1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "misc.h"
11 #include "ctree.h"
12 #include "transaction.h"
13 #include "btrfs_inode.h"
14 #include "extent_io.h"
15 #include "disk-io.h"
16 #include "compression.h"
17 #include "delalloc-space.h"
18
19 static struct kmem_cache *btrfs_ordered_extent_cache;
20
entry_end(struct btrfs_ordered_extent * entry)21 static u64 entry_end(struct btrfs_ordered_extent *entry)
22 {
23 if (entry->file_offset + entry->len < entry->file_offset)
24 return (u64)-1;
25 return entry->file_offset + entry->len;
26 }
27
28 /* returns NULL if the insertion worked, or it returns the node it did find
29 * in the tree
30 */
tree_insert(struct rb_root * root,u64 file_offset,struct rb_node * node)31 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
32 struct rb_node *node)
33 {
34 struct rb_node **p = &root->rb_node;
35 struct rb_node *parent = NULL;
36 struct btrfs_ordered_extent *entry;
37
38 while (*p) {
39 parent = *p;
40 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
41
42 if (file_offset < entry->file_offset)
43 p = &(*p)->rb_left;
44 else if (file_offset >= entry_end(entry))
45 p = &(*p)->rb_right;
46 else
47 return parent;
48 }
49
50 rb_link_node(node, parent, p);
51 rb_insert_color(node, root);
52 return NULL;
53 }
54
ordered_data_tree_panic(struct inode * inode,int errno,u64 offset)55 static void ordered_data_tree_panic(struct inode *inode, int errno,
56 u64 offset)
57 {
58 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
59 btrfs_panic(fs_info, errno,
60 "Inconsistency in ordered tree at offset %llu", offset);
61 }
62
63 /*
64 * look for a given offset in the tree, and if it can't be found return the
65 * first lesser offset
66 */
__tree_search(struct rb_root * root,u64 file_offset,struct rb_node ** prev_ret)67 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
68 struct rb_node **prev_ret)
69 {
70 struct rb_node *n = root->rb_node;
71 struct rb_node *prev = NULL;
72 struct rb_node *test;
73 struct btrfs_ordered_extent *entry;
74 struct btrfs_ordered_extent *prev_entry = NULL;
75
76 while (n) {
77 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
78 prev = n;
79 prev_entry = entry;
80
81 if (file_offset < entry->file_offset)
82 n = n->rb_left;
83 else if (file_offset >= entry_end(entry))
84 n = n->rb_right;
85 else
86 return n;
87 }
88 if (!prev_ret)
89 return NULL;
90
91 while (prev && file_offset >= entry_end(prev_entry)) {
92 test = rb_next(prev);
93 if (!test)
94 break;
95 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
96 rb_node);
97 if (file_offset < entry_end(prev_entry))
98 break;
99
100 prev = test;
101 }
102 if (prev)
103 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
104 rb_node);
105 while (prev && file_offset < entry_end(prev_entry)) {
106 test = rb_prev(prev);
107 if (!test)
108 break;
109 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
110 rb_node);
111 prev = test;
112 }
113 *prev_ret = prev;
114 return NULL;
115 }
116
117 /*
118 * helper to check if a given offset is inside a given entry
119 */
offset_in_entry(struct btrfs_ordered_extent * entry,u64 file_offset)120 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
121 {
122 if (file_offset < entry->file_offset ||
123 entry->file_offset + entry->len <= file_offset)
124 return 0;
125 return 1;
126 }
127
range_overlaps(struct btrfs_ordered_extent * entry,u64 file_offset,u64 len)128 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
129 u64 len)
130 {
131 if (file_offset + len <= entry->file_offset ||
132 entry->file_offset + entry->len <= file_offset)
133 return 0;
134 return 1;
135 }
136
137 /*
138 * look find the first ordered struct that has this offset, otherwise
139 * the first one less than this offset
140 */
tree_search(struct btrfs_ordered_inode_tree * tree,u64 file_offset)141 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
142 u64 file_offset)
143 {
144 struct rb_root *root = &tree->tree;
145 struct rb_node *prev = NULL;
146 struct rb_node *ret;
147 struct btrfs_ordered_extent *entry;
148
149 if (tree->last) {
150 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
151 rb_node);
152 if (offset_in_entry(entry, file_offset))
153 return tree->last;
154 }
155 ret = __tree_search(root, file_offset, &prev);
156 if (!ret)
157 ret = prev;
158 if (ret)
159 tree->last = ret;
160 return ret;
161 }
162
163 /* allocate and add a new ordered_extent into the per-inode tree.
