• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Alexander Block.  All rights reserved.
4  */
5 
6 #include <linux/bsearch.h>
7 #include <linux/fs.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
18 
19 #include "send.h"
20 #include "backref.h"
21 #include "locking.h"
22 #include "disk-io.h"
23 #include "btrfs_inode.h"
24 #include "transaction.h"
25 #include "compression.h"
26 
27 /*
28  * Maximum number of references an extent can have in order for us to attempt to
29  * issue clone operations instead of write operations. This currently exists to
30  * avoid hitting limitations of the backreference walking code (taking a lot of
31  * time and using too much memory for extents with large number of references).
32  */
33 #define SEND_MAX_EXTENT_REFS	64
34 
35 /*
36  * A fs_path is a helper to dynamically build path names with unknown size.
37  * It reallocates the internal buffer on demand.
38  * It allows fast adding of path elements on the right side (normal path) and
39  * fast adding to the left side (reversed path). A reversed path can also be
40  * unreversed if needed.
41  */
42 struct fs_path {
43 	union {
44 		struct {
45 			char *start;
46 			char *end;
47 
48 			char *buf;
49 			unsigned short buf_len:15;
50 			unsigned short reversed:1;
51 			char inline_buf[];
52 		};
53 		/*
54 		 * Average path length does not exceed 200 bytes, we'll have
55 		 * better packing in the slab and higher chance to satisfy
56 		 * a allocation later during send.
57 		 */
58 		char pad[256];
59 	};
60 };
61 #define FS_PATH_INLINE_SIZE \
62 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
63 
64 
65 /* reused for each extent */
66 struct clone_root {
67 	struct btrfs_root *root;
68 	u64 ino;
69 	u64 offset;
70 
71 	u64 found_refs;
72 };
73 
74 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
75 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
76 
77 struct send_ctx {
78 	struct file *send_filp;
79 	loff_t send_off;
80 	char *send_buf;
81 	u32 send_size;
82 	u32 send_max_size;
83 	u64 total_send_size;
84 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
85 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
86 
87 	struct btrfs_root *send_root;
88 	struct btrfs_root *parent_root;
89 	struct clone_root *clone_roots;
90 	int clone_roots_cnt;
91 
92 	/* current state of the compare_tree call */
93 	struct btrfs_path *left_path;
94 	struct btrfs_path *right_path;
95 	struct btrfs_key *cmp_key;
96 
97 	/*
98 	 * infos of the currently processed inode. In case of deleted inodes,
99 	 * these are the values from the deleted inode.
100 	 */
101 	u64 cur_ino;
102 	u64 cur_inode_gen;
103 	int cur_inode_new;
104 	int cur_inode_new_gen;
105 	int cur_inode_deleted;
106 	u64 cur_inode_size;
107 	u64 cur_inode_mode;
108 	u64 cur_inode_rdev;
109 	u64 cur_inode_last_extent;
110 	u64 cur_inode_next_write_offset;
111 	bool ignore_cur_inode;
112 
113 	u64 send_progress;
114 
115 	struct list_head new_refs;
116 	struct list_head deleted_refs;
117 
118 	struct radix_tree_root name_cache;
119 	struct list_head name_cache_list;
120 	int name_cache_size;
121 
122 	struct file_ra_state ra;
123 
124 	char *read_buf;
125 
126 	/*
127 	 * We process inodes by their increasing order, so if before an
128 	 * incremental send we reverse the parent/child relationship of
129 	 * directories such that a directory with a lower inode number was
130 	 * the parent of a directory with a higher inode number, and the one
131 	 * becoming the new parent got renamed too, we can't rename/move the
132 	 * directory with lower inode number when we finish processing it - we
133 	 * must process the directory with higher inode number first, then
134 	 * rename/move it and then rename/move the directory with lower inode
135 	 * number. Example follows.
136 	 *
137 	 * Tree state when the first send was performed:
138 	 *
139 	 * .
140 	 * |-- a                   (ino 257)
141 	 *     |-- b               (ino 258)
142 	 *         |
143 	 *         |
144 	 *         |-- c           (ino 259)
145 	 *         |   |-- d       (ino 260)
146 	 *         |
147 	 *         |-- c2          (ino 261)
148 	 *
149 	 * Tree state when the second (incremental) send is performed:
150 	 *
151 	 * .
152 	 * |-- a                   (ino 257)
153 	 *     |-- b               (ino 258)
154 	 *         |-- c2          (ino 261)
155 	 *             |-- d2      (ino 260)
156 	 *                 |-- cc  (ino 259)
157 	 *
158 	 * The sequence of steps that lead to the second state was:
159 	 *
160 	 * mv /a/b/c/d /a/b/c2/d2
161 	 * mv /a/b/c /a/b/c2/d2/cc
162 	 *
163 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
164 	 * before we move "d", which has higher inode number.
165 	 *
166 	 * So we just memorize which move/rename operations must be performed
167 	 * later when their respective parent is processed and moved/renamed.
168 	 */
169 
170 	/* Indexed by parent directory inode number. */
171 	struct rb_root pending_dir_moves;
172 
173 	/*
174 	 * Reverse index, indexed by the inode number of a directory that
175 	 * is waiting for the move/rename of its immediate parent before its
176 	 * own move/rename can be performed.
177 	 */
178 	struct rb_root waiting_dir_moves;
179 
180 	/*
181 	 * A directory that is going to be rm'ed might have a child directory
182 	 * which is in the pending directory moves index above. In this case,
183 	 * the directory can only be removed after the move/rename of its child
184 	 * is performed. Example:
185 	 *
186 	 * Parent snapshot:
187 	 *
188 	 * .                        (ino 256)
189 	 * |-- a/                   (ino 257)
190 	 *     |-- b/               (ino 258)
191 	 *         |-- c/           (ino 259)
192 	 *         |   |-- x/       (ino 260)
193 	 *         |
194 	 *         |-- y/           (ino 261)
195 	 *
196 	 * Send snapshot:
197 	 *
198 	 * .                        (ino 256)
199 	 * |-- a/                   (ino 257)
200 	 *     |-- b/               (ino 258)
201 	 *         |-- YY/          (ino 261)
202 	 *              |-- x/      (ino 260)
203 	 *
204 	 * Sequence of steps that lead to the send snapshot:
205 	 * rm -f /a/b/c/foo.txt
206 	 * mv /a/b/y /a/b/YY
207 	 * mv /a/b/c/x /a/b/YY
208 	 * rmdir /a/b/c
209 	 *
210 	 * When the child is processed, its move/rename is delayed until its
211 	 * parent is processed (as explained above), but all other operations
212 	 * like update utimes, chown, chgrp, etc, are performed and the paths
213 	 * that it uses for those operations must use the orphanized name of
214 	 * its parent (the directory we're going to rm later), so we need to
215 	 * memorize that name.
216 	 *
217 	 * Indexed by the inode number of the directory to be deleted.
218 	 */
219 	struct rb_root orphan_dirs;
220 };
221 
222 struct pending_dir_move {
223 	struct rb_node node;
224 	struct list_head list;
225 	u64 parent_ino;
226 	u64 ino;
227 	u64 gen;
228 	struct list_head update_refs;
229 };
230 
231 struct waiting_dir_move {
232 	struct rb_node node;
233 	u64 ino;
234 	/*
235 	 * There might be some directory that could not be removed because it
236 	 * was waiting for this directory inode to be moved first. Therefore
237 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
238 	 */
239 	u64 rmdir_ino;
240 	bool orphanized;
241 };
242 
243 struct orphan_dir_info {
244 	struct rb_node node;
245 	u64 ino;
246 	u64 gen;
247 	u64 last_dir_index_offset;
248 };
249 
250 struct name_cache_entry {
251 	struct list_head list;
252 	/*
253 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
254 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
255 	 * more then one inum would fall into the same entry, we use radix_list
256 	 * to store the additional entries. radix_list is also used to store
257 	 * entries where two entries have the same inum but different
258 	 * generations.
259 	 */
260 	struct list_head radix_list;
261 	u64 ino;
262 	u64 gen;
263 	u64 parent_ino;
264 	u64 parent_gen;
265 	int ret;
266 	int need_later_update;
267 	int name_len;
268 	char name[];
269 };
270 
271 #define ADVANCE							1
272 #define ADVANCE_ONLY_NEXT					-1
273 
274 enum btrfs_compare_tree_result {
275 	BTRFS_COMPARE_TREE_NEW,
276 	BTRFS_COMPARE_TREE_DELETED,
277 	BTRFS_COMPARE_TREE_CHANGED,
278 	BTRFS_COMPARE_TREE_SAME,
279 };
280 typedef int (*btrfs_changed_cb_t)(struct btrfs_path *left_path,
281 				  struct btrfs_path *right_path,
282 				  struct btrfs_key *key,
283 				  enum btrfs_compare_tree_result result,
284 				  void *ctx);
285 
286 __cold
inconsistent_snapshot_error(struct send_ctx * sctx,enum btrfs_compare_tree_result result,const char * what)287 static void inconsistent_snapshot_error(struct send_ctx *sctx,
288 					enum btrfs_compare_tree_result result,
289 					const char *what)
290 {
291 	const char *result_string;
292 
293 	switch (result) {
294 	case BTRFS_COMPARE_TREE_NEW:
295 		result_string = "new";
296 		break;
297 	case BTRFS_COMPARE_TREE_DELETED:
298 		result_string = "deleted";
299 		break;
300 	case BTRFS_COMPARE_TREE_CHANGED:
301 		result_string = "updated";
302 		break;
303 	case BTRFS_COMPARE_TREE_SAME:
304 		ASSERT(0);
305 		result_string = "unchanged";
306 		break;
307 	default:
308 		ASSERT(0);
309 		result_string = "unexpected";
310 	}
311 
312 	btrfs_err(sctx->send_root->fs_info,
313 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
314 		  result_string, what, sctx->cmp_key->objectid,
315 		  sctx->send_root->root_key.objectid,
316 		  (sctx->parent_root ?
317 		   sctx->parent_root->root_key.objectid : 0));
318 }
319 
320 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
321 
322 static struct waiting_dir_move *
323 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
324 
325 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
326 
need_send_hole(struct send_ctx * sctx)327 static int need_send_hole(struct send_ctx *sctx)
328 {
329 	return (sctx->parent_root && !sctx->cur_inode_new &&
330 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
331 		S_ISREG(sctx->cur_inode_mode));
332 }
333 
fs_path_reset(struct fs_path * p)334 static void fs_path_reset(struct fs_path *p)
335 {
336 	if (p->reversed) {
337 		p->start = p->buf + p->buf_len - 1;
338 		p->end = p->start;
339 		*p->start = 0;
340 	} else {
341 		p->start = p->buf;
342 		p->end = p->start;
343 		*p->start = 0;
344 	}
345 }
346 
fs_path_alloc(void)347 static struct fs_path *fs_path_alloc(void)
348 {
349 	struct fs_path *p;
350 
351 	p = kmalloc(sizeof(*p), GFP_KERNEL);
352 	if (!p)
353 		return NULL;
354 	p->reversed = 0;
355 	p->buf = p->inline_buf;
356 	p->buf_len = FS_PATH_INLINE_SIZE;
357 	fs_path_reset(p);
358 	return p;
359 }
360 
fs_path_alloc_reversed(void)361 static struct fs_path *fs_path_alloc_reversed(void)
362 {
363 	struct fs_path *p;
364 
365 	p = fs_path_alloc();
366 	if (!p)
367 		return NULL;
368 	p->reversed = 1;
369 	fs_path_reset(p);
370 	return p;
371 }
372 
fs_path_free(struct fs_path * p)373 static void fs_path_free(struct fs_path *p)
374 {
375 	if (!p)
376 		return;
377 	if (p->buf != p->inline_buf)
378 		kfree(p->buf);
379 	kfree(p);
380 }
381 
fs_path_len(struct fs_path * p)382 static int fs_path_len(struct fs_path *p)
383 {
384 	return p->end - p->start;
385 }
386 
fs_path_ensure_buf(struct fs_path * p,int len)387 static int fs_path_ensure_buf(struct fs_path *p, int len)
388 {
389 	char *tmp_buf;
390 	int path_len;
391 	int old_buf_len;
392 
393 	len++;
394 
395 	if (p->buf_len >= len)
396 		return 0;
397 
398 	if (len > PATH_MAX) {
399 		WARN_ON(1);
400 		return -ENOMEM;
401 	}
402 
403 	path_len = p->end - p->start;
404 	old_buf_len = p->buf_len;
405 
406 	/*
407 	 * First time the inline_buf does not suffice
408 	 */
409 	if (p->buf == p->inline_buf) {
410 		tmp_buf = kmalloc(len, GFP_KERNEL);
411 		if (tmp_buf)
412 			memcpy(tmp_buf, p->buf, old_buf_len);
413 	} else {
414 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
415 	}
416 	if (!tmp_buf)
417 		return -ENOMEM;
418 	p->buf = tmp_buf;
419 	/*
420 	 * The real size of the buffer is bigger, this will let the fast path
421 	 * happen most of the time
422 	 */
423 	p->buf_len = ksize(p->buf);
424 
425 	if (p->reversed) {
426 		tmp_buf = p->buf + old_buf_len - path_len - 1;
427 		p->end = p->buf + p->buf_len - 1;
428 		p->start = p->end - path_len;
429 		memmove(p->start, tmp_buf, path_len + 1);
430 	} else {
431 		p->start = p->buf;
432 		p->end = p->start + path_len;
433 	}
434 	return 0;
435 }
436 
fs_path_prepare_for_add(struct fs_path * p,int name_len,char ** prepared)437 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
438 				   char **prepared)
439 {
440 	int ret;
441 	int new_len;
442 
443 	new_len = p->end - p->start + name_len;
444 	if (p->start != p->end)
445 		new_len++;
446 	ret = fs_path_ensure_buf(p, new_len);
447 	if (ret < 0)
448 		goto out;
449 
450 	if (p->reversed) {
451 		if (p->start != p->end)
452 			*--p->start = '/';
453 		p->start -= name_len;
454 		*prepared = p->start;
455 	} else {
456 		if (p->start != p->end)
457 			*p->end++ = '/';
458 		*prepared = p->end;
459 		p->end += name_len;
460 		*p->end = 0;
461 	}
462 
463 out:
464 	return ret;
465 }
466 
fs_path_add(struct fs_path * p,const char * name,int name_len)467 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
468 {
469 	int ret;
470 	char *prepared;
471 
472 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
473 	if (ret < 0)
474 		goto out;
475 	memcpy(prepared, name, name_len);
476 
477 out:
478 	return ret;
479 }
480 
fs_path_add_path(struct fs_path * p,struct fs_path * p2)481 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
482 {
483 	int ret;
484 	char *prepared;
485 
486 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
487 	if (ret < 0)
488 		goto out;
489 	memcpy(prepared, p2->start, p2->end - p2->start);
490 
491 out:
492 	return ret;
493 }
494 
fs_path_add_from_extent_buffer(struct fs_path * p,struct extent_buffer * eb,unsigned long off,int len)495 static int fs_path_add_from_extent_buffer(struct fs_path *p,
496 					  struct extent_buffer *eb,
497 					  unsigned long off, int len)
498 {
499 	int ret;
500 	char *prepared;
501 
502 	ret = fs_path_prepare_for_add(p, len, &prepared);
503 	if (ret < 0)
504 		goto out;
505 
506 	read_extent_buffer(eb, prepared, off, len);
507 
508 out:
509 	return ret;
510 }
511 
fs_path_copy(struct fs_path * p,struct fs_path * from)512 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
513 {
514 	int ret;
515 
516 	p->reversed = from->reversed;
517 	fs_path_reset(p);
518 
519 	ret = fs_path_add_path(p, from);
520 
521 	return ret;
522 }
523 
524 
fs_path_unreverse(struct fs_path * p)525 static void fs_path_unreverse(struct fs_path *p)
526 {
527 	char *tmp;
528 	int len;
529 
530 	if (!p->reversed)
531 		return;
532 
533 	tmp = p->start;
534 	len = p->end - p->start;
535 	p->start = p->buf;
536 	p->end = p->start + len;
537 	memmove(p->start, tmp, len + 1);
538 	p->reversed = 0;
539 }
540 
alloc_path_for_send(void)541 static struct btrfs_path *alloc_path_for_send(void)
542 {
543 	struct btrfs_path *path;
544 
545 	path = btrfs_alloc_path();
546 	if (!path)
547 		return NULL;
548 	path->search_commit_root = 1;
549 	path->skip_locking = 1;
550 	path->need_commit_sem = 1;
551 	return path;
552 }
553 
write_buf(struct file * filp,const void * buf,u32 len,loff_t * off)554 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
555 {
556 	int ret;
557 	u32 pos = 0;
558 
559 	while (pos < len) {
560 		ret = kernel_write(filp, buf + pos, len - pos, off);
561 		/* TODO handle that correctly */
562 		/*if (ret == -ERESTARTSYS) {
563 			continue;
564 		}*/
565 		if (ret < 0)
566 			return ret;
567 		if (ret == 0) {
568 			return -EIO;
569 		}
570 		pos += ret;
571 	}
572 
573 	return 0;
574 }
575 
tlv_put(struct send_ctx * sctx,u16 attr,const void * data,int len)576 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
577 {
578 	struct btrfs_tlv_header *hdr;
579 	int total_len = sizeof(*hdr) + len;
580 	int left = sctx->send_max_size - sctx->send_size;
581 
582 	if (unlikely(left < total_len))
583 		return -EOVERFLOW;
584 
585 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
586 	hdr->tlv_type = cpu_to_le16(attr);
587 	hdr->tlv_len = cpu_to_le16(len);
588 	memcpy(hdr + 1, data, len);
589 	sctx->send_size += total_len;
590 
591 	return 0;
592 }
593 
594 #define TLV_PUT_DEFINE_INT(bits) \
595 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
596 			u##bits attr, u##bits value)			\
597 	{								\
598 		__le##bits __tmp = cpu_to_le##bits(value);		\
599 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
600 	}
601 
602 TLV_PUT_DEFINE_INT(64)
603 
tlv_put_string(struct send_ctx * sctx,u16 attr,const char * str,int len)604 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
605 			  const char *str, int len)
606 {
607 	if (len == -1)
608 		len = strlen(str);
609 	return tlv_put(sctx, attr, str, len);
610 }
611 
tlv_put_uuid(struct send_ctx * sctx,u16 attr,const u8 * uuid)612 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
613 			const u8 *uuid)
614 {
615 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
616 }
617 
tlv_put_btrfs_timespec(struct send_ctx * sctx,u16 attr,struct extent_buffer * eb,struct btrfs_timespec * ts)618 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
619 				  struct extent_buffer *eb,
620 				  struct btrfs_timespec *ts)
621 {
622 	struct btrfs_timespec bts;
623 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
624 	return tlv_put(sctx, attr, &bts, sizeof(bts));
625 }
626 
627 
628 #define TLV_PUT(sctx, attrtype, data, attrlen) \
629 	do { \
630 		ret = tlv_put(sctx, attrtype, data, attrlen); \
631 		if (ret < 0) \
632 			goto tlv_put_failure; \
633 	} while (0)
634 
635 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
636 	do { \
637 		ret = tlv_put_u##bits(sctx, attrtype, value); \
638 		if (ret < 0) \
639 			goto tlv_put_failure; \
640 	} while (0)
641 
642 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
643 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
644 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
645 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
646 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
647 	do { \
648 		ret = tlv_put_string(sctx, attrtype, str, len); \
649 		if (ret < 0) \
650 			goto tlv_put_failure; \
651 	} while (0)
652 #define TLV_PUT_PATH(sctx, attrtype, p) \
653 	do { \
654 		ret = tlv_put_string(sctx, attrtype, p->start, \
655 			p->end - p->start); \
656 		if (ret < 0) \
657 			goto tlv_put_failure; \
658 	} while(0)
659 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
660 	do { \
661 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
662 		if (ret < 0) \
663 			goto tlv_put_failure; \
664 	} while (0)
665 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
666 	do { \
667 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
668 		if (ret < 0) \
669 			goto tlv_put_failure; \
670 	} while (0)
671 
send_header(struct send_ctx * sctx)672 static int send_header(struct send_ctx *sctx)
673 {
674 	struct btrfs_stream_header hdr;
675 
676 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
677 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
678 
679 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
680 					&sctx->send_off);
681 }
682 
683 /*
684  * For each command/item we want to send to userspace, we call this function.
