1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2012 Fusion-io All rights reserved.
4 * Copyright (C) 2012 Intel Corp. All rights reserved.
5 */
6
7 #include <linux/sched.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/raid/pq.h>
12 #include <linux/hash.h>
13 #include <linux/list_sort.h>
14 #include <linux/raid/xor.h>
15 #include <linux/mm.h>
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "volumes.h"
19 #include "raid56.h"
20 #include "async-thread.h"
21
22 /* set when additional merges to this rbio are not allowed */
23 #define RBIO_RMW_LOCKED_BIT 1
24
25 /*
26 * set when this rbio is sitting in the hash, but it is just a cache
27 * of past RMW
28 */
29 #define RBIO_CACHE_BIT 2
30
31 /*
32 * set when it is safe to trust the stripe_pages for caching
33 */
34 #define RBIO_CACHE_READY_BIT 3
35
36 #define RBIO_CACHE_SIZE 1024
37
38 #define BTRFS_STRIPE_HASH_TABLE_BITS 11
39
40 /* Used by the raid56 code to lock stripes for read/modify/write */
41 struct btrfs_stripe_hash {
42 struct list_head hash_list;
43 spinlock_t lock;
44 };
45
46 /* Used by the raid56 code to lock stripes for read/modify/write */
47 struct btrfs_stripe_hash_table {
48 struct list_head stripe_cache;
49 spinlock_t cache_lock;
50 int cache_size;
51 struct btrfs_stripe_hash table[];
52 };
53
54 enum btrfs_rbio_ops {
55 BTRFS_RBIO_WRITE,
56 BTRFS_RBIO_READ_REBUILD,
57 BTRFS_RBIO_PARITY_SCRUB,
58 BTRFS_RBIO_REBUILD_MISSING,
59 };
60
61 struct btrfs_raid_bio {
62 struct btrfs_fs_info *fs_info;
63 struct btrfs_bio *bbio;
64
65 /* while we're doing rmw on a stripe
66 * we put it into a hash table so we can
67 * lock the stripe and merge more rbios
68 * into it.
69 */
70 struct list_head hash_list;
71
72 /*
73 * LRU list for the stripe cache
74 */
75 struct list_head stripe_cache;
76
77 /*
78 * for scheduling work in the helper threads
79 */
80 struct btrfs_work work;
81
82 /*
83 * bio list and bio_list_lock are used
84 * to add more bios into the stripe
85 * in hopes of avoiding the full rmw
86 */
87 struct bio_list bio_list;
88 spinlock_t bio_list_lock;
89
90 /* also protected by the bio_list_lock, the
91 * plug list is used by the plugging code
92 * to collect partial bios while plugged. The
93 * stripe locking code also uses it to hand off
94 * the stripe lock to the next pending IO
95 */
96 struct list_head plug_list;
97
98 /*
99 * flags that tell us if it is safe to
100 * merge with this bio
101 */
102 unsigned long flags;
103
104 /* size of each individual stripe on disk */
105 int stripe_len;
106
107 /* number of data stripes (no p/q) */
108 int nr_data;
109
110 int real_stripes;
111
112 int stripe_npages;
113 /*
114 * set if we're doing a parity rebuild
115 * for a read from higher up, which is handled
116 * differently from a parity rebuild as part of
117 * rmw
118 */
119 enum btrfs_rbio_ops operation;
120
121 /* first bad stripe */
122 int faila;
123
124 /* second bad stripe (for raid6 use) */
125 int failb;
126
127 int scrubp;
128 /*
129 * number of pages needed to represent the full
130 * stripe
131 */
132 int nr_pages;
133
134 /*
135 * size of all the bios in the bio_list. This
136 * helps us decide if the rbio maps to a full
137 * stripe or not
138 */
139 int bio_list_bytes;
140
141 int generic_bio_cnt;
142
143 refcount_t refs;
144
145 atomic_t stripes_pending;
146
147 atomic_t error;
148 /*
149 * these are two arrays of pointers. We allocate the
150 * rbio big enough to hold them both and setup their
151 * locations when the rbio is allocated
152 */
153
154 /* pointers to pages that we allocated for
155 * reading/writing stripes directly from the disk (including P/Q)
156 */
157 struct page **stripe_pages;
158
159 /*
160 * pointers to the pages in the bio_list. Stored
161 * here for faster lookup
162 */
163 struct page **bio_pages;
164
165 /*
166 * bitmap to record which horizontal stripe has data
167 */
168 unsigned long *dbitmap;
169
170 /* allocated with real_stripes-many pointers for finish_*() calls */
171 void **finish_pointers;
172
173 /* allocated with stripe_npages-many bits for finish_*() calls */
174 unsigned long *finish_pbitmap;
175 };
176
177 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
178 static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
179 static void rmw_work(struct btrfs_work *work);
180 static void read_rebuild_work(struct btrfs_work *work);
181 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
182 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
183 static void __free_raid_bio(struct btrfs_raid_bio *rbio);
184 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
185 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
186
187 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
188 int need_check);
189 static void scrub_parity_work(struct btrfs_work *work);
190
start_async_work(struct btrfs_raid_bio * rbio,btrfs_func_t work_func)191 static void start_async_work(struct btrfs_raid_bio *rbio, btrfs_func_t work_func)
192 {
193 btrfs_init_work(&rbio->work, work_func, NULL, NULL);
194 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
195 }
196
197 /*
198 * the stripe hash table is used for locking, and to collect
199 * bios in hopes of making a full stripe
200 */
btrfs_alloc_stripe_hash_table(struct btrfs_fs_info * info)201 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
202 {
203 struct btrfs_stripe_hash_table *table;
204 struct btrfs_stripe_hash_table *x;
205 struct btrfs_stripe_hash *cur;
206 struct btrfs_stripe_hash *h;
207 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
208 int i;
209 int table_size;
210
211 if (info->stripe_hash_table)
212 return 0;
213
214 /*
215 * The table is large, starting with order 4 and can go as high as
216 * order 7 in case lock debugging is turned on.
217 *
218 * Try harder to allocate and fallback to vmalloc to lower the chance
219 * of a failing mount.
220 */
221 table_size = sizeof(*table) + sizeof(*h) * num_entries;
222 table = kvzalloc(table_size, GFP_KERNEL);
223 if (!table)
224 return -ENOMEM;
225
226 spin_lock_init(&table->cache_lock);
227 INIT_LIST_HEAD(&table->stripe_cache);
228
229 h = table->table;
230
231 for (i = 0; i < num_entries; i++) {
232 cur = h + i;
233 INIT_LIST_HEAD(&cur->hash_list);
234 spin_lock_init(&cur->lock);
235 }
236
237 x = cmpxchg(&info->stripe_hash_table, NULL, table);
238 if (x)
239 kvfree(x);
240 return 0;
241 }
242
243 /*
244 * caching an rbio means to copy anything from the
245 * bio_pages array into the stripe_pages array. We
246 * use the page uptodate bit in the stripe cache array
247 * to indicate if it has valid data
248 *
249 * once the caching is done, we set the cache ready
250 * bit.
251 */
cache_rbio_pages(struct btrfs_raid_bio * rbio)252 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
253 {
254 int i;
255 char *s;
256 char *d;
257 int ret;
258
259 ret = alloc_rbio_pages(rbio);
260 if (ret)
261 return;
262
263 for (i = 0; i < rbio->nr_pages; i++) {
264 if (!rbio->bio_pages[i])
265 continue;
266
267 s = kmap(rbio->bio_pages[i]);
268 d = kmap(rbio->stripe_pages[i]);
269
270 copy_page(d, s);
271
272 kunmap(rbio->bio_pages[i]);
273 kunmap(rbio->stripe_pages[i]);
274 SetPageUptodate(rbio->stripe_pages[i]);
275 }
276 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
277 }
278
279 /*
280 * we hash on the first logical address of the stripe
281 */
rbio_bucket(struct btrfs_raid_bio * rbio)282 static int rbio_bucket(struct btrfs_raid_bio *rbio)
283 {
284 u64 num = rbio->bbio->raid_map[0];
285
286 /*
287 * we shift down quite a bit. We're using byte
288 * addressing, and most of the lower bits are zeros.
289 * This tends to upset hash_64, and it consistently
290 * returns just one or two different values.
291 *
292 * shifting off the lower bits fixes things.
293 */
294 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
295 }
296
297 /*
298 * stealing an rbio means taking all the uptodate pages from the stripe
299 * array in the source rbio and putting them into the destination rbio
300 */
steal_rbio(struct btrfs_raid_bio * src,struct btrfs_raid_bio * dest)301 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
302 {
303 int i;
304 struct page *s;
305 struct page *d;
306
307 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
308 return;
309
310 for (i = 0; i < dest->nr_pages; i++) {
311 s = src->stripe_pages[i];
312 if (!s || !PageUptodate(s)) {
313 continue;
314 }
315
316 d = dest->stripe_pages[i];
317 if (d)
318 __free_page(d);
319
320 dest->stripe_pages[i] = s;
321 src->stripe_pages[i] = NULL;
322 }
323 }
324
325 /*
326 * merging means we take the bio_list from the victim and
327 * splice it into the destination. The victim should
328 * be discarded afterwards.
329 *
330 * must be called with dest->rbio_list_lock held
331 */
merge_rbio(struct btrfs_raid_bio * dest,struct btrfs_raid_bio * victim)332 static void merge_rbio(struct btrfs_raid_bio *dest,
333 struct btrfs_raid_bio *victim)
334 {
335 bio_list_merge(&dest->bio_list, &victim->bio_list);
336 dest->bio_list_bytes += victim->bio_list_bytes;
337 dest->generic_bio_cnt += victim->generic_bio_cnt;
338 bio_list_init(&victim->bio_list);
339 }
340
341 /*
342 * used to prune items that are in the cache. The caller
343 * must hold the hash table lock.
344 */
__remove_rbio_from_cache(struct btrfs_raid_bio * rbio)345 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
346 {
347 int bucket = rbio_bucket(rbio);
348 struct btrfs_stripe_hash_table *table;
349 struct btrfs_stripe_hash *h;
350 int freeit = 0;
351
352 /*
353 * check the bit again under the hash table lock.
354 */
355 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
356 return;
357
358 table = rbio->fs_info->stripe_hash_table;
359 h = table->table + bucket;
360
361 /* hold the lock for the bucket because we may be
362 * removing it from the hash table
363 */
364 spin_lock(&h->lock);
365
366 /*
367 * hold the lock for the bio list because we need
368 * to make sure the bio list is empty
369 */
370 spin_lock(&rbio->bio_list_lock);
371
372 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
373 list_del_init(&rbio->stripe_cache);
374 table->cache_size -= 1;
375 freeit = 1;
376
377 /* if the bio list isn't empty, this rbio is
378 * still involved in an IO. We take it out
379 * of the cache list, and drop the ref that
380 * was held for the list.
