1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2009 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "volumes.h"
16 #include "locking.h"
17 #include "btrfs_inode.h"
18 #include "async-thread.h"
19 #include "free-space-cache.h"
20 #include "inode-map.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25
26 /*
27 * backref_node, mapping_node and tree_block start with this
28 */
29 struct tree_entry {
30 struct rb_node rb_node;
31 u64 bytenr;
32 };
33
34 /*
35 * present a tree block in the backref cache
36 */
37 struct backref_node {
38 struct rb_node rb_node;
39 u64 bytenr;
40
41 u64 new_bytenr;
42 /* objectid of tree block owner, can be not uptodate */
43 u64 owner;
44 /* link to pending, changed or detached list */
45 struct list_head list;
46 /* list of upper level blocks reference this block */
47 struct list_head upper;
48 /* list of child blocks in the cache */
49 struct list_head lower;
50 /* NULL if this node is not tree root */
51 struct btrfs_root *root;
52 /* extent buffer got by COW the block */
53 struct extent_buffer *eb;
54 /* level of tree block */
55 unsigned int level:8;
56 /* is the block in non-reference counted tree */
57 unsigned int cowonly:1;
58 /* 1 if no child node in the cache */
59 unsigned int lowest:1;
60 /* is the extent buffer locked */
61 unsigned int locked:1;
62 /* has the block been processed */
63 unsigned int processed:1;
64 /* have backrefs of this block been checked */
65 unsigned int checked:1;
66 /*
67 * 1 if corresponding block has been cowed but some upper
68 * level block pointers may not point to the new location
69 */
70 unsigned int pending:1;
71 /*
72 * 1 if the backref node isn't connected to any other
73 * backref node.
74 */
75 unsigned int detached:1;
76 };
77
78 /*
79 * present a block pointer in the backref cache
80 */
81 struct backref_edge {
82 struct list_head list[2];
83 struct backref_node *node[2];
84 };
85
86 #define LOWER 0
87 #define UPPER 1
88 #define RELOCATION_RESERVED_NODES 256
89
90 struct backref_cache {
91 /* red black tree of all backref nodes in the cache */
92 struct rb_root rb_root;
93 /* for passing backref nodes to btrfs_reloc_cow_block */
94 struct backref_node *path[BTRFS_MAX_LEVEL];
95 /*
96 * list of blocks that have been cowed but some block
97 * pointers in upper level blocks may not reflect the
98 * new location
99 */
100 struct list_head pending[BTRFS_MAX_LEVEL];
101 /* list of backref nodes with no child node */
102 struct list_head leaves;
103 /* list of blocks that have been cowed in current transaction */
104 struct list_head changed;
105 /* list of detached backref node. */
106 struct list_head detached;
107
108 u64 last_trans;
109
110 int nr_nodes;
111 int nr_edges;
112 };
113
114 /*
115 * map address of tree root to tree
116 */
117 struct mapping_node {
118 struct rb_node rb_node;
119 u64 bytenr;
120 void *data;
121 };
122
123 struct mapping_tree {
124 struct rb_root rb_root;
125 spinlock_t lock;
126 };
127
128 /*
129 * present a tree block to process
130 */
131 struct tree_block {
132 struct rb_node rb_node;
133 u64 bytenr;
134 struct btrfs_key key;
135 unsigned int level:8;
136 unsigned int key_ready:1;
137 };
138
139 #define MAX_EXTENTS 128
140
141 struct file_extent_cluster {
142 u64 start;
143 u64 end;
144 u64 boundary[MAX_EXTENTS];
145 unsigned int nr;
146 };
147
148 struct reloc_control {
149 /* block group to relocate */
150 struct btrfs_block_group_cache *block_group;
151 /* extent tree */
152 struct btrfs_root *extent_root;
153 /* inode for moving data */
154 struct inode *data_inode;
155
156 struct btrfs_block_rsv *block_rsv;
157
158 struct backref_cache backref_cache;
159
160 struct file_extent_cluster cluster;
161 /* tree blocks have been processed */
162 struct extent_io_tree processed_blocks;
163 /* map start of tree root to corresponding reloc tree */
164 struct mapping_tree reloc_root_tree;
165 /* list of reloc trees */
166 struct list_head reloc_roots;
167 /* list of subvolume trees that get relocated */
168 struct list_head dirty_subvol_roots;
169 /* size of metadata reservation for merging reloc trees */
170 u64 merging_rsv_size;
171 /* size of relocated tree nodes */
172 u64 nodes_relocated;
173 /* reserved size for block group relocation*/
174 u64 reserved_bytes;
175
176 u64 search_start;
177 u64 extents_found;
178
179 unsigned int stage:8;
180 unsigned int create_reloc_tree:1;
181 unsigned int merge_reloc_tree:1;
182 unsigned int found_file_extent:1;
183 };
184
185 /* stages of data relocation */
186 #define MOVE_DATA_EXTENTS 0
187 #define UPDATE_DATA_PTRS 1
188
189 static void remove_backref_node(struct backref_cache *cache,
190 struct backref_node *node);
191 static void __mark_block_processed(struct reloc_control *rc,
192 struct backref_node *node);
193
mapping_tree_init(struct mapping_tree * tree)194 static void mapping_tree_init(struct mapping_tree *tree)
195 {
196 tree->rb_root = RB_ROOT;
197 spin_lock_init(&tree->lock);
198 }
199
backref_cache_init(struct backref_cache * cache)200 static void backref_cache_init(struct backref_cache *cache)
201 {
202 int i;
203 cache->rb_root = RB_ROOT;
204 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
205 INIT_LIST_HEAD(&cache->pending[i]);
206 INIT_LIST_HEAD(&cache->changed);
207 INIT_LIST_HEAD(&cache->detached);
208 INIT_LIST_HEAD(&cache->leaves);
209 }
210
backref_cache_cleanup(struct backref_cache * cache)211 static void backref_cache_cleanup(struct backref_cache *cache)
212 {
213 struct backref_node *node;
214 int i;
215
216 while (!list_empty(&cache->detached)) {
217 node = list_entry(cache->detached.next,
218 struct backref_node, list);
219 remove_backref_node(cache, node);
220 }
221
222 while (!list_empty(&cache->leaves)) {
223 node = list_entry(cache->leaves.next,
224 struct backref_node, lower);
225 remove_backref_node(cache, node);
226 }
227
228 cache->last_trans = 0;
229
230 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
231 ASSERT(list_empty(&cache->pending[i]));
232 ASSERT(list_empty(&cache->changed));
233 ASSERT(list_empty(&cache->detached));
234 ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
235 ASSERT(!cache->nr_nodes);
236 ASSERT(!cache->nr_edges);
237 }
238
alloc_backref_node(struct backref_cache * cache)239 static struct backref_node *alloc_backref_node(struct backref_cache *cache)
240 {
241 struct backref_node *node;
242
243 node = kzalloc(sizeof(*node), GFP_NOFS);
244 if (node) {
245 INIT_LIST_HEAD(&node->list);
246 INIT_LIST_HEAD(&node->upper);
247 INIT_LIST_HEAD(&node->lower);
248 RB_CLEAR_NODE(&node->rb_node);
249 cache->nr_nodes++;
250 }
251 return node;
252 }
253
free_backref_node(struct backref_cache * cache,struct backref_node * node)254 static void free_backref_node(struct backref_cache *cache,
255 struct backref_node *node)
256 {
257 if (node) {
258 cache->nr_nodes--;
259 kfree(node);
260 }
261 }
262
alloc_backref_edge(struct backref_cache * cache)263 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
264 {
265 struct backref_edge *edge;
266
267 edge = kzalloc(sizeof(*edge), GFP_NOFS);
268 if (edge)
269 cache->nr_edges++;
270 return edge;
271 }
272
free_backref_edge(struct backref_cache * cache,struct backref_edge * edge)273 static void free_backref_edge(struct backref_cache *cache,
274 struct backref_edge *edge)
275 {
276 if (edge) {
277 cache->nr_edges--;
278 kfree(edge);
279 }
280 }
281
tree_insert(struct rb_root * root,u64 bytenr,struct rb_node * node)282 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
283 struct rb_node *node)
284 {
285 struct rb_node **p = &root->rb_node;
286 struct rb_node *parent = NULL;
287 struct tree_entry *entry;
288
289 while (*p) {
290 parent = *p;
291 entry = rb_entry(parent, struct tree_entry, rb_node);
292
293 if (bytenr < entry->bytenr)
294 p = &(*p)->rb_left;
295 else if (bytenr > entry->bytenr)
296 p = &(*p)->rb_right;
297 else
298 return parent;
299 }
300
301 rb_link_node(node, parent, p);
302 rb_insert_color(node, root);
303 return NULL;
304 }
305
tree_search(struct rb_root * root,u64 bytenr)306 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
307 {
308 struct rb_node *n = root->rb_node;
309 struct tree_entry *entry;
310
311 while (n) {
312 entry = rb_entry(n, struct tree_entry, rb_node);
313
314 if (bytenr < entry->bytenr)
315 n = n->rb_left;
316 else if (bytenr > entry->bytenr)
317 n = n->rb_right;
318 else
319 return n;
320 }
321 return NULL;
322 }
323
backref_tree_panic(struct rb_node * rb_node,int errno,u64 bytenr)324 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
325 {
326
327 struct btrfs_fs_info *fs_info = NULL;
328 struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
329 rb_node);
330 if (bnode->root)
331 fs_info = bnode->root->fs_info;
332 btrfs_panic(fs_info, errno,
333 "Inconsistency in backref cache found at offset %llu",
334 bytenr);
335 }
336
337 /*
338 * walk up backref nodes until reach node presents tree root
339 */
walk_up_backref(struct backref_node * node,struct backref_edge * edges[],int * index)340 static struct backref_node *walk_up_backref(struct backref_node *node,
341 struct backref_edge *edges[],
342 int *index)
343 {
344 struct backref_edge *edge;
345 int idx = *index;
346
347 while (!list_empty(&node->upper)) {
348 edge = list_entry(node->upper.next,
349 struct backref_edge, list[LOWER]);
350 edges[idx++] = edge;
351 node = edge->node[UPPER];
352 }
353 BUG_ON(node->detached);
354 *index = idx;
355 return node;
356 }
357
358 /*
359 * walk down backref nodes to find start of next reference path
360 */
walk_down_backref(struct backref_edge * edges[],int * index)361 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
362 int *index)
363 {
364 struct backref_edge *edge;
365 struct backref_node *lower;
366 int idx = *index;
367
368 while (idx > 0) {
369 edge = edges[idx - 1];
370 lower = edge->node[LOWER];
371 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
372 idx--;
373 continue;
374 }
375 edge = list_entry(edge->list[LOWER].next,
376 struct backref_edge, list[LOWER]);
377 edges[idx - 1] = edge;
378 *index = idx;
379 return edge->node[UPPER];
380 }
381 *index = 0;
382 return NULL;
383 }
384
unlock_node_buffer(struct backref_node * node)385 static void unlock_node_buffer(struct backref_node *node)
386 {
387 if (node->locked) {
388 btrfs_tree_unlock(node->eb);
389 node->locked = 0;
390 }
391 }
392
drop_node_buffer(struct backref_node * node)393 static void drop_node_buffer(struct backref_node *node)
394 {
395 if (node->eb) {
396 unlock_node_buffer(node);
397 free_extent_buffer(node->eb);
398 node->eb = NULL;
399 }
400 }
401
drop_backref_node(struct backref_cache * tree,struct backref_node * node)402 static void drop_backref_node(struct backref_cache *tree,
403 struct backref_node *node)
404 {
405 BUG_ON(!list_empty(&node->upper));
406
407 drop_node_buffer(node);
408 list_del(&node->list);
409 list_del(&node->lower);
410 if (!RB_EMPTY_NODE(&node->rb_node))
411 rb_erase(&node->rb_node, &tree->rb_root);
412 free_backref_node(tree, node);
413 }
414
415 /*
416 * remove a backref node from the backref cache
417 */
remove_backref_node(struct backref_cache * cache,struct backref_node * node)418 static void remove_backref_node(struct backref_cache *cache,
419 struct backref_node *node)
420 {
421 struct backref_node *upper;
422 struct backref_edge *edge;
423
424 if (!node)
425 return;
426
427 BUG_ON(!node->lowest && !node->detached);
428 while (!list_empty(&node->upper)) {
429 edge = list_entry(node->upper.next, struct backref_edge,
430 list[LOWER]);
431 upper = edge->node[UPPER];
432 list_del(&edge->list[LOWER]);
433 list_del(&edge->list[UPPER]);
434 free_backref_edge(cache, edge);
435
436 if (RB_EMPTY_NODE(&upper->rb_node)) {
437 BUG_ON(!list_empty(&node->upper));
438 drop_backref_node(cache, node);
439 node = upper;
440 node->lowest = 1;
441 continue;
442 }
443 /*
444 * add the node to leaf node list if no other
445 * child block cached.
446 */
447 if (list_empty(&upper->lower)) {
448 list_add_tail(&upper->lower, &cache->leaves);
449 upper->lowest = 1;
450 }
451 }
452
453 drop_backref_node(cache, node);
454 }
455
update_backref_node(struct backref_cache * cache,struct backref_node * node,u64 bytenr)456 static void update_backref_node(struct backref_cache *cache,
457 struct backref_node *node, u64 bytenr)
458 {
459 struct rb_node *rb_node;
460 rb_erase(&node->rb_node, &cache->rb_root);
461 node->bytenr = bytenr;
462 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
463 if (rb_node)
464 backref_tree_panic(rb_node, -EEXIST, bytenr);
465 }
466
467 /*
468 * update backref cache after a transaction commit
469 */
update_backref_cache(struct btrfs_trans_handle * trans,struct backref_cache * cache)470 static int update_backref_cache(struct btrfs_trans_handle *trans,
471 struct backref_cache *cache)
472 {
473 struct backref_node *node;
474 int level = 0;
475
476 if (cache->last_trans == 0) {
477 cache->last_trans = trans->transid;
478 return 0;
479 }
480
481 if (cache->last_trans == trans->transid)
482 return 0;
483
484 /*
485 * detached nodes are used to avoid unnecessary backref
486 * lookup. transaction commit changes the extent tree.
487 * so the detached nodes are no longer useful.
488 */
489 while (!list_empty(&cache->detached)) {
490 node = list_entry(cache->detached.next,
491 struct backref_node, list);
492 remove_backref_node(cache, node);
493 }
494
495 while (!list_empty(&cache->changed)) {
496 node = list_entry(cache->changed.next,
497 struct backref_node, list);
498 list_del_init(&node->list);
499 BUG_ON(node->pending);
500 update_backref_node(cache, node, node->new_bytenr);
501 }
502
503 /*
504 * some nodes can be left in the pending list if there were
505 * errors during processing the pending nodes.
506 */
507 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
508 list_for_each_entry(node, &cache->pending[level], list) {
509 BUG_ON(!node->pending);
510 if (node->bytenr == node->new_bytenr)
511 continue;
512 update_backref_node(cache, node, node->new_bytenr);
513 }
514 }
515
516 cache->last_trans = 0;
517 return 1;
518 }
519
reloc_root_is_dead(struct btrfs_root * root)520 static bool reloc_root_is_dead(struct btrfs_root *root)
521 {
522 /*
523 * Pair with set_bit/clear_bit in clean_dirty_subvols and
524 * btrfs_update_reloc_root. We need to see the updated bit before
525 * trying to access reloc_root
526 */
527 smp_rmb();
528 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
529 return true;
530 return false;
531 }
532
533 /*
534 * Check if this subvolume tree has valid reloc tree.
535 *
536 * Reloc tree after swap is considered dead, thus not considered as valid.
537 * This is enough for most callers, as they don't distinguish dead reloc root
538 * from no reloc root. But should_ignore_root() below is a special case.
539 */
have_reloc_root(struct btrfs_root * root)540 static bool have_reloc_root(struct btrfs_root *root)
541 {
542 if (reloc_root_is_dead(root))
543 return false;
544 if (!root->reloc_root)
545 return false;
546 return true;
547 }
548
should_ignore_root(struct btrfs_root * root)549 static int should_ignore_root(struct btrfs_root *root)
550 {
551 struct btrfs_root *reloc_root;
552
553 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
554 return 0;
555
556 /* This root has been merged with its reloc tree, we can ignore it */
557 if (reloc_root_is_dead(root))
558 return 1;
559
560 reloc_root = root->reloc_root;
561 if (!reloc_root)
562 return 0;
563
564 if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
565 root->fs_info->running_transaction->transid - 1)
566 return 0;
567 /*
568 * if there is reloc tree and it was created in previous
569 * transaction backref lookup can find the reloc tree,
570 * so backref node for the fs tree root is useless for
571 * relocation.
572 */
573 return 1;
574 }
575 /*
576 * find reloc tree by address of tree root
577 */
find_reloc_root(struct reloc_control * rc,u64 bytenr)578 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
579 u64 bytenr)
580 {
581 struct rb_node *rb_node;
582 struct mapping_node *node;
583 struct btrfs_root *root = NULL;
584
585 spin_lock(&rc->reloc_root_tree.lock);
586 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
587 if (rb_node) {
588 node = rb_entry(rb_node, struct mapping_node, rb_node);
589 root = (struct btrfs_root *)node->data;
590 }
591 spin_unlock(&rc->reloc_root_tree.lock);
592 return root;
593 }
594
is_cowonly_root(u64 root_objectid)595 static int is_cowonly_root(u64 root_objectid)
596 {
597 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
598 root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
599 root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
600 root_objectid == BTRFS_DEV_TREE_OBJECTID ||
601 root_objectid == BTRFS_TREE_LOG_OBJECTID ||
602 root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
603 root_objectid == BTRFS_UUID_TREE_OBJECTID ||
604 root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
605 root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
606 return 1;
607 return 0;
608 }
609
read_fs_root(struct btrfs_fs_info * fs_info,u64 root_objectid)610 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
611 u64 root_objectid)
612 {
613 struct btrfs_key key;
614
615 key.objectid = root_objectid;
616 key.type = BTRFS_ROOT_ITEM_KEY;
617 if (is_cowonly_root(root_objectid))
618 key.offset = 0;
619 else
620 key.offset = (u64)-1;
621
622 return btrfs_get_fs_root(fs_info, &key, false);
623 }
624
625 static noinline_for_stack
find_inline_backref(struct extent_buffer * leaf,int slot,unsigned long * ptr,unsigned long * end)626 int find_inline_backref(struct extent_buffer *leaf, int slot,
627 unsigned long *ptr, unsigned long *end)
628 {
629 struct btrfs_key key;
630 struct btrfs_extent_item *ei;
631 struct btrfs_tree_block_info *bi;
632 u32 item_size;
633
634 btrfs_item_key_to_cpu(leaf, &key, slot);
635
636 item_size = btrfs_item_size_nr(leaf, slot);
637 if (item_size < sizeof(*ei)) {
638 btrfs_print_v0_err(leaf->fs_info);
639 btrfs_handle_fs_error(leaf->fs_info, -EINVAL, NULL);
640 return 1;
641 }
642 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
643 WARN_ON(!(btrfs_extent_flags(leaf, ei) &
644 BTRFS_EXTENT_FLAG_TREE_BLOCK));
645
646 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
647 item_size <= sizeof(*ei) + sizeof(*bi)) {
648 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
649 return 1;
650 }
651 if (key.type == BTRFS_METADATA_ITEM_KEY &&
652 item_size <= sizeof(*ei)) {
653 WARN_ON(item_size < sizeof(*ei));
654 return 1;
655 }
656
657 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
658 bi = (struct btrfs_tree_block_info *)(ei + 1);
659 *ptr = (unsigned long)(bi + 1);
660 } else {
661 *ptr = (unsigned long)(ei + 1);
662 }
663 *end = (unsigned long)ei + item_size;
664 return 0;
665 }
666
667 /*
668 * build backref tree for a given tree block. root of the backref tree
669 * corresponds the tree block, leaves of the backref tree correspond
670 * roots of b-trees that reference the tree block.