685  */
begin_cmd(struct send_ctx * sctx,int cmd)686 static int begin_cmd(struct send_ctx *sctx, int cmd)
687 {
688 	struct btrfs_cmd_header *hdr;
689 
690 	if (WARN_ON(!sctx->send_buf))
691 		return -EINVAL;
692 
693 	BUG_ON(sctx->send_size);
694 
695 	sctx->send_size += sizeof(*hdr);
696 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
697 	hdr->cmd = cpu_to_le16(cmd);
698 
699 	return 0;
700 }
701 
send_cmd(struct send_ctx * sctx)702 static int send_cmd(struct send_ctx *sctx)
703 {
704 	int ret;
705 	struct btrfs_cmd_header *hdr;
706 	u32 crc;
707 
708 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
709 	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
710 	hdr->crc = 0;
711 
712 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
713 	hdr->crc = cpu_to_le32(crc);
714 
715 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
716 					&sctx->send_off);
717 
718 	sctx->total_send_size += sctx->send_size;
719 	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
720 	sctx->send_size = 0;
721 
722 	return ret;
723 }
724 
725 /*
726  * Sends a move instruction to user space
727  */
send_rename(struct send_ctx * sctx,struct fs_path * from,struct fs_path * to)728 static int send_rename(struct send_ctx *sctx,
729 		     struct fs_path *from, struct fs_path *to)
730 {
731 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
732 	int ret;
733 
734 	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
735 
736 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
737 	if (ret < 0)
738 		goto out;
739 
740 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
741 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
742 
743 	ret = send_cmd(sctx);
744 
745 tlv_put_failure:
746 out:
747 	return ret;
748 }
749 
750 /*
751  * Sends a link instruction to user space
752  */
send_link(struct send_ctx * sctx,struct fs_path * path,struct fs_path * lnk)753 static int send_link(struct send_ctx *sctx,
754 		     struct fs_path *path, struct fs_path *lnk)
755 {
756 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
757 	int ret;
758 
759 	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
760 
761 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
762 	if (ret < 0)
763 		goto out;
764 
765 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
766 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
767 
768 	ret = send_cmd(sctx);
769 
770 tlv_put_failure:
771 out:
772 	return ret;
773 }
774 
775 /*
776  * Sends an unlink instruction to user space
777  */
send_unlink(struct send_ctx * sctx,struct fs_path * path)778 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
779 {
780 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
781 	int ret;
782 
783 	btrfs_debug(fs_info, "send_unlink %s", path->start);
784 
785 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
786 	if (ret < 0)
787 		goto out;
788 
789 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
790 
791 	ret = send_cmd(sctx);
792 
793 tlv_put_failure:
794 out:
795 	return ret;
796 }
797 
798 /*
799  * Sends a rmdir instruction to user space
800  */
send_rmdir(struct send_ctx * sctx,struct fs_path * path)801 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
802 {
803 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
804 	int ret;
805 
806 	btrfs_debug(fs_info, "send_rmdir %s", path->start);
807 
808 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
809 	if (ret < 0)
810 		goto out;
811 
812 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
813 
814 	ret = send_cmd(sctx);
815 
816 tlv_put_failure:
817 out:
818 	return ret;
819 }
820 
821 /*
822  * Helper function to retrieve some fields from an inode item.
823  */
__get_inode_info(struct btrfs_root * root,struct btrfs_path * path,u64 ino,u64 * size,u64 * gen,u64 * mode,u64 * uid,u64 * gid,u64 * rdev)824 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
825 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
826 			  u64 *gid, u64 *rdev)
827 {
828 	int ret;
829 	struct btrfs_inode_item *ii;
830 	struct btrfs_key key;
831 
832 	key.objectid = ino;
833 	key.type = BTRFS_INODE_ITEM_KEY;
834 	key.offset = 0;
835 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
836 	if (ret) {
837 		if (ret > 0)
838 			ret = -ENOENT;
839 		return ret;
840 	}
841 
842 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
843 			struct btrfs_inode_item);
844 	if (size)
845 		*size = btrfs_inode_size(path->nodes[0], ii);
846 	if (gen)
847 		*gen = btrfs_inode_generation(path->nodes[0], ii);
848 	if (mode)
849 		*mode = btrfs_inode_mode(path->nodes[0], ii);
850 	if (uid)
851 		*uid = btrfs_inode_uid(path->nodes[0], ii);
852 	if (gid)
853 		*gid = btrfs_inode_gid(path->nodes[0], ii);
854 	if (rdev)
855 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
856 
857 	return ret;
858 }
859 
get_inode_info(struct btrfs_root * root,u64 ino,u64 * size,u64 * gen,u64 * mode,u64 * uid,u64 * gid,u64 * rdev)860 static int get_inode_info(struct btrfs_root *root,
861 			  u64 ino, u64 *size, u64 *gen,
862 			  u64 *mode, u64 *uid, u64 *gid,
863 			  u64 *rdev)
864 {
865 	struct btrfs_path *path;
866 	int ret;
867 
868 	path = alloc_path_for_send();
869 	if (!path)
870 		return -ENOMEM;
871 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
872 			       rdev);
873 	btrfs_free_path(path);
874 	return ret;
875 }
876 
877 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
878 				   struct fs_path *p,
879 				   void *ctx);
880 
881 /*
882  * Helper function to iterate the entries in ONE btrfs_inode_ref or
883  * btrfs_inode_extref.
884  * The iterate callback may return a non zero value to stop iteration. This can
885  * be a negative value for error codes or 1 to simply stop it.
886  *
887  * path must point to the INODE_REF or INODE_EXTREF when called.
888  */
iterate_inode_ref(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * found_key,int resolve,iterate_inode_ref_t iterate,void * ctx)889 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
890 			     struct btrfs_key *found_key, int resolve,
891 			     iterate_inode_ref_t iterate, void *ctx)
892 {
893 	struct extent_buffer *eb = path->nodes[0];
894 	struct btrfs_item *item;
895 	struct btrfs_inode_ref *iref;
896 	struct btrfs_inode_extref *extref;
897 	struct btrfs_path *tmp_path;
898 	struct fs_path *p;
899 	u32 cur = 0;
900 	u32 total;
901 	int slot = path->slots[0];
902 	u32 name_len;
903 	char *start;
904 	int ret = 0;
905 	int num = 0;
906 	int index;
907 	u64 dir;
908 	unsigned long name_off;
909 	unsigned long elem_size;
910 	unsigned long ptr;
911 
912 	p = fs_path_alloc_reversed();
913 	if (!p)
914 		return -ENOMEM;
915 
916 	tmp_path = alloc_path_for_send();
917 	if (!tmp_path) {
918 		fs_path_free(p);
919 		return -ENOMEM;
920 	}
921 
922 
923 	if (found_key->type == BTRFS_INODE_REF_KEY) {
924 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
925 						    struct btrfs_inode_ref);
926 		item = btrfs_item_nr(slot);
927 		total = btrfs_item_size(eb, item);
928 		elem_size = sizeof(*iref);
929 	} else {
930 		ptr = btrfs_item_ptr_offset(eb, slot);
931 		total = btrfs_item_size_nr(eb, slot);
932 		elem_size = sizeof(*extref);
933 	}
934 
935 	while (cur < total) {
936 		fs_path_reset(p);
937 
938 		if (found_key->type == BTRFS_INODE_REF_KEY) {
939 			iref = (struct btrfs_inode_ref *)(ptr + cur);
940 			name_len = btrfs_inode_ref_name_len(eb, iref);
941 			name_off = (unsigned long)(iref + 1);
942 			index = btrfs_inode_ref_index(eb, iref);
943 			dir = found_key->offset;
944 		} else {
945 			extref = (struct btrfs_inode_extref *)(ptr + cur);
946 			name_len = btrfs_inode_extref_name_len(eb, extref);
947 			name_off = (unsigned long)&extref->name;
948 			index = btrfs_inode_extref_index(eb, extref);
949 			dir = btrfs_inode_extref_parent(eb, extref);
950 		}
951 
952 		if (resolve) {
953 			start = btrfs_ref_to_path(root, tmp_path, name_len,
954 						  name_off, eb, dir,
955 						  p->buf, p->buf_len);
956 			if (IS_ERR(start)) {
957 				ret = PTR_ERR(start);
958 				goto out;
959 			}
960 			if (start < p->buf) {
961 				/* overflow , try again with larger buffer */
962 				ret = fs_path_ensure_buf(p,
963 						p->buf_len + p->buf - start);
964 				if (ret < 0)
965 					goto out;
966 				start = btrfs_ref_to_path(root, tmp_path,
967 							  name_len, name_off,
968 							  eb, dir,
969 							  p->buf, p->buf_len);
970 				if (IS_ERR(start)) {
971 					ret = PTR_ERR(start);
972 					goto out;
973 				}
974 				BUG_ON(start < p->buf);
975 			}
976 			p->start = start;
977 		} else {
978 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
979 							     name_len);
980 			if (ret < 0)
981 				goto out;
982 		}
983 
984 		cur += elem_size + name_len;
985 		ret = iterate(num, dir, index, p, ctx);
986 		if (ret)
987 			goto out;
988 		num++;
989 	}
990 
991 out:
992 	btrfs_free_path(tmp_path);
993 	fs_path_free(p);
994 	return ret;
995 }
996 
997 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
998 				  const char *name, int name_len,
999 				  const char *data, int data_len,
1000 				  u8 type, void *ctx);
1001 
1002 /*
1003  * Helper function to iterate the entries in ONE btrfs_dir_item.
1004  * The iterate callback may return a non zero value to stop iteration. This can
1005  * be a negative value for error codes or 1 to simply stop it.
1006  *
1007  * path must point to the dir item when called.
1008  */
iterate_dir_item(struct btrfs_root * root,struct btrfs_path * path,iterate_dir_item_t iterate,void * ctx)1009 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1010 			    iterate_dir_item_t iterate, void *ctx)
1011 {
1012 	int ret = 0;
1013 	struct extent_buffer *eb;
1014 	struct btrfs_item *item;
1015 	struct btrfs_dir_item *di;
1016 	struct btrfs_key di_key;
1017 	char *buf = NULL;
1018 	int buf_len;
1019 	u32 name_len;
1020 	u32 data_len;
1021 	u32 cur;
1022 	u32 len;
1023 	u32 total;
1024 	int slot;
1025 	int num;
1026 	u8 type;
1027 
1028 	/*
1029 	 * Start with a small buffer (1 page). If later we end up needing more
1030 	 * space, which can happen for xattrs on a fs with a leaf size greater
1031 	 * then the page size, attempt to increase the buffer. Typically xattr
1032 	 * values are small.
1033 	 */
1034 	buf_len = PATH_MAX;
1035 	buf = kmalloc(buf_len, GFP_KERNEL);
1036 	if (!buf) {
1037 		ret = -ENOMEM;
1038 		goto out;
1039 	}
1040 
1041 	eb = path->nodes[0];
1042 	slot = path->slots[0];
1043 	item = btrfs_item_nr(slot);
1044 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1045 	cur = 0;
1046 	len = 0;
1047 	total = btrfs_item_size(eb, item);
1048 
1049 	num = 0;
1050 	while (cur < total) {
1051 		name_len = btrfs_dir_name_len(eb, di);
1052 		data_len = btrfs_dir_data_len(eb, di);
1053 		type = btrfs_dir_type(eb, di);
1054 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1055 
1056 		if (type == BTRFS_FT_XATTR) {
1057 			if (name_len > XATTR_NAME_MAX) {
1058 				ret = -ENAMETOOLONG;
1059 				goto out;
1060 			}
1061 			if (name_len + data_len >
1062 					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1063 				ret = -E2BIG;
1064 				goto out;
1065 			}
1066 		} else {
1067 			/*
1068 			 * Path too long
1069 			 */
1070 			if (name_len + data_len > PATH_MAX) {
1071 				ret = -ENAMETOOLONG;
1072 				goto out;
1073 			}
1074 		}
1075 
1076 		if (name_len + data_len > buf_len) {
1077 			buf_len = name_len + data_len;
1078 			if (is_vmalloc_addr(buf)) {
1079 				vfree(buf);
1080 				buf = NULL;
1081 			} else {
1082 				char *tmp = krealloc(buf, buf_len,
1083 						GFP_KERNEL | __GFP_NOWARN);
1084 
1085 				if (!tmp)
1086 					kfree(buf);
1087 				buf = tmp;
1088 			}
1089 			if (!buf) {
1090 				buf = kvmalloc(buf_len, GFP_KERNEL);
1091 				if (!buf) {
1092 					ret = -ENOMEM;
1093 					goto out;
1094 				}
1095 			}
1096 		}
1097 
1098 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1099 				name_len + data_len);
1100 
1101 		len = sizeof(*di) + name_len + data_len;
1102 		di = (struct btrfs_dir_item *)((char *)di + len);
1103 		cur += len;
1104 
1105 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1106 				data_len, type, ctx);
1107 		if (ret < 0)
1108 			goto out;
1109 		if (ret) {
1110 			ret = 0;
1111 			goto out;
1112 		}
1113 
1114 		num++;
1115 	}
1116 
1117 out:
1118 	kvfree(buf);
1119 	return ret;
1120 }
1121 
__copy_first_ref(int num,u64 dir,int index,struct fs_path * p,void * ctx)1122 static int __copy_first_ref(int num, u64 dir, int index,
1123 			    struct fs_path *p, void *ctx)
1124 {
1125 	int ret;
1126 	struct fs_path *pt = ctx;
1127 
1128 	ret = fs_path_copy(pt, p);
1129 	if (ret < 0)
1130 		return ret;
1131 
1132 	/* we want the first only */
1133 	return 1;
1134 }
1135 
1136 /*
1137  * Retrieve the first path of an inode. If an inode has more then one
1138  * ref/hardlink, this is ignored.
1139  */
get_inode_path(struct btrfs_root * root,u64 ino,struct fs_path * path)1140 static int get_inode_path(struct btrfs_root *root,
1141 			  u64 ino, struct fs_path *path)
1142 {
1143 	int ret;
1144 	struct btrfs_key key, found_key;
1145 	struct btrfs_path *p;
1146 
1147 	p = alloc_path_for_send();
1148 	if (!p)
1149 		return -ENOMEM;
1150 
1151 	fs_path_reset(path);
1152 
1153 	key.objectid = ino;
1154 	key.type = BTRFS_INODE_REF_KEY;
1155 	key.offset = 0;
1156 
1157 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1158 	if (ret < 0)
1159 		goto out;
1160 	if (ret) {
1161 		ret = 1;
1162 		goto out;
1163 	}
1164 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1165 	if (found_key.objectid != ino ||
1166 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1167 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1168 		ret = -ENOENT;
1169 		goto out;
1170 	}
1171 
1172 	ret = iterate_inode_ref(root, p, &found_key, 1,
1173 				__copy_first_ref, path);
1174 	if (ret < 0)
1175 		goto out;
1176 	ret = 0;
1177 
1178 out:
1179 	btrfs_free_path(p);
1180 	return ret;
1181 }
1182 
1183 struct backref_ctx {
1184 	struct send_ctx *sctx;
1185 
1186 	/* number of total found references */
1187 	u64 found;
1188 
1189 	/*
1190 	 * used for clones found in send_root. clones found behind cur_objectid
1191 	 * and cur_offset are not considered as allowed clones.
1192 	 */
1193 	u64 cur_objectid;
1194 	u64 cur_offset;
1195 
1196 	/* may be truncated in case it's the last extent in a file */
1197 	u64 extent_len;
1198 
1199 	/* data offset in the file extent item */
1200 	u64 data_offset;
1201 
1202 	/* Just to check for bugs in backref resolving */
1203 	int found_itself;
1204 };
1205 
__clone_root_cmp_bsearch(const void * key,const void * elt)1206 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1207 {
1208 	u64 root = (u64)(uintptr_t)key;
1209 	struct clone_root *cr = (struct clone_root *)elt;
1210 
1211 	if (root < cr->root->root_key.objectid)
1212 		return -1;
1213 	if (root > cr->root->root_key.objectid)
1214 		return 1;
1215 	return 0;
1216 }
1217 
__clone_root_cmp_sort(const void * e1,const void * e2)1218 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1219 {
1220 	struct clone_root *cr1 = (struct clone_root *)e1;
1221 	struct clone_root *cr2 = (struct clone_root *)e2;
1222 
1223 	if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1224 		return -1;
1225 	if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1226 		return 1;
1227 	return 0;
1228 }
1229 
1230 /*
1231  * Called for every backref that is found for the current extent.
1232  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1233  */
__iterate_backrefs(u64 ino,u64 offset,u64 root,void * ctx_)1234 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1235 {
1236 	struct backref_ctx *bctx = ctx_;
1237 	struct clone_root *found;
1238 
1239 	/* First check if the root is in the list of accepted clone sources */
1240 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1241 			bctx->sctx->clone_roots_cnt,
1242 			sizeof(struct clone_root),
1243 			__clone_root_cmp_bsearch);
1244 	if (!found)
1245 		return 0;
1246 
1247 	if (found->root == bctx->sctx->send_root &&
1248 	    ino == bctx->cur_objectid &&
1249 	    offset == bctx->cur_offset) {
1250 		bctx->found_itself = 1;
1251 	}
1252 
1253 	/*
1254 	 * Make sure we don't consider clones from send_root that are
1255 	 * behind the current inode/offset.
1256 	 */
1257 	if (found->root == bctx->sctx->send_root) {
1258 		/*
1259 		 * TODO for the moment we don't accept clones from the inode
1260 		 * that is currently send. We may change this when
1261 		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1262 		 * file.
1263 		 */
1264 		if (ino >= bctx->cur_objectid)
1265 			return 0;
1266 	}
1267 
1268 	bctx->found++;
1269 	found->found_refs++;
1270 	if (ino < found->ino) {
1271 		found->ino = ino;
1272 		found->offset = offset;
1273 	} else if (found->ino == ino) {
1274 		/*
1275 		 * same extent found more then once in the same file.
1276 		 */
1277 		if (found->offset > offset + bctx->extent_len)
1278 			found->offset = offset;
1279 	}
1280 
1281 	return 0;
1282 }
1283 
1284 /*
1285  * Given an inode, offset and extent item, it finds a good clone for a clone
1286  * instruction. Returns -ENOENT when none could be found. The function makes
1287  * sure that the returned clone is usable at the point where sending is at the
1288  * moment. This means, that no clones are accepted which lie behind the current
1289  * inode+offset.
1290  *
1291  * path must point to the extent item when called.
1292  */
find_extent_clone(struct send_ctx * sctx,struct btrfs_path * path,u64 ino,u64 data_offset,u64 ino_size,struct clone_root ** found)1293 static int find_extent_clone(struct send_ctx *sctx,
1294 			     struct btrfs_path *path,
1295 			     u64 ino, u64 data_offset,
1296 			     u64 ino_size,
1297 			     struct clone_root **found)
1298 {
1299 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1300 	int ret;
1301 	int extent_type;
1302 	u64 logical;
1303 	u64 disk_byte;
1304 	u64 num_bytes;
1305 	u64 extent_item_pos;
1306 	u64 flags = 0;
1307 	struct btrfs_file_extent_item *fi;
1308 	struct extent_buffer *eb = path->nodes[0];
1309 	struct backref_ctx *backref_ctx = NULL;
1310 	struct clone_root *cur_clone_root;
1311 	struct btrfs_key found_key;
1312 	struct btrfs_path *tmp_path;
1313 	struct btrfs_extent_item *ei;
1314 	int compressed;
1315 	u32 i;
1316 
1317 	tmp_path = alloc_path_for_send();
1318 	if (!tmp_path)
1319 		return -ENOMEM;
1320 
1321 	/* We only use this path under the commit sem */
1322 	tmp_path->need_commit_sem = 0;
1323 
1324 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1325 	if (!backref_ctx) {
1326 		ret = -ENOMEM;
1327 		goto out;
1328 	}
1329 
1330 	if (data_offset >= ino_size) {
1331 		/*
1332 		 * There may be extents that lie behind the file's size.
1333 		 * I at least had this in combination with snapshotting while
1334 		 * writing large files.
1335 		 */
1336 		ret = 0;
1337 		goto out;
1338 	}
1339 
1340 	fi = btrfs_item_ptr(eb, path->slots[0],
1341 			struct btrfs_file_extent_item);
1342 	extent_type = btrfs_file_extent_type(eb, fi);
1343 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1344 		ret = -ENOENT;
1345 		goto out;
1346 	}
1347 	compressed = btrfs_file_extent_compression(eb, fi);
1348 
1349 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1350 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1351 	if (disk_byte == 0) {
1352 		ret = -ENOENT;
1353 		goto out;
1354 	}
1355 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1356 
1357 	down_read(&fs_info->commit_root_sem);
1358 	ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1359 				  &found_key, &flags);
1360 	up_read(&fs_info->commit_root_sem);
1361 
1362 	if (ret < 0)
1363 		goto out;
1364 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1365 		ret = -EIO;
1366 		goto out;
1367 	}
1368 
1369 	ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0],
1370 			    struct btrfs_extent_item);
1371 	/*
1372 	 * Backreference walking (iterate_extent_inodes() below) is currently
1373 	 * too expensive when an extent has a large number of references, both
1374 	 * in time spent and used memory. So for now just fallback to write
1375 	 * operations instead of clone operations when an extent has more than
1376 	 * a certain amount of references.
1377 	 */
1378 	if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) {
1379 		ret = -ENOENT;
1380 		goto out;
1381 	}
1382 	btrfs_release_path(tmp_path);
1383 
1384 	/*
1385 	 * Setup the clone roots.
1386 	 */
1387 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1388 		cur_clone_root = sctx->clone_roots + i;
1389 		cur_clone_root->ino = (u64)-1;
1390 		cur_clone_root->offset = 0;
1391 		cur_clone_root->found_refs = 0;
1392 	}
1393 
1394 	backref_ctx->sctx = sctx;
1395 	backref_ctx->found = 0;
1396 	backref_ctx->cur_objectid = ino;
1397 	backref_ctx->cur_offset = data_offset;
1398 	backref_ctx->found_itself = 0;
1399 	backref_ctx->extent_len = num_bytes;
1400 	/*
1401 	 * For non-compressed extents iterate_extent_inodes() gives us extent
1402 	 * offsets that already take into account the data offset, but not for
1403 	 * compressed extents, since the offset is logical and not relative to
1404 	 * the physical extent locations. We must take this into account to
1405 	 * avoid sending clone offsets that go beyond the source file's size,
1406 	 * which would result in the clone ioctl failing with -EINVAL on the
1407 	 * receiving end.
1408 	 */
1409 	if (compressed == BTRFS_COMPRESS_NONE)
1410 		backref_ctx->data_offset = 0;
1411 	else
1412 		backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1413 
1414 	/*
1415 	 * The last extent of a file may be too large due to page alignment.
1416 	 * We need to adjust extent_len in this case so that the checks in
1417 	 * __iterate_backrefs work.