164 * file_offset is the logical offset in the file
165 *
166 * start is the disk block number of an extent already reserved in the
167 * extent allocation tree
168 *
169 * len is the length of the extent
170 *
171 * The tree is given a single reference on the ordered extent that was
172 * inserted.
173 */
__btrfs_add_ordered_extent(struct inode * inode,u64 file_offset,u64 start,u64 len,u64 disk_len,int type,int dio,int compress_type)174 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
175 u64 start, u64 len, u64 disk_len,
176 int type, int dio, int compress_type)
177 {
178 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
179 struct btrfs_root *root = BTRFS_I(inode)->root;
180 struct btrfs_ordered_inode_tree *tree;
181 struct rb_node *node;
182 struct btrfs_ordered_extent *entry;
183
184 tree = &BTRFS_I(inode)->ordered_tree;
185 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
186 if (!entry)
187 return -ENOMEM;
188
189 entry->file_offset = file_offset;
190 entry->start = start;
191 entry->len = len;
192 entry->disk_len = disk_len;
193 entry->bytes_left = len;
194 entry->inode = igrab(inode);
195 entry->compress_type = compress_type;
196 entry->truncated_len = (u64)-1;
197 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
198 set_bit(type, &entry->flags);
199
200 if (dio) {
201 percpu_counter_add_batch(&fs_info->dio_bytes, len,
202 fs_info->delalloc_batch);
203 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
204 }
205
206 /* one ref for the tree */
207 refcount_set(&entry->refs, 1);
208 init_waitqueue_head(&entry->wait);
209 INIT_LIST_HEAD(&entry->list);
210 INIT_LIST_HEAD(&entry->root_extent_list);
211 INIT_LIST_HEAD(&entry->work_list);
212 init_completion(&entry->completion);
213 INIT_LIST_HEAD(&entry->log_list);
214 INIT_LIST_HEAD(&entry->trans_list);
215
216 trace_btrfs_ordered_extent_add(inode, entry);
217
218 spin_lock_irq(&tree->lock);
219 node = tree_insert(&tree->tree, file_offset,
220 &entry->rb_node);
221 if (node)
222 ordered_data_tree_panic(inode, -EEXIST, file_offset);
223 spin_unlock_irq(&tree->lock);
224
225 spin_lock(&root->ordered_extent_lock);
226 list_add_tail(&entry->root_extent_list,
227 &root->ordered_extents);
228 root->nr_ordered_extents++;
229 if (root->nr_ordered_extents == 1) {
230 spin_lock(&fs_info->ordered_root_lock);
231 BUG_ON(!list_empty(&root->ordered_root));
232 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
233 spin_unlock(&fs_info->ordered_root_lock);
234 }
235 spin_unlock(&root->ordered_extent_lock);
236
237 /*
238 * We don't need the count_max_extents here, we can assume that all of
239 * that work has been done at higher layers, so this is truly the
240 * smallest the extent is going to get.
241 */
242 spin_lock(&BTRFS_I(inode)->lock);
243 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
244 spin_unlock(&BTRFS_I(inode)->lock);
245
246 return 0;
247 }
248
btrfs_add_ordered_extent(struct inode * inode,u64 file_offset,u64 start,u64 len,u64 disk_len,int type)249 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
250 u64 start, u64 len, u64 disk_len, int type)
251 {
252 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
253 disk_len, type, 0,
254 BTRFS_COMPRESS_NONE);
255 }
256
btrfs_add_ordered_extent_dio(struct inode * inode,u64 file_offset,u64 start,u64 len,u64 disk_len,int type)257 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
258 u64 start, u64 len, u64 disk_len, int type)
259 {
260 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
261 disk_len, type, 1,
262 BTRFS_COMPRESS_NONE);
263 }
264
btrfs_add_ordered_extent_compress(struct inode * inode,u64 file_offset,u64 start,u64 len,u64 disk_len,int type,int compress_type)265 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
266 u64 start, u64 len, u64 disk_len,
267 int type, int compress_type)
268 {
269 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
270 disk_len, type, 0,
271 compress_type);
272 }
273
274 /*
275 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
276 * when an ordered extent is finished. If the list covers more than one
277 * ordered extent, it is split across multiples.