671 *
672 * the basic idea of this function is check backrefs of a given block
673 * to find upper level blocks that reference the block, and then check
674 * backrefs of these upper level blocks recursively. the recursion stop
675 * when tree root is reached or backrefs for the block is cached.
676 *
677 * NOTE: if we find backrefs for a block are cached, we know backrefs
678 * for all upper level blocks that directly/indirectly reference the
679 * block are also cached.
680 */
681 static noinline_for_stack
build_backref_tree(struct reloc_control * rc,struct btrfs_key * node_key,int level,u64 bytenr)682 struct backref_node *build_backref_tree(struct reloc_control *rc,
683 struct btrfs_key *node_key,
684 int level, u64 bytenr)
685 {
686 struct backref_cache *cache = &rc->backref_cache;
687 struct btrfs_path *path1; /* For searching extent root */
688 struct btrfs_path *path2; /* For searching parent of TREE_BLOCK_REF */
689 struct extent_buffer *eb;
690 struct btrfs_root *root;
691 struct backref_node *cur;
692 struct backref_node *upper;
693 struct backref_node *lower;
694 struct backref_node *node = NULL;
695 struct backref_node *exist = NULL;
696 struct backref_edge *edge;
697 struct rb_node *rb_node;
698 struct btrfs_key key;
699 unsigned long end;
700 unsigned long ptr;
701 LIST_HEAD(list); /* Pending edge list, upper node needs to be checked */
702 LIST_HEAD(useless);
703 int cowonly;
704 int ret;
705 int err = 0;
706 bool need_check = true;
707
708 path1 = btrfs_alloc_path();
709 path2 = btrfs_alloc_path();
710 if (!path1 || !path2) {
711 err = -ENOMEM;
712 goto out;
713 }
714 path1->reada = READA_FORWARD;
715 path2->reada = READA_FORWARD;
716
717 node = alloc_backref_node(cache);
718 if (!node) {
719 err = -ENOMEM;
720 goto out;
721 }
722
723 node->bytenr = bytenr;
724 node->level = level;
725 node->lowest = 1;
726 cur = node;
727 again:
728 end = 0;
729 ptr = 0;
730 key.objectid = cur->bytenr;
731 key.type = BTRFS_METADATA_ITEM_KEY;
732 key.offset = (u64)-1;
733
734 path1->search_commit_root = 1;
735 path1->skip_locking = 1;
736 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
737 0, 0);
738 if (ret < 0) {
739 err = ret;
740 goto out;
741 }
742 ASSERT(ret);
743 ASSERT(path1->slots[0]);
744
745 path1->slots[0]--;
746
747 WARN_ON(cur->checked);
748 if (!list_empty(&cur->upper)) {
749 /*
750 * the backref was added previously when processing
751 * backref of type BTRFS_TREE_BLOCK_REF_KEY
752 */
753 ASSERT(list_is_singular(&cur->upper));
754 edge = list_entry(cur->upper.next, struct backref_edge,
755 list[LOWER]);
756 ASSERT(list_empty(&edge->list[UPPER]));
757 exist = edge->node[UPPER];
758 /*
759 * add the upper level block to pending list if we need
760 * check its backrefs
761 */
762 if (!exist->checked)
763 list_add_tail(&edge->list[UPPER], &list);
764 } else {
765 exist = NULL;
766 }
767
768 while (1) {
769 cond_resched();
770 eb = path1->nodes[0];
771
772 if (ptr >= end) {
773 if (path1->slots[0] >= btrfs_header_nritems(eb)) {
774 ret = btrfs_next_leaf(rc->extent_root, path1);
775 if (ret < 0) {
776 err = ret;
777 goto out;
778 }
779 if (ret > 0)
780 break;
781 eb = path1->nodes[0];
782 }
783
784 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
785 if (key.objectid != cur->bytenr) {
786 WARN_ON(exist);
787 break;
788 }
789
790 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
791 key.type == BTRFS_METADATA_ITEM_KEY) {
792 ret = find_inline_backref(eb, path1->slots[0],
793 &ptr, &end);
794 if (ret)
795 goto next;
796 }
797 }
798
799 if (ptr < end) {
800 /* update key for inline back ref */
801 struct btrfs_extent_inline_ref *iref;
802 int type;
803 iref = (struct btrfs_extent_inline_ref *)ptr;
804 type = btrfs_get_extent_inline_ref_type(eb, iref,
805 BTRFS_REF_TYPE_BLOCK);
806 if (type == BTRFS_REF_TYPE_INVALID) {
807 err = -EUCLEAN;
808 goto out;
809 }
810 key.type = type;
811 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
812
813 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
814 key.type != BTRFS_SHARED_BLOCK_REF_KEY);
815 }
816
817 /*
818 * Parent node found and matches current inline ref, no need to
819 * rebuild this node for this inline ref.
820 */
821 if (exist &&
822 ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
823 exist->owner == key.offset) ||
824 (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
825 exist->bytenr == key.offset))) {
826 exist = NULL;
827 goto next;
828 }
829
830 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */
831 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
832 if (key.objectid == key.offset) {
833 /*
834 * Only root blocks of reloc trees use backref
835 * pointing to itself.
836 */
837 root = find_reloc_root(rc, cur->bytenr);
838 ASSERT(root);
839 cur->root = root;
840 break;
841 }
842
843 edge = alloc_backref_edge(cache);
844 if (!edge) {
845 err = -ENOMEM;
846 goto out;
847 }
848 rb_node = tree_search(&cache->rb_root, key.offset);
849 if (!rb_node) {
850 upper = alloc_backref_node(cache);
851 if (!upper) {
852 free_backref_edge(cache, edge);
853 err = -ENOMEM;
854 goto out;
855 }
856 upper->bytenr = key.offset;
857 upper->level = cur->level + 1;
858 /*
859 * backrefs for the upper level block isn't
860 * cached, add the block to pending list
861 */
862 list_add_tail(&edge->list[UPPER], &list);
863 } else {
864 upper = rb_entry(rb_node, struct backref_node,
865 rb_node);
866 ASSERT(upper->checked);
867 INIT_LIST_HEAD(&edge->list[UPPER]);
868 }
869 list_add_tail(&edge->list[LOWER], &cur->upper);
870 edge->node[LOWER] = cur;
871 edge->node[UPPER] = upper;
872
873 goto next;
874 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
875 err = -EINVAL;
876 btrfs_print_v0_err(rc->extent_root->fs_info);
877 btrfs_handle_fs_error(rc->extent_root->fs_info, err,
878 NULL);
879 goto out;
880 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
881 goto next;
882 }
883
884 /*
885 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
886 * means the root objectid. We need to search the tree to get
887 * its parent bytenr.
888 */
889 root = read_fs_root(rc->extent_root->fs_info, key.offset);
890 if (IS_ERR(root)) {
891 err = PTR_ERR(root);
892 goto out;
893 }
894
895 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
896 cur->cowonly = 1;
897
898 if (btrfs_root_level(&root->root_item) == cur->level) {
899 /* tree root */
900 ASSERT(btrfs_root_bytenr(&root->root_item) ==
901 cur->bytenr);
902 if (should_ignore_root(root))
903 list_add(&cur->list, &useless);
904 else
905 cur->root = root;
906 break;
907 }
908
909 level = cur->level + 1;
910
911 /* Search the tree to find parent blocks referring the block. */
912 path2->search_commit_root = 1;
913 path2->skip_locking = 1;
914 path2->lowest_level = level;
915 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
916 path2->lowest_level = 0;
917 if (ret < 0) {
918 err = ret;
919 goto out;
920 }
921 if (ret > 0 && path2->slots[level] > 0)
922 path2->slots[level]--;
923
924 eb = path2->nodes[level];
925 if (btrfs_node_blockptr(eb, path2->slots[level]) !=
926 cur->bytenr) {
927 btrfs_err(root->fs_info,
928 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
929 cur->bytenr, level - 1,
930 root->root_key.objectid,
931 node_key->objectid, node_key->type,
932 node_key->offset);
933 err = -ENOENT;
934 goto out;
935 }
936 lower = cur;
937 need_check = true;
938
939 /* Add all nodes and edges in the path */
940 for (; level < BTRFS_MAX_LEVEL; level++) {
941 if (!path2->nodes[level]) {
942 ASSERT(btrfs_root_bytenr(&root->root_item) ==
943 lower->bytenr);
944 if (should_ignore_root(root))
945 list_add(&lower->list, &useless);
946 else
947 lower->root = root;
948 break;
949 }
950
951 edge = alloc_backref_edge(cache);
952 if (!edge) {
953 err = -ENOMEM;
954 goto out;
955 }
956
957 eb = path2->nodes[level];
958 rb_node = tree_search(&cache->rb_root, eb->start);
959 if (!rb_node) {
960 upper = alloc_backref_node(cache);
961 if (!upper) {
962 free_backref_edge(cache, edge);
963 err = -ENOMEM;
964 goto out;
965 }
966 upper->bytenr = eb->start;
967 upper->owner = btrfs_header_owner(eb);
968 upper->level = lower->level + 1;
969 if (!test_bit(BTRFS_ROOT_REF_COWS,
970 &root->state))
971 upper->cowonly = 1;
972
973 /*
974 * if we know the block isn't shared
975 * we can void checking its backrefs.
976 */
977 if (btrfs_block_can_be_shared(root, eb))
978 upper->checked = 0;
979 else
980 upper->checked = 1;
981
982 /*
983 * add the block to pending list if we
984 * need check its backrefs, we only do this once
985 * while walking up a tree as we will catch
986 * anything else later on.
987 */
988 if (!upper->checked && need_check) {
989 need_check = false;
990 list_add_tail(&edge->list[UPPER],
991 &list);
992 } else {
993 if (upper->checked)
994 need_check = true;
995 INIT_LIST_HEAD(&edge->list[UPPER]);
996 }
997 } else {
998 upper = rb_entry(rb_node, struct backref_node,
999 rb_node);
1000 ASSERT(upper->checked);
1001 INIT_LIST_HEAD(&edge->list[UPPER]);
1002 if (!upper->owner)
1003 upper->owner = btrfs_header_owner(eb);
1004 }
1005 list_add_tail(&edge->list[LOWER], &lower->upper);
1006 edge->node[LOWER] = lower;
1007 edge->node[UPPER] = upper;
1008
1009 if (rb_node)
1010 break;
1011 lower = upper;
1012 upper = NULL;
1013 }
1014 btrfs_release_path(path2);
1015 next:
1016 if (ptr < end) {
1017 ptr += btrfs_extent_inline_ref_size(key.type);
1018 if (ptr >= end) {
1019 WARN_ON(ptr > end);
1020 ptr = 0;
1021 end = 0;
1022 }
1023 }
1024 if (ptr >= end)
1025 path1->slots[0]++;
1026 }
1027 btrfs_release_path(path1);
1028
1029 cur->checked = 1;
1030 WARN_ON(exist);
1031
1032 /* the pending list isn't empty, take the first block to process */
1033 if (!list_empty(&list)) {
1034 edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1035 list_del_init(&edge->list[UPPER]);
1036 cur = edge->node[UPPER];
1037 goto again;
1038 }
1039
1040 /*
1041 * everything goes well, connect backref nodes and insert backref nodes
1042 * into the cache.
1043 */
1044 ASSERT(node->checked);
1045 cowonly = node->cowonly;
1046 if (!cowonly) {
1047 rb_node = tree_insert(&cache->rb_root, node->bytenr,
1048 &node->rb_node);
1049 if (rb_node)
1050 backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1051 list_add_tail(&node->lower, &cache->leaves);
1052 }
1053
1054 list_for_each_entry(edge, &node->upper, list[LOWER])
1055 list_add_tail(&edge->list[UPPER], &list);
1056
1057 while (!list_empty(&list)) {
1058 edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1059 list_del_init(&edge->list[UPPER]);
1060 upper = edge->node[UPPER];
1061 if (upper->detached) {
1062 list_del(&edge->list[LOWER]);
1063 lower = edge->node[LOWER];
1064 free_backref_edge(cache, edge);
1065 if (list_empty(&lower->upper))
1066 list_add(&lower->list, &useless);
1067 continue;
1068 }
1069
1070 if (!RB_EMPTY_NODE(&upper->rb_node)) {
1071 if (upper->lowest) {
1072 list_del_init(&upper->lower);
1073 upper->lowest = 0;
1074 }
1075
1076 list_add_tail(&edge->list[UPPER], &upper->lower);
1077 continue;
1078 }
1079
1080 if (!upper->checked) {
1081 /*
1082 * Still want to blow up for developers since this is a
1083 * logic bug.
1084 */
1085 ASSERT(0);
1086 err = -EINVAL;
1087 goto out;
1088 }
1089 if (cowonly != upper->cowonly) {
1090 ASSERT(0);
1091 err = -EINVAL;
1092 goto out;
1093 }
1094
1095 if (!cowonly) {
1096 rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1097 &upper->rb_node);
1098 if (rb_node)
1099 backref_tree_panic(rb_node, -EEXIST,
1100 upper->bytenr);
1101 }
1102
1103 list_add_tail(&edge->list[UPPER], &upper->lower);
1104
1105 list_for_each_entry(edge, &upper->upper, list[LOWER])
1106 list_add_tail(&edge->list[UPPER], &list);
1107 }
1108 /*
1109 * process useless backref nodes. backref nodes for tree leaves
1110 * are deleted from the cache. backref nodes for upper level
1111 * tree blocks are left in the cache to avoid unnecessary backref
1112 * lookup.
1113 */
1114 while (!list_empty(&useless)) {
1115 upper = list_entry(useless.next, struct backref_node, list);
1116 list_del_init(&upper->list);
1117 ASSERT(list_empty(&upper->upper));
1118 if (upper == node)
1119 node = NULL;
1120 if (upper->lowest) {
1121 list_del_init(&upper->lower);
1122 upper->lowest = 0;
1123 }
1124 while (!list_empty(&upper->lower)) {
1125 edge = list_entry(upper->lower.next,
1126 struct backref_edge, list[UPPER]);
1127 list_del(&edge->list[UPPER]);
1128 list_del(&edge->list[LOWER]);
1129 lower = edge->node[LOWER];
1130 free_backref_edge(cache, edge);
1131
1132 if (list_empty(&lower->upper))
1133 list_add(&lower->list, &useless);
1134 }
1135 __mark_block_processed(rc, upper);
1136 if (upper->level > 0) {
1137 list_add(&upper->list, &cache->detached);
1138 upper->detached = 1;
1139 } else {
1140 rb_erase(&upper->rb_node, &cache->rb_root);
1141 free_backref_node(cache, upper);
1142 }
1143 }
1144 out:
1145 btrfs_free_path(path1);
1146 btrfs_free_path(path2);
1147 if (err) {
1148 while (!list_empty(&useless)) {
1149 lower = list_entry(useless.next,
1150 struct backref_node, list);
1151 list_del_init(&lower->list);
1152 }
1153 while (!list_empty(&list)) {
1154 edge = list_first_entry(&list, struct backref_edge,
1155 list[UPPER]);
1156 list_del(&edge->list[UPPER]);
1157 list_del(&edge->list[LOWER]);
1158 lower = edge->node[LOWER];
1159 upper = edge->node[UPPER];
1160 free_backref_edge(cache, edge);
1161
1162 /*
1163 * Lower is no longer linked to any upper backref nodes
1164 * and isn't in the cache, we can free it ourselves.
1165 */
1166 if (list_empty(&lower->upper) &&
1167 RB_EMPTY_NODE(&lower->rb_node))
1168 list_add(&lower->list, &useless);
1169
1170 if (!RB_EMPTY_NODE(&upper->rb_node))
1171 continue;
1172
1173 /* Add this guy's upper edges to the list to process */
1174 list_for_each_entry(edge, &upper->upper, list[LOWER])
1175 list_add_tail(&edge->list[UPPER], &list);
1176 if (list_empty(&upper->upper))
1177 list_add(&upper->list, &useless);
1178 }
1179
1180 while (!list_empty(&useless)) {
1181 lower = list_entry(useless.next,
1182 struct backref_node, list);
1183 list_del_init(&lower->list);
1184 if (lower == node)
1185 node = NULL;
1186 free_backref_node(cache, lower);
1187 }
1188
1189 free_backref_node(cache, node);
1190 return ERR_PTR(err);
1191 }
1192 ASSERT(!node || !node->detached);
1193 return node;
1194 }
1195
1196 /*
1197 * helper to add backref node for the newly created snapshot.