381 *
382 * If the bio_list was empty, we also remove
383 * the rbio from the hash_table, and drop
384 * the corresponding ref
385 */
386 if (bio_list_empty(&rbio->bio_list)) {
387 if (!list_empty(&rbio->hash_list)) {
388 list_del_init(&rbio->hash_list);
389 refcount_dec(&rbio->refs);
390 BUG_ON(!list_empty(&rbio->plug_list));
391 }
392 }
393 }
394
395 spin_unlock(&rbio->bio_list_lock);
396 spin_unlock(&h->lock);
397
398 if (freeit)
399 __free_raid_bio(rbio);
400 }
401
402 /*
403 * prune a given rbio from the cache
404 */
remove_rbio_from_cache(struct btrfs_raid_bio * rbio)405 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
406 {
407 struct btrfs_stripe_hash_table *table;
408 unsigned long flags;
409
410 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
411 return;
412
413 table = rbio->fs_info->stripe_hash_table;
414
415 spin_lock_irqsave(&table->cache_lock, flags);
416 __remove_rbio_from_cache(rbio);
417 spin_unlock_irqrestore(&table->cache_lock, flags);
418 }
419
420 /*
421 * remove everything in the cache
422 */
btrfs_clear_rbio_cache(struct btrfs_fs_info * info)423 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
424 {
425 struct btrfs_stripe_hash_table *table;
426 unsigned long flags;
427 struct btrfs_raid_bio *rbio;
428
429 table = info->stripe_hash_table;
430
431 spin_lock_irqsave(&table->cache_lock, flags);
432 while (!list_empty(&table->stripe_cache)) {
433 rbio = list_entry(table->stripe_cache.next,
434 struct btrfs_raid_bio,
435 stripe_cache);
436 __remove_rbio_from_cache(rbio);
437 }
438 spin_unlock_irqrestore(&table->cache_lock, flags);
439 }
440
441 /*
442 * remove all cached entries and free the hash table
443 * used by unmount
444 */
btrfs_free_stripe_hash_table(struct btrfs_fs_info * info)445 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
446 {
447 if (!info->stripe_hash_table)
448 return;
449 btrfs_clear_rbio_cache(info);
450 kvfree(info->stripe_hash_table);
451 info->stripe_hash_table = NULL;
452 }
453
454 /*
455 * insert an rbio into the stripe cache. It
456 * must have already been prepared by calling
457 * cache_rbio_pages
458 *
459 * If this rbio was already cached, it gets
460 * moved to the front of the lru.
461 *
462 * If the size of the rbio cache is too big, we
463 * prune an item.
464 */
cache_rbio(struct btrfs_raid_bio * rbio)465 static void cache_rbio(struct btrfs_raid_bio *rbio)
466 {
467 struct btrfs_stripe_hash_table *table;
468 unsigned long flags;
469
470 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
471 return;
472
473 table = rbio->fs_info->stripe_hash_table;
474
475 spin_lock_irqsave(&table->cache_lock, flags);
476 spin_lock(&rbio->bio_list_lock);
477
478 /* bump our ref if we were not in the list before */
479 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
480 refcount_inc(&rbio->refs);
481
482 if (!list_empty(&rbio->stripe_cache)){
483 list_move(&rbio->stripe_cache, &table->stripe_cache);
484 } else {
485 list_add(&rbio->stripe_cache, &table->stripe_cache);
486 table->cache_size += 1;
487 }
488
489 spin_unlock(&rbio->bio_list_lock);
490
491 if (table->cache_size > RBIO_CACHE_SIZE) {
492 struct btrfs_raid_bio *found;
493
494 found = list_entry(table->stripe_cache.prev,
495 struct btrfs_raid_bio,
496 stripe_cache);
497
498 if (found != rbio)
499 __remove_rbio_from_cache(found);
500 }
501
502 spin_unlock_irqrestore(&table->cache_lock, flags);
503 }
504
505 /*
506 * helper function to run the xor_blocks api. It is only
507 * able to do MAX_XOR_BLOCKS at a time, so we need to
508 * loop through.
509 */
run_xor(void ** pages,int src_cnt,ssize_t len)510 static void run_xor(void **pages, int src_cnt, ssize_t len)
511 {
512 int src_off = 0;
513 int xor_src_cnt = 0;
514 void *dest = pages[src_cnt];
515
516 while(src_cnt > 0) {
517 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
518 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
519
520 src_cnt -= xor_src_cnt;
521 src_off += xor_src_cnt;
522 }
523 }
524
525 /*
526 * Returns true if the bio list inside this rbio covers an entire stripe (no
527 * rmw required).
528 */
rbio_is_full(struct btrfs_raid_bio * rbio)529 static int rbio_is_full(struct btrfs_raid_bio *rbio)
530 {
531 unsigned long flags;
532 unsigned long size = rbio->bio_list_bytes;
533 int ret = 1;
534
535 spin_lock_irqsave(&rbio->bio_list_lock, flags);
536 if (size != rbio->nr_data * rbio->stripe_len)
537 ret = 0;
538 BUG_ON(size > rbio->nr_data * rbio->stripe_len);
539 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
540
541 return ret;
542 }
543
544 /*
545 * returns 1 if it is safe to merge two rbios together.
546 * The merging is safe if the two rbios correspond to
547 * the same stripe and if they are both going in the same
548 * direction (read vs write), and if neither one is
549 * locked for final IO
550 *
551 * The caller is responsible for locking such that
552 * rmw_locked is safe to test
553 */
rbio_can_merge(struct btrfs_raid_bio * last,struct btrfs_raid_bio * cur)554 static int rbio_can_merge(struct btrfs_raid_bio *last,
555 struct btrfs_raid_bio *cur)
556 {
557 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
558 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
559 return 0;
560
561 /*
562 * we can't merge with cached rbios, since the
563 * idea is that when we merge the destination
564 * rbio is going to run our IO for us. We can
565 * steal from cached rbios though, other functions
566 * handle that.
567 */
568 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
569 test_bit(RBIO_CACHE_BIT, &cur->flags))
570 return 0;
571
572 if (last->bbio->raid_map[0] !=
573 cur->bbio->raid_map[0])
574 return 0;
575
576 /* we can't merge with different operations */
577 if (last->operation != cur->operation)
578 return 0;
579 /*
580 * We've need read the full stripe from the drive.
581 * check and repair the parity and write the new results.
582 *
583 * We're not allowed to add any new bios to the
584 * bio list here, anyone else that wants to
585 * change this stripe needs to do their own rmw.
586 */
587 if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
588 return 0;
589
590 if (last->operation == BTRFS_RBIO_REBUILD_MISSING)
591 return 0;
592
593 if (last->operation == BTRFS_RBIO_READ_REBUILD) {
594 int fa = last->faila;
595 int fb = last->failb;
596 int cur_fa = cur->faila;
597 int cur_fb = cur->failb;
598
599 if (last->faila >= last->failb) {
600 fa = last->failb;
601 fb = last->faila;
602 }
603
604 if (cur->faila >= cur->failb) {
605 cur_fa = cur->failb;
606 cur_fb = cur->faila;
607 }
608
609 if (fa != cur_fa || fb != cur_fb)
610 return 0;
611 }
612 return 1;
613 }
614
rbio_stripe_page_index(struct btrfs_raid_bio * rbio,int stripe,int index)615 static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
616 int index)
617 {
618 return stripe * rbio->stripe_npages + index;
619 }
620
621 /*
622 * these are just the pages from the rbio array, not from anything
623 * the FS sent down to us
624 */
rbio_stripe_page(struct btrfs_raid_bio * rbio,int stripe,int index)625 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
626 int index)
627 {
628 return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
629 }
630
631 /*
632 * helper to index into the pstripe
633 */
rbio_pstripe_page(struct btrfs_raid_bio * rbio,int index)634 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
635 {
636 return rbio_stripe_page(rbio, rbio->nr_data, index);
637 }
638
639 /*
640 * helper to index into the qstripe, returns null
641 * if there is no qstripe
642 */
rbio_qstripe_page(struct btrfs_raid_bio * rbio,int index)643 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
644 {
645 if (rbio->nr_data + 1 == rbio->real_stripes)
646 return NULL;
647 return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
648 }
649
650 /*
651 * The first stripe in the table for a logical address
652 * has the lock. rbios are added in one of three ways:
653 *
654 * 1) Nobody has the stripe locked yet. The rbio is given
655 * the lock and 0 is returned. The caller must start the IO
656 * themselves.
657 *
658 * 2) Someone has the stripe locked, but we're able to merge
659 * with the lock owner. The rbio is freed and the IO will
660 * start automatically along with the existing rbio. 1 is returned.
661 *
662 * 3) Someone has the stripe locked, but we're not able to merge.
663 * The rbio is added to the lock owner's plug list, or merged into
664 * an rbio already on the plug list. When the lock owner unlocks,
665 * the next rbio on the list is run and the IO is started automatically.
666 * 1 is returned
667 *
668 * If we return 0, the caller still owns the rbio and must continue with
669 * IO submission. If we return 1, the caller must assume the rbio has
670 * already been freed.
671 */
lock_stripe_add(struct btrfs_raid_bio * rbio)672 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
673 {
674 int bucket = rbio_bucket(rbio);
675 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
676 struct btrfs_raid_bio *cur;
677 struct btrfs_raid_bio *pending;
678 unsigned long flags;
679 struct btrfs_raid_bio *freeit = NULL;
680 struct btrfs_raid_bio *cache_drop = NULL;
681 int ret = 0;
682
683 spin_lock_irqsave(&h->lock, flags);
684 list_for_each_entry(cur, &h->hash_list, hash_list) {
685 if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
686 spin_lock(&cur->bio_list_lock);
687
688 /* can we steal this cached rbio's pages? */
689 if (bio_list_empty(&cur->bio_list) &&
690 list_empty(&cur->plug_list) &&
691 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
692 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
693 list_del_init(&cur->hash_list);
694 refcount_dec(&cur->refs);
695
696 steal_rbio(cur, rbio);
697 cache_drop = cur;
698 spin_unlock(&cur->bio_list_lock);
699
700 goto lockit;
701 }
702
703 /* can we merge into the lock owner? */
704 if (rbio_can_merge(cur, rbio)) {
705 merge_rbio(cur, rbio);
706 spin_unlock(&cur->bio_list_lock);
707 freeit = rbio;
708 ret = 1;
709 goto out;
710 }
711
712
713 /*
714 * we couldn't merge with the running
715 * rbio, see if we can merge with the
716 * pending ones. We don't have to
717 * check for rmw_locked because there
718 * is no way they are inside finish_rmw
719 * right now
720 */
721 list_for_each_entry(pending, &cur->plug_list,
722 plug_list) {
723 if (rbio_can_merge(pending, rbio)) {
724 merge_rbio(pending, rbio);
725 spin_unlock(&cur->bio_list_lock);
726 freeit = rbio;
727 ret = 1;
728 goto out;
729 }
730 }
731
732 /* no merging, put us on the tail of the plug list,
733 * our rbio will be started with the currently
734 * running rbio unlocks
735 */
736 list_add_tail(&rbio->plug_list, &cur->plug_list);
737 spin_unlock(&cur->bio_list_lock);
738 ret = 1;
739 goto out;
740 }
741 }
742 lockit:
743 refcount_inc(&rbio->refs);
744 list_add(&rbio->hash_list, &h->hash_list);
745 out:
746 spin_unlock_irqrestore(&h->lock, flags);
747 if (cache_drop)
748 remove_rbio_from_cache(cache_drop);
749 if (freeit)
750 __free_raid_bio(freeit);
751 return ret;
752 }
753
754 /*
755 * called as rmw or parity rebuild is completed. If the plug list has more
756 * rbios waiting for this stripe, the next one on the list will be started
757 */
unlock_stripe(struct btrfs_raid_bio * rbio)758 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
759 {
760 int bucket;
761 struct btrfs_stripe_hash *h;
762 unsigned long flags;
763 int keep_cache = 0;
764
765 bucket = rbio_bucket(rbio);
766 h = rbio->fs_info->stripe_hash_table->table + bucket;
767
768 if (list_empty(&rbio->plug_list))
769 cache_rbio(rbio);
770
771 spin_lock_irqsave(&h->lock, flags);
772 spin_lock(&rbio->bio_list_lock);
773
774 if (!list_empty(&rbio->hash_list)) {
775 /*
776 * if we're still cached and there is no other IO
777 * to perform, just leave this rbio here for others
778 * to steal from later
779 */
780 if (list_empty(&rbio->plug_list) &&
781 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
782 keep_cache = 1;
783 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
784 BUG_ON(!bio_list_empty(&rbio->bio_list));
785 goto done;
786 }
787
788 list_del_init(&rbio->hash_list);
789 refcount_dec(&rbio->refs);
790
791 /*
792 * we use the plug list to hold all the rbios
793 * waiting for the chance to lock this stripe.