278 */
btrfs_add_ordered_sum(struct btrfs_ordered_extent * entry,struct btrfs_ordered_sum * sum)279 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
280 struct btrfs_ordered_sum *sum)
281 {
282 struct btrfs_ordered_inode_tree *tree;
283
284 tree = &BTRFS_I(entry->inode)->ordered_tree;
285 spin_lock_irq(&tree->lock);
286 list_add_tail(&sum->list, &entry->list);
287 spin_unlock_irq(&tree->lock);
288 }
289
290 /*
291 * this is used to account for finished IO across a given range
292 * of the file. The IO may span ordered extents. If
293 * a given ordered_extent is completely done, 1 is returned, otherwise
294 * 0.
295 *
296 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
297 * to make sure this function only returns 1 once for a given ordered extent.
298 *
299 * file_offset is updated to one byte past the range that is recorded as
300 * complete. This allows you to walk forward in the file.
301 */
btrfs_dec_test_first_ordered_pending(struct inode * inode,struct btrfs_ordered_extent ** cached,u64 * file_offset,u64 io_size,int uptodate)302 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
303 struct btrfs_ordered_extent **cached,
304 u64 *file_offset, u64 io_size, int uptodate)
305 {
306 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
307 struct btrfs_ordered_inode_tree *tree;
308 struct rb_node *node;
309 struct btrfs_ordered_extent *entry = NULL;
310 int ret;
311 unsigned long flags;
312 u64 dec_end;
313 u64 dec_start;
314 u64 to_dec;
315
316 tree = &BTRFS_I(inode)->ordered_tree;
317 spin_lock_irqsave(&tree->lock, flags);
318 node = tree_search(tree, *file_offset);
319 if (!node) {
320 ret = 1;
321 goto out;
322 }
323
324 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
325 if (!offset_in_entry(entry, *file_offset)) {
326 ret = 1;
327 goto out;
328 }
329
330 dec_start = max(*file_offset, entry->file_offset);
331 dec_end = min(*file_offset + io_size, entry->file_offset +
332 entry->len);
333 *file_offset = dec_end;
334 if (dec_start > dec_end) {
335 btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
336 dec_start, dec_end);
337 }
338 to_dec = dec_end - dec_start;
339 if (to_dec > entry->bytes_left) {
340 btrfs_crit(fs_info,
341 "bad ordered accounting left %llu size %llu",
342 entry->bytes_left, to_dec);
343 }
344 entry->bytes_left -= to_dec;
345 if (!uptodate)
346 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
347
348 if (entry->bytes_left == 0) {
349 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
350 /* test_and_set_bit implies a barrier */
351 cond_wake_up_nomb(&entry->wait);
352 } else {
353 ret = 1;
354 }
355 out:
356 if (!ret && cached && entry) {
357 *cached = entry;
358 refcount_inc(&entry->refs);
359 }
360 spin_unlock_irqrestore(&tree->lock, flags);
361 return ret == 0;
362 }
363
364 /*
365 * this is used to account for finished IO across a given range
366 * of the file. The IO should not span ordered extents. If
367 * a given ordered_extent is completely done, 1 is returned, otherwise
368 * 0.
369 *
370 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
371 * to make sure this function only returns 1 once for a given ordered extent.
