set_received_subvol(struct file *file,
5146 					    void __user *arg)
5147 {
5148 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
5149 	int ret = 0;
5150 
5151 	sa = memdup_user(arg, sizeof(*sa));
5152 	if (IS_ERR(sa))
5153 		return PTR_ERR(sa);
5154 
5155 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
5156 
5157 	if (ret)
5158 		goto out;
5159 
5160 	ret = copy_to_user(arg, sa, sizeof(*sa));
5161 	if (ret)
5162 		ret = -EFAULT;
5163 
5164 out:
5165 	kfree(sa);
5166 	return ret;
5167 }
5168 
btrfs_ioctl_get_fslabel(struct file * file,void __user * arg)5169 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5170 {
5171 	struct inode *inode = file_inode(file);
5172 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5173 	size_t len;
5174 	int ret;
5175 	char label[BTRFS_LABEL_SIZE];
5176 
5177 	spin_lock(&fs_info->super_lock);
5178 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5179 	spin_unlock(&fs_info->super_lock);
5180 
5181 	len = strnlen(label, BTRFS_LABEL_SIZE);
5182 
5183 	if (len == BTRFS_LABEL_SIZE) {
5184 		btrfs_warn(fs_info,
5185 			   "label is too long, return the first %zu bytes",
5186 			   --len);
5187 	}
5188 
5189 	ret = copy_to_user(arg, label, len);
5190 
5191 	return ret ? -EFAULT : 0;
5192 }
5193 
btrfs_ioctl_set_fslabel(struct file * file,void __user * arg)5194 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5195 {
5196 	struct inode *inode = file_inode(file);
5197 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5198 	struct btrfs_root *root = BTRFS_I(inode)->root;
5199 	struct btrfs_super_block *super_block = fs_info->super_copy;
5200 	struct btrfs_trans_handle *trans;
5201 	char label[BTRFS_LABEL_SIZE];
5202 	int ret;
5203 
5204 	if (!capable(CAP_SYS_ADMIN))
5205 		return -EPERM;
5206 
5207 	if (copy_from_user(label, arg, sizeof(label)))
5208 		return -EFAULT;
5209 
5210 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5211 		btrfs_err(fs_info,
5212 			  "unable to set label with more than %d bytes",
5213 			  BTRFS_LABEL_SIZE - 1);
5214 		return -EINVAL;
5215 	}
5216 
5217 	ret = mnt_want_write_file(file);
5218 	if (ret)
5219 		return ret;
5220 
5221 	trans = btrfs_start_transaction(root, 0);
5222 	if (IS_ERR(trans)) {
5223 		ret = PTR_ERR(trans);
5224 		goto out_unlock;
5225 	}
5226 
5227 	spin_lock(&fs_info->super_lock);
5228 	strcpy(super_block->label, label);
5229 	spin_unlock(&fs_info->super_lock);
5230 	ret = btrfs_commit_transaction(trans);
5231 
5232 out_unlock:
5233 	mnt_drop_write_file(file);
5234 	return ret;
5235 }
5236 
5237 #define INIT_FEATURE_FLAGS(suffix) \
5238 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5239 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5240 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5241 
btrfs_ioctl_get_supported_features(void __user * arg)5242 int btrfs_ioctl_get_supported_features(void __user *arg)
5243 {
5244 	static const struct btrfs_ioctl_feature_flags features[3] = {
5245 		INIT_FEATURE_FLAGS(SUPP),
5246 		INIT_FEATURE_FLAGS(SAFE_SET),
5247 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
5248 	};
5249 
5250 	if (copy_to_user(arg, &features, sizeof(features)))
5251 		return -EFAULT;
5252 
5253 	return 0;
5254 }
5255 