1418 	 */
1419 	if (data_offset + num_bytes >= ino_size)
1420 		backref_ctx->extent_len = ino_size - data_offset;
1421 
1422 	/*
1423 	 * Now collect all backrefs.
1424 	 */
1425 	if (compressed == BTRFS_COMPRESS_NONE)
1426 		extent_item_pos = logical - found_key.objectid;
1427 	else
1428 		extent_item_pos = 0;
1429 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1430 				    extent_item_pos, 1, __iterate_backrefs,
1431 				    backref_ctx, false);
1432 
1433 	if (ret < 0)
1434 		goto out;
1435 
1436 	if (!backref_ctx->found_itself) {
1437 		/* found a bug in backref code? */
1438 		ret = -EIO;
1439 		btrfs_err(fs_info,
1440 			  "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1441 			  ino, data_offset, disk_byte, found_key.objectid);
1442 		goto out;
1443 	}
1444 
1445 	btrfs_debug(fs_info,
1446 		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1447 		    data_offset, ino, num_bytes, logical);
1448 
1449 	if (!backref_ctx->found)
1450 		btrfs_debug(fs_info, "no clones found");
1451 
1452 	cur_clone_root = NULL;
1453 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1454 		if (sctx->clone_roots[i].found_refs) {
1455 			if (!cur_clone_root)
1456 				cur_clone_root = sctx->clone_roots + i;
1457 			else if (sctx->clone_roots[i].root == sctx->send_root)
1458 				/* prefer clones from send_root over others */
1459 				cur_clone_root = sctx->clone_roots + i;
1460 		}
1461 
1462 	}
1463 
1464 	if (cur_clone_root) {
1465 		*found = cur_clone_root;
1466 		ret = 0;
1467 	} else {
1468 		ret = -ENOENT;
1469 	}
1470 
1471 out:
1472 	btrfs_free_path(tmp_path);
1473 	kfree(backref_ctx);
1474 	return ret;
1475 }
1476 
read_symlink(struct btrfs_root * root,u64 ino,struct fs_path * dest)1477 static int read_symlink(struct btrfs_root *root,
1478 			u64 ino,
1479 			struct fs_path *dest)
1480 {
1481 	int ret;
1482 	struct btrfs_path *path;
1483 	struct btrfs_key key;
1484 	struct btrfs_file_extent_item *ei;
1485 	u8 type;
1486 	u8 compression;
1487 	unsigned long off;
1488 	int len;
1489 
1490 	path = alloc_path_for_send();
1491 	if (!path)
1492 		return -ENOMEM;
1493 
1494 	key.objectid = ino;
1495 	key.type = BTRFS_EXTENT_DATA_KEY;
1496 	key.offset = 0;
1497 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1498 	if (ret < 0)
1499 		goto out;
1500 	if (ret) {
1501 		/*
1502 		 * An empty symlink inode. Can happen in rare error paths when
1503 		 * creating a symlink (transaction committed before the inode
1504 		 * eviction handler removed the symlink inode items and a crash
1505 		 * happened in between or the subvol was snapshoted in between).
1506 		 * Print an informative message to dmesg/syslog so that the user
1507 		 * can delete the symlink.
1508 		 */
1509 		btrfs_err(root->fs_info,
1510 			  "Found empty symlink inode %llu at root %llu",
1511 			  ino, root->root_key.objectid);
1512 		ret = -EIO;
1513 		goto out;
1514 	}
1515 
1516 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1517 			struct btrfs_file_extent_item);
1518 	type = btrfs_file_extent_type(path->nodes[0], ei);
1519 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1520 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1521 	BUG_ON(compression);
1522 
1523 	off = btrfs_file_extent_inline_start(ei);
1524 	len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1525 
1526 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1527 
1528 out:
1529 	btrfs_free_path(path);
1530 	return ret;
1531 }
1532 
1533 /*
1534  * Helper function to generate a file name that is unique in the root of
1535  * send_root and parent_root. This is used to generate names for orphan inodes.
1536  */
gen_unique_name(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)1537 static int gen_unique_name(struct send_ctx *sctx,
1538 			   u64 ino, u64 gen,
1539 			   struct fs_path *dest)
1540 {
1541 	int ret = 0;
1542 	struct btrfs_path *path;
1543 	struct btrfs_dir_item *di;
1544 	char tmp[64];
1545 	int len;
1546 	u64 idx = 0;
1547 
1548 	path = alloc_path_for_send();
1549 	if (!path)
1550 		return -ENOMEM;
1551 
1552 	while (1) {
1553 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1554 				ino, gen, idx);
1555 		ASSERT(len < sizeof(tmp));
1556 
1557 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1558 				path, BTRFS_FIRST_FREE_OBJECTID,
1559 				tmp, strlen(tmp), 0);
1560 		btrfs_release_path(path);
1561 		if (IS_ERR(di)) {
1562 			ret = PTR_ERR(di);
1563 			goto out;
1564 		}
1565 		if (di) {
1566 			/* not unique, try again */
1567 			idx++;
1568 			continue;
1569 		}
1570 
1571 		if (!sctx->parent_root) {
1572 			/* unique */
1573 			ret = 0;
1574 			break;
1575 		}
1576 
1577 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1578 				path, BTRFS_FIRST_FREE_OBJECTID,
1579 				tmp, strlen(tmp), 0);
1580 		btrfs_release_path(path);
1581 		if (IS_ERR(di)) {
1582 			ret = PTR_ERR(di);
1583 			goto out;
1584 		}
1585 		if (di) {
1586 			/* not unique, try again */
1587 			idx++;
1588 			continue;
1589 		}
1590 		/* unique */
1591 		break;
1592 	}
1593 
1594 	ret = fs_path_add(dest, tmp, strlen(tmp));
1595 
1596 out:
1597 	btrfs_free_path(path);
1598 	return ret;
1599 }
1600 
1601 enum inode_state {
1602 	inode_state_no_change,
1603 	inode_state_will_create,
1604 	inode_state_did_create,
1605 	inode_state_will_delete,
1606 	inode_state_did_delete,
1607 };
1608 
get_cur_inode_state(struct send_ctx * sctx,u64 ino,u64 gen)1609 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1610 {
1611 	int ret;
1612 	int left_ret;
1613 	int right_ret;
1614 	u64 left_gen;
1615 	u64 right_gen;
1616 
1617 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1618 			NULL, NULL);
1619 	if (ret < 0 && ret != -ENOENT)
1620 		goto out;
1621 	left_ret = ret;
1622 
1623 	if (!sctx->parent_root) {
1624 		right_ret = -ENOENT;
1625 	} else {
1626 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1627 				NULL, NULL, NULL, NULL);
1628 		if (ret < 0 && ret != -ENOENT)
1629 			goto out;
1630 		right_ret = ret;
1631 	}
1632 
1633 	if (!left_ret && !right_ret) {
1634 		if (left_gen == gen && right_gen == gen) {
1635 			ret = inode_state_no_change;
1636 		} else if (left_gen == gen) {
1637 			if (ino < sctx->send_progress)
1638 				ret = inode_state_did_create;
1639 			else
1640 				ret = inode_state_will_create;
1641 		} else if (right_gen == gen) {
1642 			if (ino < sctx->send_progress)
1643 				ret = inode_state_did_delete;
1644 			else
1645 				ret = inode_state_will_delete;
1646 		} else  {
1647 			ret = -ENOENT;
1648 		}
1649 	} else if (!left_ret) {
1650 		if (left_gen == gen) {
1651 			if (ino < sctx->send_progress)
1652 				ret = inode_state_did_create;
1653 			else
1654 				ret = inode_state_will_create;
1655 		} else {
1656 			ret = -ENOENT;
1657 		}
1658 	} else if (!right_ret) {
1659 		if (right_gen == gen) {
1660 			if (ino < sctx->send_progress)
1661 				ret = inode_state_did_delete;
1662 			else
1663 				ret = inode_state_will_delete;
1664 		} else {
1665 			ret = -ENOENT;
1666 		}
1667 	} else {
1668 		ret = -ENOENT;
1669 	}
1670 
1671 out:
1672 	return ret;
1673 }
1674 
is_inode_existent(struct send_ctx * sctx,u64 ino,u64 gen)1675 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1676 {
1677 	int ret;
1678 
1679 	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1680 		return 1;
1681 
1682 	ret = get_cur_inode_state(sctx, ino, gen);
1683 	if (ret < 0)
1684 		goto out;
1685 
1686 	if (ret == inode_state_no_change ||
1687 	    ret == inode_state_did_create ||
1688 	    ret == inode_state_will_delete)
1689 		ret = 1;
1690 	else
1691 		ret = 0;
1692 
1693 out:
1694 	return ret;
1695 }
1696 
1697 /*
1698  * Helper function to lookup a dir item in a dir.
1699  */
lookup_dir_item_inode(struct btrfs_root * root,u64 dir,const char * name,int name_len,u64 * found_inode,u8 * found_type)1700 static int lookup_dir_item_inode(struct btrfs_root *root,
1701 				 u64 dir, const char *name, int name_len,
1702 				 u64 *found_inode,
1703 				 u8 *found_type)
1704 {
1705 	int ret = 0;
1706 	struct btrfs_dir_item *di;
1707 	struct btrfs_key key;
1708 	struct btrfs_path *path;
1709 
1710 	path = alloc_path_for_send();
1711 	if (!path)
1712 		return -ENOMEM;
1713 
1714 	di = btrfs_lookup_dir_item(NULL, root, path,
1715 			dir, name, name_len, 0);
1716 	if (IS_ERR_OR_NULL(di)) {
1717 		ret = di ? PTR_ERR(di) : -ENOENT;
1718 		goto out;
1719 	}
1720 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1721 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1722 		ret = -ENOENT;
1723 		goto out;
1724 	}
1725 	*found_inode = key.objectid;
1726 	*found_type = btrfs_dir_type(path->nodes[0], di);
1727 
1728 out:
1729 	btrfs_free_path(path);
1730 	return ret;
1731 }
1732 
1733 /*
1734  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1735  * generation of the parent dir and the name of the dir entry.
1736  */
get_first_ref(struct btrfs_root * root,u64 ino,u64 * dir,u64 * dir_gen,struct fs_path * name)1737 static int get_first_ref(struct btrfs_root *root, u64 ino,
1738 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1739 {
1740 	int ret;
1741 	struct btrfs_key key;
1742 	struct btrfs_key found_key;
1743 	struct btrfs_path *path;
1744 	int len;
1745 	u64 parent_dir;
1746 
1747 	path = alloc_path_for_send();
1748 	if (!path)
1749 		return -ENOMEM;
1750 
1751 	key.objectid = ino;
1752 	key.type = BTRFS_INODE_REF_KEY;
1753 	key.offset = 0;
1754 
1755 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1756 	if (ret < 0)
1757 		goto out;
1758 	if (!ret)
1759 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1760 				path->slots[0]);
1761 	if (ret || found_key.objectid != ino ||
1762 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1763 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1764 		ret = -ENOENT;
1765 		goto out;
1766 	}
1767 
1768 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1769 		struct btrfs_inode_ref *iref;
1770 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1771 				      struct btrfs_inode_ref);
1772 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1773 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1774 						     (unsigned long)(iref + 1),
1775 						     len);
1776 		parent_dir = found_key.offset;
1777 	} else {
1778 		struct btrfs_inode_extref *extref;
1779 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1780 					struct btrfs_inode_extref);
1781 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1782 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1783 					(unsigned long)&extref->name, len);
1784 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1785 	}
1786 	if (ret < 0)
1787 		goto out;
1788 	btrfs_release_path(path);
1789 
1790 	if (dir_gen) {
1791 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1792 				     NULL, NULL, NULL);
1793 		if (ret < 0)
1794 			goto out;
1795 	}
1796 
1797 	*dir = parent_dir;
1798 
1799 out:
1800 	btrfs_free_path(path);
1801 	return ret;
1802 }
1803 
is_first_ref(struct btrfs_root * root,u64 ino,u64 dir,const char * name,int name_len)1804 static int is_first_ref(struct btrfs_root *root,
1805 			u64 ino, u64 dir,
1806 			const char *name, int name_len)
1807 {
1808 	int ret;
1809 	struct fs_path *tmp_name;
1810 	u64 tmp_dir;
1811 
1812 	tmp_name = fs_path_alloc();
1813 	if (!tmp_name)
1814 		return -ENOMEM;
1815 
1816 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1817 	if (ret < 0)
1818 		goto out;
1819 
1820 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1821 		ret = 0;
1822 		goto out;
1823 	}
1824 
1825 	ret = !memcmp(tmp_name->start, name, name_len);
1826 
1827 out:
1828 	fs_path_free(tmp_name);
1829 	return ret;
1830 }
1831 
1832 /*
1833  * Used by process_recorded_refs to determine if a new ref would overwrite an
1834  * already existing ref. In case it detects an overwrite, it returns the
1835  * inode/gen in who_ino/who_gen.
1836  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1837  * to make sure later references to the overwritten inode are possible.
1838  * Orphanizing is however only required for the first ref of an inode.
1839  * process_recorded_refs does an additional is_first_ref check to see if
1840  * orphanizing is really required.
1841  */
will_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,const char * name,int name_len,u64 * who_ino,u64 * who_gen,u64 * who_mode)1842 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1843 			      const char *name, int name_len,
1844 			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
1845 {
1846 	int ret = 0;
1847 	u64 gen;
1848 	u64 other_inode = 0;
1849 	u8 other_type = 0;
1850 
1851 	if (!sctx->parent_root)
1852 		goto out;
1853 
1854 	ret = is_inode_existent(sctx, dir, dir_gen);
1855 	if (ret <= 0)
1856 		goto out;
1857 
1858 	/*
1859 	 * If we have a parent root we need to verify that the parent dir was
1860 	 * not deleted and then re-created, if it was then we have no overwrite
1861 	 * and we can just unlink this entry.
1862 	 */
1863 	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1864 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1865 				     NULL, NULL, NULL);
1866 		if (ret < 0 && ret != -ENOENT)
1867 			goto out;
1868 		if (ret) {
1869 			ret = 0;
1870 			goto out;
1871 		}
1872 		if (gen != dir_gen)
1873 			goto out;
1874 	}
1875 
1876 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1877 			&other_inode, &other_type);
1878 	if (ret < 0 && ret != -ENOENT)
1879 		goto out;
1880 	if (ret) {
1881 		ret = 0;
1882 		goto out;
1883 	}
1884 
1885 	/*
1886 	 * Check if the overwritten ref was already processed. If yes, the ref
1887 	 * was already unlinked/moved, so we can safely assume that we will not
1888 	 * overwrite anything at this point in time.
1889 	 */
1890 	if (other_inode > sctx->send_progress ||
1891 	    is_waiting_for_move(sctx, other_inode)) {
1892 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1893 				who_gen, who_mode, NULL, NULL, NULL);
1894 		if (ret < 0)
1895 			goto out;
1896 
1897 		ret = 1;
1898 		*who_ino = other_inode;
1899 	} else {
1900 		ret = 0;
1901 	}
1902 
1903 out:
1904 	return ret;
1905 }
1906 
1907 /*
1908  * Checks if the ref was overwritten by an already processed inode. This is
1909  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1910  * thus the orphan name needs be used.
1911  * process_recorded_refs also uses it to avoid unlinking of refs that were
1912  * overwritten.
1913  */
did_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,u64 ino,u64 ino_gen,const char * name,int name_len)1914 static int did_overwrite_ref(struct send_ctx *sctx,
1915 			    u64 dir, u64 dir_gen,
1916 			    u64 ino, u64 ino_gen,
1917 			    const char *name, int name_len)
1918 {
1919 	int ret = 0;
1920 	u64 gen;
1921 	u64 ow_inode;
1922 	u8 other_type;
1923 
1924 	if (!sctx->parent_root)
1925 		goto out;
1926 
1927 	ret = is_inode_existent(sctx, dir, dir_gen);
1928 	if (ret <= 0)
1929 		goto out;
1930 
1931 	if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1932 		ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1933 				     NULL, NULL, NULL);
1934 		if (ret < 0 && ret != -ENOENT)
1935 			goto out;
1936 		if (ret) {
1937 			ret = 0;
1938 			goto out;
1939 		}
1940 		if (gen != dir_gen)
1941 			goto out;
1942 	}
1943 
1944 	/* check if the ref was overwritten by another ref */
1945 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1946 			&ow_inode, &other_type);
1947 	if (ret < 0 && ret != -ENOENT)
1948 		goto out;
1949 	if (ret) {
1950 		/* was never and will never be overwritten */
1951 		ret = 0;
1952 		goto out;
1953 	}
1954 
1955 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1956 			NULL, NULL);
1957 	if (ret < 0)
1958 		goto out;
1959 
1960 	if (ow_inode == ino && gen == ino_gen) {
1961 		ret = 0;
1962 		goto out;
1963 	}
1964 
1965 	/*
1966 	 * We know that it is or will be overwritten. Check this now.
1967 	 * The current inode being processed might have been the one that caused
1968 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1969 	 * the current inode being processed.
1970 	 */
1971 	if ((ow_inode < sctx->send_progress) ||
1972 	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1973 	     gen == sctx->cur_inode_gen))
1974 		ret = 1;
1975 	else
1976 		ret = 0;
1977 
1978 out:
1979 	return ret;
1980 }
1981 
1982 /*
1983  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1984  * that got overwritten. This is used by process_recorded_refs to determine
1985  * if it has to use the path as returned by get_cur_path or the orphan name.
1986  */
did_overwrite_first_ref(struct send_ctx * sctx,u64 ino,u64 gen)1987 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1988 {
1989 	int ret = 0;
1990 	struct fs_path *name = NULL;
1991 	u64 dir;
1992 	u64 dir_gen;
1993 
1994 	if (!sctx->parent_root)
1995 		goto out;
1996 
1997 	name = fs_path_alloc();
1998 	if (!name)
1999 		return -ENOMEM;
2000 
2001 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2002 	if (ret < 0)
2003 		goto out;
2004 
2005 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2006 			name->start, fs_path_len(name));
2007 
2008 out:
2009 	fs_path_free(name);
2010 	return ret;
2011 }
2012 
2013 /*
2014  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2015  * so we need to do some special handling in case we have clashes. This function
2016  * takes care of this with the help of name_cache_entry::radix_list.
2017  * In case of error, nce is kfreed.
2018  */
name_cache_insert(struct send_ctx * sctx,struct name_cache_entry * nce)2019 static int name_cache_insert(struct send_ctx *sctx,
2020 			     struct name_cache_entry *nce)
2021 {
2022 	int ret = 0;
2023 	struct list_head *nce_head;
2024 
2025 	nce_head = radix_tree_lookup(&sctx->name_cache,
2026 			(unsigned long)nce->ino);
2027 	if (!nce_head) {
2028 		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2029 		if (!nce_head) {
2030 			kfree(nce);
2031 			return -ENOMEM;
2032 		}
2033 		INIT_LIST_HEAD(nce_head);
2034 
2035 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2036 		if (ret < 0) {
2037 			kfree(nce_head);
2038 			kfree(nce);
2039 			return ret;
2040 		}
2041 	}
2042 	list_add_tail(&nce->radix_list, nce_head);
2043 	list_add_tail(&nce->list, &sctx->name_cache_list);
2044 	sctx->name_cache_size++;
2045 
2046 	return ret;
2047 }
2048 
name_cache_delete(struct send_ctx * sctx,struct name_cache_entry * nce)2049 static void name_cache_delete(struct send_ctx *sctx,
2050 			      struct name_cache_entry *nce)
2051 {
2052 	struct list_head *nce_head;
2053 
2054 	nce_head = radix_tree_lookup(&sctx->name_cache,
2055 			(unsigned long)nce->ino);
2056 	if (!nce_head) {
2057 		btrfs_err(sctx->send_root->fs_info,
2058 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2059 			nce->ino, sctx->name_cache_size);
2060 	}
2061 
2062 	list_del(&nce->radix_list);
2063 	list_del(&nce->list);
2064 	sctx->name_cache_size--;
2065 
2066 	/*
2067 	 * We may not get to the final release of nce_head if the lookup fails
2068 	 */
2069 	if (nce_head && list_empty(nce_head)) {
2070 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2071 		kfree(nce_head);
2072 	}
2073 }
2074 
name_cache_search(struct send_ctx * sctx,u64 ino,u64 gen)2075 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2076 						    u64 ino, u64 gen)
2077 {
2078 	struct list_head *nce_head;
2079 	struct name_cache_entry *cur;
2080 
2081 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2082 	if (!nce_head)
2083 		return NULL;
2084 
2085 	list_for_each_entry(cur, nce_head, radix_list) {
2086 		if (cur->ino == ino && cur->gen == gen)
2087 			return cur;
2088 	}
2089 	return NULL;
2090 }
2091 
2092 /*
2093  * Removes the entry from the list and adds it back to the end. This marks the
2094  * entry as recently used so that name_cache_clean_unused does not remove it.
2095  */
name_cache_used(struct send_ctx * sctx,struct name_cache_entry * nce)2096 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2097 {
2098 	list_del(&nce->list);
2099 	list_add_tail(&nce->list, &sctx->name_cache_list);
2100 }
2101 
2102 /*
2103  * Remove some entries from the beginning of name_cache_list.