372 */
btrfs_dec_test_ordered_pending(struct inode * inode,struct btrfs_ordered_extent ** cached,u64 file_offset,u64 io_size,int uptodate)373 int btrfs_dec_test_ordered_pending(struct inode *inode,
374 struct btrfs_ordered_extent **cached,
375 u64 file_offset, u64 io_size, int uptodate)
376 {
377 struct btrfs_ordered_inode_tree *tree;
378 struct rb_node *node;
379 struct btrfs_ordered_extent *entry = NULL;
380 unsigned long flags;
381 int ret;
382
383 tree = &BTRFS_I(inode)->ordered_tree;
384 spin_lock_irqsave(&tree->lock, flags);
385 if (cached && *cached) {
386 entry = *cached;
387 goto have_entry;
388 }
389
390 node = tree_search(tree, file_offset);
391 if (!node) {
392 ret = 1;
393 goto out;
394 }
395
396 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
397 have_entry:
398 if (!offset_in_entry(entry, file_offset)) {
399 ret = 1;
400 goto out;
401 }
402
403 if (io_size > entry->bytes_left) {
404 btrfs_crit(BTRFS_I(inode)->root->fs_info,
405 "bad ordered accounting left %llu size %llu",
406 entry->bytes_left, io_size);
407 }
408 entry->bytes_left -= io_size;
409 if (!uptodate)
410 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
411
412 if (entry->bytes_left == 0) {
413 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
414 /* test_and_set_bit implies a barrier */
415 cond_wake_up_nomb(&entry->wait);
416 } else {
417 ret = 1;
418 }
419 out:
420 if (!ret && cached && entry) {
421 *cached = entry;
422 refcount_inc(&entry->refs);
423 }
424 spin_unlock_irqrestore(&tree->lock, flags);
425 return ret == 0;
426 }
427
428 /*
429 * used to drop a reference on an ordered extent. This will free
430 * the extent if the last reference is dropped
431 */
btrfs_put_ordered_extent(struct btrfs_ordered_extent * entry)432 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
433 {
434 struct list_head *cur;
435 struct btrfs_ordered_sum *sum;
436
437 trace_btrfs_ordered_extent_put(entry->inode, entry);
438
439 if (refcount_dec_and_test(&entry->refs)) {
440 ASSERT(list_empty(&entry->log_list));
441 ASSERT(list_empty(&entry->trans_list));
442 ASSERT(list_empty(&entry->root_extent_list));
443 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
444 if (entry->inode)
445 btrfs_add_delayed_iput(entry->inode);
446 while (!list_empty(&entry->list)) {
447 cur = entry->list.next;
448 sum = list_entry(cur, struct btrfs_ordered_sum, list);
449 list_del(&sum->list);
450 kvfree(sum);
451 }
452 kmem_cache_free(btrfs_ordered_extent_cache, entry);
453 }
454 }
455
456 /*
457 * remove an ordered extent from the tree. No references are dropped
458 * and waiters are woken up.
459 */
btrfs_remove_ordered_extent(struct inode * inode,struct btrfs_ordered_extent * entry)460 void btrfs_remove_ordered_extent(struct inode *inode,
461 struct btrfs_ordered_extent *entry)
462 {
463 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
464 struct btrfs_ordered_inode_tree *tree;
465 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
466 struct btrfs_root *root = btrfs_inode->root;
467 struct rb_node *node;
468
469 /* This is paired with btrfs_add_ordered_extent. */
470 spin_lock(&btrfs_inode->lock);
471 btrfs_mod_outstanding_extents(btrfs_inode, -1);
472 spin_unlock(&btrfs_inode->lock);
473 if (root != fs_info->tree_root)
474 btrfs_delalloc_release_metadata(btrfs_inode, entry->len, false);
475
476 if (test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
477 percpu_counter_add_batch(&fs_info->dio_bytes, -entry->len,
478 fs_info->delalloc_batch);
479
480 tree = &btrfs_inode->ordered_tree;
481 spin_lock_irq(&tree->lock);
482 node = &entry->rb_node;
483 rb_erase(node, &tree->tree);
484 RB_CLEAR_NODE(node);
485 if (tree->last == node)
486 tree->last = NULL;
487 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
488 spin_unlock_irq(&tree->lock);
489
490 spin_lock(&root->ordered_extent_lock);
491 list_del_init(&entry->root_extent_list);
492 root->nr_ordered_extents--;
493
494 trace_btrfs_ordered_extent_remove(inode, entry);
495
496 if (!root->nr_ordered_extents) {
497 spin_lock(&fs_info->ordered_root_lock);
498 BUG_ON(list_empty(&root->ordered_root));
499 list_del_init(&root->ordered_root);
500 spin_unlock(&fs_info->ordered_root_lock);
501 }
502 spin_unlock(&root->ordered_extent_lock);
503 wake_up(&entry->wait);
504 }
505
btrfs_run_ordered_extent_work(struct btrfs_work * work)506 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
507 {
508 struct btrfs_ordered_extent *ordered;
509
510 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
511 btrfs_start_ordered_extent(ordered->inode, ordered, 1);
512 complete(&ordered->completion);
513 }
514
515 /*
516 * wait for all the ordered extents in a root. This is done when balancing
517 * space between drives.