794 * hand the lock over to one of them.
795 */
796 if (!list_empty(&rbio->plug_list)) {
797 struct btrfs_raid_bio *next;
798 struct list_head *head = rbio->plug_list.next;
799
800 next = list_entry(head, struct btrfs_raid_bio,
801 plug_list);
802
803 list_del_init(&rbio->plug_list);
804
805 list_add(&next->hash_list, &h->hash_list);
806 refcount_inc(&next->refs);
807 spin_unlock(&rbio->bio_list_lock);
808 spin_unlock_irqrestore(&h->lock, flags);
809
810 if (next->operation == BTRFS_RBIO_READ_REBUILD)
811 start_async_work(next, read_rebuild_work);
812 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
813 steal_rbio(rbio, next);
814 start_async_work(next, read_rebuild_work);
815 } else if (next->operation == BTRFS_RBIO_WRITE) {
816 steal_rbio(rbio, next);
817 start_async_work(next, rmw_work);
818 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
819 steal_rbio(rbio, next);
820 start_async_work(next, scrub_parity_work);
821 }
822
823 goto done_nolock;
824 }
825 }
826 done:
827 spin_unlock(&rbio->bio_list_lock);
828 spin_unlock_irqrestore(&h->lock, flags);
829
830 done_nolock:
831 if (!keep_cache)
832 remove_rbio_from_cache(rbio);
833 }
834
__free_raid_bio(struct btrfs_raid_bio * rbio)835 static void __free_raid_bio(struct btrfs_raid_bio *rbio)
836 {
837 int i;
838
839 if (!refcount_dec_and_test(&rbio->refs))
840 return;
841
842 WARN_ON(!list_empty(&rbio->stripe_cache));
843 WARN_ON(!list_empty(&rbio->hash_list));
844 WARN_ON(!bio_list_empty(&rbio->bio_list));
845
846 for (i = 0; i < rbio->nr_pages; i++) {
847 if (rbio->stripe_pages[i]) {
848 __free_page(rbio->stripe_pages[i]);
849 rbio->stripe_pages[i] = NULL;
850 }
851 }
852
853 btrfs_put_bbio(rbio->bbio);
854 kfree(rbio);
855 }
856
rbio_endio_bio_list(struct bio * cur,blk_status_t err)857 static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
858 {
859 struct bio *next;
860
861 while (cur) {
862 next = cur->bi_next;
863 cur->bi_next = NULL;
864 cur->bi_status = err;
865 bio_endio(cur);
866 cur = next;
867 }
868 }
869
870 /*
871 * this frees the rbio and runs through all the bios in the
872 * bio_list and calls end_io on them
873 */
rbio_orig_end_io(struct btrfs_raid_bio * rbio,blk_status_t err)874 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
875 {
876 struct bio *cur = bio_list_get(&rbio->bio_list);
877 struct bio *extra;
878
879 if (rbio->generic_bio_cnt)
880 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
881
882 /*
883 * At this moment, rbio->bio_list is empty, however since rbio does not
884 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
885 * hash list, rbio may be merged with others so that rbio->bio_list
886 * becomes non-empty.
887 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
888 * more and we can call bio_endio() on all queued bios.
889 */
890 unlock_stripe(rbio);
891 extra = bio_list_get(&rbio->bio_list);
892 __free_raid_bio(rbio);
893
894 rbio_endio_bio_list(cur, err);
895 if (extra)
896 rbio_endio_bio_list(extra, err);
897 }
898
899 /*
900 * end io function used by finish_rmw. When we finally
901 * get here, we've written a full stripe
902 */
raid_write_end_io(struct bio * bio)903 static void raid_write_end_io(struct bio *bio)
904 {
905 struct btrfs_raid_bio *rbio = bio->bi_private;
906 blk_status_t err = bio->bi_status;
907 int max_errors;
908
909 if (err)
910 fail_bio_stripe(rbio, bio);
911
912 bio_put(bio);
913
914 if (!atomic_dec_and_test(&rbio->stripes_pending))
915 return;
916
917 err = BLK_STS_OK;
918
919 /* OK, we have read all the stripes we need to. */
920 max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
921 0 : rbio->bbio->max_errors;
922 if (atomic_read(&rbio->error) > max_errors)
923 err = BLK_STS_IOERR;
924
925 rbio_orig_end_io(rbio, err);
926 }
927
928 /*
929 * the read/modify/write code wants to use the original bio for
930 * any pages it included, and then use the rbio for everything
931 * else. This function decides if a given index (stripe number)
932 * and page number in that stripe fall inside the original bio
933 * or the rbio.
934 *
935 * if you set bio_list_only, you'll get a NULL back for any ranges
936 * that are outside the bio_list
937 *
938 * This doesn't take any refs on anything, you get a bare page pointer
939 * and the caller must bump refs as required.
940 *
941 * You must call index_rbio_pages once before you can trust
942 * the answers from this function.
943 */
page_in_rbio(struct btrfs_raid_bio * rbio,int index,int pagenr,int bio_list_only)944 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
945 int index, int pagenr, int bio_list_only)
946 {
947 int chunk_page;
948 struct page *p = NULL;
949
950 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
951
952 spin_lock_irq(&rbio->bio_list_lock);
953 p = rbio->bio_pages[chunk_page];
954 spin_unlock_irq(&rbio->bio_list_lock);
955
956 if (p || bio_list_only)
957 return p;
958
959 return rbio->stripe_pages[chunk_page];
960 }
961
962 /*
963 * number of pages we need for the entire stripe across all the
964 * drives
965 */
rbio_nr_pages(unsigned long stripe_len,int nr_stripes)966 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
967 {
968 return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
969 }
970
971 /*
972 * allocation and initial setup for the btrfs_raid_bio. Not
973 * this does not allocate any pages for rbio->pages.
974 */
alloc_rbio(struct btrfs_fs_info * fs_info,struct btrfs_bio * bbio,u64 stripe_len)975 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
976 struct btrfs_bio *bbio,
977 u64 stripe_len)
978 {
979 struct btrfs_raid_bio *rbio;
980 int nr_data = 0;
981 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
982 int num_pages = rbio_nr_pages(stripe_len, real_stripes);
983 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
984 void *p;
985
986 rbio = kzalloc(sizeof(*rbio) +
987 sizeof(*rbio->stripe_pages) * num_pages +
988 sizeof(*rbio->bio_pages) * num_pages +
989 sizeof(*rbio->finish_pointers) * real_stripes +
990 sizeof(*rbio->dbitmap) * BITS_TO_LONGS(stripe_npages) +
991 sizeof(*rbio->finish_pbitmap) *
992 BITS_TO_LONGS(stripe_npages),
993 GFP_NOFS);
994 if (!rbio)
995 return ERR_PTR(-ENOMEM);
996
997 bio_list_init(&rbio->bio_list);
998 INIT_LIST_HEAD(&rbio->plug_list);
999 spin_lock_init(&rbio->bio_list_lock);
1000 INIT_LIST_HEAD(&rbio->stripe_cache);
1001 INIT_LIST_HEAD(&rbio->hash_list);
1002 rbio->bbio = bbio;
1003 rbio->fs_info = fs_info;
1004 rbio->stripe_len = stripe_len;
1005 rbio->nr_pages = num_pages;
1006 rbio->real_stripes = real_stripes;
1007 rbio->stripe_npages = stripe_npages;
1008 rbio->faila = -1;
1009 rbio->failb = -1;
1010 refcount_set(&rbio->refs, 1);
1011 atomic_set(&rbio->error, 0);
1012 atomic_set(&rbio->stripes_pending, 0);
1013
1014 /*
1015 * the stripe_pages, bio_pages, etc arrays point to the extra
1016 * memory we allocated past the end of the rbio
1017 */
1018 p = rbio + 1;
1019 #define CONSUME_ALLOC(ptr, count) do { \
1020 ptr = p; \
1021 p = (unsigned char *)p + sizeof(*(ptr)) * (count); \
1022 } while (0)
1023 CONSUME_ALLOC(rbio->stripe_pages, num_pages);
1024 CONSUME_ALLOC(rbio->bio_pages, num_pages);
1025 CONSUME_ALLOC(rbio->finish_pointers, real_stripes);
1026 CONSUME_ALLOC(rbio->dbitmap, BITS_TO_LONGS(stripe_npages));
1027 CONSUME_ALLOC(rbio->finish_pbitmap, BITS_TO_LONGS(stripe_npages));
1028 #undef CONSUME_ALLOC
1029
1030 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1031 nr_data = real_stripes - 1;
1032 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1033 nr_data = real_stripes - 2;
1034 else
1035 BUG();
1036
1037 rbio->nr_data = nr_data;
1038 return rbio;
1039 }
1040
1041 /* allocate pages for all the stripes in the bio, including parity */
alloc_rbio_pages(struct btrfs_raid_bio * rbio)1042 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1043 {
1044 int i;
1045 struct page *page;
1046
1047 for (i = 0; i < rbio->nr_pages; i++) {
1048 if (rbio->stripe_pages[i])
1049 continue;
1050 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1051 if (!page)
1052 return -ENOMEM;
1053 rbio->stripe_pages[i] = page;
1054 }
1055 return 0;
1056 }
1057
1058 /* only allocate pages for p/q stripes */
alloc_rbio_parity_pages(struct btrfs_raid_bio * rbio)1059 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1060 {
1061 int i;
1062 struct page *page;
1063
1064 i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1065
1066 for (; i < rbio->nr_pages; i++) {
1067 if (rbio->stripe_pages[i])
1068 continue;
1069 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1070 if (!page)
1071 return -ENOMEM;
1072 rbio->stripe_pages[i] = page;
1073 }
1074 return 0;
1075 }
1076
1077 /*
1078 * add a single page from a specific stripe into our list of bios for IO
1079 * this will try to merge into existing bios if possible, and returns
1080 * zero if all went well.