2104  */
name_cache_clean_unused(struct send_ctx * sctx)2105 static void name_cache_clean_unused(struct send_ctx *sctx)
2106 {
2107 	struct name_cache_entry *nce;
2108 
2109 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2110 		return;
2111 
2112 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2113 		nce = list_entry(sctx->name_cache_list.next,
2114 				struct name_cache_entry, list);
2115 		name_cache_delete(sctx, nce);
2116 		kfree(nce);
2117 	}
2118 }
2119 
name_cache_free(struct send_ctx * sctx)2120 static void name_cache_free(struct send_ctx *sctx)
2121 {
2122 	struct name_cache_entry *nce;
2123 
2124 	while (!list_empty(&sctx->name_cache_list)) {
2125 		nce = list_entry(sctx->name_cache_list.next,
2126 				struct name_cache_entry, list);
2127 		name_cache_delete(sctx, nce);
2128 		kfree(nce);
2129 	}
2130 }
2131 
2132 /*
2133  * Used by get_cur_path for each ref up to the root.
2134  * Returns 0 if it succeeded.
2135  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2136  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2137  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2138  * Returns <0 in case of error.
2139  */
__get_cur_name_and_parent(struct send_ctx * sctx,u64 ino,u64 gen,u64 * parent_ino,u64 * parent_gen,struct fs_path * dest)2140 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2141 				     u64 ino, u64 gen,
2142 				     u64 *parent_ino,
2143 				     u64 *parent_gen,
2144 				     struct fs_path *dest)
2145 {
2146 	int ret;
2147 	int nce_ret;
2148 	struct name_cache_entry *nce = NULL;
2149 
2150 	/*
2151 	 * First check if we already did a call to this function with the same
2152 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2153 	 * return the cached result.
2154 	 */
2155 	nce = name_cache_search(sctx, ino, gen);
2156 	if (nce) {
2157 		if (ino < sctx->send_progress && nce->need_later_update) {
2158 			name_cache_delete(sctx, nce);
2159 			kfree(nce);
2160 			nce = NULL;
2161 		} else {
2162 			name_cache_used(sctx, nce);
2163 			*parent_ino = nce->parent_ino;
2164 			*parent_gen = nce->parent_gen;
2165 			ret = fs_path_add(dest, nce->name, nce->name_len);
2166 			if (ret < 0)
2167 				goto out;
2168 			ret = nce->ret;
2169 			goto out;
2170 		}
2171 	}
2172 
2173 	/*
2174 	 * If the inode is not existent yet, add the orphan name and return 1.
2175 	 * This should only happen for the parent dir that we determine in
2176 	 * __record_new_ref
2177 	 */
2178 	ret = is_inode_existent(sctx, ino, gen);
2179 	if (ret < 0)
2180 		goto out;
2181 
2182 	if (!ret) {
2183 		ret = gen_unique_name(sctx, ino, gen, dest);
2184 		if (ret < 0)
2185 			goto out;
2186 		ret = 1;
2187 		goto out_cache;
2188 	}
2189 
2190 	/*
2191 	 * Depending on whether the inode was already processed or not, use
2192 	 * send_root or parent_root for ref lookup.
2193 	 */
2194 	if (ino < sctx->send_progress)
2195 		ret = get_first_ref(sctx->send_root, ino,
2196 				    parent_ino, parent_gen, dest);
2197 	else
2198 		ret = get_first_ref(sctx->parent_root, ino,
2199 				    parent_ino, parent_gen, dest);
2200 	if (ret < 0)
2201 		goto out;
2202 
2203 	/*
2204 	 * Check if the ref was overwritten by an inode's ref that was processed
2205 	 * earlier. If yes, treat as orphan and return 1.
2206 	 */
2207 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2208 			dest->start, dest->end - dest->start);
2209 	if (ret < 0)
2210 		goto out;
2211 	if (ret) {
2212 		fs_path_reset(dest);
2213 		ret = gen_unique_name(sctx, ino, gen, dest);
2214 		if (ret < 0)
2215 			goto out;
2216 		ret = 1;
2217 	}
2218 
2219 out_cache:
2220 	/*
2221 	 * Store the result of the lookup in the name cache.
2222 	 */
2223 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2224 	if (!nce) {
2225 		ret = -ENOMEM;
2226 		goto out;
2227 	}
2228 
2229 	nce->ino = ino;
2230 	nce->gen = gen;
2231 	nce->parent_ino = *parent_ino;
2232 	nce->parent_gen = *parent_gen;
2233 	nce->name_len = fs_path_len(dest);
2234 	nce->ret = ret;
2235 	strcpy(nce->name, dest->start);
2236 
2237 	if (ino < sctx->send_progress)
2238 		nce->need_later_update = 0;
2239 	else
2240 		nce->need_later_update = 1;
2241 
2242 	nce_ret = name_cache_insert(sctx, nce);
2243 	if (nce_ret < 0)
2244 		ret = nce_ret;
2245 	name_cache_clean_unused(sctx);
2246 
2247 out:
2248 	return ret;
2249 }
2250 
2251 /*
2252  * Magic happens here. This function returns the first ref to an inode as it
2253  * would look like while receiving the stream at this point in time.
2254  * We walk the path up to the root. For every inode in between, we check if it
2255  * was already processed/sent. If yes, we continue with the parent as found
2256  * in send_root. If not, we continue with the parent as found in parent_root.
2257  * If we encounter an inode that was deleted at this point in time, we use the
2258  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2259  * that were not created yet and overwritten inodes/refs.
2260  *
2261  * When do we have orphan inodes:
2262  * 1. When an inode is freshly created and thus no valid refs are available yet
2263  * 2. When a directory lost all it's refs (deleted) but still has dir items
2264  *    inside which were not processed yet (pending for move/delete). If anyone
2265  *    tried to get the path to the dir items, it would get a path inside that
2266  *    orphan directory.
2267  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2268  *    of an unprocessed inode. If in that case the first ref would be
2269  *    overwritten, the overwritten inode gets "orphanized". Later when we
2270  *    process this overwritten inode, it is restored at a new place by moving
2271  *    the orphan inode.
2272  *
2273  * sctx->send_progress tells this function at which point in time receiving
2274  * would be.
2275  */
get_cur_path(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)2276 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2277 			struct fs_path *dest)
2278 {
2279 	int ret = 0;
2280 	struct fs_path *name = NULL;
2281 	u64 parent_inode = 0;
2282 	u64 parent_gen = 0;
2283 	int stop = 0;
2284 
2285 	name = fs_path_alloc();
2286 	if (!name) {
2287 		ret = -ENOMEM;
2288 		goto out;
2289 	}
2290 
2291 	dest->reversed = 1;
2292 	fs_path_reset(dest);
2293 
2294 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2295 		struct waiting_dir_move *wdm;
2296 
2297 		fs_path_reset(name);
2298 
2299 		if (is_waiting_for_rm(sctx, ino)) {
2300 			ret = gen_unique_name(sctx, ino, gen, name);
2301 			if (ret < 0)
2302 				goto out;
2303 			ret = fs_path_add_path(dest, name);
2304 			break;
2305 		}
2306 
2307 		wdm = get_waiting_dir_move(sctx, ino);
2308 		if (wdm && wdm->orphanized) {
2309 			ret = gen_unique_name(sctx, ino, gen, name);
2310 			stop = 1;
2311 		} else if (wdm) {
2312 			ret = get_first_ref(sctx->parent_root, ino,
2313 					    &parent_inode, &parent_gen, name);
2314 		} else {
2315 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2316 							&parent_inode,
2317 							&parent_gen, name);
2318 			if (ret)
2319 				stop = 1;
2320 		}
2321 
2322 		if (ret < 0)
2323 			goto out;
2324 
2325 		ret = fs_path_add_path(dest, name);
2326 		if (ret < 0)
2327 			goto out;
2328 
2329 		ino = parent_inode;
2330 		gen = parent_gen;
2331 	}
2332 
2333 out:
2334 	fs_path_free(name);
2335 	if (!ret)
2336 		fs_path_unreverse(dest);
2337 	return ret;
2338 }
2339 
2340 /*
2341  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2342  */
send_subvol_begin(struct send_ctx * sctx)2343 static int send_subvol_begin(struct send_ctx *sctx)
2344 {
2345 	int ret;
2346 	struct btrfs_root *send_root = sctx->send_root;
2347 	struct btrfs_root *parent_root = sctx->parent_root;
2348 	struct btrfs_path *path;
2349 	struct btrfs_key key;
2350 	struct btrfs_root_ref *ref;
2351 	struct extent_buffer *leaf;
2352 	char *name = NULL;
2353 	int namelen;
2354 
2355 	path = btrfs_alloc_path();
2356 	if (!path)
2357 		return -ENOMEM;
2358 
2359 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2360 	if (!name) {
2361 		btrfs_free_path(path);
2362 		return -ENOMEM;
2363 	}
2364 
2365 	key.objectid = send_root->root_key.objectid;
2366 	key.type = BTRFS_ROOT_BACKREF_KEY;
2367 	key.offset = 0;
2368 
2369 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2370 				&key, path, 1, 0);
2371 	if (ret < 0)
2372 		goto out;
2373 	if (ret) {
2374 		ret = -ENOENT;
2375 		goto out;
2376 	}
2377 
2378 	leaf = path->nodes[0];
2379 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2380 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2381 	    key.objectid != send_root->root_key.objectid) {
2382 		ret = -ENOENT;
2383 		goto out;
2384 	}
2385 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2386 	namelen = btrfs_root_ref_name_len(leaf, ref);
2387 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2388 	btrfs_release_path(path);
2389 
2390 	if (parent_root) {
2391 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2392 		if (ret < 0)
2393 			goto out;
2394 	} else {
2395 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2396 		if (ret < 0)
2397 			goto out;
2398 	}
2399 
2400 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2401 
2402 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2403 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2404 			    sctx->send_root->root_item.received_uuid);
2405 	else
2406 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2407 			    sctx->send_root->root_item.uuid);
2408 
2409 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2410 		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2411 	if (parent_root) {
2412 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2413 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2414 				     parent_root->root_item.received_uuid);
2415 		else
2416 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2417 				     parent_root->root_item.uuid);
2418 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2419 			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2420 	}
2421 
2422 	ret = send_cmd(sctx);
2423 
2424 tlv_put_failure:
2425 out:
2426 	btrfs_free_path(path);
2427 	kfree(name);
2428 	return ret;
2429 }
2430 
send_truncate(struct send_ctx * sctx,u64 ino,u64 gen,u64 size)2431 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2432 {
2433 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2434 	int ret = 0;
2435 	struct fs_path *p;
2436 
2437 	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2438 
2439 	p = fs_path_alloc();
2440 	if (!p)
2441 		return -ENOMEM;
2442 
2443 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2444 	if (ret < 0)
2445 		goto out;
2446 
2447 	ret = get_cur_path(sctx, ino, gen, p);
2448 	if (ret < 0)
2449 		goto out;
2450 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2451 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2452 
2453 	ret = send_cmd(sctx);
2454 
2455 tlv_put_failure:
2456 out:
2457 	fs_path_free(p);
2458 	return ret;
2459 }
2460 
send_chmod(struct send_ctx * sctx,u64 ino,u64 gen,u64 mode)2461 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2462 {
2463 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2464 	int ret = 0;
2465 	struct fs_path *p;
2466 
2467 	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2468 
2469 	p = fs_path_alloc();
2470 	if (!p)
2471 		return -ENOMEM;
2472 
2473 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2474 	if (ret < 0)
2475 		goto out;
2476 
2477 	ret = get_cur_path(sctx, ino, gen, p);
2478 	if (ret < 0)
2479 		goto out;
2480 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2481 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2482 
2483 	ret = send_cmd(sctx);
2484 
2485 tlv_put_failure:
2486 out:
2487 	fs_path_free(p);
2488 	return ret;
2489 }
2490 
send_chown(struct send_ctx * sctx,u64 ino,u64 gen,u64 uid,u64 gid)2491 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2492 {
2493 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2494 	int ret = 0;
2495 	struct fs_path *p;
2496 
2497 	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2498 		    ino, uid, gid);
2499 
2500 	p = fs_path_alloc();
2501 	if (!p)
2502 		return -ENOMEM;
2503 
2504 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2505 	if (ret < 0)
2506 		goto out;
2507 
2508 	ret = get_cur_path(sctx, ino, gen, p);
2509 	if (ret < 0)
2510 		goto out;
2511 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2512 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2513 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2514 
2515 	ret = send_cmd(sctx);
2516 
2517 tlv_put_failure:
2518 out:
2519 	fs_path_free(p);
2520 	return ret;
2521 }
2522 
send_utimes(struct send_ctx * sctx,u64 ino,u64 gen)2523 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2524 {
2525 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2526 	int ret = 0;
2527 	struct fs_path *p = NULL;
2528 	struct btrfs_inode_item *ii;
2529 	struct btrfs_path *path = NULL;
2530 	struct extent_buffer *eb;
2531 	struct btrfs_key key;
2532 	int slot;
2533 
2534 	btrfs_debug(fs_info, "send_utimes %llu", ino);
2535 
2536 	p = fs_path_alloc();
2537 	if (!p)
2538 		return -ENOMEM;
2539 
2540 	path = alloc_path_for_send();
2541 	if (!path) {
2542 		ret = -ENOMEM;
2543 		goto out;
2544 	}
2545 
2546 	key.objectid = ino;
2547 	key.type = BTRFS_INODE_ITEM_KEY;
2548 	key.offset = 0;
2549 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2550 	if (ret > 0)
2551 		ret = -ENOENT;
2552 	if (ret < 0)
2553 		goto out;
2554 
2555 	eb = path->nodes[0];
2556 	slot = path->slots[0];
2557 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2558 
2559 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2560 	if (ret < 0)
2561 		goto out;
2562 
2563 	ret = get_cur_path(sctx, ino, gen, p);
2564 	if (ret < 0)
2565 		goto out;
2566 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2567 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2568 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2569 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2570 	/* TODO Add otime support when the otime patches get into upstream */
2571 
2572 	ret = send_cmd(sctx);
2573 
2574 tlv_put_failure:
2575 out:
2576 	fs_path_free(p);
2577 	btrfs_free_path(path);
2578 	return ret;
2579 }
2580 
2581 /*
2582  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2583  * a valid path yet because we did not process the refs yet. So, the inode
2584  * is created as orphan.
2585  */
send_create_inode(struct send_ctx * sctx,u64 ino)2586 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2587 {
2588 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2589 	int ret = 0;
2590 	struct fs_path *p;
2591 	int cmd;
2592 	u64 gen;
2593 	u64 mode;
2594 	u64 rdev;
2595 
2596 	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2597 
2598 	p = fs_path_alloc();
2599 	if (!p)
2600 		return -ENOMEM;
2601 
2602 	if (ino != sctx->cur_ino) {
2603 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2604 				     NULL, NULL, &rdev);
2605 		if (ret < 0)
2606 			goto out;
2607 	} else {
2608 		gen = sctx->cur_inode_gen;
2609 		mode = sctx->cur_inode_mode;
2610 		rdev = sctx->cur_inode_rdev;
2611 	}
2612 
2613 	if (S_ISREG(mode)) {
2614 		cmd = BTRFS_SEND_C_MKFILE;
2615 	} else if (S_ISDIR(mode)) {
2616 		cmd = BTRFS_SEND_C_MKDIR;
2617 	} else if (S_ISLNK(mode)) {
2618 		cmd = BTRFS_SEND_C_SYMLINK;
2619 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2620 		cmd = BTRFS_SEND_C_MKNOD;
2621 	} else if (S_ISFIFO(mode)) {
2622 		cmd = BTRFS_SEND_C_MKFIFO;
2623 	} else if (S_ISSOCK(mode)) {
2624 		cmd = BTRFS_SEND_C_MKSOCK;
2625 	} else {
2626 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2627 				(int)(mode & S_IFMT));
2628 		ret = -EOPNOTSUPP;
2629 		goto out;
2630 	}
2631 
2632 	ret = begin_cmd(sctx, cmd);
2633 	if (ret < 0)
2634 		goto out;
2635 
2636 	ret = gen_unique_name(sctx, ino, gen, p);
2637 	if (ret < 0)
2638 		goto out;
2639 
2640 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2641 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2642 
2643 	if (S_ISLNK(mode)) {
2644 		fs_path_reset(p);
2645 		ret = read_symlink(sctx->send_root, ino, p);
2646 		if (ret < 0)
2647 			goto out;
2648 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2649 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2650 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2651 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2652 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2653 	}
2654 
2655 	ret = send_cmd(sctx);
2656 	if (ret < 0)
2657 		goto out;
2658 
2659 
2660 tlv_put_failure:
2661 out:
2662 	fs_path_free(p);
2663 	return ret;
2664 }
2665 
2666 /*
2667  * We need some special handling for inodes that get processed before the parent
2668  * directory got created. See process_recorded_refs for details.
2669  * This function does the check if we already created the dir out of order.
2670  */
did_create_dir(struct send_ctx * sctx,u64 dir)2671 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2672 {
2673 	int ret = 0;
2674 	struct btrfs_path *path = NULL;
2675 	struct btrfs_key key;
2676 	struct btrfs_key found_key;
2677 	struct btrfs_key di_key;
2678 	struct extent_buffer *eb;
2679 	struct btrfs_dir_item *di;
2680 	int slot;
2681 
2682 	path = alloc_path_for_send();
2683 	if (!path) {
2684 		ret = -ENOMEM;
2685 		goto out;
2686 	}
2687 
2688 	key.objectid = dir;
2689 	key.type = BTRFS_DIR_INDEX_KEY;
2690 	key.offset = 0;
2691 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2692 	if (ret < 0)
2693 		goto out;
2694 
2695 	while (1) {
2696 		eb = path->nodes[0];
2697 		slot = path->slots[0];
2698 		if (slot >= btrfs_header_nritems(eb)) {
2699 			ret = btrfs_next_leaf(sctx->send_root, path);
2700 			if (ret < 0) {
2701 				goto out;
2702 			} else if (ret > 0) {
2703 				ret = 0;
2704 				break;
2705 			}
2706 			continue;
2707 		}
2708 
2709 		btrfs_item_key_to_cpu(eb, &found_key, slot);
2710 		if (found_key.objectid != key.objectid ||
2711 		    found_key.type != key.type) {
2712 			ret = 0;
2713 			goto out;
2714 		}
2715 
2716 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2717 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2718 
2719 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2720 		    di_key.objectid < sctx->send_progress) {
2721 			ret = 1;
2722 			goto out;
2723 		}
2724 
2725 		path->slots[0]++;
2726 	}
2727 
2728 out:
2729 	btrfs_free_path(path);
2730 	return ret;
2731 }
2732 
2733 /*
2734  * Only creates the inode if it is:
2735  * 1. Not a directory
2736  * 2. Or a directory which was not created already due to out of order
2737  *    directories. See did_create_dir and process_recorded_refs for details.
2738  */
send_create_inode_if_needed(struct send_ctx * sctx)2739 static int send_create_inode_if_needed(struct send_ctx *sctx)
2740 {
2741 	int ret;
2742 
2743 	if (S_ISDIR(sctx->cur_inode_mode)) {
2744 		ret = did_create_dir(sctx, sctx->cur_ino);
2745 		if (ret < 0)
2746 			goto out;
2747 		if (ret) {
2748 			ret = 0;
2749 			goto out;
2750 		}
2751 	}
2752 
2753 	ret = send_create_inode(sctx, sctx->cur_ino);
2754 	if (ret < 0)
2755 		goto out;
2756 
2757 out:
2758 	return ret;
2759 }
2760 
2761 struct recorded_ref {
2762 	struct list_head list;
2763 	char *name;
2764 	struct fs_path *full_path;
2765 	u64 dir;
2766 	u64 dir_gen;
2767 	int name_len;
2768 };
2769 
set_ref_path(struct recorded_ref * ref,struct fs_path * path)2770 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2771 {
2772 	ref->full_path = path;
2773 	ref->name = (char *)kbasename(ref->full_path->start);
2774 	ref->name_len = ref->full_path->end - ref->name;
2775 }
2776 
2777 /*
2778  * We need to process new refs before deleted refs, but compare_tree gives us
2779  * everything mixed. So we first record all refs and later process them.
2780  * This function is a helper to record one ref.
2781  */
__record_ref(struct list_head * head,u64 dir,u64 dir_gen,struct fs_path * path)2782 static int __record_ref(struct list_head *head, u64 dir,
2783 		      u64 dir_gen, struct fs_path *path)
2784 {
2785 	struct recorded_ref *ref;
2786 
2787 	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2788 	if (!ref)
2789 		return -ENOMEM;
2790 
2791 	ref->dir = dir;
2792 	ref->dir_gen = dir_gen;
2793 	set_ref_path(ref, path);
2794 	list_add_tail(&ref->list, head);
2795 	return 0;
2796 }
2797 
dup_ref(struct recorded_ref * ref,struct list_head * list)2798 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2799 {
2800 	struct recorded_ref *new;
2801 
2802 	new = kmalloc(sizeof(*ref), GFP_KERNEL);
2803 	if (!new)
2804 		return -ENOMEM;
2805 
2806 	new->dir = ref->dir;
2807 	new->dir_gen = ref->dir_gen;
2808 	new->full_path = NULL;
2809 	INIT_LIST_HEAD(&new->list);
2810 	list_add_tail(&new->list, list);
2811 	return 0;
2812 }
2813 
__free_recorded_refs(struct list_head * head)2814 static void __free_recorded_refs(struct list_head *head)
2815 {
2816 	struct recorded_ref *cur;
2817 
2818 	while (!list_empty(head)) {
2819 		cur = list_entry(head->next, struct recorded_ref, list);
2820 		fs_path_free(cur->full_path);
2821 		list_del(&cur->list);
2822 		kfree(cur);
2823 	}
2824 }
2825 
free_recorded_refs(struct send_ctx * sctx)2826 static void free_recorded_refs(struct send_ctx *sctx)
2827 {
2828 	__free_recorded_refs(&sctx->new_refs);
2829 	__free_recorded_refs(&sctx->deleted_refs);
2830 }
2831 
2832 /*
2833  * Renames/moves a file/dir to its orphan name. Used when the first
2834  * ref of an unprocessed inode gets overwritten and for all non empty
2835  * directories.