518 */
btrfs_wait_ordered_extents(struct btrfs_root * root,u64 nr,const u64 range_start,const u64 range_len)519 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
520 const u64 range_start, const u64 range_len)
521 {
522 struct btrfs_fs_info *fs_info = root->fs_info;
523 LIST_HEAD(splice);
524 LIST_HEAD(skipped);
525 LIST_HEAD(works);
526 struct btrfs_ordered_extent *ordered, *next;
527 u64 count = 0;
528 const u64 range_end = range_start + range_len;
529
530 mutex_lock(&root->ordered_extent_mutex);
531 spin_lock(&root->ordered_extent_lock);
532 list_splice_init(&root->ordered_extents, &splice);
533 while (!list_empty(&splice) && nr) {
534 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
535 root_extent_list);
536
537 if (range_end <= ordered->start ||
538 ordered->start + ordered->disk_len <= range_start) {
539 list_move_tail(&ordered->root_extent_list, &skipped);
540 cond_resched_lock(&root->ordered_extent_lock);
541 continue;
542 }
543
544 list_move_tail(&ordered->root_extent_list,
545 &root->ordered_extents);
546 refcount_inc(&ordered->refs);
547 spin_unlock(&root->ordered_extent_lock);
548
549 btrfs_init_work(&ordered->flush_work,
550 btrfs_run_ordered_extent_work, NULL, NULL);
551 list_add_tail(&ordered->work_list, &works);
552 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
553
554 cond_resched();
555 spin_lock(&root->ordered_extent_lock);
556 if (nr != U64_MAX)
557 nr--;
558 count++;
559 }
560 list_splice_tail(&skipped, &root->ordered_extents);
561 list_splice_tail(&splice, &root->ordered_extents);
562 spin_unlock(&root->ordered_extent_lock);
563
564 list_for_each_entry_safe(ordered, next, &works, work_list) {
565 list_del_init(&ordered->work_list);
566 wait_for_completion(&ordered->completion);
567 btrfs_put_ordered_extent(ordered);
568 cond_resched();
569 }
570 mutex_unlock(&root->ordered_extent_mutex);
571
572 return count;
573 }
574
btrfs_wait_ordered_roots(struct btrfs_fs_info * fs_info,u64 nr,const u64 range_start,const u64 range_len)575 u64 btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
576 const u64 range_start, const u64 range_len)
577 {
578 struct btrfs_root *root;
579 struct list_head splice;
580 u64 total_done = 0;
581 u64 done;
582
583 INIT_LIST_HEAD(&splice);
584
585 mutex_lock(&fs_info->ordered_operations_mutex);
586 spin_lock(&fs_info->ordered_root_lock);
587 list_splice_init(&fs_info->ordered_roots, &splice);
588 while (!list_empty(&splice) && nr) {
589 root = list_first_entry(&splice, struct btrfs_root,
590 ordered_root);
591 root = btrfs_grab_fs_root(root);
592 BUG_ON(!root);
593 list_move_tail(&root->ordered_root,
594 &fs_info->ordered_roots);
595 spin_unlock(&fs_info->ordered_root_lock);
596
597 done = btrfs_wait_ordered_extents(root, nr,
598 range_start, range_len);
599 btrfs_put_fs_root(root);
600 total_done += done;
601
602 spin_lock(&fs_info->ordered_root_lock);
603 if (nr != U64_MAX) {
604 nr -= done;
605 }
606 }
607 list_splice_tail(&splice, &fs_info->ordered_roots);
608 spin_unlock(&fs_info->ordered_root_lock);
609 mutex_unlock(&fs_info->ordered_operations_mutex);
610
611 return total_done;
612 }
613
614 /*
615 * Used to start IO or wait for a given ordered extent to finish.
616 *
617 * If wait is one, this effectively waits on page writeback for all the pages
618 * in the extent, and it waits on the io completion code to insert
619 * metadata into the btree corresponding to the extent
620 */
btrfs_start_ordered_extent(struct inode * inode,struct btrfs_ordered_extent * entry,int wait)621 void btrfs_start_ordered_extent(struct inode *inode,
622 struct btrfs_ordered_extent *entry,
623 int wait)
624 {
625 u64 start = entry->file_offset;
626 u64 end = start + entry->len - 1;
627
628 trace_btrfs_ordered_extent_start(inode, entry);
629
630 /*
631 * pages in the range can be dirty, clean or writeback. We
632 * start IO on any dirty ones so the wait doesn't stall waiting
633 * for the flusher thread to find them
634 */
635 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
636 filemap_fdatawrite_range(inode->i_mapping, start, end);
637 if (wait) {
638 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
639 &entry->flags));
640 }
641 }
642
643 /*
644 * Used to wait on ordered extents across a large range of bytes.