1198 * the backref node is created by cloning backref node that
1199 * corresponds to root of source tree
1200 */
clone_backref_node(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * src,struct btrfs_root * dest)1201 static int clone_backref_node(struct btrfs_trans_handle *trans,
1202 struct reloc_control *rc,
1203 struct btrfs_root *src,
1204 struct btrfs_root *dest)
1205 {
1206 struct btrfs_root *reloc_root = src->reloc_root;
1207 struct backref_cache *cache = &rc->backref_cache;
1208 struct backref_node *node = NULL;
1209 struct backref_node *new_node;
1210 struct backref_edge *edge;
1211 struct backref_edge *new_edge;
1212 struct rb_node *rb_node;
1213
1214 if (cache->last_trans > 0)
1215 update_backref_cache(trans, cache);
1216
1217 rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1218 if (rb_node) {
1219 node = rb_entry(rb_node, struct backref_node, rb_node);
1220 if (node->detached)
1221 node = NULL;
1222 else
1223 BUG_ON(node->new_bytenr != reloc_root->node->start);
1224 }
1225
1226 if (!node) {
1227 rb_node = tree_search(&cache->rb_root,
1228 reloc_root->commit_root->start);
1229 if (rb_node) {
1230 node = rb_entry(rb_node, struct backref_node,
1231 rb_node);
1232 BUG_ON(node->detached);
1233 }
1234 }
1235
1236 if (!node)
1237 return 0;
1238
1239 new_node = alloc_backref_node(cache);
1240 if (!new_node)
1241 return -ENOMEM;
1242
1243 new_node->bytenr = dest->node->start;
1244 new_node->level = node->level;
1245 new_node->lowest = node->lowest;
1246 new_node->checked = 1;
1247 new_node->root = dest;
1248
1249 if (!node->lowest) {
1250 list_for_each_entry(edge, &node->lower, list[UPPER]) {
1251 new_edge = alloc_backref_edge(cache);
1252 if (!new_edge)
1253 goto fail;
1254
1255 new_edge->node[UPPER] = new_node;
1256 new_edge->node[LOWER] = edge->node[LOWER];
1257 list_add_tail(&new_edge->list[UPPER],
1258 &new_node->lower);
1259 }
1260 } else {
1261 list_add_tail(&new_node->lower, &cache->leaves);
1262 }
1263
1264 rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1265 &new_node->rb_node);
1266 if (rb_node)
1267 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1268
1269 if (!new_node->lowest) {
1270 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1271 list_add_tail(&new_edge->list[LOWER],
1272 &new_edge->node[LOWER]->upper);
1273 }
1274 }
1275 return 0;
1276 fail:
1277 while (!list_empty(&new_node->lower)) {
1278 new_edge = list_entry(new_node->lower.next,
1279 struct backref_edge, list[UPPER]);
1280 list_del(&new_edge->list[UPPER]);
1281 free_backref_edge(cache, new_edge);
1282 }
1283 free_backref_node(cache, new_node);
1284 return -ENOMEM;
1285 }
1286
1287 /*
1288 * helper to add 'address of tree root -> reloc tree' mapping
1289 */
__add_reloc_root(struct btrfs_root * root)1290 static int __must_check __add_reloc_root(struct btrfs_root *root)
1291 {
1292 struct btrfs_fs_info *fs_info = root->fs_info;
1293 struct rb_node *rb_node;
1294 struct mapping_node *node;
1295 struct reloc_control *rc = fs_info->reloc_ctl;
1296
1297 node = kmalloc(sizeof(*node), GFP_NOFS);
1298 if (!node)
1299 return -ENOMEM;
1300
1301 node->bytenr = root->node->start;
1302 node->data = root;
1303
1304 spin_lock(&rc->reloc_root_tree.lock);
1305 rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1306 node->bytenr, &node->rb_node);
1307 spin_unlock(&rc->reloc_root_tree.lock);
1308 if (rb_node) {
1309 btrfs_panic(fs_info, -EEXIST,
1310 "Duplicate root found for start=%llu while inserting into relocation tree",
1311 node->bytenr);
1312 }
1313
1314 list_add_tail(&root->root_list, &rc->reloc_roots);
1315 return 0;
1316 }
1317
1318 /*
1319 * helper to delete the 'address of tree root -> reloc tree'
1320 * mapping
1321 */
__del_reloc_root(struct btrfs_root * root)1322 static void __del_reloc_root(struct btrfs_root *root)
1323 {
1324 struct btrfs_fs_info *fs_info = root->fs_info;
1325 struct rb_node *rb_node;
1326 struct mapping_node *node = NULL;
1327 struct reloc_control *rc = fs_info->reloc_ctl;
1328
1329 if (rc && root->node) {
1330 spin_lock(&rc->reloc_root_tree.lock);
1331 rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1332 root->node->start);
1333 if (rb_node) {
1334 node = rb_entry(rb_node, struct mapping_node, rb_node);
1335 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1336 }
1337 spin_unlock(&rc->reloc_root_tree.lock);
1338 if (!node)
1339 return;
1340 BUG_ON((struct btrfs_root *)node->data != root);
1341 }
1342
1343 spin_lock(&fs_info->trans_lock);
1344 list_del_init(&root->root_list);
1345 spin_unlock(&fs_info->trans_lock);
1346 kfree(node);
1347 }
1348
1349 /*
1350 * helper to update the 'address of tree root -> reloc tree'
1351 * mapping
1352 */
__update_reloc_root(struct btrfs_root * root,u64 new_bytenr)1353 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1354 {
1355 struct btrfs_fs_info *fs_info = root->fs_info;
1356 struct rb_node *rb_node;
1357 struct mapping_node *node = NULL;
1358 struct reloc_control *rc = fs_info->reloc_ctl;
1359
1360 spin_lock(&rc->reloc_root_tree.lock);
1361 rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1362 root->node->start);
1363 if (rb_node) {
1364 node = rb_entry(rb_node, struct mapping_node, rb_node);
1365 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1366 }
1367 spin_unlock(&rc->reloc_root_tree.lock);
1368
1369 if (!node)
1370 return 0;
1371 BUG_ON((struct btrfs_root *)node->data != root);
1372
1373 spin_lock(&rc->reloc_root_tree.lock);
1374 node->bytenr = new_bytenr;
1375 rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1376 node->bytenr, &node->rb_node);
1377 spin_unlock(&rc->reloc_root_tree.lock);
1378 if (rb_node)
1379 backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1380 return 0;
1381 }
1382
create_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)1383 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1384 struct btrfs_root *root, u64 objectid)
1385 {
1386 struct btrfs_fs_info *fs_info = root->fs_info;
1387 struct btrfs_root *reloc_root;
1388 struct extent_buffer *eb;
1389 struct btrfs_root_item *root_item;
1390 struct btrfs_key root_key;
1391 int ret;
1392
1393 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1394 BUG_ON(!root_item);
1395
1396 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1397 root_key.type = BTRFS_ROOT_ITEM_KEY;
1398 root_key.offset = objectid;
1399
1400 if (root->root_key.objectid == objectid) {
1401 u64 commit_root_gen;
1402
1403 /* called by btrfs_init_reloc_root */
1404 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1405 BTRFS_TREE_RELOC_OBJECTID);
1406 BUG_ON(ret);
1407 /*
1408 * Set the last_snapshot field to the generation of the commit
1409 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
1410 * correctly (returns true) when the relocation root is created
1411 * either inside the critical section of a transaction commit
1412 * (through transaction.c:qgroup_account_snapshot()) and when
1413 * it's created before the transaction commit is started.
1414 */
1415 commit_root_gen = btrfs_header_generation(root->commit_root);
1416 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
1417 } else {
1418 /*
1419 * called by btrfs_reloc_post_snapshot_hook.
1420 * the source tree is a reloc tree, all tree blocks
1421 * modified after it was created have RELOC flag
1422 * set in their headers. so it's OK to not update
1423 * the 'last_snapshot'.
1424 */
1425 ret = btrfs_copy_root(trans, root, root->node, &eb,
1426 BTRFS_TREE_RELOC_OBJECTID);
1427 BUG_ON(ret);
1428 }
1429
1430 memcpy(root_item, &root->root_item, sizeof(*root_item));
1431 btrfs_set_root_bytenr(root_item, eb->start);
1432 btrfs_set_root_level(root_item, btrfs_header_level(eb));
1433 btrfs_set_root_generation(root_item, trans->transid);
1434
1435 if (root->root_key.objectid == objectid) {
1436 btrfs_set_root_refs(root_item, 0);
1437 memset(&root_item->drop_progress, 0,
1438 sizeof(struct btrfs_disk_key));
1439 root_item->drop_level = 0;
1440 }
1441
1442 btrfs_tree_unlock(eb);
1443 free_extent_buffer(eb);
1444
1445 ret = btrfs_insert_root(trans, fs_info->tree_root,
1446 &root_key, root_item);
1447 BUG_ON(ret);
1448 kfree(root_item);
1449
1450 reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
1451 BUG_ON(IS_ERR(reloc_root));
1452 reloc_root->last_trans = trans->transid;
1453 return reloc_root;
1454 }
1455
1456 /*
1457 * create reloc tree for a given fs tree. reloc tree is just a
1458 * snapshot of the fs tree with special root objectid.
1459 */
btrfs_init_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)1460 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1461 struct btrfs_root *root)
1462 {
1463 struct btrfs_fs_info *fs_info = root->fs_info;
1464 struct btrfs_root *reloc_root;
1465 struct reloc_control *rc = fs_info->reloc_ctl;
1466 struct btrfs_block_rsv *rsv;
1467 int clear_rsv = 0;
1468 int ret;
1469
1470 /*
1471 * The subvolume has reloc tree but the swap is finished, no need to
1472 * create/update the dead reloc tree
1473 */
1474 if (reloc_root_is_dead(root))
1475 return 0;
1476
1477 if (root->reloc_root) {
1478 reloc_root = root->reloc_root;
1479 reloc_root->last_trans = trans->transid;
1480 return 0;
1481 }
1482
1483 if (!rc || !rc->create_reloc_tree ||
1484 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1485 return 0;
1486
1487 if (!trans->reloc_reserved) {
1488 rsv = trans->block_rsv;
1489 trans->block_rsv = rc->block_rsv;
1490 clear_rsv = 1;
1491 }
1492 reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1493 if (clear_rsv)
1494 trans->block_rsv = rsv;
1495
1496 ret = __add_reloc_root(reloc_root);
1497 BUG_ON(ret < 0);
1498 root->reloc_root = reloc_root;
1499 return 0;
1500 }
1501
1502 /*
1503 * update root item of reloc tree
1504 */
btrfs_update_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)1505 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1506 struct btrfs_root *root)
1507 {
1508 struct btrfs_fs_info *fs_info = root->fs_info;
1509 struct btrfs_root *reloc_root;
1510 struct btrfs_root_item *root_item;
1511 int ret;
1512
1513 if (!have_reloc_root(root))
1514 goto out;
1515
1516 reloc_root = root->reloc_root;
1517 root_item = &reloc_root->root_item;
1518
1519 /* root->reloc_root will stay until current relocation finished */
1520 if (fs_info->reloc_ctl->merge_reloc_tree &&
1521 btrfs_root_refs(root_item) == 0) {
1522 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1523 /*
1524 * Mark the tree as dead before we change reloc_root so
1525 * have_reloc_root will not touch it from now on.
1526 */
1527 smp_wmb();
1528 __del_reloc_root(reloc_root);
1529 }
1530
1531 if (reloc_root->commit_root != reloc_root->node) {
1532 btrfs_set_root_node(root_item, reloc_root->node);
1533 free_extent_buffer(reloc_root->commit_root);
1534 reloc_root->commit_root = btrfs_root_node(reloc_root);
1535 }
1536
1537 ret = btrfs_update_root(trans, fs_info->tree_root,
1538 &reloc_root->root_key, root_item);
1539 BUG_ON(ret);
1540
1541 out:
1542 return 0;
1543 }
1544
1545 /*
1546 * helper to find first cached inode with inode number >= objectid
1547 * in a subvolume
1548 */
find_next_inode(struct btrfs_root * root,u64 objectid)1549 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1550 {
1551 struct rb_node *node;
1552 struct rb_node *prev;
1553 struct btrfs_inode *entry;
1554 struct inode *inode;
1555
1556 spin_lock(&root->inode_lock);
1557 again:
1558 node = root->inode_tree.rb_node;
1559 prev = NULL;
1560 while (node) {
1561 prev = node;
1562 entry = rb_entry(node, struct btrfs_inode, rb_node);
1563
1564 if (objectid < btrfs_ino(entry))
1565 node = node->rb_left;
1566 else if (objectid > btrfs_ino(entry))
1567 node = node->rb_right;
1568 else
1569 break;
1570 }
1571 if (!node) {
1572 while (prev) {
1573 entry = rb_entry(prev, struct btrfs_inode, rb_node);
1574 if (objectid <= btrfs_ino(entry)) {
1575 node = prev;
1576 break;
1577 }
1578 prev = rb_next(prev);
1579 }
1580 }
1581 while (node) {
1582 entry = rb_entry(node, struct btrfs_inode, rb_node);
1583 inode = igrab(&entry->vfs_inode);
1584 if (inode) {
1585 spin_unlock(&root->inode_lock);
1586 return inode;
1587 }
1588
1589 objectid = btrfs_ino(entry) + 1;
1590 if (cond_resched_lock(&root->inode_lock))
1591 goto again;
1592
1593 node = rb_next(node);
1594 }
1595 spin_unlock(&root->inode_lock);
1596 return NULL;
1597 }
1598
in_block_group(u64 bytenr,struct btrfs_block_group_cache * block_group)1599 static int in_block_group(u64 bytenr,
1600 struct btrfs_block_group_cache *block_group)
1601 {
1602 if (bytenr >= block_group->key.objectid &&
1603 bytenr < block_group->key.objectid + block_group->key.offset)
1604 return 1;
1605 return 0;
1606 }
1607
1608 /*
1609 * get new location of data
1610 */
get_new_location(struct inode * reloc_inode,u64 * new_bytenr,u64 bytenr,u64 num_bytes)1611 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1612 u64 bytenr, u64 num_bytes)
1613 {
1614 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1615 struct btrfs_path *path;
1616 struct btrfs_file_extent_item *fi;
1617 struct extent_buffer *leaf;
1618 int ret;
1619
1620 path = btrfs_alloc_path();
1621 if (!path)
1622 return -ENOMEM;
1623
1624 bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1625 ret = btrfs_lookup_file_extent(NULL, root, path,
1626 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1627 if (ret < 0)
1628 goto out;
1629 if (ret > 0) {
1630 ret = -ENOENT;
1631 goto out;
1632 }
1633
1634 leaf = path->nodes[0];
1635 fi = btrfs_item_ptr(leaf, path->slots[0],
1636 struct btrfs_file_extent_item);
1637
1638 BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1639 btrfs_file_extent_compression(leaf, fi) ||
1640 btrfs_file_extent_encryption(leaf, fi) ||
1641 btrfs_file_extent_other_encoding(leaf, fi));
1642
1643 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1644 ret = -EINVAL;
1645 goto out;
1646 }
1647
1648 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1649 ret = 0;
1650 out:
1651 btrfs_free_path(path);
1652 return ret;
1653 }
1654
1655 /*
1656 * update file extent items in the tree leaf to point to
1657 * the new locations.
1658 */
1659 static noinline_for_stack
replace_file_extents(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * root,struct extent_buffer * leaf)1660 int replace_file_extents(struct btrfs_trans_handle *trans,
1661 struct reloc_control *rc,
1662 struct btrfs_root *root,
1663 struct extent_buffer *leaf)
1664 {
1665 struct btrfs_fs_info *fs_info = root->fs_info;
1666 struct btrfs_key key;
1667 struct btrfs_file_extent_item *fi;
1668 struct inode *inode = NULL;
1669 u64 parent;
1670 u64 bytenr;
1671 u64 new_bytenr = 0;
1672 u64 num_bytes;
1673 u64 end;
1674 u32 nritems;
1675 u32 i;
1676 int ret = 0;
1677 int first = 1;
1678 int dirty = 0;
1679
1680 if (rc->stage != UPDATE_DATA_PTRS)
1681 return 0;
1682
1683 /* reloc trees always use full backref */
1684 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1685 parent = leaf->start;
1686 else
1687 parent = 0;
1688
1689 nritems = btrfs_header_nritems(leaf);
1690 for (i = 0; i < nritems; i++) {
1691 struct btrfs_ref ref = { 0 };
1692
1693 cond_resched();
1694 btrfs_item_key_to_cpu(leaf, &key, i);
1695 if (key.type != BTRFS_EXTENT_DATA_KEY)
1696 continue;
1697 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1698 if (btrfs_file_extent_type(leaf, fi) ==
1699 BTRFS_FILE_EXTENT_INLINE)
1700 continue;
1701 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1702 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1703 if (bytenr == 0)
1704 continue;
1705 if (!in_block_group(bytenr, rc->block_group))
1706 continue;
1707
1708 /*
1709 * if we are modifying block in fs tree, wait for readpage
1710 * to complete and drop the extent cache
1711 */
1712 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1713 if (first) {
1714 inode = find_next_inode(root, key.objectid);
1715 first = 0;
1716 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1717 btrfs_add_delayed_iput(inode);
1718 inode = find_next_inode(root, key.objectid);
1719 }
1720 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1721 end = key.offset +
1722 btrfs_file_extent_num_bytes(leaf, fi);
1723 WARN_ON(!IS_ALIGNED(key.offset,
1724 fs_info->sectorsize));
1725 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1726 end--;
1727 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1728 key.offset, end);
1729 if (!ret)
1730 continue;
1731
1732 btrfs_drop_extent_cache(BTRFS_I(inode),
1733 key.offset, end, 1);
1734 unlock_extent(&BTRFS_I(inode)->io_tree,
1735 key.offset, end);
1736 }
1737 }
1738
1739 ret = get_new_location(rc->data_inode, &new_bytenr,
1740 bytenr, num_bytes);
1741 if (ret) {
1742 /*
1743 * Don't have to abort since we've not changed anything
1744 * in the file extent yet.
1745 */
1746 break;
1747 }
1748
1749 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1750 dirty = 1;
1751
1752 key.offset -= btrfs_file_extent_offset(leaf, fi);
1753 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1754 num_bytes, parent);
1755 ref.real_root = root->root_key.objectid;
1756 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1757 key.objectid, key.offset);
1758 ret = btrfs_inc_extent_ref(trans, &ref);
1759 if (ret) {
1760 btrfs_abort_transaction(trans, ret);
1761 break;
1762 }
1763
1764 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1765 num_bytes, parent);
1766 ref.real_root = root->root_key.objectid;
1767 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1768 key.objectid, key.offset);
1769 ret = btrfs_free_extent(trans, &ref);
1770 if (ret) {
1771 btrfs_abort_transaction(trans, ret);
1772 break;
1773 }
1774 }
1775 if (dirty)
1776 btrfs_mark_buffer_dirty(leaf);
1777 if (inode)
1778 btrfs_add_delayed_iput(inode);
1779 return ret;
1780 }
1781
1782 static noinline_for_stack
memcmp_node_keys(struct extent_buffer * eb,int slot,struct btrfs_path * path,int level)1783 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1784 struct btrfs_path *path, int level)
1785 {
1786 struct btrfs_disk_key key1;
1787 struct btrfs_disk_key key2;
1788 btrfs_node_key(eb, &key1, slot);
1789 btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1790 return memcmp(&key1, &key2, sizeof(key1));
1791 }
1792
1793 /*
1794 * try to replace tree blocks in fs tree with the new blocks
1795 * in reloc tree. tree blocks haven't been modified since the
1796 * reloc tree was create can be replaced.
1797 *
1798 * if a block was replaced, level of the block + 1 is returned.