btrfs_ioctl_get_features(struct file * file,void __user * arg)5256 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5257 {
5258 	struct inode *inode = file_inode(file);
5259 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5260 	struct btrfs_super_block *super_block = fs_info->super_copy;
5261 	struct btrfs_ioctl_feature_flags features;
5262 
5263 	features.compat_flags = btrfs_super_compat_flags(super_block);
5264 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5265 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
5266 
5267 	if (copy_to_user(arg, &features, sizeof(features)))
5268 		return -EFAULT;
5269 
5270 	return 0;
5271 }
5272 
check_feature_bits(struct btrfs_fs_info * fs_info,enum btrfs_feature_set set,u64 change_mask,u64 flags,u64 supported_flags,u64 safe_set,u64 safe_clear)5273 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5274 			      enum btrfs_feature_set set,
5275 			      u64 change_mask, u64 flags, u64 supported_flags,
5276 			      u64 safe_set, u64 safe_clear)
5277 {
5278 	const char *type = btrfs_feature_set_name(set);
5279 	char *names;
5280 	u64 disallowed, unsupported;
5281 	u64 set_mask = flags & change_mask;
5282 	u64 clear_mask = ~flags & change_mask;
5283 
5284 	unsupported = set_mask & ~supported_flags;
5285 	if (unsupported) {
5286 		names = btrfs_printable_features(set, unsupported);
5287 		if (names) {
5288 			btrfs_warn(fs_info,
5289 				   "this kernel does not support the %s feature bit%s",
5290 				   names, strchr(names, ',') ? "s" : "");
5291 			kfree(names);
5292 		} else
5293 			btrfs_warn(fs_info,
5294 				   "this kernel does not support %s bits 0x%llx",
5295 				   type, unsupported);
5296 		return -EOPNOTSUPP;
5297 	}
5298 
5299 	disallowed = set_mask & ~safe_set;
5300 	if (disallowed) {
5301 		names = btrfs_printable_features(set, disallowed);
5302 		if (names) {
5303 			btrfs_warn(fs_info,
5304 				   "can't set the %s feature bit%s while mounted",
5305 				   names, strchr(names, ',') ? "s" : "");
5306 			kfree(names);
5307 		} else
5308 			btrfs_warn(fs_info,
5309 				   "can't set %s bits 0x%llx while mounted",
5310 				   type, disallowed);
5311 		return -EPERM;
5312 	}
5313 
5314 	disallowed = clear_mask & ~safe_clear;
5315 	if (disallowed) {
5316 		names = btrfs_printable_features(set, disallowed);
5317 		if (names) {
5318 			btrfs_warn(fs_info,
5319 				   "can't clear the %s feature bit%s while mounted",
5320 				   names, strchr(names, ',') ? "s" : "");
5321 			kfree(names);
5322 		} else
5323 			btrfs_warn(fs_info,
5324 				   "can't clear %s bits 0x%llx while mounted",
5325 				   type, disallowed);
5326 		return -EPERM;
5327 	}
5328 
5329 	return 0;
5330 }
5331 
5332 #define check_feature(fs_info, change_mask, flags, mask_base)	\
5333 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
5334 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
5335 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
5336 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5337 
btrfs_ioctl_set_features(struct file * file,void __user * arg)5338 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5339 {
5340 	struct inode *inode = file_inode(file);
5341 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5342 	struct btrfs_root *root = BTRFS_I(inode)->root;