645 */
btrfs_wait_ordered_range(struct inode * inode,u64 start,u64 len)646 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
647 {
648 int ret = 0;
649 int ret_wb = 0;
650 u64 end;
651 u64 orig_end;
652 struct btrfs_ordered_extent *ordered;
653
654 if (start + len < start) {
655 orig_end = INT_LIMIT(loff_t);
656 } else {
657 orig_end = start + len - 1;
658 if (orig_end > INT_LIMIT(loff_t))
659 orig_end = INT_LIMIT(loff_t);
660 }
661
662 /* start IO across the range first to instantiate any delalloc
663 * extents
664 */
665 ret = btrfs_fdatawrite_range(inode, start, orig_end);
666 if (ret)
667 return ret;
668
669 /*
670 * If we have a writeback error don't return immediately. Wait first
671 * for any ordered extents that haven't completed yet. This is to make
672 * sure no one can dirty the same page ranges and call writepages()
673 * before the ordered extents complete - to avoid failures (-EEXIST)
674 * when adding the new ordered extents to the ordered tree.
675 */
676 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
677
678 end = orig_end;
679 while (1) {
680 ordered = btrfs_lookup_first_ordered_extent(inode, end);
681 if (!ordered)
682 break;
683 if (ordered->file_offset > orig_end) {
684 btrfs_put_ordered_extent(ordered);
685 break;
686 }
687 if (ordered->file_offset + ordered->len <= start) {
688 btrfs_put_ordered_extent(ordered);
689 break;
690 }
691 btrfs_start_ordered_extent(inode, ordered, 1);
692 end = ordered->file_offset;
693 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
694 ret = -EIO;
695 btrfs_put_ordered_extent(ordered);
696 if (ret || end == 0 || end == start)
697 break;
698 end--;
699 }
700 return ret_wb ? ret_wb : ret;
701 }
702
703 /*
704 * find an ordered extent corresponding to file_offset. return NULL if
705 * nothing is found, otherwise take a reference on the extent and return it
706 */
btrfs_lookup_ordered_extent(struct inode * inode,u64 file_offset)707 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
708 u64 file_offset)
709 {
710 struct btrfs_ordered_inode_tree *tree;
711 struct rb_node *node;
712 struct btrfs_ordered_extent *entry = NULL;
713
714 tree = &BTRFS_I(inode)->ordered_tree;
715 spin_lock_irq(&tree->lock);
716 node = tree_search(tree, file_offset);
717 if (!node)
718 goto out;
719
720 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
721 if (!offset_in_entry(entry, file_offset))
722 entry = NULL;
723 if (entry)
724 refcount_inc(&entry->refs);
725 out:
726 spin_unlock_irq(&tree->lock);
727 return entry;
728 }
729
730 /* Since the DIO code tries to lock a wide area we need to look for any ordered
731 * extents that exist in the range, rather than just the start of the range.
732 */
btrfs_lookup_ordered_range(struct btrfs_inode * inode,u64 file_offset,u64 len)733 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
734 struct btrfs_inode *inode, u64 file_offset, u64 len)
735 {
736 struct btrfs_ordered_inode_tree *tree;
737 struct rb_node *node;
738 struct btrfs_ordered_extent *entry = NULL;
739
740 tree = &inode->ordered_tree;
741 spin_lock_irq(&tree->lock);
742 node = tree_search(tree, file_offset);
743 if (!node) {
744 node = tree_search(tree, file_offset + len);
745 if (!node)
746 goto out;
747 }
748
749 while (1) {
750 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
751 if (range_overlaps(entry, file_offset, len))
752 break;
753
754 if (entry->file_offset >= file_offset + len) {
755 entry = NULL;
756 break;
757 }
758 entry = NULL;
759 node = rb_next(node);
760 if (!node)
761 break;
762 }
763 out:
764 if (entry)
765 refcount_inc(&entry->refs);
766 spin_unlock_irq(&tree->lock);
767 return entry;
768 }
769
770 /*
771 * lookup and return any extent before 'file_offset'. NULL is returned
772 * if none is found
773 */
774 struct btrfs_ordered_extent *
btrfs_lookup_first_ordered_extent(struct inode * inode,u64 file_offset)775 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
776 {
777 struct btrfs_ordered_inode_tree *tree;
778 struct rb_node *node;
779 struct btrfs_ordered_extent *entry = NULL;
780
781 tree = &BTRFS_I(inode)->ordered_tree;
782 spin_lock_irq(&tree->lock);
783 node = tree_search(tree, file_offset);
784 if (!node)
785 goto out;
786
787 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
788 refcount_inc(&entry->refs);
789 out:
790 spin_unlock_irq(&tree->lock);
791 return entry;
792 }
793
794 /*
795 * After an extent is done, call this to conditionally update the on disk
796 * i_size. i_size is updated to cover any fully written part of the file.