1799 * if no block got replaced, 0 is returned. if there are other
1800 * errors, a negative error number is returned.
1801 */
1802 static noinline_for_stack
replace_path(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * dest,struct btrfs_root * src,struct btrfs_path * path,struct btrfs_key * next_key,int lowest_level,int max_level)1803 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1804 struct btrfs_root *dest, struct btrfs_root *src,
1805 struct btrfs_path *path, struct btrfs_key *next_key,
1806 int lowest_level, int max_level)
1807 {
1808 struct btrfs_fs_info *fs_info = dest->fs_info;
1809 struct extent_buffer *eb;
1810 struct extent_buffer *parent;
1811 struct btrfs_ref ref = { 0 };
1812 struct btrfs_key key;
1813 u64 old_bytenr;
1814 u64 new_bytenr;
1815 u64 old_ptr_gen;
1816 u64 new_ptr_gen;
1817 u64 last_snapshot;
1818 u32 blocksize;
1819 int cow = 0;
1820 int level;
1821 int ret;
1822 int slot;
1823
1824 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1825 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1826
1827 last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1828 again:
1829 slot = path->slots[lowest_level];
1830 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1831
1832 eb = btrfs_lock_root_node(dest);
1833 btrfs_set_lock_blocking_write(eb);
1834 level = btrfs_header_level(eb);
1835
1836 if (level < lowest_level) {
1837 btrfs_tree_unlock(eb);
1838 free_extent_buffer(eb);
1839 return 0;
1840 }
1841
1842 if (cow) {
1843 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1844 BUG_ON(ret);
1845 }
1846 btrfs_set_lock_blocking_write(eb);
1847
1848 if (next_key) {
1849 next_key->objectid = (u64)-1;
1850 next_key->type = (u8)-1;
1851 next_key->offset = (u64)-1;
1852 }
1853
1854 parent = eb;
1855 while (1) {
1856 struct btrfs_key first_key;
1857
1858 level = btrfs_header_level(parent);
1859 BUG_ON(level < lowest_level);
1860
1861 ret = btrfs_bin_search(parent, &key, level, &slot);
1862 if (ret < 0)
1863 break;
1864 if (ret && slot > 0)
1865 slot--;
1866
1867 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1868 btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1869
1870 old_bytenr = btrfs_node_blockptr(parent, slot);
1871 blocksize = fs_info->nodesize;
1872 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1873 btrfs_node_key_to_cpu(parent, &first_key, slot);
1874
1875 if (level <= max_level) {
1876 eb = path->nodes[level];
1877 new_bytenr = btrfs_node_blockptr(eb,
1878 path->slots[level]);
1879 new_ptr_gen = btrfs_node_ptr_generation(eb,
1880 path->slots[level]);
1881 } else {
1882 new_bytenr = 0;
1883 new_ptr_gen = 0;
1884 }
1885
1886 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1887 ret = level;
1888 break;
1889 }
1890
1891 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1892 memcmp_node_keys(parent, slot, path, level)) {
1893 if (level <= lowest_level) {
1894 ret = 0;
1895 break;
1896 }
1897
1898 eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
1899 level - 1, &first_key);
1900 if (IS_ERR(eb)) {
1901 ret = PTR_ERR(eb);
1902 break;
1903 } else if (!extent_buffer_uptodate(eb)) {
1904 ret = -EIO;
1905 free_extent_buffer(eb);
1906 break;
1907 }
1908 btrfs_tree_lock(eb);
1909 if (cow) {
1910 ret = btrfs_cow_block(trans, dest, eb, parent,
1911 slot, &eb);
1912 BUG_ON(ret);
1913 }
1914 btrfs_set_lock_blocking_write(eb);
1915
1916 btrfs_tree_unlock(parent);
1917 free_extent_buffer(parent);
1918
1919 parent = eb;
1920 continue;
1921 }
1922
1923 if (!cow) {
1924 btrfs_tree_unlock(parent);
1925 free_extent_buffer(parent);
1926 cow = 1;
1927 goto again;
1928 }
1929
1930 btrfs_node_key_to_cpu(path->nodes[level], &key,
1931 path->slots[level]);
1932 btrfs_release_path(path);
1933
1934 path->lowest_level = level;
1935 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1936 path->lowest_level = 0;
1937 BUG_ON(ret);
1938
1939 /*
1940 * Info qgroup to trace both subtrees.
1941 *
1942 * We must trace both trees.
1943 * 1) Tree reloc subtree
1944 * If not traced, we will leak data numbers
1945 * 2) Fs subtree
1946 * If not traced, we will double count old data
1947 *
1948 * We don't scan the subtree right now, but only record
1949 * the swapped tree blocks.
1950 * The real subtree rescan is delayed until we have new
1951 * CoW on the subtree root node before transaction commit.
1952 */
1953 ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1954 rc->block_group, parent, slot,
1955 path->nodes[level], path->slots[level],
1956 last_snapshot);
1957 if (ret < 0)
1958 break;
1959 /*
1960 * swap blocks in fs tree and reloc tree.
1961 */
1962 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1963 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1964 btrfs_mark_buffer_dirty(parent);
1965
1966 btrfs_set_node_blockptr(path->nodes[level],
1967 path->slots[level], old_bytenr);
1968 btrfs_set_node_ptr_generation(path->nodes[level],
1969 path->slots[level], old_ptr_gen);
1970 btrfs_mark_buffer_dirty(path->nodes[level]);
1971
1972 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1973 blocksize, path->nodes[level]->start);
1974 ref.skip_qgroup = true;
1975 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1976 ret = btrfs_inc_extent_ref(trans, &ref);
1977 BUG_ON(ret);
1978 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1979 blocksize, 0);
1980 ref.skip_qgroup = true;
1981 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1982 ret = btrfs_inc_extent_ref(trans, &ref);
1983 BUG_ON(ret);
1984
1985 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1986 blocksize, path->nodes[level]->start);
1987 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1988 ref.skip_qgroup = true;
1989 ret = btrfs_free_extent(trans, &ref);
1990 BUG_ON(ret);
1991
1992 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1993 blocksize, 0);
1994 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1995 ref.skip_qgroup = true;
1996 ret = btrfs_free_extent(trans, &ref);
1997 BUG_ON(ret);
1998
1999 btrfs_unlock_up_safe(path, 0);
2000
2001 ret = level;
2002 break;
2003 }
2004 btrfs_tree_unlock(parent);
2005 free_extent_buffer(parent);
2006 return ret;
2007 }
2008
2009 /*
2010 * helper to find next relocated block in reloc tree
2011 */
2012 static noinline_for_stack
walk_up_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)2013 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
2014 int *level)
2015 {
2016 struct extent_buffer *eb;
2017 int i;
2018 u64 last_snapshot;
2019 u32 nritems;
2020
2021 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2022
2023 for (i = 0; i < *level; i++) {
2024 free_extent_buffer(path->nodes[i]);
2025 path->nodes[i] = NULL;
2026 }
2027
2028 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
2029 eb = path->nodes[i];
2030 nritems = btrfs_header_nritems(eb);
2031 while (path->slots[i] + 1 < nritems) {
2032 path->slots[i]++;
2033 if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
2034 last_snapshot)
2035 continue;
2036
2037 *level = i;
2038 return 0;
2039 }
2040 free_extent_buffer(path->nodes[i]);
2041 path->nodes[i] = NULL;
2042 }
2043 return 1;
2044 }
2045
2046 /*
2047 * walk down reloc tree to find relocated block of lowest level
2048 */
2049 static noinline_for_stack
walk_down_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)2050 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
2051 int *level)
2052 {
2053 struct btrfs_fs_info *fs_info = root->fs_info;
2054 struct extent_buffer *eb = NULL;
2055 int i;
2056 u64 bytenr;
2057 u64 ptr_gen = 0;
2058 u64 last_snapshot;
2059 u32 nritems;
2060
2061 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2062
2063 for (i = *level; i > 0; i--) {
2064 struct btrfs_key first_key;
2065
2066 eb = path->nodes[i];
2067 nritems = btrfs_header_nritems(eb);
2068 while (path->slots[i] < nritems) {
2069 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
2070 if (ptr_gen > last_snapshot)
2071 break;
2072 path->slots[i]++;
2073 }
2074 if (path->slots[i] >= nritems) {
2075 if (i == *level)
2076 break;
2077 *level = i + 1;
2078 return 0;
2079 }
2080 if (i == 1) {
2081 *level = i;
2082 return 0;
2083 }
2084
2085 bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2086 btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
2087 eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
2088 &first_key);
2089 if (IS_ERR(eb)) {
2090 return PTR_ERR(eb);
2091 } else if (!extent_buffer_uptodate(eb)) {
2092 free_extent_buffer(eb);
2093 return -EIO;
2094 }
2095 BUG_ON(btrfs_header_level(eb) != i - 1);
2096 path->nodes[i - 1] = eb;
2097 path->slots[i - 1] = 0;
2098 }
2099 return 1;
2100 }
2101
2102 /*
2103 * invalidate extent cache for file extents whose key in range of
2104 * [min_key, max_key)
2105 */
invalidate_extent_cache(struct btrfs_root * root,struct btrfs_key * min_key,struct btrfs_key * max_key)2106 static int invalidate_extent_cache(struct btrfs_root *root,
2107 struct btrfs_key *min_key,
2108 struct btrfs_key *max_key)
2109 {
2110 struct btrfs_fs_info *fs_info = root->fs_info;
2111 struct inode *inode = NULL;
2112 u64 objectid;
2113 u64 start, end;
2114 u64 ino;
2115
2116 objectid = min_key->objectid;
2117 while (1) {
2118 cond_resched();
2119 iput(inode);
2120
2121 if (objectid > max_key->objectid)
2122 break;
2123
2124 inode = find_next_inode(root, objectid);
2125 if (!inode)
2126 break;
2127 ino = btrfs_ino(BTRFS_I(inode));
2128
2129 if (ino > max_key->objectid) {
2130 iput(inode);
2131 break;
2132 }
2133
2134 objectid = ino + 1;
2135 if (!S_ISREG(inode->i_mode))
2136 continue;
2137
2138 if (unlikely(min_key->objectid == ino)) {
2139 if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2140 continue;
2141 if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2142 start = 0;
2143 else {
2144 start = min_key->offset;
2145 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
2146 }
2147 } else {
2148 start = 0;
2149 }
2150
2151 if (unlikely(max_key->objectid == ino)) {
2152 if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2153 continue;
2154 if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2155 end = (u64)-1;
2156 } else {
2157 if (max_key->offset == 0)
2158 continue;
2159 end = max_key->offset;
2160 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
2161 end--;
2162 }
2163 } else {
2164 end = (u64)-1;
2165 }
2166
2167 /* the lock_extent waits for readpage to complete */
2168 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2169 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
2170 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2171 }
2172 return 0;
2173 }
2174
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)2175 static int find_next_key(struct btrfs_path *path, int level,
2176 struct btrfs_key *key)
2177
2178 {
2179 while (level < BTRFS_MAX_LEVEL) {
2180 if (!path->nodes[level])
2181 break;
2182 if (path->slots[level] + 1 <
2183 btrfs_header_nritems(path->nodes[level])) {
2184 btrfs_node_key_to_cpu(path->nodes[level], key,
2185 path->slots[level] + 1);
2186 return 0;
2187 }
2188 level++;
2189 }
2190 return 1;
2191 }
2192
2193 /*
2194 * Insert current subvolume into reloc_control::dirty_subvol_roots
2195 */
insert_dirty_subvol(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * root)2196 static void insert_dirty_subvol(struct btrfs_trans_handle *trans,
2197 struct reloc_control *rc,
2198 struct btrfs_root *root)
2199 {
2200 struct btrfs_root *reloc_root = root->reloc_root;
2201 struct btrfs_root_item *reloc_root_item;
2202
2203 /* @root must be a subvolume tree root with a valid reloc tree */
2204 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
2205 ASSERT(reloc_root);
2206
2207 reloc_root_item = &reloc_root->root_item;
2208 memset(&reloc_root_item->drop_progress, 0,
2209 sizeof(reloc_root_item->drop_progress));
2210 reloc_root_item->drop_level = 0;
2211 btrfs_set_root_refs(reloc_root_item, 0);
2212 btrfs_update_reloc_root(trans, root);
2213
2214 if (list_empty(&root->reloc_dirty_list)) {
2215 btrfs_grab_fs_root(root);
2216 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
2217 }
2218 }
2219
clean_dirty_subvols(struct reloc_control * rc)2220 static int clean_dirty_subvols(struct reloc_control *rc)
2221 {
2222 struct btrfs_root *root;
2223 struct btrfs_root *next;
2224 int ret = 0;
2225 int ret2;
2226
2227 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
2228 reloc_dirty_list) {
2229 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
2230 /* Merged subvolume, cleanup its reloc root */
2231 struct btrfs_root *reloc_root = root->reloc_root;
2232
2233 list_del_init(&root->reloc_dirty_list);
2234 root->reloc_root = NULL;
2235 if (reloc_root) {
2236
2237 ret2 = btrfs_drop_snapshot(reloc_root, NULL, 0, 1);
2238 if (ret2 < 0 && !ret)
2239 ret = ret2;
2240 }
2241 /*
2242 * Need barrier to ensure clear_bit() only happens after
2243 * root->reloc_root = NULL. Pairs with have_reloc_root.
2244 */
2245 smp_wmb();
2246 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
2247 btrfs_put_fs_root(root);
2248 } else {
2249 /* Orphan reloc tree, just clean it up */
2250 ret2 = btrfs_drop_snapshot(root, NULL, 0, 1);
2251 if (ret2 < 0 && !ret)
2252 ret = ret2;
2253 }
2254 }
2255 return ret;
2256 }
2257
2258 /*
2259 * merge the relocated tree blocks in reloc tree with corresponding
2260 * fs tree.
2261 */
merge_reloc_root(struct reloc_control * rc,struct btrfs_root * root)2262 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2263 struct btrfs_root *root)
2264 {
2265 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2266 struct btrfs_key key;
2267 struct btrfs_key next_key;
2268 struct btrfs_trans_handle *trans = NULL;
2269 struct btrfs_root *reloc_root;
2270 struct btrfs_root_item *root_item;
2271 struct btrfs_path *path;
2272 struct extent_buffer *leaf;
2273 int level;
2274 int max_level;
2275 int replaced = 0;
2276 int ret;
2277 int err = 0;
2278 u32 min_reserved;
2279
2280 path = btrfs_alloc_path();
2281 if (!path)
2282 return -ENOMEM;
2283 path->reada = READA_FORWARD;
2284
2285 reloc_root = root->reloc_root;
2286 root_item = &reloc_root->root_item;
2287
2288 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2289 level = btrfs_root_level(root_item);
2290 extent_buffer_get(reloc_root->node);
2291 path->nodes[level] = reloc_root->node;
2292 path->slots[level] = 0;
2293 } else {
2294 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2295
2296 level = root_item->drop_level;
2297 BUG_ON(level == 0);
2298 path->lowest_level = level;
2299 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2300 path->lowest_level = 0;
2301 if (ret < 0) {
2302 btrfs_free_path(path);
2303 return ret;
2304 }
2305
2306 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2307 path->slots[level]);
2308 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2309
2310 btrfs_unlock_up_safe(path, 0);
2311 }
2312
2313 min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2314 memset(&next_key, 0, sizeof(next_key));
2315
2316 while (1) {
2317 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2318 BTRFS_RESERVE_FLUSH_ALL);
2319 if (ret) {
2320 err = ret;
2321 goto out;
2322 }
2323 trans = btrfs_start_transaction(root, 0);
2324 if (IS_ERR(trans)) {
2325 err = PTR_ERR(trans);
2326 trans = NULL;
2327 goto out;
2328 }
2329 trans->block_rsv = rc->block_rsv;
2330
2331 replaced = 0;
2332 max_level = level;
2333
2334 ret = walk_down_reloc_tree(reloc_root, path, &level);
2335 if (ret < 0) {
2336 err = ret;
2337 goto out;
2338 }
2339 if (ret > 0)
2340 break;
2341
2342 if (!find_next_key(path, level, &key) &&
2343 btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2344 ret = 0;
2345 } else {
2346 ret = replace_path(trans, rc, root, reloc_root, path,
2347 &next_key, level, max_level);
2348 }
2349 if (ret < 0) {
2350 err = ret;
2351 goto out;
2352 }
2353
2354 if (ret > 0) {
2355 level = ret;
2356 btrfs_node_key_to_cpu(path->nodes[level], &key,
2357 path->slots[level]);
2358 replaced = 1;
2359 }
2360
2361 ret = walk_up_reloc_tree(reloc_root, path, &level);
2362 if (ret > 0)
2363 break;
2364
2365 BUG_ON(level == 0);
2366 /*
2367 * save the merging progress in the drop_progress.
2368 * this is OK since root refs == 1 in this case.
2369 */
2370 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2371 path->slots[level]);
2372 root_item->drop_level = level;
2373
2374 btrfs_end_transaction_throttle(trans);
2375 trans = NULL;
2376
2377 btrfs_btree_balance_dirty(fs_info);
2378
2379 if (replaced && rc->stage == UPDATE_DATA_PTRS)
2380 invalidate_extent_cache(root, &key, &next_key);
2381 }
2382
2383 /*
2384 * handle the case only one block in the fs tree need to be
2385 * relocated and the block is tree root.