1081 */
rbio_add_io_page(struct btrfs_raid_bio * rbio,struct bio_list * bio_list,struct page * page,int stripe_nr,unsigned long page_index,unsigned long bio_max_len)1082 static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1083 struct bio_list *bio_list,
1084 struct page *page,
1085 int stripe_nr,
1086 unsigned long page_index,
1087 unsigned long bio_max_len)
1088 {
1089 struct bio *last = bio_list->tail;
1090 u64 last_end = 0;
1091 int ret;
1092 struct bio *bio;
1093 struct btrfs_bio_stripe *stripe;
1094 u64 disk_start;
1095
1096 stripe = &rbio->bbio->stripes[stripe_nr];
1097 disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1098
1099 /* if the device is missing, just fail this stripe */
1100 if (!stripe->dev->bdev)
1101 return fail_rbio_index(rbio, stripe_nr);
1102
1103 /* see if we can add this page onto our existing bio */
1104 if (last) {
1105 last_end = (u64)last->bi_iter.bi_sector << 9;
1106 last_end += last->bi_iter.bi_size;
1107
1108 /*
1109 * we can't merge these if they are from different
1110 * devices or if they are not contiguous
1111 */
1112 if (last_end == disk_start && stripe->dev->bdev &&
1113 !last->bi_status &&
1114 last->bi_disk == stripe->dev->bdev->bd_disk &&
1115 last->bi_partno == stripe->dev->bdev->bd_partno) {
1116 ret = bio_add_page(last, page, PAGE_SIZE, 0);
1117 if (ret == PAGE_SIZE)
1118 return 0;
1119 }
1120 }
1121
1122 /* put a new bio on the list */
1123 bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1);
1124 bio->bi_iter.bi_size = 0;
1125 bio_set_dev(bio, stripe->dev->bdev);
1126 bio->bi_iter.bi_sector = disk_start >> 9;
1127
1128 bio_add_page(bio, page, PAGE_SIZE, 0);
1129 bio_list_add(bio_list, bio);
1130 return 0;
1131 }
1132
1133 /*
1134 * while we're doing the read/modify/write cycle, we could
1135 * have errors in reading pages off the disk. This checks
1136 * for errors and if we're not able to read the page it'll
1137 * trigger parity reconstruction. The rmw will be finished
1138 * after we've reconstructed the failed stripes
1139 */
validate_rbio_for_rmw(struct btrfs_raid_bio * rbio)1140 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1141 {
1142 if (rbio->faila >= 0 || rbio->failb >= 0) {
1143 BUG_ON(rbio->faila == rbio->real_stripes - 1);
1144 __raid56_parity_recover(rbio);
1145 } else {
1146 finish_rmw(rbio);
1147 }
1148 }
1149
1150 /*
1151 * helper function to walk our bio list and populate the bio_pages array with
1152 * the result. This seems expensive, but it is faster than constantly
1153 * searching through the bio list as we setup the IO in finish_rmw or stripe
1154 * reconstruction.
1155 *
1156 * This must be called before you trust the answers from page_in_rbio
1157 */
index_rbio_pages(struct btrfs_raid_bio * rbio)1158 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1159 {
1160 struct bio *bio;
1161 u64 start;
1162 unsigned long stripe_offset;
1163 unsigned long page_index;
1164
1165 spin_lock_irq(&rbio->bio_list_lock);
1166 bio_list_for_each(bio, &rbio->bio_list) {
1167 struct bio_vec bvec;
1168 struct bvec_iter iter;
1169 int i = 0;
1170
1171 start = (u64)bio->bi_iter.bi_sector << 9;
1172 stripe_offset = start - rbio->bbio->raid_map[0];
1173 page_index = stripe_offset >> PAGE_SHIFT;
1174
1175 if (bio_flagged(bio, BIO_CLONED))
1176 bio->bi_iter = btrfs_io_bio(bio)->iter;
1177
1178 bio_for_each_segment(bvec, bio, iter) {
1179 rbio->bio_pages[page_index + i] = bvec.bv_page;
1180 i++;
1181 }
1182 }
1183 spin_unlock_irq(&rbio->bio_list_lock);
1184 }
1185
1186 /*
1187 * this is called from one of two situations. We either
1188 * have a full stripe from the higher layers, or we've read all
1189 * the missing bits off disk.
1190 *
1191 * This will calculate the parity and then send down any
1192 * changed blocks.
1193 */
finish_rmw(struct btrfs_raid_bio * rbio)1194 static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1195 {
1196 struct btrfs_bio *bbio = rbio->bbio;
1197 void **pointers = rbio->finish_pointers;
1198 int nr_data = rbio->nr_data;
1199 int stripe;
1200 int pagenr;
1201 int p_stripe = -1;
1202 int q_stripe = -1;
1203 struct bio_list bio_list;
1204 struct bio *bio;
1205 int ret;
1206
1207 bio_list_init(&bio_list);
1208
1209 if (rbio->real_stripes - rbio->nr_data == 1) {
1210 p_stripe = rbio->real_stripes - 1;
1211 } else if (rbio->real_stripes - rbio->nr_data == 2) {
1212 p_stripe = rbio->real_stripes - 2;
1213 q_stripe = rbio->real_stripes - 1;
1214 } else {
1215 BUG();
1216 }
1217
1218 /* at this point we either have a full stripe,
1219 * or we've read the full stripe from the drive.
1220 * recalculate the parity and write the new results.
1221 *
1222 * We're not allowed to add any new bios to the
1223 * bio list here, anyone else that wants to
1224 * change this stripe needs to do their own rmw.
1225 */
1226 spin_lock_irq(&rbio->bio_list_lock);
1227 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1228 spin_unlock_irq(&rbio->bio_list_lock);
1229
1230 atomic_set(&rbio->error, 0);
1231
1232 /*
1233 * now that we've set rmw_locked, run through the
1234 * bio list one last time and map the page pointers
1235 *
1236 * We don't cache full rbios because we're assuming
1237 * the higher layers are unlikely to use this area of
1238 * the disk again soon. If they do use it again,
1239 * hopefully they will send another full bio.
1240 */
1241 index_rbio_pages(rbio);
1242 if (!rbio_is_full(rbio))
1243 cache_rbio_pages(rbio);
1244 else
1245 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1246
1247 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1248 struct page *p;
1249 /* first collect one page from each data stripe */
1250 for (stripe = 0; stripe < nr_data; stripe++) {
1251 p = page_in_rbio(rbio, stripe, pagenr, 0);
1252 pointers[stripe] = kmap(p);
1253 }
1254
1255 /* then add the parity stripe */
1256 p = rbio_pstripe_page(rbio, pagenr);
1257 SetPageUptodate(p);
1258 pointers[stripe++] = kmap(p);
1259
1260 if (q_stripe != -1) {
1261
1262 /*
1263 * raid6, add the qstripe and call the
1264 * library function to fill in our p/q
1265 */
1266 p = rbio_qstripe_page(rbio, pagenr);
1267 SetPageUptodate(p);
1268 pointers[stripe++] = kmap(p);
1269
1270 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1271 pointers);
1272 } else {
1273 /* raid5 */
1274 copy_page(pointers[nr_data], pointers[0]);
1275 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1276 }
1277
1278
1279 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1280 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1281 }
1282
1283 /*
1284 * time to start writing. Make bios for everything from the
1285 * higher layers (the bio_list in our rbio) and our p/q. Ignore
1286 * everything else.
1287 */
1288 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1289 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1290 struct page *page;
1291 if (stripe < rbio->nr_data) {
1292 page = page_in_rbio(rbio, stripe, pagenr, 1);
1293 if (!page)
1294 continue;
1295 } else {
1296 page = rbio_stripe_page(rbio, stripe, pagenr);
1297 }
1298
1299 ret = rbio_add_io_page(rbio, &bio_list,
1300 page, stripe, pagenr, rbio->stripe_len);
1301 if (ret)
1302 goto cleanup;
1303 }
1304 }
1305
1306 if (likely(!bbio->num_tgtdevs))
1307 goto write_data;
1308
1309 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1310 if (!bbio->tgtdev_map[stripe])
1311 continue;
1312
1313 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1314 struct page *page;
1315 if (stripe < rbio->nr_data) {
1316 page = page_in_rbio(rbio, stripe, pagenr, 1);
1317 if (!page)
1318 continue;
1319 } else {
1320 page = rbio_stripe_page(rbio, stripe, pagenr);
1321 }
1322
1323 ret = rbio_add_io_page(rbio, &bio_list, page,
1324 rbio->bbio->tgtdev_map[stripe],
1325 pagenr, rbio->stripe_len);
1326 if (ret)
1327 goto cleanup;
1328 }
1329 }
1330
1331 write_data:
1332 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1333 BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1334
1335 while (1) {
1336 bio = bio_list_pop(&bio_list);
1337 if (!bio)
1338 break;
1339
1340 bio->bi_private = rbio;
1341 bio->bi_end_io = raid_write_end_io;
1342 bio->bi_opf = REQ_OP_WRITE;
1343
1344 submit_bio(bio);
1345 }
1346 return;
1347
1348 cleanup:
1349 rbio_orig_end_io(rbio, BLK_STS_IOERR);
1350
1351 while ((bio = bio_list_pop(&bio_list)))
1352 bio_put(bio);
1353 }
1354
1355 /*
1356 * helper to find the stripe number for a given bio. Used to figure out which
1357 * stripe has failed. This expects the bio to correspond to a physical disk,
1358 * so it looks up based on physical sector numbers.
1359 */
find_bio_stripe(struct btrfs_raid_bio * rbio,struct bio * bio)1360 static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1361 struct bio *bio)
1362 {
1363 u64 physical = bio->bi_iter.bi_sector;
1364 u64 stripe_start;
1365 int i;
1366 struct btrfs_bio_stripe *stripe;
1367
1368 physical <<= 9;
1369
1370 for (i = 0; i < rbio->bbio->num_stripes; i++) {
1371 stripe = &rbio->bbio->stripes[i];
1372 stripe_start = stripe->physical;
1373 if (physical >= stripe_start &&
1374 physical < stripe_start + rbio->stripe_len &&
1375 stripe->dev->bdev &&
1376 bio->bi_disk == stripe->dev->bdev->bd_disk &&
1377 bio->bi_partno == stripe->dev->bdev->bd_partno) {
1378 return i;
1379 }
1380 }
1381 return -1;
1382 }
1383
1384 /*
1385 * helper to find the stripe number for a given
1386 * bio (before mapping). Used to figure out which stripe has
1387 * failed. This looks up based on logical block numbers.