2836  */
orphanize_inode(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * path)2837 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2838 			  struct fs_path *path)
2839 {
2840 	int ret;
2841 	struct fs_path *orphan;
2842 
2843 	orphan = fs_path_alloc();
2844 	if (!orphan)
2845 		return -ENOMEM;
2846 
2847 	ret = gen_unique_name(sctx, ino, gen, orphan);
2848 	if (ret < 0)
2849 		goto out;
2850 
2851 	ret = send_rename(sctx, path, orphan);
2852 
2853 out:
2854 	fs_path_free(orphan);
2855 	return ret;
2856 }
2857 
2858 static struct orphan_dir_info *
add_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino)2859 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2860 {
2861 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2862 	struct rb_node *parent = NULL;
2863 	struct orphan_dir_info *entry, *odi;
2864 
2865 	while (*p) {
2866 		parent = *p;
2867 		entry = rb_entry(parent, struct orphan_dir_info, node);
2868 		if (dir_ino < entry->ino) {
2869 			p = &(*p)->rb_left;
2870 		} else if (dir_ino > entry->ino) {
2871 			p = &(*p)->rb_right;
2872 		} else {
2873 			return entry;
2874 		}
2875 	}
2876 
2877 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2878 	if (!odi)
2879 		return ERR_PTR(-ENOMEM);
2880 	odi->ino = dir_ino;
2881 	odi->gen = 0;
2882 	odi->last_dir_index_offset = 0;
2883 
2884 	rb_link_node(&odi->node, parent, p);
2885 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2886 	return odi;
2887 }
2888 
2889 static struct orphan_dir_info *
get_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino)2890 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2891 {
2892 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2893 	struct orphan_dir_info *entry;
2894 
2895 	while (n) {
2896 		entry = rb_entry(n, struct orphan_dir_info, node);
2897 		if (dir_ino < entry->ino)
2898 			n = n->rb_left;
2899 		else if (dir_ino > entry->ino)
2900 			n = n->rb_right;
2901 		else
2902 			return entry;
2903 	}
2904 	return NULL;
2905 }
2906 
is_waiting_for_rm(struct send_ctx * sctx,u64 dir_ino)2907 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2908 {
2909 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2910 
2911 	return odi != NULL;
2912 }
2913 
free_orphan_dir_info(struct send_ctx * sctx,struct orphan_dir_info * odi)2914 static void free_orphan_dir_info(struct send_ctx *sctx,
2915 				 struct orphan_dir_info *odi)
2916 {
2917 	if (!odi)
2918 		return;
2919 	rb_erase(&odi->node, &sctx->orphan_dirs);
2920 	kfree(odi);
2921 }
2922 
2923 /*
2924  * Returns 1 if a directory can be removed at this point in time.
2925  * We check this by iterating all dir items and checking if the inode behind
2926  * the dir item was already processed.
2927  */
can_rmdir(struct send_ctx * sctx,u64 dir,u64 dir_gen,u64 send_progress)2928 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2929 		     u64 send_progress)
2930 {
2931 	int ret = 0;
2932 	struct btrfs_root *root = sctx->parent_root;
2933 	struct btrfs_path *path;
2934 	struct btrfs_key key;
2935 	struct btrfs_key found_key;
2936 	struct btrfs_key loc;
2937 	struct btrfs_dir_item *di;
2938 	struct orphan_dir_info *odi = NULL;
2939 
2940 	/*
2941 	 * Don't try to rmdir the top/root subvolume dir.
2942 	 */
2943 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2944 		return 0;
2945 
2946 	path = alloc_path_for_send();
2947 	if (!path)
2948 		return -ENOMEM;
2949 
2950 	key.objectid = dir;
2951 	key.type = BTRFS_DIR_INDEX_KEY;
2952 	key.offset = 0;
2953 
2954 	odi = get_orphan_dir_info(sctx, dir);
2955 	if (odi)
2956 		key.offset = odi->last_dir_index_offset;
2957 
2958 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2959 	if (ret < 0)
2960 		goto out;
2961 
2962 	while (1) {
2963 		struct waiting_dir_move *dm;
2964 
2965 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2966 			ret = btrfs_next_leaf(root, path);
2967 			if (ret < 0)
2968 				goto out;
2969 			else if (ret > 0)
2970 				break;
2971 			continue;
2972 		}
2973 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2974 				      path->slots[0]);
2975 		if (found_key.objectid != key.objectid ||
2976 		    found_key.type != key.type)
2977 			break;
2978 
2979 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2980 				struct btrfs_dir_item);
2981 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2982 
2983 		dm = get_waiting_dir_move(sctx, loc.objectid);
2984 		if (dm) {
2985 			odi = add_orphan_dir_info(sctx, dir);
2986 			if (IS_ERR(odi)) {
2987 				ret = PTR_ERR(odi);
2988 				goto out;
2989 			}
2990 			odi->gen = dir_gen;
2991 			odi->last_dir_index_offset = found_key.offset;
2992 			dm->rmdir_ino = dir;
2993 			ret = 0;
2994 			goto out;
2995 		}
2996 
2997 		if (loc.objectid > send_progress) {
2998 			odi = add_orphan_dir_info(sctx, dir);
2999 			if (IS_ERR(odi)) {
3000 				ret = PTR_ERR(odi);
3001 				goto out;
3002 			}
3003 			odi->gen = dir_gen;
3004 			odi->last_dir_index_offset = found_key.offset;
3005 			ret = 0;
3006 			goto out;
3007 		}
3008 
3009 		path->slots[0]++;
3010 	}
3011 	free_orphan_dir_info(sctx, odi);
3012 
3013 	ret = 1;
3014 
3015 out:
3016 	btrfs_free_path(path);
3017 	return ret;
3018 }
3019 
is_waiting_for_move(struct send_ctx * sctx,u64 ino)3020 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3021 {
3022 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3023 
3024 	return entry != NULL;
3025 }
3026 
add_waiting_dir_move(struct send_ctx * sctx,u64 ino,bool orphanized)3027 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3028 {
3029 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3030 	struct rb_node *parent = NULL;
3031 	struct waiting_dir_move *entry, *dm;
3032 
3033 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3034 	if (!dm)
3035 		return -ENOMEM;
3036 	dm->ino = ino;
3037 	dm->rmdir_ino = 0;
3038 	dm->orphanized = orphanized;
3039 
3040 	while (*p) {
3041 		parent = *p;
3042 		entry = rb_entry(parent, struct waiting_dir_move, node);
3043 		if (ino < entry->ino) {
3044 			p = &(*p)->rb_left;
3045 		} else if (ino > entry->ino) {
3046 			p = &(*p)->rb_right;
3047 		} else {
3048 			kfree(dm);
3049 			return -EEXIST;
3050 		}
3051 	}
3052 
3053 	rb_link_node(&dm->node, parent, p);
3054 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3055 	return 0;
3056 }
3057 
3058 static struct waiting_dir_move *
get_waiting_dir_move(struct send_ctx * sctx,u64 ino)3059 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3060 {
3061 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3062 	struct waiting_dir_move *entry;
3063 
3064 	while (n) {
3065 		entry = rb_entry(n, struct waiting_dir_move, node);
3066 		if (ino < entry->ino)
3067 			n = n->rb_left;
3068 		else if (ino > entry->ino)
3069 			n = n->rb_right;
3070 		else
3071 			return entry;
3072 	}
3073 	return NULL;
3074 }
3075 
free_waiting_dir_move(struct send_ctx * sctx,struct waiting_dir_move * dm)3076 static void free_waiting_dir_move(struct send_ctx *sctx,
3077 				  struct waiting_dir_move *dm)
3078 {
3079 	if (!dm)
3080 		return;
3081 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3082 	kfree(dm);
3083 }
3084 
add_pending_dir_move(struct send_ctx * sctx,u64 ino,u64 ino_gen,u64 parent_ino,struct list_head * new_refs,struct list_head * deleted_refs,const bool is_orphan)3085 static int add_pending_dir_move(struct send_ctx *sctx,
3086 				u64 ino,
3087 				u64 ino_gen,
3088 				u64 parent_ino,
3089 				struct list_head *new_refs,
3090 				struct list_head *deleted_refs,
3091 				const bool is_orphan)
3092 {
3093 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3094 	struct rb_node *parent = NULL;
3095 	struct pending_dir_move *entry = NULL, *pm;
3096 	struct recorded_ref *cur;
3097 	int exists = 0;
3098 	int ret;
3099 
3100 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3101 	if (!pm)
3102 		return -ENOMEM;
3103 	pm->parent_ino = parent_ino;
3104 	pm->ino = ino;
3105 	pm->gen = ino_gen;
3106 	INIT_LIST_HEAD(&pm->list);
3107 	INIT_LIST_HEAD(&pm->update_refs);
3108 	RB_CLEAR_NODE(&pm->node);
3109 
3110 	while (*p) {
3111 		parent = *p;
3112 		entry = rb_entry(parent, struct pending_dir_move, node);
3113 		if (parent_ino < entry->parent_ino) {
3114 			p = &(*p)->rb_left;
3115 		} else if (parent_ino > entry->parent_ino) {
3116 			p = &(*p)->rb_right;
3117 		} else {
3118 			exists = 1;
3119 			break;
3120 		}
3121 	}
3122 
3123 	list_for_each_entry(cur, deleted_refs, list) {
3124 		ret = dup_ref(cur, &pm->update_refs);
3125 		if (ret < 0)
3126 			goto out;
3127 	}
3128 	list_for_each_entry(cur, new_refs, list) {
3129 		ret = dup_ref(cur, &pm->update_refs);
3130 		if (ret < 0)
3131 			goto out;
3132 	}
3133 
3134 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3135 	if (ret)
3136 		goto out;
3137 
3138 	if (exists) {
3139 		list_add_tail(&pm->list, &entry->list);
3140 	} else {
3141 		rb_link_node(&pm->node, parent, p);
3142 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3143 	}
3144 	ret = 0;
3145 out:
3146 	if (ret) {
3147 		__free_recorded_refs(&pm->update_refs);
3148 		kfree(pm);
3149 	}
3150 	return ret;
3151 }
3152 
get_pending_dir_moves(struct send_ctx * sctx,u64 parent_ino)3153 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3154 						      u64 parent_ino)
3155 {
3156 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3157 	struct pending_dir_move *entry;
3158 
3159 	while (n) {
3160 		entry = rb_entry(n, struct pending_dir_move, node);
3161 		if (parent_ino < entry->parent_ino)
3162 			n = n->rb_left;
3163 		else if (parent_ino > entry->parent_ino)
3164 			n = n->rb_right;
3165 		else
3166 			return entry;
3167 	}
3168 	return NULL;
3169 }
3170 
path_loop(struct send_ctx * sctx,struct fs_path * name,u64 ino,u64 gen,u64 * ancestor_ino)3171 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3172 		     u64 ino, u64 gen, u64 *ancestor_ino)
3173 {
3174 	int ret = 0;
3175 	u64 parent_inode = 0;
3176 	u64 parent_gen = 0;
3177 	u64 start_ino = ino;
3178 
3179 	*ancestor_ino = 0;
3180 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3181 		fs_path_reset(name);
3182 
3183 		if (is_waiting_for_rm(sctx, ino))
3184 			break;
3185 		if (is_waiting_for_move(sctx, ino)) {
3186 			if (*ancestor_ino == 0)
3187 				*ancestor_ino = ino;
3188 			ret = get_first_ref(sctx->parent_root, ino,
3189 					    &parent_inode, &parent_gen, name);
3190 		} else {
3191 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3192 							&parent_inode,
3193 							&parent_gen, name);
3194 			if (ret > 0) {
3195 				ret = 0;
3196 				break;
3197 			}
3198 		}
3199 		if (ret < 0)
3200 			break;
3201 		if (parent_inode == start_ino) {
3202 			ret = 1;
3203 			if (*ancestor_ino == 0)
3204 				*ancestor_ino = ino;
3205 			break;
3206 		}
3207 		ino = parent_inode;
3208 		gen = parent_gen;
3209 	}
3210 	return ret;
3211 }
3212 
apply_dir_move(struct send_ctx * sctx,struct pending_dir_move * pm)3213 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3214 {
3215 	struct fs_path *from_path = NULL;
3216 	struct fs_path *to_path = NULL;
3217 	struct fs_path *name = NULL;
3218 	u64 orig_progress = sctx->send_progress;
3219 	struct recorded_ref *cur;
3220 	u64 parent_ino, parent_gen;
3221 	struct waiting_dir_move *dm = NULL;
3222 	u64 rmdir_ino = 0;
3223 	u64 ancestor;
3224 	bool is_orphan;
3225 	int ret;
3226 
3227 	name = fs_path_alloc();
3228 	from_path = fs_path_alloc();
3229 	if (!name || !from_path) {
3230 		ret = -ENOMEM;
3231 		goto out;
3232 	}
3233 
3234 	dm = get_waiting_dir_move(sctx, pm->ino);
3235 	ASSERT(dm);
3236 	rmdir_ino = dm->rmdir_ino;
3237 	is_orphan = dm->orphanized;
3238 	free_waiting_dir_move(sctx, dm);
3239 
3240 	if (is_orphan) {
3241 		ret = gen_unique_name(sctx, pm->ino,
3242 				      pm->gen, from_path);
3243 	} else {
3244 		ret = get_first_ref(sctx->parent_root, pm->ino,
3245 				    &parent_ino, &parent_gen, name);
3246 		if (ret < 0)
3247 			goto out;
3248 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3249 				   from_path);
3250 		if (ret < 0)
3251 			goto out;
3252 		ret = fs_path_add_path(from_path, name);
3253 	}
3254 	if (ret < 0)
3255 		goto out;
3256 
3257 	sctx->send_progress = sctx->cur_ino + 1;
3258 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3259 	if (ret < 0)
3260 		goto out;
3261 	if (ret) {
3262 		LIST_HEAD(deleted_refs);
3263 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3264 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3265 					   &pm->update_refs, &deleted_refs,
3266 					   is_orphan);
3267 		if (ret < 0)
3268 			goto out;
3269 		if (rmdir_ino) {
3270 			dm = get_waiting_dir_move(sctx, pm->ino);
3271 			ASSERT(dm);
3272 			dm->rmdir_ino = rmdir_ino;
3273 		}
3274 		goto out;
3275 	}
3276 	fs_path_reset(name);
3277 	to_path = name;
3278 	name = NULL;
3279 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3280 	if (ret < 0)
3281 		goto out;
3282 
3283 	ret = send_rename(sctx, from_path, to_path);
3284 	if (ret < 0)
3285 		goto out;
3286 
3287 	if (rmdir_ino) {
3288 		struct orphan_dir_info *odi;
3289 		u64 gen;
3290 
3291 		odi = get_orphan_dir_info(sctx, rmdir_ino);
3292 		if (!odi) {
3293 			/* already deleted */
3294 			goto finish;
3295 		}
3296 		gen = odi->gen;
3297 
3298 		ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3299 		if (ret < 0)
3300 			goto out;
3301 		if (!ret)
3302 			goto finish;
3303 
3304 		name = fs_path_alloc();
3305 		if (!name) {
3306 			ret = -ENOMEM;
3307 			goto out;
3308 		}
3309 		ret = get_cur_path(sctx, rmdir_ino, gen, name);
3310 		if (ret < 0)
3311 			goto out;
3312 		ret = send_rmdir(sctx, name);
3313 		if (ret < 0)
3314 			goto out;
3315 	}
3316 
3317 finish:
3318 	ret = send_utimes(sctx, pm->ino, pm->gen);
3319 	if (ret < 0)
3320 		goto out;
3321 
3322 	/*
3323 	 * After rename/move, need to update the utimes of both new parent(s)
3324 	 * and old parent(s).
3325 	 */
3326 	list_for_each_entry(cur, &pm->update_refs, list) {
3327 		/*
3328 		 * The parent inode might have been deleted in the send snapshot
3329 		 */
3330 		ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3331 				     NULL, NULL, NULL, NULL, NULL);
3332 		if (ret == -ENOENT) {
3333 			ret = 0;
3334 			continue;
3335 		}
3336 		if (ret < 0)
3337 			goto out;
3338 
3339 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3340 		if (ret < 0)
3341 			goto out;
3342 	}
3343 
3344 out:
3345 	fs_path_free(name);
3346 	fs_path_free(from_path);
3347 	fs_path_free(to_path);
3348 	sctx->send_progress = orig_progress;
3349 
3350 	return ret;
3351 }
3352 
free_pending_move(struct send_ctx * sctx,struct pending_dir_move * m)3353 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3354 {
3355 	if (!list_empty(&m->list))
3356 		list_del(&m->list);
3357 	if (!RB_EMPTY_NODE(&m->node))
3358 		rb_erase(&m->node, &sctx->pending_dir_moves);
3359 	__free_recorded_refs(&m->update_refs);
3360 	kfree(m);
3361 }
3362 
tail_append_pending_moves(struct send_ctx * sctx,struct pending_dir_move * moves,struct list_head * stack)3363 static void tail_append_pending_moves(struct send_ctx *sctx,
3364 				      struct pending_dir_move *moves,
3365 				      struct list_head *stack)
3366 {
3367 	if (list_empty(&moves->list)) {
3368 		list_add_tail(&moves->list, stack);
3369 	} else {
3370 		LIST_HEAD(list);
3371 		list_splice_init(&moves->list, &list);
3372 		list_add_tail(&moves->list, stack);
3373 		list_splice_tail(&list, stack);
3374 	}
3375 	if (!RB_EMPTY_NODE(&moves->node)) {
3376 		rb_erase(&moves->node, &sctx->pending_dir_moves);
3377 		RB_CLEAR_NODE(&moves->node);
3378 	}
3379 }
3380 
apply_children_dir_moves(struct send_ctx * sctx)3381 static int apply_children_dir_moves(struct send_ctx *sctx)
3382 {
3383 	struct pending_dir_move *pm;
3384 	struct list_head stack;
3385 	u64 parent_ino = sctx->cur_ino;
3386 	int ret = 0;
3387 
3388 	pm = get_pending_dir_moves(sctx, parent_ino);
3389 	if (!pm)
3390 		return 0;
3391 
3392 	INIT_LIST_HEAD(&stack);
3393 	tail_append_pending_moves(sctx, pm, &stack);
3394 
3395 	while (!list_empty(&stack)) {
3396 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3397 		parent_ino = pm->ino;
3398 		ret = apply_dir_move(sctx, pm);
3399 		free_pending_move(sctx, pm);
3400 		if (ret)
3401 			goto out;
3402 		pm = get_pending_dir_moves(sctx, parent_ino);
3403 		if (pm)
3404 			tail_append_pending_moves(sctx, pm, &stack);
3405 	}
3406 	return 0;
3407 
3408 out:
3409 	while (!list_empty(&stack)) {
3410 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3411 		free_pending_move(sctx, pm);
3412 	}
3413 	return ret;
3414 }
3415 
3416 /*
3417  * We might need to delay a directory rename even when no ancestor directory
3418  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3419  * renamed. This happens when we rename a directory to the old name (the name
3420  * in the parent root) of some other unrelated directory that got its rename
3421  * delayed due to some ancestor with higher number that got renamed.
3422  *
3423  * Example:
3424  *
3425  * Parent snapshot:
3426  * .                                       (ino 256)
3427  * |---- a/                                (ino 257)
3428  * |     |---- file                        (ino 260)
3429  * |
3430  * |---- b/                                (ino 258)
3431  * |---- c/                                (ino 259)
3432  *
3433  * Send snapshot:
3434  * .                                       (ino 256)
3435  * |---- a/                                (ino 258)
3436  * |---- x/                                (ino 259)
3437  *       |---- y/                          (ino 257)
3438  *             |----- file                 (ino 260)
3439  *
3440  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3441  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3442  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3443  * must issue is:
3444  *
3445  * 1 - rename 259 from 'c' to 'x'
3446  * 2 - rename 257 from 'a' to 'x/y'
3447  * 3 - rename 258 from 'b' to 'a'
3448  *
3449  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3450  * be done right away and < 0 on error.
3451  */
wait_for_dest_dir_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3452 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3453 				  struct recorded_ref *parent_ref,
3454 				  const bool is_orphan)
3455 {
3456 	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3457 	struct btrfs_path *path;
3458 	struct btrfs_key key;
3459 	struct btrfs_key di_key;
3460 	struct btrfs_dir_item *di;
3461 	u64 left_gen;
3462 	u64 right_gen;
3463 	int ret = 0;
3464 	struct waiting_dir_move *wdm;
3465 
3466 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3467 		return 0;
3468 
3469 	path = alloc_path_for_send();
3470 	if (!path)
3471 		return -ENOMEM;
3472 
3473 	key.objectid = parent_ref->dir;
3474 	key.type = BTRFS_DIR_ITEM_KEY;
3475 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3476 
3477 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3478 	if (ret < 0) {
3479 		goto out;
3480 	} else if (ret > 0) {
3481 		ret = 0;
3482 		goto out;
3483 	}
3484 
3485 	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3486 				       parent_ref->name_len);
3487 	if (!di) {
3488 		ret = 0;
3489 		goto out;
3490 	}
3491 	/*
3492 	 * di_key.objectid has the number of the inode that has a dentry in the
3493 	 * parent directory with the same name that sctx->cur_ino is being
3494 	 * renamed to. We need to check if that inode is in the send root as
3495 	 * well and if it is currently marked as an inode with a pending rename,
3496 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3497 	 * that it happens after that other inode is renamed.