2386 */
2387 leaf = btrfs_lock_root_node(root);
2388 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2389 btrfs_tree_unlock(leaf);
2390 free_extent_buffer(leaf);
2391 if (ret < 0)
2392 err = ret;
2393 out:
2394 btrfs_free_path(path);
2395
2396 if (err == 0)
2397 insert_dirty_subvol(trans, rc, root);
2398
2399 if (trans)
2400 btrfs_end_transaction_throttle(trans);
2401
2402 btrfs_btree_balance_dirty(fs_info);
2403
2404 if (replaced && rc->stage == UPDATE_DATA_PTRS)
2405 invalidate_extent_cache(root, &key, &next_key);
2406
2407 return err;
2408 }
2409
2410 static noinline_for_stack
prepare_to_merge(struct reloc_control * rc,int err)2411 int prepare_to_merge(struct reloc_control *rc, int err)
2412 {
2413 struct btrfs_root *root = rc->extent_root;
2414 struct btrfs_fs_info *fs_info = root->fs_info;
2415 struct btrfs_root *reloc_root;
2416 struct btrfs_trans_handle *trans;
2417 LIST_HEAD(reloc_roots);
2418 u64 num_bytes = 0;
2419 int ret;
2420
2421 mutex_lock(&fs_info->reloc_mutex);
2422 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2423 rc->merging_rsv_size += rc->nodes_relocated * 2;
2424 mutex_unlock(&fs_info->reloc_mutex);
2425
2426 again:
2427 if (!err) {
2428 num_bytes = rc->merging_rsv_size;
2429 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2430 BTRFS_RESERVE_FLUSH_ALL);
2431 if (ret)
2432 err = ret;
2433 }
2434
2435 trans = btrfs_join_transaction(rc->extent_root);
2436 if (IS_ERR(trans)) {
2437 if (!err)
2438 btrfs_block_rsv_release(fs_info, rc->block_rsv,
2439 num_bytes);
2440 return PTR_ERR(trans);
2441 }
2442
2443 if (!err) {
2444 if (num_bytes != rc->merging_rsv_size) {
2445 btrfs_end_transaction(trans);
2446 btrfs_block_rsv_release(fs_info, rc->block_rsv,
2447 num_bytes);
2448 goto again;
2449 }
2450 }
2451
2452 rc->merge_reloc_tree = 1;
2453
2454 while (!list_empty(&rc->reloc_roots)) {
2455 reloc_root = list_entry(rc->reloc_roots.next,
2456 struct btrfs_root, root_list);
2457 list_del_init(&reloc_root->root_list);
2458
2459 root = read_fs_root(fs_info, reloc_root->root_key.offset);
2460 BUG_ON(IS_ERR(root));
2461 BUG_ON(root->reloc_root != reloc_root);
2462
2463 /*
2464 * set reference count to 1, so btrfs_recover_relocation
2465 * knows it should resumes merging
2466 */
2467 if (!err)
2468 btrfs_set_root_refs(&reloc_root->root_item, 1);
2469 btrfs_update_reloc_root(trans, root);
2470
2471 list_add(&reloc_root->root_list, &reloc_roots);
2472 }
2473
2474 list_splice(&reloc_roots, &rc->reloc_roots);
2475
2476 if (!err)
2477 btrfs_commit_transaction(trans);
2478 else
2479 btrfs_end_transaction(trans);
2480 return err;
2481 }
2482
2483 static noinline_for_stack
free_reloc_roots(struct list_head * list)2484 void free_reloc_roots(struct list_head *list)
2485 {
2486 struct btrfs_root *reloc_root;
2487
2488 while (!list_empty(list)) {
2489 reloc_root = list_entry(list->next, struct btrfs_root,
2490 root_list);
2491 __del_reloc_root(reloc_root);
2492 free_extent_buffer(reloc_root->node);
2493 free_extent_buffer(reloc_root->commit_root);
2494 reloc_root->node = NULL;
2495 reloc_root->commit_root = NULL;
2496 }
2497 }
2498
2499 static noinline_for_stack
merge_reloc_roots(struct reloc_control * rc)2500 void merge_reloc_roots(struct reloc_control *rc)
2501 {
2502 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2503 struct btrfs_root *root;
2504 struct btrfs_root *reloc_root;
2505 LIST_HEAD(reloc_roots);
2506 int found = 0;
2507 int ret = 0;
2508 again:
2509 root = rc->extent_root;
2510
2511 /*
2512 * this serializes us with btrfs_record_root_in_transaction,
2513 * we have to make sure nobody is in the middle of
2514 * adding their roots to the list while we are
2515 * doing this splice
2516 */
2517 mutex_lock(&fs_info->reloc_mutex);
2518 list_splice_init(&rc->reloc_roots, &reloc_roots);
2519 mutex_unlock(&fs_info->reloc_mutex);
2520
2521 while (!list_empty(&reloc_roots)) {
2522 found = 1;
2523 reloc_root = list_entry(reloc_roots.next,
2524 struct btrfs_root, root_list);
2525
2526 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2527 root = read_fs_root(fs_info,
2528 reloc_root->root_key.offset);
2529 BUG_ON(IS_ERR(root));
2530 BUG_ON(root->reloc_root != reloc_root);
2531
2532 ret = merge_reloc_root(rc, root);
2533 if (ret) {
2534 if (list_empty(&reloc_root->root_list))
2535 list_add_tail(&reloc_root->root_list,
2536 &reloc_roots);
2537 goto out;
2538 }
2539 } else {
2540 list_del_init(&reloc_root->root_list);
2541 /* Don't forget to queue this reloc root for cleanup */
2542 list_add_tail(&reloc_root->reloc_dirty_list,
2543 &rc->dirty_subvol_roots);
2544 }
2545 }
2546
2547 if (found) {
2548 found = 0;
2549 goto again;
2550 }
2551 out:
2552 if (ret) {
2553 btrfs_handle_fs_error(fs_info, ret, NULL);
2554 if (!list_empty(&reloc_roots))
2555 free_reloc_roots(&reloc_roots);
2556
2557 /* new reloc root may be added */
2558 mutex_lock(&fs_info->reloc_mutex);
2559 list_splice_init(&rc->reloc_roots, &reloc_roots);
2560 mutex_unlock(&fs_info->reloc_mutex);
2561 if (!list_empty(&reloc_roots))
2562 free_reloc_roots(&reloc_roots);
2563 }
2564
2565 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2566 }
2567
free_block_list(struct rb_root * blocks)2568 static void free_block_list(struct rb_root *blocks)
2569 {
2570 struct tree_block *block;
2571 struct rb_node *rb_node;
2572 while ((rb_node = rb_first(blocks))) {
2573 block = rb_entry(rb_node, struct tree_block, rb_node);
2574 rb_erase(rb_node, blocks);
2575 kfree(block);
2576 }
2577 }
2578
record_reloc_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * reloc_root)2579 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2580 struct btrfs_root *reloc_root)
2581 {
2582 struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2583 struct btrfs_root *root;
2584
2585 if (reloc_root->last_trans == trans->transid)
2586 return 0;
2587
2588 root = read_fs_root(fs_info, reloc_root->root_key.offset);
2589 BUG_ON(IS_ERR(root));
2590 BUG_ON(root->reloc_root != reloc_root);
2591
2592 return btrfs_record_root_in_trans(trans, root);
2593 }
2594
2595 static noinline_for_stack
select_reloc_root(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct backref_node * node,struct backref_edge * edges[])2596 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2597 struct reloc_control *rc,
2598 struct backref_node *node,
2599 struct backref_edge *edges[])
2600 {
2601 struct backref_node *next;
2602 struct btrfs_root *root;
2603 int index = 0;
2604
2605 next = node;
2606 while (1) {
2607 cond_resched();
2608 next = walk_up_backref(next, edges, &index);
2609 root = next->root;
2610 BUG_ON(!root);
2611 BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2612
2613 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2614 record_reloc_root_in_trans(trans, root);
2615 break;
2616 }
2617
2618 btrfs_record_root_in_trans(trans, root);
2619 root = root->reloc_root;
2620
2621 if (next->new_bytenr != root->node->start) {
2622 BUG_ON(next->new_bytenr);
2623 BUG_ON(!list_empty(&next->list));
2624 next->new_bytenr = root->node->start;
2625 next->root = root;
2626 list_add_tail(&next->list,
2627 &rc->backref_cache.changed);
2628 __mark_block_processed(rc, next);
2629 break;
2630 }
2631
2632 WARN_ON(1);
2633 root = NULL;
2634 next = walk_down_backref(edges, &index);
2635 if (!next || next->level <= node->level)
2636 break;
2637 }
2638 if (!root)
2639 return NULL;
2640
2641 next = node;
2642 /* setup backref node path for btrfs_reloc_cow_block */
2643 while (1) {
2644 rc->backref_cache.path[next->level] = next;
2645 if (--index < 0)
2646 break;
2647 next = edges[index]->node[UPPER];
2648 }
2649 return root;
2650 }
2651
2652 /*
2653 * select a tree root for relocation. return NULL if the block
2654 * is reference counted. we should use do_relocation() in this
2655 * case. return a tree root pointer if the block isn't reference
2656 * counted. return -ENOENT if the block is root of reloc tree.
2657 */
2658 static noinline_for_stack
select_one_root(struct backref_node * node)2659 struct btrfs_root *select_one_root(struct backref_node *node)
2660 {
2661 struct backref_node *next;
2662 struct btrfs_root *root;
2663 struct btrfs_root *fs_root = NULL;
2664 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2665 int index = 0;
2666
2667 next = node;
2668 while (1) {
2669 cond_resched();
2670 next = walk_up_backref(next, edges, &index);
2671 root = next->root;
2672 BUG_ON(!root);
2673
2674 /* no other choice for non-references counted tree */
2675 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2676 return root;
2677
2678 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2679 fs_root = root;
2680
2681 if (next != node)
2682 return NULL;
2683
2684 next = walk_down_backref(edges, &index);
2685 if (!next || next->level <= node->level)
2686 break;
2687 }
2688
2689 if (!fs_root)
2690 return ERR_PTR(-ENOENT);
2691 return fs_root;
2692 }
2693
2694 static noinline_for_stack
calcu_metadata_size(struct reloc_control * rc,struct backref_node * node,int reserve)2695 u64 calcu_metadata_size(struct reloc_control *rc,
2696 struct backref_node *node, int reserve)
2697 {
2698 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2699 struct backref_node *next = node;
2700 struct backref_edge *edge;
2701 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2702 u64 num_bytes = 0;
2703 int index = 0;
2704
2705 BUG_ON(reserve && node->processed);
2706
2707 while (next) {
2708 cond_resched();
2709 while (1) {
2710 if (next->processed && (reserve || next != node))
2711 break;
2712
2713 num_bytes += fs_info->nodesize;
2714
2715 if (list_empty(&next->upper))
2716 break;
2717
2718 edge = list_entry(next->upper.next,
2719 struct backref_edge, list[LOWER]);
2720 edges[index++] = edge;
2721 next = edge->node[UPPER];
2722 }
2723 next = walk_down_backref(edges, &index);
2724 }
2725 return num_bytes;
2726 }
2727
reserve_metadata_space(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct backref_node * node)2728 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2729 struct reloc_control *rc,
2730 struct backref_node *node)
2731 {
2732 struct btrfs_root *root = rc->extent_root;
2733 struct btrfs_fs_info *fs_info = root->fs_info;
2734 u64 num_bytes;
2735 int ret;
2736 u64 tmp;
2737
2738 num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2739
2740 trans->block_rsv = rc->block_rsv;
2741 rc->reserved_bytes += num_bytes;
2742
2743 /*
2744 * We are under a transaction here so we can only do limited flushing.
2745 * If we get an enospc just kick back -EAGAIN so we know to drop the
2746 * transaction and try to refill when we can flush all the things.
2747 */
2748 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2749 BTRFS_RESERVE_FLUSH_LIMIT);
2750 if (ret) {
2751 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2752 while (tmp <= rc->reserved_bytes)
2753 tmp <<= 1;
2754 /*
2755 * only one thread can access block_rsv at this point,
2756 * so we don't need hold lock to protect block_rsv.
2757 * we expand more reservation size here to allow enough
2758 * space for relocation and we will return earlier in
2759 * enospc case.
2760 */
2761 rc->block_rsv->size = tmp + fs_info->nodesize *
2762 RELOCATION_RESERVED_NODES;
2763 return -EAGAIN;
2764 }
2765
2766 return 0;
2767 }
2768
2769 /*
2770 * relocate a block tree, and then update pointers in upper level
2771 * blocks that reference the block to point to the new location.
2772 *
2773 * if called by link_to_upper, the block has already been relocated.
2774 * in that case this function just updates pointers.
2775 */
do_relocation(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct backref_node * node,struct btrfs_key * key,struct btrfs_path * path,int lowest)2776 static int do_relocation(struct btrfs_trans_handle *trans,
2777 struct reloc_control *rc,
2778 struct backref_node *node,
2779 struct btrfs_key *key,
2780 struct btrfs_path *path, int lowest)
2781 {
2782 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2783 struct backref_node *upper;
2784 struct backref_edge *edge;
2785 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2786 struct btrfs_root *root;
2787 struct extent_buffer *eb;
2788 u32 blocksize;
2789 u64 bytenr;
2790 u64 generation;
2791 int slot;
2792 int ret;
2793 int err = 0;
2794
2795 BUG_ON(lowest && node->eb);
2796
2797 path->lowest_level = node->level + 1;
2798 rc->backref_cache.path[node->level] = node;
2799 list_for_each_entry(edge, &node->upper, list[LOWER]) {
2800 struct btrfs_key first_key;
2801 struct btrfs_ref ref = { 0 };
2802
2803 cond_resched();
2804
2805 upper = edge->node[UPPER];
2806 root = select_reloc_root(trans, rc, upper, edges);
2807 BUG_ON(!root);
2808
2809 if (upper->eb && !upper->locked) {
2810 if (!lowest) {
2811 ret = btrfs_bin_search(upper->eb, key,
2812 upper->level, &slot);
2813 if (ret < 0) {
2814 err = ret;
2815 goto next;
2816 }
2817 BUG_ON(ret);
2818 bytenr = btrfs_node_blockptr(upper->eb, slot);
2819 if (node->eb->start == bytenr)
2820 goto next;
2821 }
2822 drop_node_buffer(upper);
2823 }
2824
2825 if (!upper->eb) {
2826 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2827 if (ret) {
2828 if (ret < 0)
2829 err = ret;
2830 else
2831 err = -ENOENT;
2832
2833 btrfs_release_path(path);
2834 break;
2835 }
2836
2837 if (!upper->eb) {
2838 upper->eb = path->nodes[upper->level];
2839 path->nodes[upper->level] = NULL;
2840 } else {
2841 BUG_ON(upper->eb != path->nodes[upper->level]);
2842 }
2843
2844 upper->locked = 1;
2845 path->locks[upper->level] = 0;
2846
2847 slot = path->slots[upper->level];
2848 btrfs_release_path(path);
2849 } else {
2850 ret = btrfs_bin_search(upper->eb, key, upper->level,
2851 &slot);
2852 if (ret < 0) {
2853 err = ret;
2854 goto next;
2855 }
2856 BUG_ON(ret);
2857 }
2858
2859 bytenr = btrfs_node_blockptr(upper->eb, slot);
2860 if (lowest) {
2861 if (bytenr != node->bytenr) {
2862 btrfs_err(root->fs_info,
2863 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2864 bytenr, node->bytenr, slot,
2865 upper->eb->start);
2866 err = -EIO;
2867 goto next;
2868 }
2869 } else {
2870 if (node->eb->start == bytenr)
2871 goto next;
2872 }
2873
2874 blocksize = root->fs_info->nodesize;
2875 generation = btrfs_node_ptr_generation(upper->eb, slot);
2876 btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
2877 eb = read_tree_block(fs_info, bytenr, generation,
2878 upper->level - 1, &first_key);
2879 if (IS_ERR(eb)) {
2880 err = PTR_ERR(eb);
2881 goto next;
2882 } else if (!extent_buffer_uptodate(eb)) {
2883 free_extent_buffer(eb);
2884 err = -EIO;
2885 goto next;
2886 }
2887 btrfs_tree_lock(eb);
2888 btrfs_set_lock_blocking_write(eb);
2889
2890 if (!node->eb) {
2891 ret = btrfs_cow_block(trans, root, eb, upper->eb,
2892 slot, &eb);
2893 btrfs_tree_unlock(eb);
2894 free_extent_buffer(eb);
2895 if (ret < 0) {
2896 err = ret;
2897 goto next;
2898 }
2899 BUG_ON(node->eb != eb);
2900 } else {
2901 btrfs_set_node_blockptr(upper->eb, slot,
2902 node->eb->start);
2903 btrfs_set_node_ptr_generation(upper->eb, slot,
2904 trans->transid);
2905 btrfs_mark_buffer_dirty(upper->eb);
2906
2907 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2908 node->eb->start, blocksize,
2909 upper->eb->start);
2910 ref.real_root = root->root_key.objectid;
2911 btrfs_init_tree_ref(&ref, node->level,
2912 btrfs_header_owner(upper->eb));
2913 ret = btrfs_inc_extent_ref(trans, &ref);
2914 BUG_ON(ret);
2915
2916 ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2917 BUG_ON(ret);
2918 }
2919 next:
2920 if (!upper->pending)
2921 drop_node_buffer(upper);
2922 else
2923 unlock_node_buffer(upper);
2924 if (err)
2925 break;
2926 }
2927
2928 if (!err && node->pending) {
2929 drop_node_buffer(node);
2930 list_move_tail(&node->list, &rc->backref_cache.changed);
2931 node->pending = 0;
2932 }
2933
2934 path->lowest_level = 0;
2935 BUG_ON(err == -ENOSPC);
2936 return err;
2937 }
2938
link_to_upper(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct backref_node * node,struct btrfs_path * path)2939 static int link_to_upper(struct btrfs_trans_handle *trans,
2940 struct reloc_control *rc,
2941 struct backref_node *node,
2942 struct btrfs_path *path)
2943 {
2944 struct btrfs_key key;
2945
2946 btrfs_node_key_to_cpu(node->eb, &key, 0);
2947 return do_relocation(trans, rc, node, &key, path, 0);
2948 }
2949
finish_pending_nodes(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_path * path,int err)2950 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2951 struct reloc_control *rc,
2952 struct btrfs_path *path, int err)
2953 {
2954 LIST_HEAD(list);
2955 struct backref_cache *cache = &rc->backref_cache;
2956 struct backref_node *node;
2957 int level;
2958 int ret;
2959
2960 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2961 while (!list_empty(&cache->pending[level])) {
2962 node = list_entry(cache->pending[level].next,
2963 struct backref_node, list);
2964 list_move_tail(&node->list, &list);
2965 BUG_ON(!node->pending);
2966
2967 if (!err) {
2968 ret = link_to_upper(trans, rc, node, path);
2969 if (ret < 0)
2970 err = ret;
2971 }
2972 }
2973 list_splice_init(&list, &cache->pending[level]);
2974 }
2975 return err;
2976 }
2977
mark_block_processed(struct reloc_control * rc,u64 bytenr,u32 blocksize)2978 static void mark_block_processed(struct reloc_control *rc,
2979 u64 bytenr, u32 blocksize)
2980 {
2981 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2982 EXTENT_DIRTY);
2983 }
2984
__mark_block_processed(struct reloc_control * rc,struct backref_node * node)2985 static void __mark_block_processed(struct reloc_control *rc,
2986 struct backref_node *node)
2987 {
2988 u32 blocksize;
2989 if (node->level == 0 ||
2990 in_block_group(node->bytenr, rc->block_group)) {
2991 blocksize = rc->extent_root->fs_info->nodesize;
2992 mark_block_processed(rc, node->bytenr, blocksize);
2993 }
2994 node->processed = 1;
2995 }
2996
2997 /*
2998 * mark a block and all blocks directly/indirectly reference the block
2999 * as processed.