797 */
btrfs_ordered_update_i_size(struct inode * inode,u64 offset,struct btrfs_ordered_extent * ordered)798 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
799 struct btrfs_ordered_extent *ordered)
800 {
801 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
802 u64 disk_i_size;
803 u64 new_i_size;
804 u64 i_size = i_size_read(inode);
805 struct rb_node *node;
806 struct rb_node *prev = NULL;
807 struct btrfs_ordered_extent *test;
808 int ret = 1;
809 u64 orig_offset = offset;
810
811 spin_lock_irq(&tree->lock);
812 if (ordered) {
813 offset = entry_end(ordered);
814 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
815 offset = min(offset,
816 ordered->file_offset +
817 ordered->truncated_len);
818 } else {
819 offset = ALIGN(offset, btrfs_inode_sectorsize(inode));
820 }
821 disk_i_size = BTRFS_I(inode)->disk_i_size;
822
823 /*
824 * truncate file.
825 * If ordered is not NULL, then this is called from endio and
826 * disk_i_size will be updated by either truncate itself or any
827 * in-flight IOs which are inside the disk_i_size.
828 *
829 * Because btrfs_setsize() may set i_size with disk_i_size if truncate
830 * fails somehow, we need to make sure we have a precise disk_i_size by
831 * updating it as usual.
832 *
833 */
834 if (!ordered && disk_i_size > i_size) {
835 BTRFS_I(inode)->disk_i_size = orig_offset;
836 ret = 0;
837 goto out;
838 }
839
840 /*
841 * if the disk i_size is already at the inode->i_size, or
842 * this ordered extent is inside the disk i_size, we're done
843 */
844 if (disk_i_size == i_size)
845 goto out;
846
847 /*
848 * We still need to update disk_i_size if outstanding_isize is greater
849 * than disk_i_size.
850 */
851 if (offset <= disk_i_size &&
852 (!ordered || ordered->outstanding_isize <= disk_i_size))
853 goto out;
854
855 /*
856 * walk backward from this ordered extent to disk_i_size.
857 * if we find an ordered extent then we can't update disk i_size
858 * yet
859 */
860 if (ordered) {
861 node = rb_prev(&ordered->rb_node);
862 } else {
863 prev = tree_search(tree, offset);
864 /*
865 * we insert file extents without involving ordered struct,
866 * so there should be no ordered struct cover this offset
867 */
868 if (prev) {
869 test = rb_entry(prev, struct btrfs_ordered_extent,
870 rb_node);
871 BUG_ON(offset_in_entry(test, offset));
872 }
873 node = prev;
874 }
875 for (; node; node = rb_prev(node)) {
876 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
877
878 /* We treat this entry as if it doesn't exist */
879 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
880 continue;
881
882 if (entry_end(test) <= disk_i_size)
883 break;
884 if (test->file_offset >= i_size)
885 break;
886
887 /*
888 * We don't update disk_i_size now, so record this undealt
889 * i_size. Or we will not know the real i_size.
890 */
891 if (test->outstanding_isize < offset)
892 test->outstanding_isize = offset;
893 if (ordered &&
894 ordered->outstanding_isize > test->outstanding_isize)
895 test->outstanding_isize = ordered->outstanding_isize;
896 goto out;
897 }
898 new_i_size = min_t(u64, offset, i_size);
899
900 /*
901 * Some ordered extents may completed before the current one, and
902 * we hold the real i_size in ->outstanding_isize.