3498 	 */
3499 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3500 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3501 		ret = 0;
3502 		goto out;
3503 	}
3504 
3505 	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3506 			     &left_gen, NULL, NULL, NULL, NULL);
3507 	if (ret < 0)
3508 		goto out;
3509 	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3510 			     &right_gen, NULL, NULL, NULL, NULL);
3511 	if (ret < 0) {
3512 		if (ret == -ENOENT)
3513 			ret = 0;
3514 		goto out;
3515 	}
3516 
3517 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3518 	if (right_gen != left_gen) {
3519 		ret = 0;
3520 		goto out;
3521 	}
3522 
3523 	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3524 	if (wdm && !wdm->orphanized) {
3525 		ret = add_pending_dir_move(sctx,
3526 					   sctx->cur_ino,
3527 					   sctx->cur_inode_gen,
3528 					   di_key.objectid,
3529 					   &sctx->new_refs,
3530 					   &sctx->deleted_refs,
3531 					   is_orphan);
3532 		if (!ret)
3533 			ret = 1;
3534 	}
3535 out:
3536 	btrfs_free_path(path);
3537 	return ret;
3538 }
3539 
3540 /*
3541  * Check if inode ino2, or any of its ancestors, is inode ino1.
3542  * Return 1 if true, 0 if false and < 0 on error.
3543  */
check_ino_in_path(struct btrfs_root * root,const u64 ino1,const u64 ino1_gen,const u64 ino2,const u64 ino2_gen,struct fs_path * fs_path)3544 static int check_ino_in_path(struct btrfs_root *root,
3545 			     const u64 ino1,
3546 			     const u64 ino1_gen,
3547 			     const u64 ino2,
3548 			     const u64 ino2_gen,
3549 			     struct fs_path *fs_path)
3550 {
3551 	u64 ino = ino2;
3552 
3553 	if (ino1 == ino2)
3554 		return ino1_gen == ino2_gen;
3555 
3556 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3557 		u64 parent;
3558 		u64 parent_gen;
3559 		int ret;
3560 
3561 		fs_path_reset(fs_path);
3562 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3563 		if (ret < 0)
3564 			return ret;
3565 		if (parent == ino1)
3566 			return parent_gen == ino1_gen;
3567 		ino = parent;
3568 	}
3569 	return 0;
3570 }
3571 
3572 /*
3573  * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3574  * possible path (in case ino2 is not a directory and has multiple hard links).
3575  * Return 1 if true, 0 if false and < 0 on error.
3576  */
is_ancestor(struct btrfs_root * root,const u64 ino1,const u64 ino1_gen,const u64 ino2,struct fs_path * fs_path)3577 static int is_ancestor(struct btrfs_root *root,
3578 		       const u64 ino1,
3579 		       const u64 ino1_gen,
3580 		       const u64 ino2,
3581 		       struct fs_path *fs_path)
3582 {
3583 	bool free_fs_path = false;
3584 	int ret = 0;
3585 	struct btrfs_path *path = NULL;
3586 	struct btrfs_key key;
3587 
3588 	if (!fs_path) {
3589 		fs_path = fs_path_alloc();
3590 		if (!fs_path)
3591 			return -ENOMEM;
3592 		free_fs_path = true;
3593 	}
3594 
3595 	path = alloc_path_for_send();
3596 	if (!path) {
3597 		ret = -ENOMEM;
3598 		goto out;
3599 	}
3600 
3601 	key.objectid = ino2;
3602 	key.type = BTRFS_INODE_REF_KEY;
3603 	key.offset = 0;
3604 
3605 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3606 	if (ret < 0)
3607 		goto out;
3608 
3609 	while (true) {
3610 		struct extent_buffer *leaf = path->nodes[0];
3611 		int slot = path->slots[0];
3612 		u32 cur_offset = 0;
3613 		u32 item_size;
3614 
3615 		if (slot >= btrfs_header_nritems(leaf)) {
3616 			ret = btrfs_next_leaf(root, path);
3617 			if (ret < 0)
3618 				goto out;
3619 			if (ret > 0)
3620 				break;
3621 			continue;
3622 		}
3623 
3624 		btrfs_item_key_to_cpu(leaf, &key, slot);
3625 		if (key.objectid != ino2)
3626 			break;
3627 		if (key.type != BTRFS_INODE_REF_KEY &&
3628 		    key.type != BTRFS_INODE_EXTREF_KEY)
3629 			break;
3630 
3631 		item_size = btrfs_item_size_nr(leaf, slot);
3632 		while (cur_offset < item_size) {
3633 			u64 parent;
3634 			u64 parent_gen;
3635 
3636 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3637 				unsigned long ptr;
3638 				struct btrfs_inode_extref *extref;
3639 
3640 				ptr = btrfs_item_ptr_offset(leaf, slot);
3641 				extref = (struct btrfs_inode_extref *)
3642 					(ptr + cur_offset);
3643 				parent = btrfs_inode_extref_parent(leaf,
3644 								   extref);
3645 				cur_offset += sizeof(*extref);
3646 				cur_offset += btrfs_inode_extref_name_len(leaf,
3647 								  extref);
3648 			} else {
3649 				parent = key.offset;
3650 				cur_offset = item_size;
3651 			}
3652 
3653 			ret = get_inode_info(root, parent, NULL, &parent_gen,
3654 					     NULL, NULL, NULL, NULL);
3655 			if (ret < 0)
3656 				goto out;
3657 			ret = check_ino_in_path(root, ino1, ino1_gen,
3658 						parent, parent_gen, fs_path);
3659 			if (ret)
3660 				goto out;
3661 		}
3662 		path->slots[0]++;
3663 	}
3664 	ret = 0;
3665  out:
3666 	btrfs_free_path(path);
3667 	if (free_fs_path)
3668 		fs_path_free(fs_path);
3669 	return ret;
3670 }
3671 
wait_for_parent_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3672 static int wait_for_parent_move(struct send_ctx *sctx,
3673 				struct recorded_ref *parent_ref,
3674 				const bool is_orphan)
3675 {
3676 	int ret = 0;
3677 	u64 ino = parent_ref->dir;
3678 	u64 ino_gen = parent_ref->dir_gen;
3679 	u64 parent_ino_before, parent_ino_after;
3680 	struct fs_path *path_before = NULL;
3681 	struct fs_path *path_after = NULL;
3682 	int len1, len2;
3683 
3684 	path_after = fs_path_alloc();
3685 	path_before = fs_path_alloc();
3686 	if (!path_after || !path_before) {
3687 		ret = -ENOMEM;
3688 		goto out;
3689 	}
3690 
3691 	/*
3692 	 * Our current directory inode may not yet be renamed/moved because some
3693 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3694 	 * such ancestor exists and make sure our own rename/move happens after
3695 	 * that ancestor is processed to avoid path build infinite loops (done
3696 	 * at get_cur_path()).
3697 	 */
3698 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3699 		u64 parent_ino_after_gen;
3700 
3701 		if (is_waiting_for_move(sctx, ino)) {
3702 			/*
3703 			 * If the current inode is an ancestor of ino in the
3704 			 * parent root, we need to delay the rename of the
3705 			 * current inode, otherwise don't delayed the rename
3706 			 * because we can end up with a circular dependency
3707 			 * of renames, resulting in some directories never
3708 			 * getting the respective rename operations issued in
3709 			 * the send stream or getting into infinite path build
3710 			 * loops.
3711 			 */
3712 			ret = is_ancestor(sctx->parent_root,
3713 					  sctx->cur_ino, sctx->cur_inode_gen,
3714 					  ino, path_before);
3715 			if (ret)
3716 				break;
3717 		}
3718 
3719 		fs_path_reset(path_before);
3720 		fs_path_reset(path_after);
3721 
3722 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3723 				    &parent_ino_after_gen, path_after);
3724 		if (ret < 0)
3725 			goto out;
3726 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3727 				    NULL, path_before);
3728 		if (ret < 0 && ret != -ENOENT) {
3729 			goto out;
3730 		} else if (ret == -ENOENT) {
3731 			ret = 0;
3732 			break;
3733 		}
3734 
3735 		len1 = fs_path_len(path_before);
3736 		len2 = fs_path_len(path_after);
3737 		if (ino > sctx->cur_ino &&
3738 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3739 		     memcmp(path_before->start, path_after->start, len1))) {
3740 			u64 parent_ino_gen;
3741 
3742 			ret = get_inode_info(sctx->parent_root, ino, NULL,
3743 					     &parent_ino_gen, NULL, NULL, NULL,
3744 					     NULL);
3745 			if (ret < 0)
3746 				goto out;
3747 			if (ino_gen == parent_ino_gen) {
3748 				ret = 1;
3749 				break;
3750 			}
3751 		}
3752 		ino = parent_ino_after;
3753 		ino_gen = parent_ino_after_gen;
3754 	}
3755 
3756 out:
3757 	fs_path_free(path_before);
3758 	fs_path_free(path_after);
3759 
3760 	if (ret == 1) {
3761 		ret = add_pending_dir_move(sctx,
3762 					   sctx->cur_ino,
3763 					   sctx->cur_inode_gen,
3764 					   ino,
3765 					   &sctx->new_refs,
3766 					   &sctx->deleted_refs,
3767 					   is_orphan);
3768 		if (!ret)
3769 			ret = 1;
3770 	}
3771 
3772 	return ret;
3773 }
3774 
update_ref_path(struct send_ctx * sctx,struct recorded_ref * ref)3775 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3776 {
3777 	int ret;
3778 	struct fs_path *new_path;
3779 
3780 	/*
3781 	 * Our reference's name member points to its full_path member string, so
3782 	 * we use here a new path.
3783 	 */
3784 	new_path = fs_path_alloc();
3785 	if (!new_path)
3786 		return -ENOMEM;
3787 
3788 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3789 	if (ret < 0) {
3790 		fs_path_free(new_path);
3791 		return ret;
3792 	}
3793 	ret = fs_path_add(new_path, ref->name, ref->name_len);
3794 	if (ret < 0) {
3795 		fs_path_free(new_path);
3796 		return ret;
3797 	}
3798 
3799 	fs_path_free(ref->full_path);
3800 	set_ref_path(ref, new_path);
3801 
3802 	return 0;
3803 }
3804 
3805 /*
3806  * This does all the move/link/unlink/rmdir magic.
3807  */
process_recorded_refs(struct send_ctx * sctx,int * pending_move)3808 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3809 {
3810 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3811 	int ret = 0;
3812 	struct recorded_ref *cur;
3813 	struct recorded_ref *cur2;
3814 	struct list_head check_dirs;
3815 	struct fs_path *valid_path = NULL;
3816 	u64 ow_inode = 0;
3817 	u64 ow_gen;
3818 	u64 ow_mode;
3819 	int did_overwrite = 0;
3820 	int is_orphan = 0;
3821 	u64 last_dir_ino_rm = 0;
3822 	bool can_rename = true;
3823 	bool orphanized_dir = false;
3824 	bool orphanized_ancestor = false;
3825 
3826 	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3827 
3828 	/*
3829 	 * This should never happen as the root dir always has the same ref
3830 	 * which is always '..'
3831 	 */
3832 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3833 	INIT_LIST_HEAD(&check_dirs);
3834 
3835 	valid_path = fs_path_alloc();
3836 	if (!valid_path) {
3837 		ret = -ENOMEM;
3838 		goto out;
3839 	}
3840 
3841 	/*
3842 	 * First, check if the first ref of the current inode was overwritten
3843 	 * before. If yes, we know that the current inode was already orphanized
3844 	 * and thus use the orphan name. If not, we can use get_cur_path to
3845 	 * get the path of the first ref as it would like while receiving at
3846 	 * this point in time.
3847 	 * New inodes are always orphan at the beginning, so force to use the
3848 	 * orphan name in this case.
3849 	 * The first ref is stored in valid_path and will be updated if it
3850 	 * gets moved around.
3851 	 */
3852 	if (!sctx->cur_inode_new) {
3853 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3854 				sctx->cur_inode_gen);
3855 		if (ret < 0)
3856 			goto out;
3857 		if (ret)
3858 			did_overwrite = 1;
3859 	}
3860 	if (sctx->cur_inode_new || did_overwrite) {
3861 		ret = gen_unique_name(sctx, sctx->cur_ino,
3862 				sctx->cur_inode_gen, valid_path);
3863 		if (ret < 0)
3864 			goto out;
3865 		is_orphan = 1;
3866 	} else {
3867 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3868 				valid_path);
3869 		if (ret < 0)
3870 			goto out;
3871 	}
3872 
3873 	list_for_each_entry(cur, &sctx->new_refs, list) {
3874 		/*
3875 		 * We may have refs where the parent directory does not exist
3876 		 * yet. This happens if the parent directories inum is higher
3877 		 * than the current inum. To handle this case, we create the
3878 		 * parent directory out of order. But we need to check if this
3879 		 * did already happen before due to other refs in the same dir.
3880 		 */
3881 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3882 		if (ret < 0)
3883 			goto out;
3884 		if (ret == inode_state_will_create) {
3885 			ret = 0;
3886 			/*
3887 			 * First check if any of the current inodes refs did
3888 			 * already create the dir.
3889 			 */
3890 			list_for_each_entry(cur2, &sctx->new_refs, list) {
3891 				if (cur == cur2)
3892 					break;
3893 				if (cur2->dir == cur->dir) {
3894 					ret = 1;
3895 					break;
3896 				}
3897 			}
3898 
3899 			/*
3900 			 * If that did not happen, check if a previous inode
3901 			 * did already create the dir.
3902 			 */
3903 			if (!ret)
3904 				ret = did_create_dir(sctx, cur->dir);
3905 			if (ret < 0)
3906 				goto out;
3907 			if (!ret) {
3908 				ret = send_create_inode(sctx, cur->dir);
3909 				if (ret < 0)
3910 					goto out;
3911 			}
3912 		}
3913 
3914 		/*
3915 		 * Check if this new ref would overwrite the first ref of
3916 		 * another unprocessed inode. If yes, orphanize the
3917 		 * overwritten inode. If we find an overwritten ref that is
3918 		 * not the first ref, simply unlink it.
3919 		 */
3920 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3921 				cur->name, cur->name_len,
3922 				&ow_inode, &ow_gen, &ow_mode);
3923 		if (ret < 0)
3924 			goto out;
3925 		if (ret) {
3926 			ret = is_first_ref(sctx->parent_root,
3927 					   ow_inode, cur->dir, cur->name,
3928 					   cur->name_len);
3929 			if (ret < 0)
3930 				goto out;
3931 			if (ret) {
3932 				struct name_cache_entry *nce;
3933 				struct waiting_dir_move *wdm;
3934 
3935 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3936 						cur->full_path);
3937 				if (ret < 0)
3938 					goto out;
3939 				if (S_ISDIR(ow_mode))
3940 					orphanized_dir = true;
3941 
3942 				/*
3943 				 * If ow_inode has its rename operation delayed
3944 				 * make sure that its orphanized name is used in
3945 				 * the source path when performing its rename
3946 				 * operation.
3947 				 */
3948 				if (is_waiting_for_move(sctx, ow_inode)) {
3949 					wdm = get_waiting_dir_move(sctx,
3950 								   ow_inode);
3951 					ASSERT(wdm);
3952 					wdm->orphanized = true;
3953 				}
3954 
3955 				/*
3956 				 * Make sure we clear our orphanized inode's
3957 				 * name from the name cache. This is because the
3958 				 * inode ow_inode might be an ancestor of some
3959 				 * other inode that will be orphanized as well
3960 				 * later and has an inode number greater than
3961 				 * sctx->send_progress. We need to prevent
3962 				 * future name lookups from using the old name
3963 				 * and get instead the orphan name.
3964 				 */
3965 				nce = name_cache_search(sctx, ow_inode, ow_gen);
3966 				if (nce) {
3967 					name_cache_delete(sctx, nce);
3968 					kfree(nce);
3969 				}
3970 
3971 				/*
3972 				 * ow_inode might currently be an ancestor of
3973 				 * cur_ino, therefore compute valid_path (the
3974 				 * current path of cur_ino) again because it
3975 				 * might contain the pre-orphanization name of
3976 				 * ow_inode, which is no longer valid.
3977 				 */
3978 				ret = is_ancestor(sctx->parent_root,
3979 						  ow_inode, ow_gen,
3980 						  sctx->cur_ino, NULL);
3981 				if (ret > 0) {
3982 					orphanized_ancestor = true;
3983 					fs_path_reset(valid_path);
3984 					ret = get_cur_path(sctx, sctx->cur_ino,
3985 							   sctx->cur_inode_gen,
3986 							   valid_path);
3987 				}
3988 				if (ret < 0)
3989 					goto out;
3990 			} else {
3991 				ret = send_unlink(sctx, cur->full_path);
3992 				if (ret < 0)
3993 					goto out;
3994 			}
3995 		}
3996 
3997 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3998 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3999 			if (ret < 0)
4000 				goto out;
4001 			if (ret == 1) {
4002 				can_rename = false;
4003 				*pending_move = 1;
4004 			}
4005 		}
4006 
4007 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4008 		    can_rename) {
4009 			ret = wait_for_parent_move(sctx, cur, is_orphan);
4010 			if (ret < 0)
4011 				goto out;
4012 			if (ret == 1) {
4013 				can_rename = false;
4014 				*pending_move = 1;
4015 			}
4016 		}
4017 
4018 		/*
4019 		 * link/move the ref to the new place. If we have an orphan
4020 		 * inode, move it and update valid_path. If not, link or move
4021 		 * it depending on the inode mode.
4022 		 */
4023 		if (is_orphan && can_rename) {
4024 			ret = send_rename(sctx, valid_path, cur->full_path);
4025 			if (ret < 0)
4026 				goto out;
4027 			is_orphan = 0;
4028 			ret = fs_path_copy(valid_path, cur->full_path);
4029 			if (ret < 0)
4030 				goto out;
4031 		} else if (can_rename) {
4032 			if (S_ISDIR(sctx->cur_inode_mode)) {
4033 				/*
4034 				 * Dirs can't be linked, so move it. For moved
4035 				 * dirs, we always have one new and one deleted
4036 				 * ref. The deleted ref is ignored later.
4037 				 */
4038 				ret = send_rename(sctx, valid_path,
4039 						  cur->full_path);
4040 				if (!ret)
4041 					ret = fs_path_copy(valid_path,
4042 							   cur->full_path);
4043 				if (ret < 0)
4044 					goto out;
4045 			} else {
4046 				/*
4047 				 * We might have previously orphanized an inode
4048 				 * which is an ancestor of our current inode,
4049 				 * so our reference's full path, which was
4050 				 * computed before any such orphanizations, must
4051 				 * be updated.
4052 				 */
4053 				if (orphanized_dir) {
4054 					ret = update_ref_path(sctx, cur);
4055 					if (ret < 0)
4056 						goto out;
4057 				}
4058 				ret = send_link(sctx, cur->full_path,
4059 						valid_path);
4060 				if (ret < 0)
4061 					goto out;
4062 			}
4063 		}
4064 		ret = dup_ref(cur, &check_dirs);
4065 		if (ret < 0)
4066 			goto out;
4067 	}
4068 
4069 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4070 		/*
4071 		 * Check if we can already rmdir the directory. If not,
4072 		 * orphanize it. For every dir item inside that gets deleted
4073 		 * later, we do this check again and rmdir it then if possible.
4074 		 * See the use of check_dirs for more details.
4075 		 */
4076 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4077 				sctx->cur_ino);
4078 		if (ret < 0)
4079 			goto out;
4080 		if (ret) {
4081 			ret = send_rmdir(sctx, valid_path);
4082 			if (ret < 0)
4083 				goto out;
4084 		} else if (!is_orphan) {
4085 			ret = orphanize_inode(sctx, sctx->cur_ino,
4086 					sctx->cur_inode_gen, valid_path);
4087 			if (ret < 0)
4088 				goto out;
4089 			is_orphan = 1;
4090 		}
4091 
4092 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4093 			ret = dup_ref(cur, &check_dirs);
4094 			if (ret < 0)
4095 				goto out;
4096 		}
4097 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4098 		   !list_empty(&sctx->deleted_refs)) {
4099 		/*
4100 		 * We have a moved dir. Add the old parent to check_dirs
4101 		 */
4102 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4103 				list);
4104 		ret = dup_ref(cur, &check_dirs);
4105 		if (ret < 0)
4106 			goto out;
4107 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4108 		/*
4109 		 * We have a non dir inode. Go through all deleted refs and
4110 		 * unlink them if they were not already overwritten by other
4111 		 * inodes.
4112 		 */
4113 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4114 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4115 					sctx->cur_ino, sctx->cur_inode_gen,
4116 					cur->name, cur->name_len);
4117 			if (ret < 0)
4118 				goto out;
4119 			if (!ret) {
4120 				/*
4121 				 * If we orphanized any ancestor before, we need
4122 				 * to recompute the full path for deleted names,
4123 				 * since any such path was computed before we
4124 				 * processed any references and orphanized any
4125 				 * ancestor inode.
4126 				 */
4127 				if (orphanized_ancestor) {
4128 					ret = update_ref_path(sctx, cur);
4129 					if (ret < 0)
4130 						goto out;
4131 				}
4132 				ret = send_unlink(sctx, cur->full_path);
4133 				if (ret < 0)
4134 					goto out;
4135 			}
4136 			ret = dup_ref(cur, &check_dirs);
4137 			if (ret < 0)
4138 				goto out;
4139 		}
4140 		/*
4141 		 * If the inode is still orphan, unlink the orphan. This may
4142 		 * happen when a previous inode did overwrite the first ref
4143 		 * of this inode and no new refs were added for the current
4144 		 * inode. Unlinking does not mean that the inode is deleted in
4145 		 * all cases. There may still be links to this inode in other
4146 		 * places.