3000 */
update_processed_blocks(struct reloc_control * rc,struct backref_node * node)3001 static void update_processed_blocks(struct reloc_control *rc,
3002 struct backref_node *node)
3003 {
3004 struct backref_node *next = node;
3005 struct backref_edge *edge;
3006 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
3007 int index = 0;
3008
3009 while (next) {
3010 cond_resched();
3011 while (1) {
3012 if (next->processed)
3013 break;
3014
3015 __mark_block_processed(rc, next);
3016
3017 if (list_empty(&next->upper))
3018 break;
3019
3020 edge = list_entry(next->upper.next,
3021 struct backref_edge, list[LOWER]);
3022 edges[index++] = edge;
3023 next = edge->node[UPPER];
3024 }
3025 next = walk_down_backref(edges, &index);
3026 }
3027 }
3028
tree_block_processed(u64 bytenr,struct reloc_control * rc)3029 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
3030 {
3031 u32 blocksize = rc->extent_root->fs_info->nodesize;
3032
3033 if (test_range_bit(&rc->processed_blocks, bytenr,
3034 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
3035 return 1;
3036 return 0;
3037 }
3038
get_tree_block_key(struct btrfs_fs_info * fs_info,struct tree_block * block)3039 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
3040 struct tree_block *block)
3041 {
3042 struct extent_buffer *eb;
3043
3044 BUG_ON(block->key_ready);
3045 eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
3046 block->level, NULL);
3047 if (IS_ERR(eb)) {
3048 return PTR_ERR(eb);
3049 } else if (!extent_buffer_uptodate(eb)) {
3050 free_extent_buffer(eb);
3051 return -EIO;
3052 }
3053 if (block->level == 0)
3054 btrfs_item_key_to_cpu(eb, &block->key, 0);
3055 else
3056 btrfs_node_key_to_cpu(eb, &block->key, 0);
3057 free_extent_buffer(eb);
3058 block->key_ready = 1;
3059 return 0;
3060 }
3061
3062 /*
3063 * helper function to relocate a tree block
3064 */
relocate_tree_block(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct backref_node * node,struct btrfs_key * key,struct btrfs_path * path)3065 static int relocate_tree_block(struct btrfs_trans_handle *trans,
3066 struct reloc_control *rc,
3067 struct backref_node *node,
3068 struct btrfs_key *key,
3069 struct btrfs_path *path)
3070 {
3071 struct btrfs_root *root;
3072 int ret = 0;
3073
3074 if (!node)
3075 return 0;
3076
3077 BUG_ON(node->processed);
3078 root = select_one_root(node);
3079 if (root == ERR_PTR(-ENOENT)) {
3080 update_processed_blocks(rc, node);
3081 goto out;
3082 }
3083
3084 if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
3085 ret = reserve_metadata_space(trans, rc, node);
3086 if (ret)
3087 goto out;
3088 }
3089
3090 if (root) {
3091 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
3092 BUG_ON(node->new_bytenr);
3093 BUG_ON(!list_empty(&node->list));
3094 btrfs_record_root_in_trans(trans, root);
3095 root = root->reloc_root;
3096 node->new_bytenr = root->node->start;
3097 node->root = root;
3098 list_add_tail(&node->list, &rc->backref_cache.changed);
3099 } else {
3100 path->lowest_level = node->level;
3101 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
3102 btrfs_release_path(path);
3103 if (ret > 0)
3104 ret = 0;
3105 }
3106 if (!ret)
3107 update_processed_blocks(rc, node);
3108 } else {
3109 ret = do_relocation(trans, rc, node, key, path, 1);
3110 }
3111 out:
3112 if (ret || node->level == 0 || node->cowonly)
3113 remove_backref_node(&rc->backref_cache, node);
3114 return ret;
3115 }
3116
3117 /*
3118 * relocate a list of blocks
3119 */
3120 static noinline_for_stack
relocate_tree_blocks(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct rb_root * blocks)3121 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
3122 struct reloc_control *rc, struct rb_root *blocks)
3123 {
3124 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3125 struct backref_node *node;
3126 struct btrfs_path *path;
3127 struct tree_block *block;
3128 struct tree_block *next;
3129 int ret;
3130 int err = 0;
3131
3132 path = btrfs_alloc_path();
3133 if (!path) {
3134 err = -ENOMEM;
3135 goto out_free_blocks;
3136 }
3137
3138 /* Kick in readahead for tree blocks with missing keys */
3139 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3140 if (!block->key_ready)
3141 readahead_tree_block(fs_info, block->bytenr);
3142 }
3143
3144 /* Get first keys */
3145 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3146 if (!block->key_ready) {
3147 err = get_tree_block_key(fs_info, block);
3148 if (err)
3149 goto out_free_path;
3150 }
3151 }
3152
3153 /* Do tree relocation */
3154 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3155 node = build_backref_tree(rc, &block->key,
3156 block->level, block->bytenr);
3157 if (IS_ERR(node)) {
3158 err = PTR_ERR(node);
3159 goto out;
3160 }
3161
3162 ret = relocate_tree_block(trans, rc, node, &block->key,
3163 path);
3164 if (ret < 0) {
3165 if (ret != -EAGAIN || &block->rb_node == rb_first(blocks))
3166 err = ret;
3167 goto out;
3168 }
3169 }
3170 out:
3171 err = finish_pending_nodes(trans, rc, path, err);
3172
3173 out_free_path:
3174 btrfs_free_path(path);
3175 out_free_blocks:
3176 free_block_list(blocks);
3177 return err;
3178 }
3179
3180 static noinline_for_stack
prealloc_file_extent_cluster(struct inode * inode,struct file_extent_cluster * cluster)3181 int prealloc_file_extent_cluster(struct inode *inode,
3182 struct file_extent_cluster *cluster)
3183 {
3184 u64 alloc_hint = 0;
3185 u64 start;
3186 u64 end;
3187 u64 offset = BTRFS_I(inode)->index_cnt;
3188 u64 num_bytes;
3189 int nr = 0;
3190 int ret = 0;
3191 u64 prealloc_start = cluster->start - offset;
3192 u64 prealloc_end = cluster->end - offset;
3193 u64 cur_offset;
3194 struct extent_changeset *data_reserved = NULL;
3195
3196 BUG_ON(cluster->start != cluster->boundary[0]);
3197 inode_lock(inode);
3198
3199 ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start,
3200 prealloc_end + 1 - prealloc_start);
3201 if (ret)
3202 goto out;
3203
3204 cur_offset = prealloc_start;
3205 while (nr < cluster->nr) {
3206 start = cluster->boundary[nr] - offset;
3207 if (nr + 1 < cluster->nr)
3208 end = cluster->boundary[nr + 1] - 1 - offset;
3209 else
3210 end = cluster->end - offset;
3211
3212 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3213 num_bytes = end + 1 - start;
3214 if (cur_offset < start)
3215 btrfs_free_reserved_data_space(inode, data_reserved,
3216 cur_offset, start - cur_offset);
3217 ret = btrfs_prealloc_file_range(inode, 0, start,
3218 num_bytes, num_bytes,
3219 end + 1, &alloc_hint);
3220 cur_offset = end + 1;
3221 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3222 if (ret)
3223 break;
3224 nr++;
3225 }
3226 if (cur_offset < prealloc_end)
3227 btrfs_free_reserved_data_space(inode, data_reserved,
3228 cur_offset, prealloc_end + 1 - cur_offset);
3229 out:
3230 inode_unlock(inode);
3231 extent_changeset_free(data_reserved);
3232 return ret;
3233 }
3234
3235 static noinline_for_stack
setup_extent_mapping(struct inode * inode,u64 start,u64 end,u64 block_start)3236 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3237 u64 block_start)
3238 {
3239 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3240 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3241 struct extent_map *em;
3242 int ret = 0;
3243
3244 em = alloc_extent_map();
3245 if (!em)
3246 return -ENOMEM;
3247
3248 em->start = start;
3249 em->len = end + 1 - start;
3250 em->block_len = em->len;
3251 em->block_start = block_start;
3252 em->bdev = fs_info->fs_devices->latest_bdev;
3253 set_bit(EXTENT_FLAG_PINNED, &em->flags);
3254
3255 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3256 while (1) {
3257 write_lock(&em_tree->lock);
3258 ret = add_extent_mapping(em_tree, em, 0);
3259 write_unlock(&em_tree->lock);
3260 if (ret != -EEXIST) {
3261 free_extent_map(em);
3262 break;
3263 }
3264 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3265 }
3266 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3267 return ret;
3268 }
3269
relocate_file_extent_cluster(struct inode * inode,struct file_extent_cluster * cluster)3270 static int relocate_file_extent_cluster(struct inode *inode,
3271 struct file_extent_cluster *cluster)
3272 {
3273 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3274 u64 page_start;
3275 u64 page_end;
3276 u64 offset = BTRFS_I(inode)->index_cnt;
3277 unsigned long index;
3278 unsigned long last_index;
3279 struct page *page;
3280 struct file_ra_state *ra;
3281 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3282 int nr = 0;
3283 int ret = 0;
3284
3285 if (!cluster->nr)
3286 return 0;
3287
3288 ra = kzalloc(sizeof(*ra), GFP_NOFS);
3289 if (!ra)
3290 return -ENOMEM;
3291
3292 ret = prealloc_file_extent_cluster(inode, cluster);
3293 if (ret)
3294 goto out;
3295
3296 file_ra_state_init(ra, inode->i_mapping);
3297
3298 ret = setup_extent_mapping(inode, cluster->start - offset,
3299 cluster->end - offset, cluster->start);
3300 if (ret)
3301 goto out;
3302
3303 index = (cluster->start - offset) >> PAGE_SHIFT;
3304 last_index = (cluster->end - offset) >> PAGE_SHIFT;
3305 while (index <= last_index) {
3306 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3307 PAGE_SIZE);
3308 if (ret)
3309 goto out;
3310
3311 page = find_lock_page(inode->i_mapping, index);
3312 if (!page) {
3313 page_cache_sync_readahead(inode->i_mapping,
3314 ra, NULL, index,
3315 last_index + 1 - index);
3316 page = find_or_create_page(inode->i_mapping, index,
3317 mask);
3318 if (!page) {
3319 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3320 PAGE_SIZE, true);
3321 btrfs_delalloc_release_extents(BTRFS_I(inode),
3322 PAGE_SIZE);
3323 ret = -ENOMEM;
3324 goto out;
3325 }
3326 }
3327
3328 if (PageReadahead(page)) {
3329 page_cache_async_readahead(inode->i_mapping,
3330 ra, NULL, page, index,
3331 last_index + 1 - index);
3332 }
3333
3334 if (!PageUptodate(page)) {
3335 btrfs_readpage(NULL, page);
3336 lock_page(page);
3337 if (!PageUptodate(page)) {
3338 unlock_page(page);
3339 put_page(page);
3340 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3341 PAGE_SIZE, true);
3342 btrfs_delalloc_release_extents(BTRFS_I(inode),
3343 PAGE_SIZE);
3344 ret = -EIO;
3345 goto out;
3346 }
3347 }
3348
3349 page_start = page_offset(page);
3350 page_end = page_start + PAGE_SIZE - 1;
3351
3352 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3353
3354 set_page_extent_mapped(page);
3355
3356 if (nr < cluster->nr &&
3357 page_start + offset == cluster->boundary[nr]) {
3358 set_extent_bits(&BTRFS_I(inode)->io_tree,
3359 page_start, page_end,
3360 EXTENT_BOUNDARY);
3361 nr++;
3362 }
3363
3364 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
3365 NULL);
3366 if (ret) {
3367 unlock_page(page);
3368 put_page(page);
3369 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3370 PAGE_SIZE, true);
3371 btrfs_delalloc_release_extents(BTRFS_I(inode),
3372 PAGE_SIZE);
3373
3374 clear_extent_bits(&BTRFS_I(inode)->io_tree,
3375 page_start, page_end,
3376 EXTENT_LOCKED | EXTENT_BOUNDARY);
3377 goto out;
3378
3379 }
3380 set_page_dirty(page);
3381
3382 unlock_extent(&BTRFS_I(inode)->io_tree,
3383 page_start, page_end);
3384 unlock_page(page);
3385 put_page(page);
3386
3387 index++;
3388 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
3389 balance_dirty_pages_ratelimited(inode->i_mapping);
3390 btrfs_throttle(fs_info);
3391 }
3392 WARN_ON(nr != cluster->nr);
3393 out:
3394 kfree(ra);
3395 return ret;
3396 }
3397
3398 static noinline_for_stack
relocate_data_extent(struct inode * inode,struct btrfs_key * extent_key,struct file_extent_cluster * cluster)3399 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3400 struct file_extent_cluster *cluster)
3401 {
3402 int ret;
3403
3404 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3405 ret = relocate_file_extent_cluster(inode, cluster);
3406 if (ret)
3407 return ret;
3408 cluster->nr = 0;
3409 }
3410
3411 if (!cluster->nr)
3412 cluster->start = extent_key->objectid;
3413 else
3414 BUG_ON(cluster->nr >= MAX_EXTENTS);
3415 cluster->end = extent_key->objectid + extent_key->offset - 1;
3416 cluster->boundary[cluster->nr] = extent_key->objectid;
3417 cluster->nr++;
3418
3419 if (cluster->nr >= MAX_EXTENTS) {
3420 ret = relocate_file_extent_cluster(inode, cluster);
3421 if (ret)
3422 return ret;
3423 cluster->nr = 0;
3424 }
3425 return 0;
3426 }
3427
3428 /*
3429 * helper to add a tree block to the list.
3430 * the major work is getting the generation and level of the block
3431 */
add_tree_block(struct reloc_control * rc,struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)3432 static int add_tree_block(struct reloc_control *rc,
3433 struct btrfs_key *extent_key,
3434 struct btrfs_path *path,
3435 struct rb_root *blocks)
3436 {
3437 struct extent_buffer *eb;
3438 struct btrfs_extent_item *ei;
3439 struct btrfs_tree_block_info *bi;
3440 struct tree_block *block;
3441 struct rb_node *rb_node;
3442 u32 item_size;
3443 int level = -1;
3444 u64 generation;
3445
3446 eb = path->nodes[0];
3447 item_size = btrfs_item_size_nr(eb, path->slots[0]);
3448
3449 if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3450 item_size >= sizeof(*ei) + sizeof(*bi)) {
3451 ei = btrfs_item_ptr(eb, path->slots[0],
3452 struct btrfs_extent_item);
3453 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3454 bi = (struct btrfs_tree_block_info *)(ei + 1);
3455 level = btrfs_tree_block_level(eb, bi);
3456 } else {
3457 level = (int)extent_key->offset;
3458 }
3459 generation = btrfs_extent_generation(eb, ei);
3460 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3461 btrfs_print_v0_err(eb->fs_info);
3462 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3463 return -EINVAL;
3464 } else {
3465 BUG();
3466 }
3467
3468 btrfs_release_path(path);
3469
3470 BUG_ON(level == -1);
3471
3472 block = kmalloc(sizeof(*block), GFP_NOFS);
3473 if (!block)
3474 return -ENOMEM;
3475
3476 block->bytenr = extent_key->objectid;
3477 block->key.objectid = rc->extent_root->fs_info->nodesize;
3478 block->key.offset = generation;
3479 block->level = level;
3480 block->key_ready = 0;
3481
3482 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3483 if (rb_node)
3484 backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3485
3486 return 0;
3487 }
3488
3489 /*
3490 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3491 */
__add_tree_block(struct reloc_control * rc,u64 bytenr,u32 blocksize,struct rb_root * blocks)3492 static int __add_tree_block(struct reloc_control *rc,
3493 u64 bytenr, u32 blocksize,
3494 struct rb_root *blocks)
3495 {
3496 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3497 struct btrfs_path *path;
3498 struct btrfs_key key;
3499 int ret;
3500 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3501
3502 if (tree_block_processed(bytenr, rc))
3503 return 0;
3504
3505 if (tree_search(blocks, bytenr))
3506 return 0;
3507
3508 path = btrfs_alloc_path();
3509 if (!path)
3510 return -ENOMEM;
3511 again:
3512 key.objectid = bytenr;
3513 if (skinny) {
3514 key.type = BTRFS_METADATA_ITEM_KEY;
3515 key.offset = (u64)-1;
3516 } else {
3517 key.type = BTRFS_EXTENT_ITEM_KEY;
3518 key.offset = blocksize;
3519 }
3520
3521 path->search_commit_root = 1;
3522 path->skip_locking = 1;
3523 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3524 if (ret < 0)
3525 goto out;
3526
3527 if (ret > 0 && skinny) {
3528 if (path->slots[0]) {
3529 path->slots[0]--;
3530 btrfs_item_key_to_cpu(path->nodes[0], &key,
3531 path->slots[0]);
3532 if (key.objectid == bytenr &&
3533 (key.type == BTRFS_METADATA_ITEM_KEY ||
3534 (key.type == BTRFS_EXTENT_ITEM_KEY &&
3535 key.offset == blocksize)))
3536 ret = 0;
3537 }
3538
3539 if (ret) {
3540 skinny = false;
3541 btrfs_release_path(path);
3542 goto again;
3543 }
3544 }
3545 if (ret) {
3546 ASSERT(ret == 1);
3547 btrfs_print_leaf(path->nodes[0]);
3548 btrfs_err(fs_info,
3549 "tree block extent item (%llu) is not found in extent tree",
3550 bytenr);
3551 WARN_ON(1);
3552 ret = -EINVAL;
3553 goto out;
3554 }
3555
3556 ret = add_tree_block(rc, &key, path, blocks);
3557 out:
3558 btrfs_free_path(path);
3559 return ret;
3560 }
3561
3562 /*
3563 * helper to check if the block use full backrefs for pointers in it
3564 */
block_use_full_backref(struct reloc_control * rc,struct extent_buffer * eb)3565 static int block_use_full_backref(struct reloc_control *rc,
3566 struct extent_buffer *eb)
3567 {
3568 u64 flags;
3569 int ret;
3570
3571 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3572 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3573 return 1;
3574
3575 ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
3576 eb->start, btrfs_header_level(eb), 1,
3577 NULL, &flags);
3578 BUG_ON(ret);
3579
3580 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3581 ret = 1;
3582 else
3583 ret = 0;
3584 return ret;
3585 }
3586
delete_block_group_cache(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * block_group,struct inode * inode,u64 ino)3587 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3588 struct btrfs_block_group_cache *block_group,
3589 struct inode *inode,
3590 u64 ino)
3591 {
3592 struct btrfs_key key;
3593 struct btrfs_root *root = fs_info->tree_root;
3594 struct btrfs_trans_handle *trans;
3595 int ret = 0;
3596
3597 if (inode)
3598 goto truncate;
3599
3600 key.objectid = ino;
3601 key.type = BTRFS_INODE_ITEM_KEY;
3602 key.offset = 0;
3603
3604 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3605 if (IS_ERR(inode))
3606 return -ENOENT;
3607
3608 truncate:
3609 ret = btrfs_check_trunc_cache_free_space(fs_info,
3610 &fs_info->global_block_rsv);
3611 if (ret)
3612 goto out;
3613
3614 trans = btrfs_join_transaction(root);
3615 if (IS_ERR(trans)) {
3616 ret = PTR_ERR(trans);
3617 goto out;
3618 }
3619
3620 ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3621
3622 btrfs_end_transaction(trans);
3623 btrfs_btree_balance_dirty(fs_info);
3624 out:
3625 iput(inode);
3626 return ret;
3627 }
3628
3629 /*
3630 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3631 * this function scans fs tree to find blocks reference the data extent
3632 */
find_data_references(struct reloc_control * rc,struct btrfs_key * extent_key,struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref,struct rb_root * blocks)3633 static int find_data_references(struct reloc_control *rc,
3634 struct btrfs_key *extent_key,
3635 struct extent_buffer *leaf,
3636 struct btrfs_extent_data_ref *ref,
3637 struct rb_root *blocks)
3638 {
3639 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3640 struct btrfs_path *path;
3641 struct tree_block *block;
3642 struct btrfs_root *root;
3643 struct btrfs_file_extent_item *fi;
3644 struct rb_node *rb_node;
3645 struct btrfs_key key;
3646 u64 ref_root;
3647 u64 ref_objectid;
3648 u64 ref_offset;
3649 u32 ref_count;
3650 u32 nritems;
3651 int err = 0;
3652 int added = 0;
3653 int counted;
3654 int ret;
3655
3656 ref_root = btrfs_extent_data_ref_root(leaf, ref);
3657 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3658 ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3659 ref_count = btrfs_extent_data_ref_count(leaf, ref);
3660
3661 /*
3662 * This is an extent belonging to the free space cache, lets just delete
3663 * it and redo the search.