903 */
904 if (ordered && ordered->outstanding_isize > new_i_size)
905 new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
906 BTRFS_I(inode)->disk_i_size = new_i_size;
907 ret = 0;
908 out:
909 /*
910 * We need to do this because we can't remove ordered extents until
911 * after the i_disk_size has been updated and then the inode has been
912 * updated to reflect the change, so we need to tell anybody who finds
913 * this ordered extent that we've already done all the real work, we
914 * just haven't completed all the other work.
915 */
916 if (ordered)
917 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
918 spin_unlock_irq(&tree->lock);
919 return ret;
920 }
921
922 /*
923 * search the ordered extents for one corresponding to 'offset' and
924 * try to find a checksum. This is used because we allow pages to
925 * be reclaimed before their checksum is actually put into the btree
926 */
btrfs_find_ordered_sum(struct inode * inode,u64 offset,u64 disk_bytenr,u8 * sum,int len)927 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
928 u8 *sum, int len)
929 {
930 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
931 struct btrfs_ordered_sum *ordered_sum;
932 struct btrfs_ordered_extent *ordered;
933 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
934 unsigned long num_sectors;
935 unsigned long i;
936 u32 sectorsize = btrfs_inode_sectorsize(inode);
937 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
938 int index = 0;
939
940 ordered = btrfs_lookup_ordered_extent(inode, offset);
941 if (!ordered)
942 return 0;
943
944 spin_lock_irq(&tree->lock);
945 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
946 if (disk_bytenr >= ordered_sum->bytenr &&
947 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
948 i = (disk_bytenr - ordered_sum->bytenr) >>
949 inode->i_sb->s_blocksize_bits;
950 num_sectors = ordered_sum->len >>
951 inode->i_sb->s_blocksize_bits;
952 num_sectors = min_t(int, len - index, num_sectors - i);
953 memcpy(sum + index, ordered_sum->sums + i * csum_size,
954 num_sectors * csum_size);
955
956 index += (int)num_sectors * csum_size;
957 if (index == len)
958 goto out;
959 disk_bytenr += num_sectors * sectorsize;
960 }
961 }
962 out:
963 spin_unlock_irq(&tree->lock);
964 btrfs_put_ordered_extent(ordered);
965 return index;
966 }
967
968 /*
969 * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
970 * ordered extents in it are run to completion.
971 *
972 * @tree: IO tree used for locking out other users of the range
973 * @inode: Inode whose ordered tree is to be searched
974 * @start: Beginning of range to flush
975 * @end: Last byte of range to lock
976 * @cached_state: If passed, will return the extent state responsible for the
977 * locked range. It's the caller's responsibility to free the cached state.
978 *
979 * This function always returns with the given range locked, ensuring after it's
980 * called no order extent can be pending.
981 */
btrfs_lock_and_flush_ordered_range(struct extent_io_tree * tree,struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state)982 void btrfs_lock_and_flush_ordered_range(struct extent_io_tree *tree,
983 struct btrfs_inode *inode, u64 start,
984 u64 end,
985 struct extent_state **cached_state)
986 {
987 struct btrfs_ordered_extent *ordered;
988 struct extent_state *cache = NULL;
989 struct extent_state **cachedp = &cache;
990
991 if (cached_state)
992 cachedp = cached_state;
993
994 while (1) {
995 lock_extent_bits(tree, start, end, cachedp);
996 ordered = btrfs_lookup_ordered_range(inode, start,
997 end - start + 1);
998 if (!ordered) {
999 /*
1000 * If no external cached_state has been passed then
1001 * decrement the extra ref taken for cachedp since we
1002 * aren't exposing it outside of this function
1003 */
1004 if (!cached_state)
1005 refcount_dec(&cache->refs);
1006 break;
1007 }
1008 unlock_extent_cached(tree, start, end, cachedp);
1009 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
1010 btrfs_put_ordered_extent(ordered);
1011 }
1012 }
1013
ordered_data_init(void)1014 int __init ordered_data_init(void)
1015 {
1016 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1017 sizeof(struct btrfs_ordered_extent), 0,
1018 SLAB_MEM_SPREAD,
1019 NULL);
1020 if (!btrfs_ordered_extent_cache)
1021 return -ENOMEM;
1022
1023 return 0;
1024 }
1025
ordered_data_exit(void)1026 void __cold ordered_data_exit(void)
1027 {
1028 kmem_cache_destroy(btrfs_ordered_extent_cache);
1029 }
1030