5343 	struct btrfs_super_block *super_block = fs_info->super_copy;
5344 	struct btrfs_ioctl_feature_flags flags[2];
5345 	struct btrfs_trans_handle *trans;
5346 	u64 newflags;
5347 	int ret;
5348 
5349 	if (!capable(CAP_SYS_ADMIN))
5350 		return -EPERM;
5351 
5352 	if (copy_from_user(flags, arg, sizeof(flags)))
5353 		return -EFAULT;
5354 
5355 	/* Nothing to do */
5356 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5357 	    !flags[0].incompat_flags)
5358 		return 0;
5359 
5360 	ret = check_feature(fs_info, flags[0].compat_flags,
5361 			    flags[1].compat_flags, COMPAT);
5362 	if (ret)
5363 		return ret;
5364 
5365 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
5366 			    flags[1].compat_ro_flags, COMPAT_RO);
5367 	if (ret)
5368 		return ret;
5369 
5370 	ret = check_feature(fs_info, flags[0].incompat_flags,
5371 			    flags[1].incompat_flags, INCOMPAT);
5372 	if (ret)
5373 		return ret;
5374 
5375 	ret = mnt_want_write_file(file);
5376 	if (ret)
5377 		return ret;
5378 
5379 	trans = btrfs_start_transaction(root, 0);
5380 	if (IS_ERR(trans)) {
5381 		ret = PTR_ERR(trans);
5382 		goto out_drop_write;
5383 	}
5384 
5385 	spin_lock(&fs_info->super_lock);
5386 	newflags = btrfs_super_compat_flags(super_block);
5387 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
5388 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5389 	btrfs_set_super_compat_flags(super_block, newflags);
5390 
5391 	newflags = btrfs_super_compat_ro_flags(super_block);
5392 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5393 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5394 	btrfs_set_super_compat_ro_flags(super_block, newflags);
5395 
5396 	newflags = btrfs_super_incompat_flags(super_block);
5397 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5398 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5399 	btrfs_set_super_incompat_flags(super_block, newflags);
5400 	spin_unlock(&fs_info->super_lock);
5401 
5402 	ret = btrfs_commit_transaction(trans);
5403 out_drop_write:
5404 	mnt_drop_write_file(file);
5405 
5406 	return ret;
5407 }
5408 
_btrfs_ioctl_send(struct file * file,void __user * argp,bool compat)5409 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
5410 {
5411 	struct btrfs_ioctl_send_args *arg;
5412 	int ret;
5413 
5414 	if (compat) {
5415 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5416 		struct btrfs_ioctl_send_args_32 args32;
5417 
5418 		ret = copy_from_user(&args32, argp, sizeof(args32));
5419 		if (ret)
5420 			return -EFAULT;
5421 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
5422 		if (!arg)
5423 			return -ENOMEM;
5424 		arg->send_fd = args32.send_fd;
5425 		arg->clone_sources_count = args32.clone_sources_count;
5426 		arg->clone_sources = compat_ptr(args32.clone_sources);
5427 		arg->parent_root = args32.parent_root;
5428 		arg->flags = args32.flags;
5429 		memcpy(arg->reserved, args32.reserved,
5430 		       sizeof(args32.reserved));
5431 #else
5432 		return -ENOTTY;
5433 #endif
5434 	} else {
5435 		arg = memdup_user(argp, sizeof(*arg));
5436 		if (IS_ERR(arg))
5437 			return PTR_ERR(arg);
5438 	}
5439 	ret = btrfs_ioctl_send(file, arg);
5440 	kfree(arg);
5441 	return ret;
5442 }
5443 
btrfs_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5444 long btrfs_ioctl(struct file *file, unsigned int