1388 */
find_logical_bio_stripe(struct btrfs_raid_bio * rbio,struct bio * bio)1389 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1390 struct bio *bio)
1391 {
1392 u64 logical = bio->bi_iter.bi_sector;
1393 u64 stripe_start;
1394 int i;
1395
1396 logical <<= 9;
1397
1398 for (i = 0; i < rbio->nr_data; i++) {
1399 stripe_start = rbio->bbio->raid_map[i];
1400 if (logical >= stripe_start &&
1401 logical < stripe_start + rbio->stripe_len) {
1402 return i;
1403 }
1404 }
1405 return -1;
1406 }
1407
1408 /*
1409 * returns -EIO if we had too many failures
1410 */
fail_rbio_index(struct btrfs_raid_bio * rbio,int failed)1411 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1412 {
1413 unsigned long flags;
1414 int ret = 0;
1415
1416 spin_lock_irqsave(&rbio->bio_list_lock, flags);
1417
1418 /* we already know this stripe is bad, move on */
1419 if (rbio->faila == failed || rbio->failb == failed)
1420 goto out;
1421
1422 if (rbio->faila == -1) {
1423 /* first failure on this rbio */
1424 rbio->faila = failed;
1425 atomic_inc(&rbio->error);
1426 } else if (rbio->failb == -1) {
1427 /* second failure on this rbio */
1428 rbio->failb = failed;
1429 atomic_inc(&rbio->error);
1430 } else {
1431 ret = -EIO;
1432 }
1433 out:
1434 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1435
1436 return ret;
1437 }
1438
1439 /*
1440 * helper to fail a stripe based on a physical disk
1441 * bio.
1442 */
fail_bio_stripe(struct btrfs_raid_bio * rbio,struct bio * bio)1443 static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1444 struct bio *bio)
1445 {
1446 int failed = find_bio_stripe(rbio, bio);
1447
1448 if (failed < 0)
1449 return -EIO;
1450
1451 return fail_rbio_index(rbio, failed);
1452 }
1453
1454 /*
1455 * this sets each page in the bio uptodate. It should only be used on private
1456 * rbio pages, nothing that comes in from the higher layers
1457 */
set_bio_pages_uptodate(struct bio * bio)1458 static void set_bio_pages_uptodate(struct bio *bio)
1459 {
1460 struct bio_vec *bvec;
1461 struct bvec_iter_all iter_all;
1462
1463 ASSERT(!bio_flagged(bio, BIO_CLONED));
1464
1465 bio_for_each_segment_all(bvec, bio, iter_all)
1466 SetPageUptodate(bvec->bv_page);
1467 }
1468
1469 /*
1470 * end io for the read phase of the rmw cycle. All the bios here are physical
1471 * stripe bios we've read from the disk so we can recalculate the parity of the
1472 * stripe.
1473 *
1474 * This will usually kick off finish_rmw once all the bios are read in, but it
1475 * may trigger parity reconstruction if we had any errors along the way
1476 */
raid_rmw_end_io(struct bio * bio)1477 static void raid_rmw_end_io(struct bio *bio)
1478 {
1479 struct btrfs_raid_bio *rbio = bio->bi_private;
1480
1481 if (bio->bi_status)
1482 fail_bio_stripe(rbio, bio);
1483 else
1484 set_bio_pages_uptodate(bio);
1485
1486 bio_put(bio);
1487
1488 if (!atomic_dec_and_test(&rbio->stripes_pending))
1489 return;
1490
1491 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1492 goto cleanup;
1493
1494 /*
1495 * this will normally call finish_rmw to start our write
1496 * but if there are any failed stripes we'll reconstruct
1497 * from parity first
1498 */
1499 validate_rbio_for_rmw(rbio);
1500 return;
1501
1502 cleanup:
1503
1504 rbio_orig_end_io(rbio, BLK_STS_IOERR);
1505 }
1506
1507 /*
1508 * the stripe must be locked by the caller. It will
1509 * unlock after all the writes are done
1510 */
raid56_rmw_stripe(struct btrfs_raid_bio * rbio)1511 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1512 {
1513 int bios_to_read = 0;
1514 struct bio_list bio_list;
1515 int ret;
1516 int pagenr;
1517 int stripe;
1518 struct bio *bio;
1519
1520 bio_list_init(&bio_list);
1521
1522 ret = alloc_rbio_pages(rbio);
1523 if (ret)
1524 goto cleanup;
1525
1526 index_rbio_pages(rbio);
1527
1528 atomic_set(&rbio->error, 0);
1529 /*
1530 * build a list of bios to read all the missing parts of this
1531 * stripe
1532 */
1533 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1534 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1535 struct page *page;
1536 /*
1537 * we want to find all the pages missing from
1538 * the rbio and read them from the disk. If
1539 * page_in_rbio finds a page in the bio list
1540 * we don't need to read it off the stripe.
1541 */
1542 page = page_in_rbio(rbio, stripe, pagenr, 1);
1543 if (page)
1544 continue;
1545
1546 page = rbio_stripe_page(rbio, stripe, pagenr);
1547 /*
1548 * the bio cache may have handed us an uptodate
1549 * page. If so, be happy and use it
1550 */
1551 if (PageUptodate(page))
1552 continue;
1553
1554 ret = rbio_add_io_page(rbio, &bio_list, page,
1555 stripe, pagenr, rbio->stripe_len);
1556 if (ret)
1557 goto cleanup;
1558 }
1559 }
1560
1561 bios_to_read = bio_list_size(&bio_list);
1562 if (!bios_to_read) {
1563 /*
1564 * this can happen if others have merged with
1565 * us, it means there is nothing left to read.
1566 * But if there are missing devices it may not be
1567 * safe to do the full stripe write yet.
1568 */
1569 goto finish;
1570 }
1571
1572 /*
1573 * the bbio may be freed once we submit the last bio. Make sure
1574 * not to touch it after that
1575 */
1576 atomic_set(&rbio->stripes_pending, bios_to_read);
1577 while (1) {
1578 bio = bio_list_pop(&bio_list);
1579 if (!bio)
1580 break;
1581
1582 bio->bi_private = rbio;
1583 bio->bi_end_io = raid_rmw_end_io;
1584 bio->bi_opf = REQ_OP_READ;
1585
1586 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
1587
1588 submit_bio(bio);
1589 }
1590 /* the actual write will happen once the reads are done */
1591 return 0;
1592
1593 cleanup:
1594 rbio_orig_end_io(rbio, BLK_STS_IOERR);
1595
1596 while ((bio = bio_list_pop(&bio_list)))
1597 bio_put(bio);
1598
1599 return -EIO;
1600
1601 finish:
1602 validate_rbio_for_rmw(rbio);
1603 return 0;
1604 }
1605
1606 /*
1607 * if the upper layers pass in a full stripe, we thank them by only allocating
1608 * enough pages to hold the parity, and sending it all down quickly.
1609 */
full_stripe_write(struct btrfs_raid_bio * rbio)1610 static int full_stripe_write(struct btrfs_raid_bio *rbio)
1611 {
1612 int ret;
1613
1614 ret = alloc_rbio_parity_pages(rbio);
1615 if (ret) {
1616 __free_raid_bio(rbio);
1617 return ret;
1618 }
1619
1620 ret = lock_stripe_add(rbio);
1621 if (ret == 0)
1622 finish_rmw(rbio);
1623 return 0;
1624 }
1625
1626 /*
1627 * partial stripe writes get handed over to async helpers.
1628 * We're really hoping to merge a few more writes into this
1629 * rbio before calculating new parity
1630 */
partial_stripe_write(struct btrfs_raid_bio * rbio)1631 static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1632 {
1633 int ret;
1634
1635 ret = lock_stripe_add(rbio);
1636 if (ret == 0)
1637 start_async_work(rbio, rmw_work);
1638 return 0;
1639 }
1640
1641 /*
1642 * sometimes while we were reading from the drive to
1643 * recalculate parity, enough new bios come into create
1644 * a full stripe. So we do a check here to see if we can
1645 * go directly to finish_rmw
1646 */
__raid56_parity_write(struct btrfs_raid_bio * rbio)1647 static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1648 {
1649 /* head off into rmw land if we don't have a full stripe */
1650 if (!rbio_is_full(rbio))
1651 return partial_stripe_write(rbio);
1652 return full_stripe_write(rbio);
1653 }
1654
1655 /*
1656 * We use plugging call backs to collect full stripes.
1657 * Any time we get a partial stripe write while plugged
1658 * we collect it into a list. When the unplug comes down,
1659 * we sort the list by logical block number and merge
1660 * everything we can into the same rbios
1661 */
1662 struct btrfs_plug_cb {
1663 struct blk_plug_cb cb;
1664 struct btrfs_fs_info *info;
1665 struct list_head rbio_list;
1666 struct btrfs_work work;
1667 };
1668
1669 /*
1670 * rbios on the plug list are sorted for easier merging.
1671 */
plug_cmp(void * priv,struct list_head * a,struct list_head * b)1672 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1673 {
1674 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1675 plug_list);
1676 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1677 plug_list);
1678 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1679 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1680
1681 if (a_sector < b_sector)
1682 return -1;
1683 if (a_sector > b_sector)
1684 return 1;
1685 return 0;
1686 }
1687
run_plug(struct btrfs_plug_cb * plug)1688 static void run_plug(struct btrfs_plug_cb *plug)
1689 {
1690 struct btrfs_raid_bio *cur;
1691 struct btrfs_raid_bio *last = NULL;
1692
1693 /*
1694 * sort our plug list then try to merge
1695 * everything we can in hopes of creating full
1696 * stripes.
1697 */
1698 list_sort(NULL, &plug->rbio_list, plug_cmp);
1699 while (!list_empty(&plug->rbio_list)) {
1700 cur = list_entry(plug->rbio_list.next,
1701 struct btrfs_raid_bio, plug_list);
1702 list_del_init(&cur->plug_list);
1703
1704 if (rbio_is_full(cur)) {
1705 int ret;
1706
1707 /* we have a full stripe, send it down */
1708 ret = full_stripe_write(cur);
1709 BUG_ON(ret);
1710 continue;
1711 }
1712 if (last) {
1713 if (rbio_can_merge(last, cur)) {
1714 merge_rbio(last, cur);
1715 __free_raid_bio(cur);
1716 continue;
1717
1718 }
1719 __raid56_parity_write(last);
1720 }
1721 last = cur;
1722 }
1723 if (last) {
1724 __raid56_parity_write(last);
1725 }
1726 kfree(plug);
1727 }
1728
1729 /*
1730 * if the unplug comes from schedule, we have to push the
1731 * work off to a helper thread
1732 */
unplug_work(struct btrfs_work * work)1733 static void unplug_work(struct btrfs_work *work)
1734 {
1735 struct btrfs_plug_cb *plug;
1736 plug = container_of(work, struct btrfs_plug_cb, work);
1737 run_plug(plug);
1738 }
1739
btrfs_raid_unplug(struct blk_plug_cb * cb,bool from_schedule)1740 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1741 {
1742 struct btrfs_plug_cb *plug;
1743 plug = container_of(cb, struct btrfs_plug_cb, cb);
1744
1745 if (from_schedule) {
1746 btrfs_init_work(&plug->work, unplug_work, NULL, NULL);
1747 btrfs_queue_work(plug->info->rmw_workers,
1748 &plug->work);
1749 return;
1750 }
1751 run_plug(plug);
1752 }
1753
1754 /*
1755 * our main entry point for writes from the rest of the FS.