3664 */
3665 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3666 ret = delete_block_group_cache(fs_info, rc->block_group,
3667 NULL, ref_objectid);
3668 if (ret != -ENOENT)
3669 return ret;
3670 ret = 0;
3671 }
3672
3673 path = btrfs_alloc_path();
3674 if (!path)
3675 return -ENOMEM;
3676 path->reada = READA_FORWARD;
3677
3678 root = read_fs_root(fs_info, ref_root);
3679 if (IS_ERR(root)) {
3680 err = PTR_ERR(root);
3681 goto out;
3682 }
3683
3684 key.objectid = ref_objectid;
3685 key.type = BTRFS_EXTENT_DATA_KEY;
3686 if (ref_offset > ((u64)-1 << 32))
3687 key.offset = 0;
3688 else
3689 key.offset = ref_offset;
3690
3691 path->search_commit_root = 1;
3692 path->skip_locking = 1;
3693 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3694 if (ret < 0) {
3695 err = ret;
3696 goto out;
3697 }
3698
3699 leaf = path->nodes[0];
3700 nritems = btrfs_header_nritems(leaf);
3701 /*
3702 * the references in tree blocks that use full backrefs
3703 * are not counted in
3704 */
3705 if (block_use_full_backref(rc, leaf))
3706 counted = 0;
3707 else
3708 counted = 1;
3709 rb_node = tree_search(blocks, leaf->start);
3710 if (rb_node) {
3711 if (counted)
3712 added = 1;
3713 else
3714 path->slots[0] = nritems;
3715 }
3716
3717 while (ref_count > 0) {
3718 while (path->slots[0] >= nritems) {
3719 ret = btrfs_next_leaf(root, path);
3720 if (ret < 0) {
3721 err = ret;
3722 goto out;
3723 }
3724 if (WARN_ON(ret > 0))
3725 goto out;
3726
3727 leaf = path->nodes[0];
3728 nritems = btrfs_header_nritems(leaf);
3729 added = 0;
3730
3731 if (block_use_full_backref(rc, leaf))
3732 counted = 0;
3733 else
3734 counted = 1;
3735 rb_node = tree_search(blocks, leaf->start);
3736 if (rb_node) {
3737 if (counted)
3738 added = 1;
3739 else
3740 path->slots[0] = nritems;
3741 }
3742 }
3743
3744 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3745 if (WARN_ON(key.objectid != ref_objectid ||
3746 key.type != BTRFS_EXTENT_DATA_KEY))
3747 break;
3748
3749 fi = btrfs_item_ptr(leaf, path->slots[0],
3750 struct btrfs_file_extent_item);
3751
3752 if (btrfs_file_extent_type(leaf, fi) ==
3753 BTRFS_FILE_EXTENT_INLINE)
3754 goto next;
3755
3756 if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3757 extent_key->objectid)
3758 goto next;
3759
3760 key.offset -= btrfs_file_extent_offset(leaf, fi);
3761 if (key.offset != ref_offset)
3762 goto next;
3763
3764 if (counted)
3765 ref_count--;
3766 if (added)
3767 goto next;
3768
3769 if (!tree_block_processed(leaf->start, rc)) {
3770 block = kmalloc(sizeof(*block), GFP_NOFS);
3771 if (!block) {
3772 err = -ENOMEM;
3773 break;
3774 }
3775 block->bytenr = leaf->start;
3776 btrfs_item_key_to_cpu(leaf, &block->key, 0);
3777 block->level = 0;
3778 block->key_ready = 1;
3779 rb_node = tree_insert(blocks, block->bytenr,
3780 &block->rb_node);
3781 if (rb_node)
3782 backref_tree_panic(rb_node, -EEXIST,
3783 block->bytenr);
3784 }
3785 if (counted)
3786 added = 1;
3787 else
3788 path->slots[0] = nritems;
3789 next:
3790 path->slots[0]++;
3791
3792 }
3793 out:
3794 btrfs_free_path(path);
3795 return err;
3796 }
3797
3798 /*
3799 * helper to find all tree blocks that reference a given data extent
3800 */
3801 static noinline_for_stack
add_data_references(struct reloc_control * rc,struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)3802 int add_data_references(struct reloc_control *rc,
3803 struct btrfs_key *extent_key,
3804 struct btrfs_path *path,
3805 struct rb_root *blocks)
3806 {
3807 struct btrfs_key key;
3808 struct extent_buffer *eb;
3809 struct btrfs_extent_data_ref *dref;
3810 struct btrfs_extent_inline_ref *iref;
3811 unsigned long ptr;
3812 unsigned long end;
3813 u32 blocksize = rc->extent_root->fs_info->nodesize;
3814 int ret = 0;
3815 int err = 0;
3816
3817 eb = path->nodes[0];
3818 ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3819 end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3820 ptr += sizeof(struct btrfs_extent_item);
3821
3822 while (ptr < end) {
3823 iref = (struct btrfs_extent_inline_ref *)ptr;
3824 key.type = btrfs_get_extent_inline_ref_type(eb, iref,
3825 BTRFS_REF_TYPE_DATA);
3826 if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3827 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3828 ret = __add_tree_block(rc, key.offset, blocksize,
3829 blocks);
3830 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3831 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3832 ret = find_data_references(rc, extent_key,
3833 eb, dref, blocks);
3834 } else {
3835 ret = -EUCLEAN;
3836 btrfs_err(rc->extent_root->fs_info,
3837 "extent %llu slot %d has an invalid inline ref type",
3838 eb->start, path->slots[0]);
3839 }
3840 if (ret) {
3841 err = ret;
3842 goto out;
3843 }
3844 ptr += btrfs_extent_inline_ref_size(key.type);
3845 }
3846 WARN_ON(ptr > end);
3847
3848 while (1) {
3849 cond_resched();
3850 eb = path->nodes[0];
3851 if (path->slots[0] >= btrfs_header_nritems(eb)) {
3852 ret = btrfs_next_leaf(rc->extent_root, path);
3853 if (ret < 0) {
3854 err = ret;
3855 break;
3856 }
3857 if (ret > 0)
3858 break;
3859 eb = path->nodes[0];
3860 }
3861
3862 btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3863 if (key.objectid != extent_key->objectid)
3864 break;
3865
3866 if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3867 ret = __add_tree_block(rc, key.offset, blocksize,
3868 blocks);
3869 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3870 dref = btrfs_item_ptr(eb, path->slots[0],
3871 struct btrfs_extent_data_ref);
3872 ret = find_data_references(rc, extent_key,
3873 eb, dref, blocks);
3874 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
3875 btrfs_print_v0_err(eb->fs_info);
3876 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3877 ret = -EINVAL;
3878 } else {
3879 ret = 0;
3880 }
3881 if (ret) {
3882 err = ret;
3883 break;
3884 }
3885 path->slots[0]++;
3886 }
3887 out:
3888 btrfs_release_path(path);
3889 if (err)
3890 free_block_list(blocks);
3891 return err;
3892 }
3893
3894 /*
3895 * helper to find next unprocessed extent
3896 */
3897 static noinline_for_stack
find_next_extent(struct reloc_control * rc,struct btrfs_path * path,struct btrfs_key * extent_key)3898 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3899 struct btrfs_key *extent_key)
3900 {
3901 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3902 struct btrfs_key key;
3903 struct extent_buffer *leaf;
3904 u64 start, end, last;
3905 int ret;
3906
3907 last = rc->block_group->key.objectid + rc->block_group->key.offset;
3908 while (1) {
3909 cond_resched();
3910 if (rc->search_start >= last) {
3911 ret = 1;
3912 break;
3913 }
3914
3915 key.objectid = rc->search_start;
3916 key.type = BTRFS_EXTENT_ITEM_KEY;
3917 key.offset = 0;
3918
3919 path->search_commit_root = 1;
3920 path->skip_locking = 1;
3921 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3922 0, 0);
3923 if (ret < 0)
3924 break;
3925 next:
3926 leaf = path->nodes[0];
3927 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3928 ret = btrfs_next_leaf(rc->extent_root, path);
3929 if (ret != 0)
3930 break;
3931 leaf = path->nodes[0];
3932 }
3933
3934 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3935 if (key.objectid >= last) {
3936 ret = 1;
3937 break;
3938 }
3939
3940 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3941 key.type != BTRFS_METADATA_ITEM_KEY) {
3942 path->slots[0]++;
3943 goto next;
3944 }
3945
3946 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3947 key.objectid + key.offset <= rc->search_start) {
3948 path->slots[0]++;
3949 goto next;
3950 }
3951
3952 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3953 key.objectid + fs_info->nodesize <=
3954 rc->search_start) {
3955 path->slots[0]++;
3956 goto next;
3957 }
3958
3959 ret = find_first_extent_bit(&rc->processed_blocks,
3960 key.objectid, &start, &end,
3961 EXTENT_DIRTY, NULL);
3962
3963 if (ret == 0 && start <= key.objectid) {
3964 btrfs_release_path(path);
3965 rc->search_start = end + 1;
3966 } else {
3967 if (key.type == BTRFS_EXTENT_ITEM_KEY)
3968 rc->search_start = key.objectid + key.offset;
3969 else
3970 rc->search_start = key.objectid +
3971 fs_info->nodesize;
3972 memcpy(extent_key, &key, sizeof(key));
3973 return 0;
3974 }
3975 }
3976 btrfs_release_path(path);
3977 return ret;
3978 }
3979
set_reloc_control(struct reloc_control * rc)3980 static void set_reloc_control(struct reloc_control *rc)
3981 {
3982 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3983
3984 mutex_lock(&fs_info->reloc_mutex);
3985 fs_info->reloc_ctl = rc;
3986 mutex_unlock(&fs_info->reloc_mutex);
3987 }
3988
unset_reloc_control(struct reloc_control * rc)3989 static void unset_reloc_control(struct reloc_control *rc)
3990 {
3991 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3992
3993 mutex_lock(&fs_info->reloc_mutex);
3994 fs_info->reloc_ctl = NULL;
3995 mutex_unlock(&fs_info->reloc_mutex);
3996 }
3997
check_extent_flags(u64 flags)3998 static int check_extent_flags(u64 flags)
3999 {
4000 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
4001 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
4002 return 1;
4003 if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
4004 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
4005 return 1;
4006 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
4007 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4008 return 1;
4009 return 0;
4010 }
4011
4012 static noinline_for_stack
prepare_to_relocate(struct reloc_control * rc)4013 int prepare_to_relocate(struct reloc_control *rc)
4014 {
4015 struct btrfs_trans_handle *trans;
4016 int ret;
4017
4018 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
4019 BTRFS_BLOCK_RSV_TEMP);
4020 if (!rc->block_rsv)
4021 return -ENOMEM;
4022
4023 memset(&rc->cluster, 0, sizeof(rc->cluster));
4024 rc->search_start = rc->block_group->key.objectid;
4025 rc->extents_found = 0;
4026 rc->nodes_relocated = 0;
4027 rc->merging_rsv_size = 0;
4028 rc->reserved_bytes = 0;
4029 rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
4030 RELOCATION_RESERVED_NODES;
4031 ret = btrfs_block_rsv_refill(rc->extent_root,
4032 rc->block_rsv, rc->block_rsv->size,
4033 BTRFS_RESERVE_FLUSH_ALL);
4034 if (ret)
4035 return ret;
4036
4037 rc->create_reloc_tree = 1;
4038 set_reloc_control(rc);
4039
4040 trans = btrfs_join_transaction(rc->extent_root);
4041 if (IS_ERR(trans)) {
4042 unset_reloc_control(rc);
4043 /*
4044 * extent tree is not a ref_cow tree and has no reloc_root to
4045 * cleanup. And callers are responsible to free the above
4046 * block rsv.
4047 */
4048 return PTR_ERR(trans);
4049 }
4050 btrfs_commit_transaction(trans);
4051 return 0;
4052 }
4053
relocate_block_group(struct reloc_control * rc)4054 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
4055 {
4056 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
4057 struct rb_root blocks = RB_ROOT;
4058 struct btrfs_key key;
4059 struct btrfs_trans_handle *trans = NULL;
4060 struct btrfs_path *path;
4061 struct btrfs_extent_item *ei;
4062 u64 flags;
4063 u32 item_size;
4064 int ret;
4065 int err = 0;
4066 int progress = 0;
4067
4068 path = btrfs_alloc_path();
4069 if (!path)
4070 return -ENOMEM;
4071 path->reada = READA_FORWARD;
4072
4073 ret = prepare_to_relocate(rc);
4074 if (ret) {
4075 err = ret;
4076 goto out_free;
4077 }
4078
4079 while (1) {
4080 rc->reserved_bytes = 0;
4081 ret = btrfs_block_rsv_refill(rc->extent_root,
4082 rc->block_rsv, rc->block_rsv->size,
4083 BTRFS_RESERVE_FLUSH_ALL);
4084 if (ret) {
4085 err = ret;
4086 break;
4087 }
4088 progress++;
4089 trans = btrfs_start_transaction(rc->extent_root, 0);
4090 if (IS_ERR(trans)) {
4091 err = PTR_ERR(trans);
4092 trans = NULL;
4093 break;
4094 }
4095 restart:
4096 if (update_backref_cache(trans, &rc->backref_cache)) {
4097 btrfs_end_transaction(trans);
4098 trans = NULL;
4099 continue;
4100 }
4101
4102 ret = find_next_extent(rc, path, &key);
4103 if (ret < 0)
4104 err = ret;
4105 if (ret != 0)
4106 break;
4107
4108 rc->extents_found++;
4109
4110 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4111 struct btrfs_extent_item);
4112 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
4113 if (item_size >= sizeof(*ei)) {
4114 flags = btrfs_extent_flags(path->nodes[0], ei);
4115 ret = check_extent_flags(flags);
4116 BUG_ON(ret);
4117 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
4118 err = -EINVAL;
4119 btrfs_print_v0_err(trans->fs_info);
4120 btrfs_abort_transaction(trans, err);
4121 break;
4122 } else {
4123 BUG();
4124 }
4125
4126 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4127 ret = add_tree_block(rc, &key, path, &blocks);
4128 } else if (rc->stage == UPDATE_DATA_PTRS &&
4129 (flags & BTRFS_EXTENT_FLAG_DATA)) {
4130 ret = add_data_references(rc, &key, path, &blocks);
4131 } else {
4132 btrfs_release_path(path);
4133 ret = 0;
4134 }
4135 if (ret < 0) {
4136 err = ret;
4137 break;
4138 }
4139
4140 if (!RB_EMPTY_ROOT(&blocks)) {
4141 ret = relocate_tree_blocks(trans, rc, &blocks);
4142 if (ret < 0) {
4143 /*
4144 * if we fail to relocate tree blocks, force to update
4145 * backref cache when committing transaction.
4146 */
4147 rc->backref_cache.last_trans = trans->transid - 1;
4148
4149 if (ret != -EAGAIN) {
4150 err = ret;
4151 break;
4152 }
4153 rc->extents_found--;
4154 rc->search_start = key.objectid;
4155 }
4156 }
4157
4158 btrfs_end_transaction_throttle(trans);
4159 btrfs_btree_balance_dirty(fs_info);
4160 trans = NULL;
4161
4162 if (rc->stage == MOVE_DATA_EXTENTS &&
4163 (flags & BTRFS_EXTENT_FLAG_DATA)) {
4164 rc->found_file_extent = 1;
4165 ret = relocate_data_extent(rc->data_inode,
4166 &key, &rc->cluster);
4167 if (ret < 0) {
4168 err = ret;
4169 break;
4170 }
4171 }
4172 }
4173 if (trans && progress && err == -ENOSPC) {
4174 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
4175 if (ret == 1) {
4176 err = 0;
4177 progress = 0;
4178 goto restart;
4179 }
4180 }
4181
4182 btrfs_release_path(path);
4183 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
4184
4185 if (trans) {
4186 btrfs_end_transaction_throttle(trans);
4187 btrfs_btree_balance_dirty(fs_info);
4188 }
4189
4190 if (!err) {
4191 ret = relocate_file_extent_cluster(rc->data_inode,
4192 &rc->cluster);
4193 if (ret < 0)
4194 err = ret;
4195 }
4196
4197 rc->create_reloc_tree = 0;
4198 set_reloc_control(rc);
4199
4200 backref_cache_cleanup(&rc->backref_cache);
4201 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4202
4203 err = prepare_to_merge(rc, err);
4204
4205 merge_reloc_roots(rc);
4206
4207 rc->merge_reloc_tree = 0;
4208 unset_reloc_control(rc);
4209 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4210
4211 /* get rid of pinned extents */
4212 trans = btrfs_join_transaction(rc->extent_root);
4213 if (IS_ERR(trans)) {
4214 err = PTR_ERR(trans);
4215 goto out_free;
4216 }
4217 btrfs_commit_transaction(trans);
4218 ret = clean_dirty_subvols(rc);
4219 if (ret < 0 && !err)
4220 err = ret;
4221 out_free:
4222 btrfs_free_block_rsv(fs_info, rc->block_rsv);
4223 btrfs_free_path(path);
4224 return err;
4225 }
4226
__insert_orphan_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)4227 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4228 struct btrfs_root *root, u64 objectid)
4229 {
4230 struct btrfs_path *path;
4231 struct btrfs_inode_item *item;
4232 struct extent_buffer *leaf;
4233 int ret;
4234
4235 path = btrfs_alloc_path();
4236 if (!path)
4237 return -ENOMEM;
4238
4239 ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4240 if (ret)
4241 goto out;
4242
4243 leaf = path->nodes[0];
4244 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4245 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
4246 btrfs_set_inode_generation(leaf, item, 1);
4247 btrfs_set_inode_size(leaf, item, 0);
4248 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4249 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4250 BTRFS_INODE_PREALLOC);
4251 btrfs_mark_buffer_dirty(leaf);
4252 out:
4253 btrfs_free_path(path);
4254 return ret;
4255 }
4256
4257 /*
4258 * helper to create inode for data relocation.