4147 		 */
4148 		if (is_orphan) {
4149 			ret = send_unlink(sctx, valid_path);
4150 			if (ret < 0)
4151 				goto out;
4152 		}
4153 	}
4154 
4155 	/*
4156 	 * We did collect all parent dirs where cur_inode was once located. We
4157 	 * now go through all these dirs and check if they are pending for
4158 	 * deletion and if it's finally possible to perform the rmdir now.
4159 	 * We also update the inode stats of the parent dirs here.
4160 	 */
4161 	list_for_each_entry(cur, &check_dirs, list) {
4162 		/*
4163 		 * In case we had refs into dirs that were not processed yet,
4164 		 * we don't need to do the utime and rmdir logic for these dirs.
4165 		 * The dir will be processed later.
4166 		 */
4167 		if (cur->dir > sctx->cur_ino)
4168 			continue;
4169 
4170 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4171 		if (ret < 0)
4172 			goto out;
4173 
4174 		if (ret == inode_state_did_create ||
4175 		    ret == inode_state_no_change) {
4176 			/* TODO delayed utimes */
4177 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4178 			if (ret < 0)
4179 				goto out;
4180 		} else if (ret == inode_state_did_delete &&
4181 			   cur->dir != last_dir_ino_rm) {
4182 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4183 					sctx->cur_ino);
4184 			if (ret < 0)
4185 				goto out;
4186 			if (ret) {
4187 				ret = get_cur_path(sctx, cur->dir,
4188 						   cur->dir_gen, valid_path);
4189 				if (ret < 0)
4190 					goto out;
4191 				ret = send_rmdir(sctx, valid_path);
4192 				if (ret < 0)
4193 					goto out;
4194 				last_dir_ino_rm = cur->dir;
4195 			}
4196 		}
4197 	}
4198 
4199 	ret = 0;
4200 
4201 out:
4202 	__free_recorded_refs(&check_dirs);
4203 	free_recorded_refs(sctx);
4204 	fs_path_free(valid_path);
4205 	return ret;
4206 }
4207 
record_ref(struct btrfs_root * root,u64 dir,struct fs_path * name,void * ctx,struct list_head * refs)4208 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4209 		      void *ctx, struct list_head *refs)
4210 {
4211 	int ret = 0;
4212 	struct send_ctx *sctx = ctx;
4213 	struct fs_path *p;
4214 	u64 gen;
4215 
4216 	p = fs_path_alloc();
4217 	if (!p)
4218 		return -ENOMEM;
4219 
4220 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4221 			NULL, NULL);
4222 	if (ret < 0)
4223 		goto out;
4224 
4225 	ret = get_cur_path(sctx, dir, gen, p);
4226 	if (ret < 0)
4227 		goto out;
4228 	ret = fs_path_add_path(p, name);
4229 	if (ret < 0)
4230 		goto out;
4231 
4232 	ret = __record_ref(refs, dir, gen, p);
4233 
4234 out:
4235 	if (ret)
4236 		fs_path_free(p);
4237 	return ret;
4238 }
4239 
__record_new_ref(int num,u64 dir,int index,struct fs_path * name,void * ctx)4240 static int __record_new_ref(int num, u64 dir, int index,
4241 			    struct fs_path *name,
4242 			    void *ctx)
4243 {
4244 	struct send_ctx *sctx = ctx;
4245 	return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4246 }
4247 
4248 
__record_deleted_ref(int num,u64 dir,int index,struct fs_path * name,void * ctx)4249 static int __record_deleted_ref(int num, u64 dir, int index,
4250 				struct fs_path *name,
4251 				void *ctx)
4252 {
4253 	struct send_ctx *sctx = ctx;
4254 	return record_ref(sctx->parent_root, dir, name, ctx,
4255 			  &sctx->deleted_refs);
4256 }
4257 
record_new_ref(struct send_ctx * sctx)4258 static int record_new_ref(struct send_ctx *sctx)
4259 {
4260 	int ret;
4261 
4262 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4263 				sctx->cmp_key, 0, __record_new_ref, sctx);
4264 	if (ret < 0)
4265 		goto out;
4266 	ret = 0;
4267 
4268 out:
4269 	return ret;
4270 }
4271 
record_deleted_ref(struct send_ctx * sctx)4272 static int record_deleted_ref(struct send_ctx *sctx)
4273 {
4274 	int ret;
4275 
4276 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4277 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
4278 	if (ret < 0)
4279 		goto out;
4280 	ret = 0;
4281 
4282 out:
4283 	return ret;
4284 }
4285 
4286 struct find_ref_ctx {
4287 	u64 dir;
4288 	u64 dir_gen;
4289 	struct btrfs_root *root;
4290 	struct fs_path *name;
4291 	int found_idx;
4292 };
4293 
__find_iref(int num,u64 dir,int index,struct fs_path * name,void * ctx_)4294 static int __find_iref(int num, u64 dir, int index,
4295 		       struct fs_path *name,
4296 		       void *ctx_)
4297 {
4298 	struct find_ref_ctx *ctx = ctx_;
4299 	u64 dir_gen;
4300 	int ret;
4301 
4302 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4303 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4304 		/*
4305 		 * To avoid doing extra lookups we'll only do this if everything
4306 		 * else matches.
4307 		 */
4308 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4309 				     NULL, NULL, NULL);
4310 		if (ret)
4311 			return ret;
4312 		if (dir_gen != ctx->dir_gen)
4313 			return 0;
4314 		ctx->found_idx = num;
4315 		return 1;
4316 	}
4317 	return 0;
4318 }
4319 
find_iref(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,u64 dir,u64 dir_gen,struct fs_path * name)4320 static int find_iref(struct btrfs_root *root,
4321 		     struct btrfs_path *path,
4322 		     struct btrfs_key *key,
4323 		     u64 dir, u64 dir_gen, struct fs_path *name)
4324 {
4325 	int ret;
4326 	struct find_ref_ctx ctx;
4327 
4328 	ctx.dir = dir;
4329 	ctx.name = name;
4330 	ctx.dir_gen = dir_gen;
4331 	ctx.found_idx = -1;
4332 	ctx.root = root;
4333 
4334 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4335 	if (ret < 0)
4336 		return ret;
4337 
4338 	if (ctx.found_idx == -1)
4339 		return -ENOENT;
4340 
4341 	return ctx.found_idx;
4342 }
4343 
__record_changed_new_ref(int num,u64 dir,int index,struct fs_path * name,void * ctx)4344 static int __record_changed_new_ref(int num, u64 dir, int index,
4345 				    struct fs_path *name,
4346 				    void *ctx)
4347 {
4348 	u64 dir_gen;
4349 	int ret;
4350 	struct send_ctx *sctx = ctx;
4351 
4352 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4353 			     NULL, NULL, NULL);
4354 	if (ret)
4355 		return ret;
4356 
4357 	ret = find_iref(sctx->parent_root, sctx->right_path,
4358 			sctx->cmp_key, dir, dir_gen, name);
4359 	if (ret == -ENOENT)
4360 		ret = __record_new_ref(num, dir, index, name, sctx);
4361 	else if (ret > 0)
4362 		ret = 0;
4363 
4364 	return ret;
4365 }
4366 
__record_changed_deleted_ref(int num,u64 dir,int index,struct fs_path * name,void * ctx)4367 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4368 					struct fs_path *name,
4369 					void *ctx)
4370 {
4371 	u64 dir_gen;
4372 	int ret;
4373 	struct send_ctx *sctx = ctx;
4374 
4375 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4376 			     NULL, NULL, NULL);
4377 	if (ret)
4378 		return ret;
4379 
4380 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4381 			dir, dir_gen, name);
4382 	if (ret == -ENOENT)
4383 		ret = __record_deleted_ref(num, dir, index, name, sctx);
4384 	else if (ret > 0)
4385 		ret = 0;
4386 
4387 	return ret;
4388 }
4389 
record_changed_ref(struct send_ctx * sctx)4390 static int record_changed_ref(struct send_ctx *sctx)
4391 {
4392 	int ret = 0;
4393 
4394 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4395 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4396 	if (ret < 0)
4397 		goto out;
4398 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4399 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4400 	if (ret < 0)
4401 		goto out;
4402 	ret = 0;
4403 
4404 out:
4405 	return ret;
4406 }
4407 
4408 /*
4409  * Record and process all refs at once. Needed when an inode changes the
4410  * generation number, which means that it was deleted and recreated.
4411  */
process_all_refs(struct send_ctx * sctx,enum btrfs_compare_tree_result cmd)4412 static int process_all_refs(struct send_ctx *sctx,
4413 			    enum btrfs_compare_tree_result cmd)
4414 {
4415 	int ret;
4416 	struct btrfs_root *root;
4417 	struct btrfs_path *path;
4418 	struct btrfs_key key;
4419 	struct btrfs_key found_key;
4420 	struct extent_buffer *eb;
4421 	int slot;
4422 	iterate_inode_ref_t cb;
4423 	int pending_move = 0;
4424 
4425 	path = alloc_path_for_send();
4426 	if (!path)
4427 		return -ENOMEM;
4428 
4429 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4430 		root = sctx->send_root;
4431 		cb = __record_new_ref;
4432 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4433 		root = sctx->parent_root;
4434 		cb = __record_deleted_ref;
4435 	} else {
4436 		btrfs_err(sctx->send_root->fs_info,
4437 				"Wrong command %d in process_all_refs", cmd);
4438 		ret = -EINVAL;
4439 		goto out;
4440 	}
4441 
4442 	key.objectid = sctx->cmp_key->objectid;
4443 	key.type = BTRFS_INODE_REF_KEY;
4444 	key.offset = 0;
4445 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4446 	if (ret < 0)
4447 		goto out;
4448 
4449 	while (1) {
4450 		eb = path->nodes[0];
4451 		slot = path->slots[0];
4452 		if (slot >= btrfs_header_nritems(eb)) {
4453 			ret = btrfs_next_leaf(root, path);
4454 			if (ret < 0)
4455 				goto out;
4456 			else if (ret > 0)
4457 				break;
4458 			continue;
4459 		}
4460 
4461 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4462 
4463 		if (found_key.objectid != key.objectid ||
4464 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4465 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4466 			break;
4467 
4468 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4469 		if (ret < 0)
4470 			goto out;
4471 
4472 		path->slots[0]++;
4473 	}
4474 	btrfs_release_path(path);
4475 
4476 	/*
4477 	 * We don't actually care about pending_move as we are simply
4478 	 * re-creating this inode and will be rename'ing it into place once we
4479 	 * rename the parent directory.
4480 	 */
4481 	ret = process_recorded_refs(sctx, &pending_move);
4482 out:
4483 	btrfs_free_path(path);
4484 	return ret;
4485 }
4486 
send_set_xattr(struct send_ctx * sctx,struct fs_path * path,const char * name,int name_len,const char * data,int data_len)4487 static int send_set_xattr(struct send_ctx *sctx,
4488 			  struct fs_path *path,
4489 			  const char *name, int name_len,
4490 			  const char *data, int data_len)
4491 {
4492 	int ret = 0;
4493 
4494 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4495 	if (ret < 0)
4496 		goto out;
4497 
4498 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4499 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4500 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4501 
4502 	ret = send_cmd(sctx);
4503 
4504 tlv_put_failure:
4505 out:
4506 	return ret;
4507 }
4508 
send_remove_xattr(struct send_ctx * sctx,struct fs_path * path,const char * name,int name_len)4509 static int send_remove_xattr(struct send_ctx *sctx,
4510 			  struct fs_path *path,
4511 			  const char *name, int name_len)
4512 {
4513 	int ret = 0;
4514 
4515 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4516 	if (ret < 0)
4517 		goto out;
4518 
4519 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4520 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4521 
4522 	ret = send_cmd(sctx);
4523 
4524 tlv_put_failure:
4525 out:
4526 	return ret;
4527 }
4528 
__process_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,u8 type,void * ctx)4529 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4530 			       const char *name, int name_len,
4531 			       const char *data, int data_len,
4532 			       u8 type, void *ctx)
4533 {
4534 	int ret;
4535 	struct send_ctx *sctx = ctx;
4536 	struct fs_path *p;
4537 	struct posix_acl_xattr_header dummy_acl;
4538 
4539 	p = fs_path_alloc();
4540 	if (!p)
4541 		return -ENOMEM;
4542 
4543 	/*
4544 	 * This hack is needed because empty acls are stored as zero byte
4545 	 * data in xattrs. Problem with that is, that receiving these zero byte
4546 	 * acls will fail later. To fix this, we send a dummy acl list that
4547 	 * only contains the version number and no entries.
4548 	 */
4549 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4550 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4551 		if (data_len == 0) {
4552 			dummy_acl.a_version =
4553 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4554 			data = (char *)&dummy_acl;
4555 			data_len = sizeof(dummy_acl);
4556 		}
4557 	}
4558 
4559 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4560 	if (ret < 0)
4561 		goto out;
4562 
4563 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4564 
4565 out:
4566 	fs_path_free(p);
4567 	return ret;
4568 }
4569 
__process_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,u8 type,void * ctx)4570 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4571 				   const char *name, int name_len,
4572 				   const char *data, int data_len,
4573 				   u8 type, void *ctx)
4574 {
4575 	int ret;
4576 	struct send_ctx *sctx = ctx;
4577 	struct fs_path *p;
4578 
4579 	p = fs_path_alloc();
4580 	if (!p)
4581 		return -ENOMEM;
4582 
4583 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4584 	if (ret < 0)
4585 		goto out;
4586 
4587 	ret = send_remove_xattr(sctx, p, name, name_len);
4588 
4589 out:
4590 	fs_path_free(p);
4591 	return ret;
4592 }
4593 
process_new_xattr(struct send_ctx * sctx)4594 static int process_new_xattr(struct send_ctx *sctx)
4595 {
4596 	int ret = 0;
4597 
4598 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4599 			       __process_new_xattr, sctx);
4600 
4601 	return ret;
4602 }
4603 
process_deleted_xattr(struct send_ctx * sctx)4604 static int process_deleted_xattr(struct send_ctx *sctx)
4605 {
4606 	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4607 				__process_deleted_xattr, sctx);
4608 }
4609 
4610 struct find_xattr_ctx {
4611 	const char *name;
4612 	int name_len;
4613 	int found_idx;
4614 	char *found_data;
4615 	int found_data_len;
4616 };
4617 
__find_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,u8 type,void * vctx)4618 static int __find_xattr(int num, struct btrfs_key *di_key,
4619 			const char *name, int name_len,
4620 			const char *data, int data_len,
4621 			u8 type, void *vctx)
4622 {
4623 	struct find_xattr_ctx *ctx = vctx;
4624 
4625 	if (name_len == ctx->name_len &&
4626 	    strncmp(name, ctx->name, name_len) == 0) {
4627 		ctx->found_idx = num;
4628 		ctx->found_data_len = data_len;
4629 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4630 		if (!ctx->found_data)
4631 			return -ENOMEM;
4632 		return 1;
4633 	}
4634 	return 0;
4635 }
4636 
find_xattr(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,const char * name,int name_len,char ** data,int * data_len)4637 static int find_xattr(struct btrfs_root *root,
4638 		      struct btrfs_path *path,
4639 		      struct btrfs_key *key,
4640 		      const char *name, int name_len,
4641 		      char **data, int *data_len)
4642 {
4643 	int ret;
4644 	struct find_xattr_ctx ctx;
4645 
4646 	ctx.name = name;
4647 	ctx.name_len = name_len;
4648 	ctx.found_idx = -1;
4649 	ctx.found_data = NULL;
4650 	ctx.found_data_len = 0;
4651 
4652 	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4653 	if (ret < 0)
4654 		return ret;
4655 
4656 	if (ctx.found_idx == -1)
4657 		return -ENOENT;
4658 	if (data) {
4659 		*data = ctx.found_data;
4660 		*data_len = ctx.found_data_len;
4661 	} else {
4662 		kfree(ctx.found_data);
4663 	}
4664 	return ctx.found_idx;
4665 }
4666 
4667 
__process_changed_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,u8 type,void * ctx)4668 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4669 				       const char *name, int name_len,
4670 				       const char *data, int data_len,
4671 				       u8 type, void *ctx)
4672 {
4673 	int ret;
4674 	struct send_ctx *sctx = ctx;
4675 	char *found_data = NULL;
4676 	int found_data_len  = 0;
4677 
4678 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4679 			 sctx->cmp_key, name, name_len, &found_data,
4680 			 &found_data_len);
4681 	if (ret == -ENOENT) {
4682 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4683 				data_len, type, ctx);
4684 	} else if (ret >= 0) {
4685 		if (data_len != found_data_len ||
4686 		    memcmp(data, found_data, data_len)) {
4687 			ret = __process_new_xattr(num, di_key, name, name_len,
4688 					data, data_len, type, ctx);
4689 		} else {
4690 			ret = 0;
4691 		}
4692 	}
4693 
4694 	kfree(found_data);
4695 	return ret;
4696 }
4697 
__process_changed_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,u8 type,void * ctx)4698 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4699 					   const char *name, int name_len,
4700 					   const char *data, int data_len,
4701 					   u8 type, void *ctx)
4702 {
4703 	int ret;
4704 	struct send_ctx *sctx = ctx;
4705 
4706 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4707 			 name, name_len, NULL, NULL);
4708 	if (ret == -ENOENT)
4709 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4710 				data_len, type, ctx);
4711 	else if (ret >= 0)
4712 		ret = 0;
4713 
4714 	return ret;
4715 }
4716 
process_changed_xattr(struct send_ctx * sctx)4717 static int process_changed_xattr(struct send_ctx *sctx)
4718 {
4719 	int ret = 0;
4720 
4721 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4722 			__process_changed_new_xattr, sctx);
4723 	if (ret < 0)
4724 		goto out;
4725 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4726 			__process_changed_deleted_xattr, sctx);
4727 
4728 out:
4729 	return ret;
4730 }
4731 
process_all_new_xattrs(struct send_ctx * sctx)4732 static int process_all_new_xattrs(struct send_ctx *sctx)
4733 {
4734 	int ret;
4735 	struct btrfs_root *root;
4736 	struct btrfs_path *path;
4737 	struct btrfs_key key;
4738 	struct btrfs_key found_key;
4739 	struct extent_buffer *eb;
4740 	int slot;
4741 
4742 	path = alloc_path_for_send();
4743 	if (!path)
4744 		return -ENOMEM;
4745 
4746 	root = sctx->send_root;
4747 
4748 	key.objectid = sctx->cmp_key->objectid;
4749 	key.type = BTRFS_XATTR_ITEM_KEY;
4750 	key.offset = 0;
4751 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4752 	if (ret < 0)
4753 		goto out;
4754 
4755 	while (1) {
4756 		eb = path->nodes[0];
4757 		slot = path->slots[0];
4758 		if (slot >= btrfs_header_nritems(eb)) {
4759 			ret = btrfs_next_leaf(root, path);
4760 			if (ret < 0) {
4761 				goto out;
4762 			} else if (ret > 0) {
4763 				ret = 0;
4764 				break;
4765 			}
4766 			continue;
4767 		}
4768 
4769 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4770 		if (found_key.objectid != key.objectid ||
4771 		    found_key.type != key.type) {
4772 			ret = 0;
4773 			goto out;
4774 		}
4775 
4776 		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4777 		if (ret < 0)
4778 			goto out;
4779 
4780 		path->slots[0]++;
4781 	}
4782 
4783 out:
4784 	btrfs_free_path(path);
4785 	return ret;
4786 }
4787 
fill_read_buf(struct send_ctx * sctx,u64 offset,u32 len)4788 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4789 {
4790 	struct btrfs_root *root = sctx->send_root;
4791 	struct btrfs_fs_info *fs_info = root->fs_info;
4792 	struct inode *inode;
4793 	struct page *page;
4794 	char *addr;
4795 	struct btrfs_key key;
4796 	pgoff_t index = offset >> PAGE_SHIFT;
4797 	pgoff_t last_index;
4798 	unsigned pg_offset = offset_in_page(offset);
4799 	ssize_t ret = 0;
4800 
4801 	key.objectid = sctx->cur_ino;
4802 	key.type = BTRFS_INODE_ITEM_KEY;
4803 	key.offset = 0;
4804 
4805 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4806 	if (IS_ERR(inode))
4807 		return PTR_ERR(inode);
4808 
4809 	if (offset + len > i_size_read(inode)) {
4810 		if (offset > i_size_read(inode))
4811 			len = 0;
4812 		else
4813 			len = offset - i_size_read(inode);
4814 	}
4815 	if (len == 0)
4816 		goto out;
4817 
4818 	last_index = (offset + len - 1) >> PAGE_SHIFT;
4819 
4820 	/* initial readahead */
4821 	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4822 	file_ra_state_init(&sctx->ra, inode->i_mapping);
4823 
4824 	while (index <= last_index) {
4825 		unsigned cur_len = min_t(unsigned, len,
4826 					 PAGE_SIZE - pg_offset);
4827 
4828 		page = find_lock_page(inode->i_mapping, index);
4829 		if (!page) {
4830 			page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4831 				NULL, index, last_index + 1 - index);
4832 
4833 			page = find_or_create_page(inode->i_mapping, index,
4834 					GFP_KERNEL);
4835 			if (!page) {
4836 				ret = -ENOMEM;
4837 				break;
4838 			}
4839 		}
4840 
4841 		if (PageReadahead(page)) {
4842 			page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4843 				NULL, page, index, last_index + 1 - index);
4844 		}
4845 
4846 		if (!PageUptodate(page)) {
4847 			btrfs_readpage(NULL, page);
4848 			lock_page(page);
4849 			if (!PageUptodate(page)) {
4850 				unlock_page(page);
4851 				put_page(page);
4852 				ret = -EIO;
4853 				break;
4854 			}
4855 		}
4856 
4857 		addr = kmap(page);
4858 		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4859 		kunmap(page);
4860 		unlock_page(page);
4861 		put_page(page);
4862 		index++;
4863 		pg_offset = 0;
4864 		len -= cur_len;
4865 		ret += cur_len;
4866 	}
4867 out:
4868 	iput(inode);
4869 	return ret;
4870 }
4871 
4872 /*
4873  * Read some bytes from the current inode/file and send a write command to
4874  * user space.