1756 */
raid56_parity_write(struct btrfs_fs_info * fs_info,struct bio * bio,struct btrfs_bio * bbio,u64 stripe_len)1757 int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
1758 struct btrfs_bio *bbio, u64 stripe_len)
1759 {
1760 struct btrfs_raid_bio *rbio;
1761 struct btrfs_plug_cb *plug = NULL;
1762 struct blk_plug_cb *cb;
1763 int ret;
1764
1765 rbio = alloc_rbio(fs_info, bbio, stripe_len);
1766 if (IS_ERR(rbio)) {
1767 btrfs_put_bbio(bbio);
1768 return PTR_ERR(rbio);
1769 }
1770 bio_list_add(&rbio->bio_list, bio);
1771 rbio->bio_list_bytes = bio->bi_iter.bi_size;
1772 rbio->operation = BTRFS_RBIO_WRITE;
1773
1774 btrfs_bio_counter_inc_noblocked(fs_info);
1775 rbio->generic_bio_cnt = 1;
1776
1777 /*
1778 * don't plug on full rbios, just get them out the door
1779 * as quickly as we can
1780 */
1781 if (rbio_is_full(rbio)) {
1782 ret = full_stripe_write(rbio);
1783 if (ret)
1784 btrfs_bio_counter_dec(fs_info);
1785 return ret;
1786 }
1787
1788 cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1789 if (cb) {
1790 plug = container_of(cb, struct btrfs_plug_cb, cb);
1791 if (!plug->info) {
1792 plug->info = fs_info;
1793 INIT_LIST_HEAD(&plug->rbio_list);
1794 }
1795 list_add_tail(&rbio->plug_list, &plug->rbio_list);
1796 ret = 0;
1797 } else {
1798 ret = __raid56_parity_write(rbio);
1799 if (ret)
1800 btrfs_bio_counter_dec(fs_info);
1801 }
1802 return ret;
1803 }
1804
1805 /*
1806 * all parity reconstruction happens here. We've read in everything
1807 * we can find from the drives and this does the heavy lifting of
1808 * sorting the good from the bad.
1809 */
__raid_recover_end_io(struct btrfs_raid_bio * rbio)1810 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1811 {
1812 int pagenr, stripe;
1813 void **pointers;
1814 int faila = -1, failb = -1;
1815 struct page *page;
1816 blk_status_t err;
1817 int i;
1818
1819 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1820 if (!pointers) {
1821 err = BLK_STS_RESOURCE;
1822 goto cleanup_io;
1823 }
1824
1825 faila = rbio->faila;
1826 failb = rbio->failb;
1827
1828 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1829 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1830 spin_lock_irq(&rbio->bio_list_lock);
1831 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1832 spin_unlock_irq(&rbio->bio_list_lock);
1833 }
1834
1835 index_rbio_pages(rbio);
1836
1837 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1838 /*
1839 * Now we just use bitmap to mark the horizontal stripes in
1840 * which we have data when doing parity scrub.
1841 */
1842 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1843 !test_bit(pagenr, rbio->dbitmap))
1844 continue;
1845
1846 /* setup our array of pointers with pages
1847 * from each stripe
1848 */
1849 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1850 /*
1851 * if we're rebuilding a read, we have to use
1852 * pages from the bio list
1853 */
1854 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1855 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1856 (stripe == faila || stripe == failb)) {
1857 page = page_in_rbio(rbio, stripe, pagenr, 0);
1858 } else {
1859 page = rbio_stripe_page(rbio, stripe, pagenr);
1860 }
1861 pointers[stripe] = kmap(page);
1862 }
1863
1864 /* all raid6 handling here */
1865 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1866 /*
1867 * single failure, rebuild from parity raid5
1868 * style
1869 */
1870 if (failb < 0) {
1871 if (faila == rbio->nr_data) {
1872 /*
1873 * Just the P stripe has failed, without
1874 * a bad data or Q stripe.
1875 * TODO, we should redo the xor here.
1876 */
1877 err = BLK_STS_IOERR;
1878 goto cleanup;
1879 }
1880 /*
1881 * a single failure in raid6 is rebuilt
1882 * in the pstripe code below
1883 */
1884 goto pstripe;
1885 }
1886
1887 /* make sure our ps and qs are in order */
1888 if (faila > failb) {
1889 int tmp = failb;
1890 failb = faila;
1891 faila = tmp;
1892 }
1893
1894 /* if the q stripe is failed, do a pstripe reconstruction
1895 * from the xors.
1896 * If both the q stripe and the P stripe are failed, we're
1897 * here due to a crc mismatch and we can't give them the
1898 * data they want
1899 */
1900 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1901 if (rbio->bbio->raid_map[faila] ==
1902 RAID5_P_STRIPE) {
1903 err = BLK_STS_IOERR;
1904 goto cleanup;
1905 }
1906 /*
1907 * otherwise we have one bad data stripe and
1908 * a good P stripe. raid5!
1909 */
1910 goto pstripe;
1911 }
1912
1913 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1914 raid6_datap_recov(rbio->real_stripes,
1915 PAGE_SIZE, faila, pointers);
1916 } else {
1917 raid6_2data_recov(rbio->real_stripes,
1918 PAGE_SIZE, faila, failb,
1919 pointers);
1920 }
1921 } else {
1922 void *p;
1923
1924 /* rebuild from P stripe here (raid5 or raid6) */
1925 BUG_ON(failb != -1);
1926 pstripe:
1927 /* Copy parity block into failed block to start with */
1928 copy_page(pointers[faila], pointers[rbio->nr_data]);
1929
1930 /* rearrange the pointer array */
1931 p = pointers[faila];
1932 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1933 pointers[stripe] = pointers[stripe + 1];
1934 pointers[rbio->nr_data - 1] = p;
1935
1936 /* xor in the rest */
1937 run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1938 }
1939 /* if we're doing this rebuild as part of an rmw, go through
1940 * and set all of our private rbio pages in the
1941 * failed stripes as uptodate. This way finish_rmw will
1942 * know they can be trusted. If this was a read reconstruction,
1943 * other endio functions will fiddle the uptodate bits
1944 */
1945 if (rbio->operation == BTRFS_RBIO_WRITE) {
1946 for (i = 0; i < rbio->stripe_npages; i++) {
1947 if (faila != -1) {
1948 page = rbio_stripe_page(rbio, faila, i);
1949 SetPageUptodate(page);
1950 }
1951 if (failb != -1) {
1952 page = rbio_stripe_page(rbio, failb, i);
1953 SetPageUptodate(page);
1954 }
1955 }
1956 }
1957 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1958 /*
1959 * if we're rebuilding a read, we have to use
1960 * pages from the bio list
1961 */
1962 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1963 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1964 (stripe == faila || stripe == failb)) {
1965 page = page_in_rbio(rbio, stripe, pagenr, 0);
1966 } else {
1967 page = rbio_stripe_page(rbio, stripe, pagenr);
1968 }
1969 kunmap(page);
1970 }
1971 }
1972
1973 err = BLK_STS_OK;
1974 cleanup:
1975 kfree(pointers);
1976
1977 cleanup_io:
1978 /*
1979 * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a
1980 * valid rbio which is consistent with ondisk content, thus such a
1981 * valid rbio can be cached to avoid further disk reads.
1982 */
1983 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1984 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1985 /*
1986 * - In case of two failures, where rbio->failb != -1:
1987 *
1988 * Do not cache this rbio since the above read reconstruction
1989 * (raid6_datap_recov() or raid6_2data_recov()) may have
1990 * changed some content of stripes which are not identical to
1991 * on-disk content any more, otherwise, a later write/recover
1992 * may steal stripe_pages from this rbio and end up with
1993 * corruptions or rebuild failures.
1994 *
1995 * - In case of single failure, where rbio->failb == -1:
1996 *
1997 * Cache this rbio iff the above read reconstruction is
1998 * executed without problems.
1999 */
2000 if (err == BLK_STS_OK && rbio->failb < 0)
2001 cache_rbio_pages(rbio);
2002 else
2003 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2004
2005 rbio_orig_end_io(rbio, err);
2006 } else if (err == BLK_STS_OK) {
2007 rbio->faila = -1;
2008 rbio->failb = -1;
2009
2010 if (rbio->operation == BTRFS_RBIO_WRITE)
2011 finish_rmw(rbio);
2012 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
2013 finish_parity_scrub(rbio, 0);
2014 else
2015 BUG();
2016 } else {
2017 rbio_orig_end_io(rbio, err);
2018 }
2019 }
2020
2021 /*
2022 * This is called only for stripes we've read from disk to
2023 * reconstruct the parity.
2024 */
raid_recover_end_io(struct bio * bio)2025 static void raid_recover_end_io(struct bio *bio)
2026 {
2027 struct btrfs_raid_bio *rbio = bio->bi_private;
2028
2029 /*
2030 * we only read stripe pages off the disk, set them
2031 * up to date if there were no errors
2032 */
2033 if (bio->bi_status)
2034 fail_bio_stripe(rbio, bio);
2035 else
2036 set_bio_pages_uptodate(bio);
2037 bio_put(bio);
2038
2039 if (!atomic_dec_and_test(&rbio->stripes_pending))
2040 return;
2041
2042 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2043 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2044 else
2045 __raid_recover_end_io(rbio);
2046 }
2047
2048 /*
2049 * reads everything we need off the disk to reconstruct
2050 * the parity. endio handlers trigger final reconstruction
2051 * when the IO is done.
2052 *
2053 * This is used both for reads from the higher layers and for
2054 * parity construction required to finish a rmw cycle.
2055 */
__raid56_parity_recover(struct btrfs_raid_bio * rbio)2056 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2057 {
2058 int bios_to_read = 0;
2059 struct bio_list bio_list;
2060 int ret;
2061 int pagenr;
2062 int stripe;
2063 struct bio *bio;
2064
2065 bio_list_init(&bio_list);
2066
2067 ret = alloc_rbio_pages(rbio);
2068 if (ret)
2069 goto cleanup;
2070
2071 atomic_set(&rbio->error, 0);
2072
2073 /*
2074 * read everything that hasn't failed. Thanks to the
2075 * stripe cache, it is possible that some or all of these
2076 * pages are going to be uptodate.