5445 		cmd, unsigned long arg)
5446 {
5447 	struct inode *inode = file_inode(file);
5448 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5449 	struct btrfs_root *root = BTRFS_I(inode)->root;
5450 	void __user *argp = (void __user *)arg;
5451 
5452 	switch (cmd) {
5453 	case FS_IOC_GETFLAGS:
5454 		return btrfs_ioctl_getflags(file, argp);
5455 	case FS_IOC_SETFLAGS:
5456 		return btrfs_ioctl_setflags(file, argp);
5457 	case FS_IOC_GETVERSION:
5458 		return btrfs_ioctl_getversion(file, argp);
5459 	case FS_IOC_GETFSLABEL:
5460 		return btrfs_ioctl_get_fslabel(file, argp);
5461 	case FS_IOC_SETFSLABEL:
5462 		return btrfs_ioctl_set_fslabel(file, argp);
5463 	case FITRIM:
5464 		return btrfs_ioctl_fitrim(file, argp);
5465 	case BTRFS_IOC_SNAP_CREATE:
5466 		return btrfs_ioctl_snap_create(file, argp, 0);
5467 	case BTRFS_IOC_SNAP_CREATE_V2:
5468 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5469 	case BTRFS_IOC_SUBVOL_CREATE:
5470 		return btrfs_ioctl_snap_create(file, argp, 1);
5471 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5472 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5473 	case BTRFS_IOC_SNAP_DESTROY:
5474 		return btrfs_ioctl_snap_destroy(file, argp);
5475 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5476 		return btrfs_ioctl_subvol_getflags(file, argp);
5477 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5478 		return btrfs_ioctl_subvol_setflags(file, argp);
5479 	case BTRFS_IOC_DEFAULT_SUBVOL:
5480 		return btrfs_ioctl_default_subvol(file, argp);
5481 	case BTRFS_IOC_DEFRAG:
5482 		return btrfs_ioctl_defrag(file, NULL);
5483 	case BTRFS_IOC_DEFRAG_RANGE:
5484 		return btrfs_ioctl_defrag(file, argp);
5485 	case BTRFS_IOC_RESIZE:
5486 		return btrfs_ioctl_resize(file, argp);
5487 	case BTRFS_IOC_ADD_DEV:
5488 		return btrfs_ioctl_add_dev(fs_info, argp);
5489 	case BTRFS_IOC_RM_DEV:
5490 		return btrfs_ioctl_rm_dev(file, argp);
5491 	case BTRFS_IOC_RM_DEV_V2:
5492 		return btrfs_ioctl_rm_dev_v2(file, argp);
5493 	case BTRFS_IOC_FS_INFO:
5494 		return btrfs_ioctl_fs_info(fs_info, argp);
5495 	case BTRFS_IOC_DEV_INFO:
5496 		return btrfs_ioctl_dev_info(fs_info, argp);
5497 	case BTRFS_IOC_BALANCE:
5498 		return btrfs_ioctl_balance(file, NULL);
5499 	case BTRFS_IOC_TREE_SEARCH:
5500 		return btrfs_ioctl_tree_search(file, argp);
5501 	case BTRFS_IOC_TREE_SEARCH_V2:
5502 		return btrfs_ioctl_tree_search_v2(file, argp);
5503 	case BTRFS_IOC_INO_LOOKUP:
5504 		return btrfs_ioctl_ino_lookup(file, argp);
5505 	case BTRFS_IOC_INO_PATHS:
5506 		return btrfs_ioctl_ino_to_path(root, argp);
5507 	case BTRFS_IOC_LOGICAL_INO:
5508 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5509 	case BTRFS_IOC_LOGICAL_INO_V2:
5510 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5511 	case BTRFS_IOC_SPACE_INFO:
5512 		return btrfs_ioctl_space_info(fs_info, argp);
5513 	case BTRFS_IOC_SYNC: {
5514 		int ret;
5515 
5516 		ret = btrfs_start_delalloc_roots(fs_info, -1);
5517 		if (ret)
5518 			return ret;
5519 		ret = btrfs_sync_fs(inode->i_sb, 1);
5520 		/*
5521 		 * The transaction thread may want to do more work,
5522 		 * namely it pokes the cleaner kthread that will start
5523 		 * processing uncleaned subvols.