4259 * the inode is in data relocation tree and its link count is 0
4260 */
4261 static noinline_for_stack
create_reloc_inode(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * group)4262 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4263 struct btrfs_block_group_cache *group)
4264 {
4265 struct inode *inode = NULL;
4266 struct btrfs_trans_handle *trans;
4267 struct btrfs_root *root;
4268 struct btrfs_key key;
4269 u64 objectid;
4270 int err = 0;
4271
4272 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4273 if (IS_ERR(root))
4274 return ERR_CAST(root);
4275
4276 trans = btrfs_start_transaction(root, 6);
4277 if (IS_ERR(trans))
4278 return ERR_CAST(trans);
4279
4280 err = btrfs_find_free_objectid(root, &objectid);
4281 if (err)
4282 goto out;
4283
4284 err = __insert_orphan_inode(trans, root, objectid);
4285 BUG_ON(err);
4286
4287 key.objectid = objectid;
4288 key.type = BTRFS_INODE_ITEM_KEY;
4289 key.offset = 0;
4290 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4291 BUG_ON(IS_ERR(inode));
4292 BTRFS_I(inode)->index_cnt = group->key.objectid;
4293
4294 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4295 out:
4296 btrfs_end_transaction(trans);
4297 btrfs_btree_balance_dirty(fs_info);
4298 if (err) {
4299 if (inode)
4300 iput(inode);
4301 inode = ERR_PTR(err);
4302 }
4303 return inode;
4304 }
4305
alloc_reloc_control(struct btrfs_fs_info * fs_info)4306 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4307 {
4308 struct reloc_control *rc;
4309
4310 rc = kzalloc(sizeof(*rc), GFP_NOFS);
4311 if (!rc)
4312 return NULL;
4313
4314 INIT_LIST_HEAD(&rc->reloc_roots);
4315 INIT_LIST_HEAD(&rc->dirty_subvol_roots);
4316 backref_cache_init(&rc->backref_cache);
4317 mapping_tree_init(&rc->reloc_root_tree);
4318 extent_io_tree_init(fs_info, &rc->processed_blocks,
4319 IO_TREE_RELOC_BLOCKS, NULL);
4320 return rc;
4321 }
4322
4323 /*
4324 * Print the block group being relocated
4325 */
describe_relocation(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * block_group)4326 static void describe_relocation(struct btrfs_fs_info *fs_info,
4327 struct btrfs_block_group_cache *block_group)
4328 {
4329 char buf[128] = {'\0'};
4330
4331 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
4332
4333 btrfs_info(fs_info,
4334 "relocating block group %llu flags %s",
4335 block_group->key.objectid, buf);
4336 }
4337
4338 /*
4339 * function to relocate all extents in a block group.
4340 */
btrfs_relocate_block_group(struct btrfs_fs_info * fs_info,u64 group_start)4341 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4342 {
4343 struct btrfs_block_group_cache *bg;
4344 struct btrfs_root *extent_root = fs_info->extent_root;
4345 struct reloc_control *rc;
4346 struct inode *inode;
4347 struct btrfs_path *path;
4348 int ret;
4349 int rw = 0;
4350 int err = 0;
4351
4352 bg = btrfs_lookup_block_group(fs_info, group_start);
4353 if (!bg)
4354 return -ENOENT;
4355
4356 if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4357 btrfs_put_block_group(bg);
4358 return -ETXTBSY;
4359 }
4360
4361 rc = alloc_reloc_control(fs_info);
4362 if (!rc) {
4363 btrfs_put_block_group(bg);
4364 return -ENOMEM;
4365 }
4366
4367 rc->extent_root = extent_root;
4368 rc->block_group = bg;
4369
4370 ret = btrfs_inc_block_group_ro(rc->block_group);
4371 if (ret) {
4372 err = ret;
4373 goto out;
4374 }
4375 rw = 1;
4376
4377 path = btrfs_alloc_path();
4378 if (!path) {
4379 err = -ENOMEM;
4380 goto out;
4381 }
4382
4383 inode = lookup_free_space_inode(rc->block_group, path);
4384 btrfs_free_path(path);
4385
4386 if (!IS_ERR(inode))
4387 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4388 else
4389 ret = PTR_ERR(inode);
4390
4391 if (ret && ret != -ENOENT) {
4392 err = ret;
4393 goto out;
4394 }
4395
4396 rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4397 if (IS_ERR(rc->data_inode)) {
4398 err = PTR_ERR(rc->data_inode);
4399 rc->data_inode = NULL;
4400 goto out;
4401 }
4402
4403 describe_relocation(fs_info, rc->block_group);
4404
4405 btrfs_wait_block_group_reservations(rc->block_group);
4406 btrfs_wait_nocow_writers(rc->block_group);
4407 btrfs_wait_ordered_roots(fs_info, U64_MAX,
4408 rc->block_group->key.objectid,
4409 rc->block_group->key.offset);
4410
4411 while (1) {
4412 mutex_lock(&fs_info->cleaner_mutex);
4413 ret = relocate_block_group(rc);
4414 mutex_unlock(&fs_info->cleaner_mutex);
4415 if (ret < 0)
4416 err = ret;
4417
4418 /*
4419 * We may have gotten ENOSPC after we already dirtied some
4420 * extents. If writeout happens while we're relocating a
4421 * different block group we could end up hitting the
4422 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4423 * btrfs_reloc_cow_block. Make sure we write everything out
4424 * properly so we don't trip over this problem, and then break
4425 * out of the loop if we hit an error.
4426 */
4427 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4428 ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4429 (u64)-1);
4430 if (ret)
4431 err = ret;
4432 invalidate_mapping_pages(rc->data_inode->i_mapping,
4433 0, -1);
4434 rc->stage = UPDATE_DATA_PTRS;
4435 }
4436
4437 if (err < 0)
4438 goto out;
4439
4440 if (rc->extents_found == 0)
4441 break;
4442
4443 btrfs_info(fs_info, "found %llu extents", rc->extents_found);
4444
4445 }
4446
4447 WARN_ON(rc->block_group->pinned > 0);
4448 WARN_ON(rc->block_group->reserved > 0);
4449 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4450 out:
4451 if (err && rw)
4452 btrfs_dec_block_group_ro(rc->block_group);
4453 iput(rc->data_inode);
4454 btrfs_put_block_group(rc->block_group);
4455 kfree(rc);
4456 return err;
4457 }
4458
mark_garbage_root(struct btrfs_root * root)4459 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4460 {
4461 struct btrfs_fs_info *fs_info = root->fs_info;
4462 struct btrfs_trans_handle *trans;
4463 int ret, err;
4464
4465 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4466 if (IS_ERR(trans))
4467 return PTR_ERR(trans);
4468
4469 memset(&root->root_item.drop_progress, 0,
4470 sizeof(root->root_item.drop_progress));
4471 root->root_item.drop_level = 0;
4472 btrfs_set_root_refs(&root->root_item, 0);
4473 ret = btrfs_update_root(trans, fs_info->tree_root,
4474 &root->root_key, &root->root_item);
4475
4476 err = btrfs_end_transaction(trans);
4477 if (err)
4478 return err;
4479 return ret;
4480 }
4481
4482 /*
4483 * recover relocation interrupted by system crash.
4484 *
4485 * this function resumes merging reloc trees with corresponding fs trees.
4486 * this is important for keeping the sharing of tree blocks
4487 */
btrfs_recover_relocation(struct btrfs_root * root)4488 int btrfs_recover_relocation(struct btrfs_root *root)
4489 {
4490 struct btrfs_fs_info *fs_info = root->fs_info;
4491 LIST_HEAD(reloc_roots);
4492 struct btrfs_key key;
4493 struct btrfs_root *fs_root;
4494 struct btrfs_root *reloc_root;
4495 struct btrfs_path *path;
4496 struct extent_buffer *leaf;
4497 struct reloc_control *rc = NULL;
4498 struct btrfs_trans_handle *trans;
4499 int ret;
4500 int err = 0;
4501
4502 path = btrfs_alloc_path();
4503 if (!path)
4504 return -ENOMEM;
4505 path->reada = READA_BACK;
4506
4507 key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4508 key.type = BTRFS_ROOT_ITEM_KEY;
4509 key.offset = (u64)-1;
4510
4511 while (1) {
4512 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4513 path, 0, 0);
4514 if (ret < 0) {
4515 err = ret;
4516 goto out;
4517 }
4518 if (ret > 0) {
4519 if (path->slots[0] == 0)
4520 break;
4521 path->slots[0]--;
4522 }
4523 leaf = path->nodes[0];
4524 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4525 btrfs_release_path(path);
4526
4527 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4528 key.type != BTRFS_ROOT_ITEM_KEY)
4529 break;
4530
4531 reloc_root = btrfs_read_fs_root(root, &key);
4532 if (IS_ERR(reloc_root)) {
4533 err = PTR_ERR(reloc_root);
4534 goto out;
4535 }
4536
4537 list_add(&reloc_root->root_list, &reloc_roots);
4538
4539 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4540 fs_root = read_fs_root(fs_info,
4541 reloc_root->root_key.offset);
4542 if (IS_ERR(fs_root)) {
4543 ret = PTR_ERR(fs_root);
4544 if (ret != -ENOENT) {
4545 err = ret;
4546 goto out;
4547 }
4548 ret = mark_garbage_root(reloc_root);
4549 if (ret < 0) {
4550 err = ret;
4551 goto out;
4552 }
4553 }
4554 }
4555
4556 if (key.offset == 0)
4557 break;
4558
4559 key.offset--;
4560 }
4561 btrfs_release_path(path);
4562
4563 if (list_empty(&reloc_roots))
4564 goto out;
4565
4566 rc = alloc_reloc_control(fs_info);
4567 if (!rc) {
4568 err = -ENOMEM;
4569 goto out;
4570 }
4571
4572 rc->extent_root = fs_info->extent_root;
4573
4574 set_reloc_control(rc);
4575
4576 trans = btrfs_join_transaction(rc->extent_root);
4577 if (IS_ERR(trans)) {
4578 unset_reloc_control(rc);
4579 err = PTR_ERR(trans);
4580 goto out_free;
4581 }
4582
4583 rc->merge_reloc_tree = 1;
4584
4585 while (!list_empty(&reloc_roots)) {
4586 reloc_root = list_entry(reloc_roots.next,
4587 struct btrfs_root, root_list);
4588 list_del(&reloc_root->root_list);
4589
4590 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4591 list_add_tail(&reloc_root->root_list,
4592 &rc->reloc_roots);
4593 continue;
4594 }
4595
4596 fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
4597 if (IS_ERR(fs_root)) {
4598 err = PTR_ERR(fs_root);
4599 list_add_tail(&reloc_root->root_list, &reloc_roots);
4600 goto out_free;
4601 }
4602
4603 err = __add_reloc_root(reloc_root);
4604 BUG_ON(err < 0); /* -ENOMEM or logic error */
4605 fs_root->reloc_root = reloc_root;
4606 }
4607
4608 err = btrfs_commit_transaction(trans);
4609 if (err)
4610 goto out_free;
4611
4612 merge_reloc_roots(rc);
4613
4614 unset_reloc_control(rc);
4615
4616 trans = btrfs_join_transaction(rc->extent_root);
4617 if (IS_ERR(trans)) {
4618 err = PTR_ERR(trans);
4619 goto out_free;
4620 }
4621 err = btrfs_commit_transaction(trans);
4622
4623 ret = clean_dirty_subvols(rc);
4624 if (ret < 0 && !err)
4625 err = ret;
4626 out_free:
4627 kfree(rc);
4628 out:
4629 if (!list_empty(&reloc_roots))
4630 free_reloc_roots(&reloc_roots);
4631
4632 btrfs_free_path(path);
4633
4634 if (err == 0) {
4635 /* cleanup orphan inode in data relocation tree */
4636 fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4637 if (IS_ERR(fs_root))
4638 err = PTR_ERR(fs_root);
4639 else
4640 err = btrfs_orphan_cleanup(fs_root);
4641 }
4642 return err;
4643 }
4644
4645 /*
4646 * helper to add ordered checksum for data relocation.
4647 *
4648 * cloning checksum properly handles the nodatasum extents.
4649 * it also saves CPU time to re-calculate the checksum.
4650 */
btrfs_reloc_clone_csums(struct inode * inode,u64 file_pos,u64 len)4651 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4652 {
4653 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4654 struct btrfs_ordered_sum *sums;
4655 struct btrfs_ordered_extent *ordered;
4656 int ret;
4657 u64 disk_bytenr;
4658 u64 new_bytenr;
4659 LIST_HEAD(list);
4660
4661 ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4662 BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4663
4664 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4665 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4666 disk_bytenr + len - 1, &list, 0);
4667 if (ret)
4668 goto out;
4669
4670 while (!list_empty(&list)) {
4671 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4672 list_del_init(&sums->list);
4673
4674 /*
4675 * We need to offset the new_bytenr based on where the csum is.
4676 * We need to do this because we will read in entire prealloc
4677 * extents but we may have written to say the middle of the
4678 * prealloc extent, so we need to make sure the csum goes with
4679 * the right disk offset.
4680 *
4681 * We can do this because the data reloc inode refers strictly
4682 * to the on disk bytes, so we don't have to worry about
4683 * disk_len vs real len like with real inodes since it's all
4684 * disk length.
4685 */
4686 new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4687 sums->bytenr = new_bytenr;
4688
4689 btrfs_add_ordered_sum(ordered, sums);
4690 }
4691 out:
4692 btrfs_put_ordered_extent(ordered);
4693 return ret;
4694 }
4695
btrfs_reloc_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * cow)4696 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4697 struct btrfs_root *root, struct extent_buffer *buf,
4698 struct extent_buffer *cow)
4699 {
4700 struct btrfs_fs_info *fs_info = root->fs_info;
4701 struct reloc_control *rc;
4702 struct backref_node *node;
4703 int first_cow = 0;
4704 int level;
4705 int ret = 0;
4706
4707 rc = fs_info->reloc_ctl;
4708 if (!rc)
4709 return 0;
4710
4711 BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4712 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4713
4714 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4715 if (buf == root->node)
4716 __update_reloc_root(root, cow->start);
4717 }
4718
4719 level = btrfs_header_level(buf);
4720 if (btrfs_header_generation(buf) <=
4721 btrfs_root_last_snapshot(&root->root_item))
4722 first_cow = 1;
4723
4724 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4725 rc->create_reloc_tree) {
4726 WARN_ON(!first_cow && level == 0);
4727
4728 node = rc->backref_cache.path[level];
4729 BUG_ON(node->bytenr != buf->start &&
4730 node->new_bytenr != buf->start);
4731
4732 drop_node_buffer(node);
4733 extent_buffer_get(cow);
4734 node->eb = cow;
4735 node->new_bytenr = cow->start;
4736
4737 if (!node->pending) {
4738 list_move_tail(&node->list,
4739 &rc->backref_cache.pending[level]);
4740 node->pending = 1;
4741 }
4742
4743 if (first_cow)
4744 __mark_block_processed(rc, node);
4745
4746 if (first_cow && level > 0)
4747 rc->nodes_relocated += buf->len;
4748 }
4749
4750 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4751 ret = replace_file_extents(trans, rc, root, cow);
4752 return ret;
4753 }
4754
4755 /*
4756 * called before creating snapshot. it calculates metadata reservation
4757 * required for relocating tree blocks in the snapshot
4758 */
btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot * pending,u64 * bytes_to_reserve)4759 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4760 u64 *bytes_to_reserve)
4761 {
4762 struct btrfs_root *root = pending->root;
4763 struct reloc_control *rc = root->fs_info->reloc_ctl;
4764
4765 if (!rc || !have_reloc_root(root))
4766 return;
4767
4768 if (!rc->merge_reloc_tree)
4769 return;
4770
4771 root = root->reloc_root;
4772 BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4773 /*
4774 * relocation is in the stage of merging trees. the space
4775 * used by merging a reloc tree is twice the size of
4776 * relocated tree nodes in the worst case. half for cowing
4777 * the reloc tree, half for cowing the fs tree. the space
4778 * used by cowing the reloc tree will be freed after the
4779 * tree is dropped. if we create snapshot, cowing the fs
4780 * tree may use more space than it frees. so we need
4781 * reserve extra space.
4782 */
4783 *bytes_to_reserve += rc->nodes_relocated;
4784 }
4785
4786 /*
4787 * called after snapshot is created. migrate block reservation
4788 * and create reloc root for the newly created snapshot
4789 */
btrfs_reloc_post_snapshot(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)4790 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4791 struct btrfs_pending_snapshot *pending)
4792 {
4793 struct btrfs_root *root = pending->root;
4794 struct btrfs_root *reloc_root;
4795 struct btrfs_root *new_root;
4796 struct reloc_control *rc = root->fs_info->reloc_ctl;
4797 int ret;
4798
4799 if (!rc || !have_reloc_root(root))
4800 return 0;
4801
4802 rc = root->fs_info->reloc_ctl;
4803 rc->merging_rsv_size += rc->nodes_relocated;
4804
4805 if (rc->merge_reloc_tree) {
4806 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4807 rc->block_rsv,
4808 rc->nodes_relocated, true);
4809 if (ret)
4810 return ret;
4811 }
4812
4813 new_root = pending->snap;
4814 reloc_root = create_reloc_root(trans, root->reloc_root,
4815 new_root->root_key.objectid);
4816 if (IS_ERR(reloc_root))
4817 return PTR_ERR(reloc_root);
4818
4819 ret = __add_reloc_root(reloc_root);
4820 BUG_ON(ret < 0);
4821 new_root->reloc_root = reloc_root;
4822
4823 if (rc->create_reloc_tree)
4824 ret = clone_backref_node(trans, rc, root, reloc_root);
4825 return ret;
4826 }
4827