2077 */
2078 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2079 if (rbio->faila == stripe || rbio->failb == stripe) {
2080 atomic_inc(&rbio->error);
2081 continue;
2082 }
2083
2084 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2085 struct page *p;
2086
2087 /*
2088 * the rmw code may have already read this
2089 * page in
2090 */
2091 p = rbio_stripe_page(rbio, stripe, pagenr);
2092 if (PageUptodate(p))
2093 continue;
2094
2095 ret = rbio_add_io_page(rbio, &bio_list,
2096 rbio_stripe_page(rbio, stripe, pagenr),
2097 stripe, pagenr, rbio->stripe_len);
2098 if (ret < 0)
2099 goto cleanup;
2100 }
2101 }
2102
2103 bios_to_read = bio_list_size(&bio_list);
2104 if (!bios_to_read) {
2105 /*
2106 * we might have no bios to read just because the pages
2107 * were up to date, or we might have no bios to read because
2108 * the devices were gone.
2109 */
2110 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2111 __raid_recover_end_io(rbio);
2112 goto out;
2113 } else {
2114 goto cleanup;
2115 }
2116 }
2117
2118 /*
2119 * the bbio may be freed once we submit the last bio. Make sure
2120 * not to touch it after that
2121 */
2122 atomic_set(&rbio->stripes_pending, bios_to_read);
2123 while (1) {
2124 bio = bio_list_pop(&bio_list);
2125 if (!bio)
2126 break;
2127
2128 bio->bi_private = rbio;
2129 bio->bi_end_io = raid_recover_end_io;
2130 bio->bi_opf = REQ_OP_READ;
2131
2132 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2133
2134 submit_bio(bio);
2135 }
2136 out:
2137 return 0;
2138
2139 cleanup:
2140 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2141 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2142 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2143
2144 while ((bio = bio_list_pop(&bio_list)))
2145 bio_put(bio);
2146
2147 return -EIO;
2148 }
2149
2150 /*
2151 * the main entry point for reads from the higher layers. This
2152 * is really only called when the normal read path had a failure,
2153 * so we assume the bio they send down corresponds to a failed part
2154 * of the drive.
2155 */
raid56_parity_recover(struct btrfs_fs_info * fs_info,struct bio * bio,struct btrfs_bio * bbio,u64 stripe_len,int mirror_num,int generic_io)2156 int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
2157 struct btrfs_bio *bbio, u64 stripe_len,
2158 int mirror_num, int generic_io)
2159 {
2160 struct btrfs_raid_bio *rbio;
2161 int ret;
2162
2163 if (generic_io) {
2164 ASSERT(bbio->mirror_num == mirror_num);
2165 btrfs_io_bio(bio)->mirror_num = mirror_num;
2166 }
2167
2168 rbio = alloc_rbio(fs_info, bbio, stripe_len);
2169 if (IS_ERR(rbio)) {
2170 if (generic_io)
2171 btrfs_put_bbio(bbio);
2172 return PTR_ERR(rbio);
2173 }
2174
2175 rbio->operation = BTRFS_RBIO_READ_REBUILD;
2176 bio_list_add(&rbio->bio_list, bio);
2177 rbio->bio_list_bytes = bio->bi_iter.bi_size;
2178
2179 rbio->faila = find_logical_bio_stripe(rbio, bio);
2180 if (rbio->faila == -1) {
2181 btrfs_warn(fs_info,
2182 "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2183 __func__, (u64)bio->bi_iter.bi_sector << 9,
2184 (u64)bio->bi_iter.bi_size, bbio->map_type);
2185 if (generic_io)
2186 btrfs_put_bbio(bbio);
2187 kfree(rbio);
2188 return -EIO;
2189 }
2190
2191 if (generic_io) {
2192 btrfs_bio_counter_inc_noblocked(fs_info);
2193 rbio->generic_bio_cnt = 1;
2194 } else {
2195 btrfs_get_bbio(bbio);
2196 }
2197
2198 /*
2199 * Loop retry:
2200 * for 'mirror == 2', reconstruct from all other stripes.
2201 * for 'mirror_num > 2', select a stripe to fail on every retry.
2202 */
2203 if (mirror_num > 2) {
2204 /*
2205 * 'mirror == 3' is to fail the p stripe and
2206 * reconstruct from the q stripe. 'mirror > 3' is to
2207 * fail a data stripe and reconstruct from p+q stripe.
2208 */
2209 rbio->failb = rbio->real_stripes - (mirror_num - 1);
2210 ASSERT(rbio->failb > 0);
2211 if (rbio->failb <= rbio->faila)
2212 rbio->failb--;
2213 }
2214
2215 ret = lock_stripe_add(rbio);
2216
2217 /*
2218 * __raid56_parity_recover will end the bio with
2219 * any errors it hits. We don't want to return
2220 * its error value up the stack because our caller
2221 * will end up calling bio_endio with any nonzero
2222 * return
2223 */
2224 if (ret == 0)
2225 __raid56_parity_recover(rbio);
2226 /*
2227 * our rbio has been added to the list of
2228 * rbios that will be handled after the
2229 * currently lock owner is done
2230 */
2231 return 0;
2232
2233 }
2234
rmw_work(struct btrfs_work * work)2235 static void rmw_work(struct btrfs_work *work)
2236 {
2237 struct btrfs_raid_bio *rbio;
2238
2239 rbio = container_of(work, struct btrfs_raid_bio, work);
2240 raid56_rmw_stripe(rbio);
2241 }
2242
read_rebuild_work(struct btrfs_work * work)2243 static void read_rebuild_work(struct btrfs_work *work)
2244 {
2245 struct btrfs_raid_bio *rbio;
2246
2247 rbio = container_of(work, struct btrfs_raid_bio, work);
2248 __raid56_parity_recover(rbio);
2249 }
2250
2251 /*
2252 * The following code is used to scrub/replace the parity stripe
2253 *
2254 * Caller must have already increased bio_counter for getting @bbio.
2255 *
2256 * Note: We need make sure all the pages that add into the scrub/replace
2257 * raid bio are correct and not be changed during the scrub/replace. That
2258 * is those pages just hold metadata or file data with checksum.
2259 */
2260
2261 struct btrfs_raid_bio *
raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info * fs_info,struct bio * bio,struct btrfs_bio * bbio,u64 stripe_len,struct btrfs_device * scrub_dev,unsigned long * dbitmap,int stripe_nsectors)2262 raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2263 struct btrfs_bio *bbio, u64 stripe_len,
2264 struct btrfs_device *scrub_dev,
2265 unsigned long *dbitmap, int stripe_nsectors)
2266 {
2267 struct btrfs_raid_bio *rbio;
2268 int i;
2269
2270 rbio = alloc_rbio(fs_info, bbio, stripe_len);
2271 if (IS_ERR(rbio))
2272 return NULL;
2273 bio_list_add(&rbio->bio_list, bio);
2274 /*
2275 * This is a special bio which is used to hold the completion handler
2276 * and make the scrub rbio is similar to the other types
2277 */
2278 ASSERT(!bio->bi_iter.bi_size);
2279 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2280
2281 /*
2282 * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted
2283 * to the end position, so this search can start from the first parity
2284 * stripe.
2285 */
2286 for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2287 if (bbio->stripes[i].dev == scrub_dev) {
2288 rbio->scrubp = i;
2289 break;
2290 }
2291 }
2292 ASSERT(i < rbio->real_stripes);
2293
2294 /* Now we just support the sectorsize equals to page size */
2295 ASSERT(fs_info->sectorsize == PAGE_SIZE);
2296 ASSERT(rbio->stripe_npages == stripe_nsectors);
2297 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2298
2299 /*
2300 * We have already increased bio_counter when getting bbio, record it
2301 * so we can free it at rbio_orig_end_io().
2302 */
2303 rbio->generic_bio_cnt = 1;
2304
2305 return rbio;
2306 }
2307
2308 /* Used for both parity scrub and missing. */
raid56_add_scrub_pages(struct btrfs_raid_bio * rbio,struct page * page,u64 logical)2309 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2310 u64 logical)
2311 {
2312 int stripe_offset;
2313 int index;
2314
2315 ASSERT(logical >= rbio->bbio->raid_map[0]);
2316 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2317 rbio->stripe_len * rbio->nr_data);
2318 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2319 index = stripe_offset >> PAGE_SHIFT;
2320 rbio->bio_pages[index] = page;
2321 }
2322
2323 /*
2324 * We just scrub the parity that we have correct data on the same horizontal,
2325 * so we needn't allocate all pages for all the stripes.
2326 */
alloc_rbio_essential_pages(struct btrfs_raid_bio * rbio)2327 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2328 {
2329 int i;
2330 int bit;
2331 int index;
2332 struct page *page;
2333
2334 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2335 for (i = 0; i < rbio->real_stripes; i++) {
2336 index = i * rbio->stripe_npages + bit;
2337 if (rbio->stripe_pages[index])
2338 continue;
2339
2340 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2341 if (!page)
2342 return -ENOMEM;
2343 rbio->stripe_pages[index] = page;
2344 }
2345 }
2346 return 0;
2347 }
2348
finish_parity_scrub(struct btrfs_raid_bio * rbio,int need_check)2349 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2350 int need_check)
2351 {
2352 struct btrfs_bio *bbio = rbio->bbio;
2353 void **pointers = rbio->finish_pointers;
2354 unsigned long *pbitmap = rbio->finish_pbitmap;
2355 int nr_data = rbio->nr_data;
2356 int stripe;
2357 int pagenr;
2358 int p_stripe = -1;
2359 int q_stripe = -1;
2360 struct page *p_page = NULL;
2361 struct page *q_page = NULL;
2362 struct bio_list bio_list;
2363 struct bio *bio;
2364 int is_replace = 0;
2365 int ret;
2366
2367 bio_list_init(&bio_list);
2368
2369 if (rbio->real_stripes - rbio->nr_data == 1) {
2370 p_stripe = rbio->real_stripes - 1;
2371 } else if (rbio->real_stripes - rbio->nr_data == 2) {
2372 p_stripe = rbio->real_stripes - 2;
2373 q_stripe = rbio->real_stripes - 1;
2374 } else {
2375 BUG();
2376 }
2377
2378 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2379 is_replace = 1;
2380 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2381 }
2382
2383 /*
2384 * Because the higher layers(scrubber) are unlikely to
2385 * use this area of the disk again soon, so don't cache
2386 * it.