5524 		 */
5525 		wake_up_process(fs_info->transaction_kthread);
5526 		return ret;
5527 	}
5528 	case BTRFS_IOC_START_SYNC:
5529 		return btrfs_ioctl_start_sync(root, argp);
5530 	case BTRFS_IOC_WAIT_SYNC:
5531 		return btrfs_ioctl_wait_sync(fs_info, argp);
5532 	case BTRFS_IOC_SCRUB:
5533 		return btrfs_ioctl_scrub(file, argp);
5534 	case BTRFS_IOC_SCRUB_CANCEL:
5535 		return btrfs_ioctl_scrub_cancel(fs_info);
5536 	case BTRFS_IOC_SCRUB_PROGRESS:
5537 		return btrfs_ioctl_scrub_progress(fs_info, argp);
5538 	case BTRFS_IOC_BALANCE_V2:
5539 		return btrfs_ioctl_balance(file, argp);
5540 	case BTRFS_IOC_BALANCE_CTL:
5541 		return btrfs_ioctl_balance_ctl(fs_info, arg);
5542 	case BTRFS_IOC_BALANCE_PROGRESS:
5543 		return btrfs_ioctl_balance_progress(fs_info, argp);
5544 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5545 		return btrfs_ioctl_set_received_subvol(file, argp);
5546 #ifdef CONFIG_64BIT
5547 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5548 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5549 #endif
5550 	case BTRFS_IOC_SEND:
5551 		return _btrfs_ioctl_send(file, argp, false);
5552 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5553 	case BTRFS_IOC_SEND_32:
5554 		return _btrfs_ioctl_send(file, argp, true);
5555 #endif
5556 	case BTRFS_IOC_GET_DEV_STATS:
5557 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
5558 	case BTRFS_IOC_QUOTA_CTL:
5559 		return btrfs_ioctl_quota_ctl(file, argp);
5560 	case BTRFS_IOC_QGROUP_ASSIGN:
5561 		return btrfs_ioctl_qgroup_assign(file, argp);
5562 	case BTRFS_IOC_QGROUP_CREATE:
5563 		return btrfs_ioctl_qgroup_create(file, argp);
5564 	case BTRFS_IOC_QGROUP_LIMIT:
5565 		return btrfs_ioctl_qgroup_limit(file, argp);
5566 	case BTRFS_IOC_QUOTA_RESCAN:
5567 		return btrfs_ioctl_quota_rescan(file, argp);
5568 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5569 		return btrfs_ioctl_quota_rescan_status(file, argp);
5570 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5571 		return btrfs_ioctl_quota_rescan_wait(file, argp);
5572 	case BTRFS_IOC_DEV_REPLACE:
5573 		return btrfs_ioctl_dev_replace(fs_info, argp);
5574 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5575 		return btrfs_ioctl_get_supported_features(argp);
5576 	case BTRFS_IOC_GET_FEATURES:
5577 		return btrfs_ioctl_get_features(file, argp);
5578 	case BTRFS_IOC_SET_FEATURES:
5579 		return btrfs_ioctl_set_features(file, argp);
5580 	case FS_IOC_FSGETXATTR:
5581 		return btrfs_ioctl_fsgetxattr(file, argp);
5582 	case FS_IOC_FSSETXATTR:
5583 		return btrfs_ioctl_fssetxattr(file, argp);
5584 	case BTRFS_IOC_GET_SUBVOL_INFO:
5585 		return btrfs_ioctl_get_subvol_info(file, argp);
5586 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5587 		return btrfs_ioctl_get_subvol_rootref(file, argp);
5588 	case BTRFS_IOC_INO_LOOKUP_USER:
5589 		return btrfs_ioctl_ino_lookup_user(file, argp);
5590 	}
5591 
5592 	return -ENOTTY;
5593 }
5594 
5595 #ifdef CONFIG_COMPAT
btrfs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5596 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5597 {
5598 	/*
5599 	 * These all access 32-bit values anyway so no further
5600 	 * handling is necessary.
5601 	 */
5602 	switch (cmd) {
5603 	case FS_IOC32_GETFLAGS:
5604 		cmd = FS_IOC_GETFLAGS;
5605 		break;
5606 	case FS_IOC32_SETFLAGS:
5607 		cmd = FS_IOC_SETFLAGS;
5608 		break;
5609 	case FS_IOC32_GETVERSION:
5610 		cmd = FS_IOC_GETVERSION;
5611 		break;
5612 	}
5613 
5614 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5615 }
5616 #endif
5617