2387 */
2388 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2389
2390 if (!need_check)
2391 goto writeback;
2392
2393 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2394 if (!p_page)
2395 goto cleanup;
2396 SetPageUptodate(p_page);
2397
2398 if (q_stripe != -1) {
2399 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2400 if (!q_page) {
2401 __free_page(p_page);
2402 goto cleanup;
2403 }
2404 SetPageUptodate(q_page);
2405 }
2406
2407 atomic_set(&rbio->error, 0);
2408
2409 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2410 struct page *p;
2411 void *parity;
2412 /* first collect one page from each data stripe */
2413 for (stripe = 0; stripe < nr_data; stripe++) {
2414 p = page_in_rbio(rbio, stripe, pagenr, 0);
2415 pointers[stripe] = kmap(p);
2416 }
2417
2418 /* then add the parity stripe */
2419 pointers[stripe++] = kmap(p_page);
2420
2421 if (q_stripe != -1) {
2422
2423 /*
2424 * raid6, add the qstripe and call the
2425 * library function to fill in our p/q
2426 */
2427 pointers[stripe++] = kmap(q_page);
2428
2429 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2430 pointers);
2431 } else {
2432 /* raid5 */
2433 copy_page(pointers[nr_data], pointers[0]);
2434 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2435 }
2436
2437 /* Check scrubbing parity and repair it */
2438 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2439 parity = kmap(p);
2440 if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2441 copy_page(parity, pointers[rbio->scrubp]);
2442 else
2443 /* Parity is right, needn't writeback */
2444 bitmap_clear(rbio->dbitmap, pagenr, 1);
2445 kunmap(p);
2446
2447 for (stripe = 0; stripe < nr_data; stripe++)
2448 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2449 kunmap(p_page);
2450 }
2451
2452 __free_page(p_page);
2453 if (q_page)
2454 __free_page(q_page);
2455
2456 writeback:
2457 /*
2458 * time to start writing. Make bios for everything from the
2459 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2460 * everything else.
2461 */
2462 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2463 struct page *page;
2464
2465 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2466 ret = rbio_add_io_page(rbio, &bio_list,
2467 page, rbio->scrubp, pagenr, rbio->stripe_len);
2468 if (ret)
2469 goto cleanup;
2470 }
2471
2472 if (!is_replace)
2473 goto submit_write;
2474
2475 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2476 struct page *page;
2477
2478 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2479 ret = rbio_add_io_page(rbio, &bio_list, page,
2480 bbio->tgtdev_map[rbio->scrubp],
2481 pagenr, rbio->stripe_len);
2482 if (ret)
2483 goto cleanup;
2484 }
2485
2486 submit_write:
2487 nr_data = bio_list_size(&bio_list);
2488 if (!nr_data) {
2489 /* Every parity is right */
2490 rbio_orig_end_io(rbio, BLK_STS_OK);
2491 return;
2492 }
2493
2494 atomic_set(&rbio->stripes_pending, nr_data);
2495
2496 while (1) {
2497 bio = bio_list_pop(&bio_list);
2498 if (!bio)
2499 break;
2500
2501 bio->bi_private = rbio;
2502 bio->bi_end_io = raid_write_end_io;
2503 bio->bi_opf = REQ_OP_WRITE;
2504
2505 submit_bio(bio);
2506 }
2507 return;
2508
2509 cleanup:
2510 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2511
2512 while ((bio = bio_list_pop(&bio_list)))
2513 bio_put(bio);
2514 }
2515
is_data_stripe(struct btrfs_raid_bio * rbio,int stripe)2516 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2517 {
2518 if (stripe >= 0 && stripe < rbio->nr_data)
2519 return 1;
2520 return 0;
2521 }
2522
2523 /*
2524 * While we're doing the parity check and repair, we could have errors
2525 * in reading pages off the disk. This checks for errors and if we're
2526 * not able to read the page it'll trigger parity reconstruction. The
2527 * parity scrub will be finished after we've reconstructed the failed
2528 * stripes
2529 */
validate_rbio_for_parity_scrub(struct btrfs_raid_bio * rbio)2530 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2531 {
2532 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2533 goto cleanup;
2534
2535 if (rbio->faila >= 0 || rbio->failb >= 0) {
2536 int dfail = 0, failp = -1;
2537
2538 if (is_data_stripe(rbio, rbio->faila))
2539 dfail++;
2540 else if (is_parity_stripe(rbio->faila))
2541 failp = rbio->faila;
2542
2543 if (is_data_stripe(rbio, rbio->failb))
2544 dfail++;
2545 else if (is_parity_stripe(rbio->failb))
2546 failp = rbio->failb;
2547
2548 /*
2549 * Because we can not use a scrubbing parity to repair
2550 * the data, so the capability of the repair is declined.
2551 * (In the case of RAID5, we can not repair anything)
2552 */
2553 if (dfail > rbio->bbio->max_errors - 1)
2554 goto cleanup;
2555
2556 /*
2557 * If all data is good, only parity is correctly, just
2558 * repair the parity.
2559 */
2560 if (dfail == 0) {
2561 finish_parity_scrub(rbio, 0);
2562 return;
2563 }
2564
2565 /*
2566 * Here means we got one corrupted data stripe and one
2567 * corrupted parity on RAID6, if the corrupted parity
2568 * is scrubbing parity, luckily, use the other one to repair
2569 * the data, or we can not repair the data stripe.
2570 */
2571 if (failp != rbio->scrubp)
2572 goto cleanup;
2573
2574 __raid_recover_end_io(rbio);
2575 } else {
2576 finish_parity_scrub(rbio, 1);
2577 }
2578 return;
2579
2580 cleanup:
2581 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2582 }
2583
2584 /*
2585 * end io for the read phase of the rmw cycle. All the bios here are physical
2586 * stripe bios we've read from the disk so we can recalculate the parity of the
2587 * stripe.
2588 *
2589 * This will usually kick off finish_rmw once all the bios are read in, but it
2590 * may trigger parity reconstruction if we had any errors along the way
2591 */
raid56_parity_scrub_end_io(struct bio * bio)2592 static void raid56_parity_scrub_end_io(struct bio *bio)
2593 {
2594 struct btrfs_raid_bio *rbio = bio->bi_private;
2595
2596 if (bio->bi_status)
2597 fail_bio_stripe(rbio, bio);
2598 else
2599 set_bio_pages_uptodate(bio);
2600
2601 bio_put(bio);
2602
2603 if (!atomic_dec_and_test(&rbio->stripes_pending))
2604 return;
2605
2606 /*
2607 * this will normally call finish_rmw to start our write
2608 * but if there are any failed stripes we'll reconstruct
2609 * from parity first
2610 */
2611 validate_rbio_for_parity_scrub(rbio);
2612 }
2613
raid56_parity_scrub_stripe(struct btrfs_raid_bio * rbio)2614 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2615 {
2616 int bios_to_read = 0;
2617 struct bio_list bio_list;
2618 int ret;
2619 int pagenr;
2620 int stripe;
2621 struct bio *bio;
2622
2623 bio_list_init(&bio_list);
2624
2625 ret = alloc_rbio_essential_pages(rbio);
2626 if (ret)
2627 goto cleanup;
2628
2629 atomic_set(&rbio->error, 0);
2630 /*
2631 * build a list of bios to read all the missing parts of this
2632 * stripe
2633 */
2634 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2635 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2636 struct page *page;
2637 /*
2638 * we want to find all the pages missing from
2639 * the rbio and read them from the disk. If
2640 * page_in_rbio finds a page in the bio list
2641 * we don't need to read it off the stripe.
2642 */
2643 page = page_in_rbio(rbio, stripe, pagenr, 1);
2644 if (page)
2645 continue;
2646
2647 page = rbio_stripe_page(rbio, stripe, pagenr);
2648 /*
2649 * the bio cache may have handed us an uptodate
2650 * page. If so, be happy and use it
2651 */
2652 if (PageUptodate(page))
2653 continue;
2654
2655 ret = rbio_add_io_page(rbio, &bio_list, page,
2656 stripe, pagenr, rbio->stripe_len);
2657 if (ret)
2658 goto cleanup;
2659 }
2660 }
2661
2662 bios_to_read = bio_list_size(&bio_list);
2663 if (!bios_to_read) {
2664 /*
2665 * this can happen if others have merged with
2666 * us, it means there is nothing left to read.
2667 * But if there are missing devices it may not be
2668 * safe to do the full stripe write yet.
2669 */
2670 goto finish;
2671 }
2672
2673 /*
2674 * the bbio may be freed once we submit the last bio. Make sure
2675 * not to touch it after that
2676 */
2677 atomic_set(&rbio->stripes_pending, bios_to_read);
2678 while (1) {
2679 bio = bio_list_pop(&bio_list);
2680 if (!bio)
2681 break;
2682
2683 bio->bi_private = rbio;
2684 bio->bi_end_io = raid56_parity_scrub_end_io;
2685 bio->bi_opf = REQ_OP_READ;
2686
2687 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2688
2689 submit_bio(bio);
2690 }
2691 /* the actual write will happen once the reads are done */
2692 return;
2693
2694 cleanup:
2695 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2696
2697 while ((bio = bio_list_pop(&bio_list)))
2698 bio_put(bio);
2699
2700 return;
2701
2702 finish:
2703 validate_rbio_for_parity_scrub(rbio);
2704 }
2705
scrub_parity_work(struct btrfs_work * work)2706 static void scrub_parity_work(struct btrfs_work *work)
2707 {
2708 struct btrfs_raid_bio *rbio;
2709
2710 rbio = container_of(work, struct btrfs_raid_bio, work);
2711 raid56_parity_scrub_stripe(rbio);
2712 }
2713
raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio * rbio)2714 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2715 {
2716 if (!lock_stripe_add(rbio))
2717 start_async_work(rbio, scrub_parity_work);
2718 }
2719
2720 /* The following code is used for dev replace of a missing RAID 5/6 device. */
2721
2722 struct btrfs_raid_bio *
raid56_alloc_missing_rbio(struct btrfs_fs_info * fs_info,struct bio * bio,struct btrfs_bio * bbio,u64 length)2723 raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2724 struct btrfs_bio *bbio, u64 length)
2725 {
2726 struct btrfs_raid_bio *rbio;
2727
2728 rbio = alloc_rbio(fs_info, bbio, length);
2729 if (IS_ERR(rbio))
2730 return NULL;
2731
2732 rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2733 bio_list_add(&rbio->bio_list, bio);
2734 /*
2735 * This is a special bio which is used to hold the completion handler
2736 * and make the scrub rbio is similar to the other types
2737 */
2738 ASSERT(!bio->bi_iter.bi_size);
2739
2740 rbio->faila = find_logical_bio_stripe(rbio, bio);
2741 if (rbio->faila == -1) {
2742 BUG();
2743 kfree(rbio);
2744 return NULL;
2745 }
2746
2747 /*
2748 * When we get bbio, we have already increased bio_counter, record it
2749 * so we can free it at rbio_orig_end_io()
2750 */
2751 rbio->generic_bio_cnt = 1;
2752
2753 return rbio;
2754 }
2755
raid56_submit_missing_rbio(struct btrfs_raid_bio * rbio)2756 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2757 {
2758 if (!lock_stripe_add(rbio))
2759 start_async_work(rbio, read_rebuild_work);
2760 }
2761