4875  */
send_write(struct send_ctx * sctx,u64 offset,u32 len)4876 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4877 {
4878 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4879 	int ret = 0;
4880 	struct fs_path *p;
4881 	ssize_t num_read = 0;
4882 
4883 	p = fs_path_alloc();
4884 	if (!p)
4885 		return -ENOMEM;
4886 
4887 	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4888 
4889 	num_read = fill_read_buf(sctx, offset, len);
4890 	if (num_read <= 0) {
4891 		if (num_read < 0)
4892 			ret = num_read;
4893 		goto out;
4894 	}
4895 
4896 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4897 	if (ret < 0)
4898 		goto out;
4899 
4900 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4901 	if (ret < 0)
4902 		goto out;
4903 
4904 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4905 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4906 	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4907 
4908 	ret = send_cmd(sctx);
4909 
4910 tlv_put_failure:
4911 out:
4912 	fs_path_free(p);
4913 	if (ret < 0)
4914 		return ret;
4915 	return num_read;
4916 }
4917 
4918 /*
4919  * Send a clone command to user space.
4920  */
send_clone(struct send_ctx * sctx,u64 offset,u32 len,struct clone_root * clone_root)4921 static int send_clone(struct send_ctx *sctx,
4922 		      u64 offset, u32 len,
4923 		      struct clone_root *clone_root)
4924 {
4925 	int ret = 0;
4926 	struct fs_path *p;
4927 	u64 gen;
4928 
4929 	btrfs_debug(sctx->send_root->fs_info,
4930 		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4931 		    offset, len, clone_root->root->root_key.objectid,
4932 		    clone_root->ino, clone_root->offset);
4933 
4934 	p = fs_path_alloc();
4935 	if (!p)
4936 		return -ENOMEM;
4937 
4938 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4939 	if (ret < 0)
4940 		goto out;
4941 
4942 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4943 	if (ret < 0)
4944 		goto out;
4945 
4946 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4947 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4948 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4949 
4950 	if (clone_root->root == sctx->send_root) {
4951 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4952 				&gen, NULL, NULL, NULL, NULL);
4953 		if (ret < 0)
4954 			goto out;
4955 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4956 	} else {
4957 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4958 	}
4959 	if (ret < 0)
4960 		goto out;
4961 
4962 	/*
4963 	 * If the parent we're using has a received_uuid set then use that as
4964 	 * our clone source as that is what we will look for when doing a
4965 	 * receive.
4966 	 *
4967 	 * This covers the case that we create a snapshot off of a received
4968 	 * subvolume and then use that as the parent and try to receive on a
4969 	 * different host.
4970 	 */
4971 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4972 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4973 			     clone_root->root->root_item.received_uuid);
4974 	else
4975 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4976 			     clone_root->root->root_item.uuid);
4977 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4978 		    le64_to_cpu(clone_root->root->root_item.ctransid));
4979 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4980 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4981 			clone_root->offset);
4982 
4983 	ret = send_cmd(sctx);
4984 
4985 tlv_put_failure:
4986 out:
4987 	fs_path_free(p);
4988 	return ret;
4989 }
4990 
4991 /*
4992  * Send an update extent command to user space.
4993  */
send_update_extent(struct send_ctx * sctx,u64 offset,u32 len)4994 static int send_update_extent(struct send_ctx *sctx,
4995 			      u64 offset, u32 len)
4996 {
4997 	int ret = 0;
4998 	struct fs_path *p;
4999 
5000 	p = fs_path_alloc();
5001 	if (!p)
5002 		return -ENOMEM;
5003 
5004 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5005 	if (ret < 0)
5006 		goto out;
5007 
5008 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5009 	if (ret < 0)
5010 		goto out;
5011 
5012 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5013 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5014 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5015 
5016 	ret = send_cmd(sctx);
5017 
5018 tlv_put_failure:
5019 out:
5020 	fs_path_free(p);
5021 	return ret;
5022 }
5023 
send_hole(struct send_ctx * sctx,u64 end)5024 static int send_hole(struct send_ctx *sctx, u64 end)
5025 {
5026 	struct fs_path *p = NULL;
5027 	u64 offset = sctx->cur_inode_last_extent;
5028 	u64 len;
5029 	int ret = 0;
5030 
5031 	/*
5032 	 * A hole that starts at EOF or beyond it. Since we do not yet support
5033 	 * fallocate (for extent preallocation and hole punching), sending a
5034 	 * write of zeroes starting at EOF or beyond would later require issuing
5035 	 * a truncate operation which would undo the write and achieve nothing.
5036 	 */
5037 	if (offset >= sctx->cur_inode_size)
5038 		return 0;
5039 
5040 	/*
5041 	 * Don't go beyond the inode's i_size due to prealloc extents that start
5042 	 * after the i_size.
5043 	 */
5044 	end = min_t(u64, end, sctx->cur_inode_size);
5045 
5046 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5047 		return send_update_extent(sctx, offset, end - offset);
5048 
5049 	p = fs_path_alloc();
5050 	if (!p)
5051 		return -ENOMEM;
5052 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5053 	if (ret < 0)
5054 		goto tlv_put_failure;
5055 	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
5056 	while (offset < end) {
5057 		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
5058 
5059 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5060 		if (ret < 0)
5061 			break;
5062 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5063 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5064 		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
5065 		ret = send_cmd(sctx);
5066 		if (ret < 0)
5067 			break;
5068 		offset += len;
5069 	}
5070 	sctx->cur_inode_next_write_offset = offset;
5071 tlv_put_failure:
5072 	fs_path_free(p);
5073 	return ret;
5074 }
5075 
send_extent_data(struct send_ctx * sctx,const u64 offset,const u64 len)5076 static int send_extent_data(struct send_ctx *sctx,
5077 			    const u64 offset,
5078 			    const u64 len)
5079 {
5080 	u64 sent = 0;
5081 
5082 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5083 		return send_update_extent(sctx, offset, len);
5084 
5085 	while (sent < len) {
5086 		u64 size = len - sent;
5087 		int ret;
5088 
5089 		if (size > BTRFS_SEND_READ_SIZE)
5090 			size = BTRFS_SEND_READ_SIZE;
5091 		ret = send_write(sctx, offset + sent, size);
5092 		if (ret < 0)
5093 			return ret;
5094 		if (!ret)
5095 			break;
5096 		sent += ret;
5097 	}
5098 	return 0;
5099 }
5100 
clone_range(struct send_ctx * sctx,struct clone_root * clone_root,const u64 disk_byte,u64 data_offset,u64 offset,u64 len)5101 static int clone_range(struct send_ctx *sctx,
5102 		       struct clone_root *clone_root,
5103 		       const u64 disk_byte,
5104 		       u64 data_offset,
5105 		       u64 offset,
5106 		       u64 len)
5107 {
5108 	struct btrfs_path *path;
5109 	struct btrfs_key key;
5110 	int ret;
5111 	u64 clone_src_i_size = 0;
5112 
5113 	/*
5114 	 * Prevent cloning from a zero offset with a length matching the sector
5115 	 * size because in some scenarios this will make the receiver fail.
5116 	 *
5117 	 * For example, if in the source filesystem the extent at offset 0
5118 	 * has a length of sectorsize and it was written using direct IO, then
5119 	 * it can never be an inline extent (even if compression is enabled).
5120 	 * Then this extent can be cloned in the original filesystem to a non
5121 	 * zero file offset, but it may not be possible to clone in the
5122 	 * destination filesystem because it can be inlined due to compression
5123 	 * on the destination filesystem (as the receiver's write operations are
5124 	 * always done using buffered IO). The same happens when the original
5125 	 * filesystem does not have compression enabled but the destination
5126 	 * filesystem has.
5127 	 */
5128 	if (clone_root->offset == 0 &&
5129 	    len == sctx->send_root->fs_info->sectorsize)
5130 		return send_extent_data(sctx, offset, len);
5131 
5132 	path = alloc_path_for_send();
5133 	if (!path)
5134 		return -ENOMEM;
5135 
5136 	/*
5137 	 * There are inodes that have extents that lie behind its i_size. Don't
5138 	 * accept clones from these extents.
5139 	 */
5140 	ret = __get_inode_info(clone_root->root, path, clone_root->ino,
5141 			       &clone_src_i_size, NULL, NULL, NULL, NULL, NULL);
5142 	btrfs_release_path(path);
5143 	if (ret < 0)
5144 		goto out;
5145 
5146 	/*
5147 	 * We can't send a clone operation for the entire range if we find
5148 	 * extent items in the respective range in the source file that
5149 	 * refer to different extents or if we find holes.
5150 	 * So check for that and do a mix of clone and regular write/copy
5151 	 * operations if needed.
5152 	 *
5153 	 * Example:
5154 	 *
5155 	 * mkfs.btrfs -f /dev/sda
5156 	 * mount /dev/sda /mnt
5157 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5158 	 * cp --reflink=always /mnt/foo /mnt/bar
5159 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5160 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5161 	 *
5162 	 * If when we send the snapshot and we are processing file bar (which
5163 	 * has a higher inode number than foo) we blindly send a clone operation
5164 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5165 	 * a file bar that matches the content of file foo - iow, doesn't match
5166 	 * the content from bar in the original filesystem.
5167 	 */
5168 	key.objectid = clone_root->ino;
5169 	key.type = BTRFS_EXTENT_DATA_KEY;
5170 	key.offset = clone_root->offset;
5171 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5172 	if (ret < 0)
5173 		goto out;
5174 	if (ret > 0 && path->slots[0] > 0) {
5175 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5176 		if (key.objectid == clone_root->ino &&
5177 		    key.type == BTRFS_EXTENT_DATA_KEY)
5178 			path->slots[0]--;
5179 	}
5180 
5181 	while (true) {
5182 		struct extent_buffer *leaf = path->nodes[0];
5183 		int slot = path->slots[0];
5184 		struct btrfs_file_extent_item *ei;
5185 		u8 type;
5186 		u64 ext_len;
5187 		u64 clone_len;
5188 		u64 clone_data_offset;
5189 
5190 		if (slot >= btrfs_header_nritems(leaf)) {
5191 			ret = btrfs_next_leaf(clone_root->root, path);
5192 			if (ret < 0)
5193 				goto out;
5194 			else if (ret > 0)
5195 				break;
5196 			continue;
5197 		}
5198 
5199 		btrfs_item_key_to_cpu(leaf, &key, slot);
5200 
5201 		/*
5202 		 * We might have an implicit trailing hole (NO_HOLES feature
5203 		 * enabled). We deal with it after leaving this loop.
5204 		 */
5205 		if (key.objectid != clone_root->ino ||
5206 		    key.type != BTRFS_EXTENT_DATA_KEY)
5207 			break;
5208 
5209 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5210 		type = btrfs_file_extent_type(leaf, ei);
5211 		if (type == BTRFS_FILE_EXTENT_INLINE) {
5212 			ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5213 			ext_len = PAGE_ALIGN(ext_len);
5214 		} else {
5215 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5216 		}
5217 
5218 		if (key.offset + ext_len <= clone_root->offset)
5219 			goto next;
5220 
5221 		if (key.offset > clone_root->offset) {
5222 			/* Implicit hole, NO_HOLES feature enabled. */
5223 			u64 hole_len = key.offset - clone_root->offset;
5224 
5225 			if (hole_len > len)
5226 				hole_len = len;
5227 			ret = send_extent_data(sctx, offset, hole_len);
5228 			if (ret < 0)
5229 				goto out;
5230 
5231 			len -= hole_len;
5232 			if (len == 0)
5233 				break;
5234 			offset += hole_len;
5235 			clone_root->offset += hole_len;
5236 			data_offset += hole_len;
5237 		}
5238 
5239 		if (key.offset >= clone_root->offset + len)
5240 			break;
5241 
5242 		if (key.offset >= clone_src_i_size)
5243 			break;
5244 
5245 		if (key.offset + ext_len > clone_src_i_size)
5246 			ext_len = clone_src_i_size - key.offset;
5247 
5248 		clone_data_offset = btrfs_file_extent_offset(leaf, ei);
5249 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
5250 			clone_root->offset = key.offset;
5251 			if (clone_data_offset < data_offset &&
5252 				clone_data_offset + ext_len > data_offset) {
5253 				u64 extent_offset;
5254 
5255 				extent_offset = data_offset - clone_data_offset;
5256 				ext_len -= extent_offset;
5257 				clone_data_offset += extent_offset;
5258 				clone_root->offset += extent_offset;
5259 			}
5260 		}
5261 
5262 		clone_len = min_t(u64, ext_len, len);
5263 
5264 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5265 		    clone_data_offset == data_offset) {
5266 			const u64 src_end = clone_root->offset + clone_len;
5267 			const u64 sectorsize = SZ_64K;
5268 
5269 			/*
5270 			 * We can't clone the last block, when its size is not
5271 			 * sector size aligned, into the middle of a file. If we
5272 			 * do so, the receiver will get a failure (-EINVAL) when
5273 			 * trying to clone or will silently corrupt the data in
5274 			 * the destination file if it's on a kernel without the
5275 			 * fix introduced by commit ac765f83f1397646
5276 			 * ("Btrfs: fix data corruption due to cloning of eof
5277 			 * block).
5278 			 *
5279 			 * So issue a clone of the aligned down range plus a
5280 			 * regular write for the eof block, if we hit that case.
5281 			 *
5282 			 * Also, we use the maximum possible sector size, 64K,
5283 			 * because we don't know what's the sector size of the
5284 			 * filesystem that receives the stream, so we have to
5285 			 * assume the largest possible sector size.
5286 			 */
5287 			if (src_end == clone_src_i_size &&
5288 			    !IS_ALIGNED(src_end, sectorsize) &&
5289 			    offset + clone_len < sctx->cur_inode_size) {
5290 				u64 slen;
5291 
5292 				slen = ALIGN_DOWN(src_end - clone_root->offset,
5293 						  sectorsize);
5294 				if (slen > 0) {
5295 					ret = send_clone(sctx, offset, slen,
5296 							 clone_root);
5297 					if (ret < 0)
5298 						goto out;
5299 				}
5300 				ret = send_extent_data(sctx, offset + slen,
5301 						       clone_len - slen);
5302 			} else {
5303 				ret = send_clone(sctx, offset, clone_len,
5304 						 clone_root);
5305 			}
5306 		} else {
5307 			ret = send_extent_data(sctx, offset, clone_len);
5308 		}
5309 
5310 		if (ret < 0)
5311 			goto out;
5312 
5313 		len -= clone_len;
5314 		if (len == 0)
5315 			break;
5316 		offset += clone_len;
5317 		clone_root->offset += clone_len;
5318 		data_offset += clone_len;
5319 next:
5320 		path->slots[0]++;
5321 	}
5322 
5323 	if (len > 0)
5324 		ret = send_extent_data(sctx, offset, len);
5325 	else
5326 		ret = 0;
5327 out:
5328 	btrfs_free_path(path);
5329 	return ret;
5330 }
5331 
send_write_or_clone(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key,struct clone_root * clone_root)5332 static int send_write_or_clone(struct send_ctx *sctx,
5333 			       struct btrfs_path *path,
5334 			       struct btrfs_key *key,
5335 			       struct clone_root *clone_root)
5336 {
5337 	int ret = 0;
5338 	struct btrfs_file_extent_item *ei;
5339 	u64 offset = key->offset;
5340 	u64 len;
5341 	u8 type;
5342 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5343 
5344 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5345 			struct btrfs_file_extent_item);
5346 	type = btrfs_file_extent_type(path->nodes[0], ei);
5347 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5348 		len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
5349 		/*
5350 		 * it is possible the inline item won't cover the whole page,
5351 		 * but there may be items after this page.  Make
5352 		 * sure to send the whole thing
5353 		 */
5354 		len = PAGE_ALIGN(len);
5355 	} else {
5356 		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5357 	}
5358 
5359 	if (offset >= sctx->cur_inode_size) {
5360 		ret = 0;
5361 		goto out;
5362 	}
5363 	if (offset + len > sctx->cur_inode_size)
5364 		len = sctx->cur_inode_size - offset;
5365 	if (len == 0) {
5366 		ret = 0;
5367 		goto out;
5368 	}
5369 
5370 	if (clone_root && IS_ALIGNED(offset + len, bs)) {
5371 		u64 disk_byte;
5372 		u64 data_offset;
5373 
5374 		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5375 		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5376 		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5377 				  offset, len);
5378 	} else {
5379 		ret = send_extent_data(sctx, offset, len);
5380 	}
5381 	sctx->cur_inode_next_write_offset = offset + len;
5382 out:
5383 	return ret;
5384 }
5385 
is_extent_unchanged(struct send_ctx * sctx,struct btrfs_path * left_path,struct btrfs_key * ekey)5386 static int is_extent_unchanged(struct send_ctx *sctx,
5387 			       struct btrfs_path *left_path,
5388 			       struct btrfs_key *ekey)
5389 {
5390 	int ret = 0;
5391 	struct btrfs_key key;
5392 	struct btrfs_path *path = NULL;
5393 	struct extent_buffer *eb;
5394 	int slot;
5395 	struct btrfs_key found_key;
5396 	struct btrfs_file_extent_item *ei;
5397 	u64 left_disknr;
5398 	u64 right_disknr;
5399 	u64 left_offset;
5400 	u64 right_offset;
5401 	u64 left_offset_fixed;
5402 	u64 left_len;
5403 	u64 right_len;
5404 	u64 left_gen;
5405 	u64 right_gen;
5406 	u8 left_type;
5407 	u8 right_type;
5408 
5409 	path = alloc_path_for_send();
5410 	if (!path)
5411 		return -ENOMEM;
5412 
5413 	eb = left_path->nodes[0];
5414 	slot = left_path->slots[0];
5415 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5416 	left_type = btrfs_file_extent_type(eb, ei);
5417 
5418 	if (left_type != BTRFS_FILE_EXTENT_REG) {
5419 		ret = 0;
5420 		goto out;
5421 	}
5422 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5423 	left_len = btrfs_file_extent_num_bytes(eb, ei);
5424 	left_offset = btrfs_file_extent_offset(eb, ei);
5425 	left_gen = btrfs_file_extent_generation(eb, ei);
5426 
5427 	/*
5428 	 * Following comments will refer to these graphics. L is the left
5429 	 * extents which we are checking at the moment. 1-8 are the right
5430 	 * extents that we iterate.
5431 	 *
5432 	 *       |-----L-----|
5433 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5434 	 *
5435 	 *       |-----L-----|
5436 	 * |--1--|-2b-|...(same as above)
5437 	 *
5438 	 * Alternative situation. Happens on files where extents got split.
5439 	 *       |-----L-----|
5440 	 * |-----------7-----------|-6-|
5441 	 *
5442 	 * Alternative situation. Happens on files which got larger.
5443 	 *       |-----L-----|
5444 	 * |-8-|
5445 	 * Nothing follows after 8.
5446 	 */
5447 
5448 	key.objectid = ekey->objectid;
5449 	key.type = BTRFS_EXTENT_DATA_KEY;
5450 	key.offset = ekey->offset;
5451 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5452 	if (ret < 0)
5453 		goto out;
5454 	if (ret) {
5455 		ret = 0;
5456 		goto out;
5457 	}
5458 
5459 	/*
5460 	 * Handle special case where the right side has no extents at all.
5461 	 */
5462 	eb = path->nodes[0];
5463 	slot = path->slots[0];
5464 	btrfs_item_key_to_cpu(eb, &found_key, slot);
5465 	if (found_key.objectid != key.objectid ||
5466 	    found_key.type != key.type) {
5467 		/* If we're a hole then just pretend nothing changed */
5468 		ret = (left_disknr) ? 0 : 1;
5469 		goto out;
5470 	}
5471 
5472 	/*
5473 	 * We're now on 2a, 2b or 7.
5474 	 */
5475 	key = found_key;
5476 	while (key.offset < ekey->offset + left_len) {
5477 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5478 		right_type = btrfs_file_extent_type(eb, ei);
5479 		if (right_type != BTRFS_FILE_EXTENT_REG &&
5480 		    right_type != BTRFS_FILE_EXTENT_INLINE) {
5481 			ret = 0;
5482 			goto out;
5483 		}
5484 
5485 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5486 			right_len = btrfs_file_extent_ram_bytes(eb, ei);
5487 			right_len = PAGE_ALIGN(right_len);
5488 		} else {
5489 			right_len = btrfs_file_extent_num_bytes(eb, ei);
5490 		}
5491 
5492 		/*
5493 		 * Are we at extent 8? If yes, we know the extent is changed.
5494 		 * This may only happen on the first iteration.
5495 		 */
5496 		if (found_key.offset + right_len <= ekey->offset) {
5497 			/* If we're a hole just pretend nothing changed */
5498 			ret = (left_disknr) ? 0 : 1;
5499 			goto out;
5500 		}
5501 
5502 		/*
5503 		 * We just wanted to see if when we have an inline extent, what
5504 		 * follows it is a regular extent (wanted to check the above
5505 		 * condition for inline extents too). This should normally not
5506 		 * happen but it's possible for example when we have an inline
5507 		 * compressed extent representing data with a size matching
5508 		 * the page size (currently the same as sector size).
5509 		 */
5510 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5511 			ret = 0;
5512 			goto out;
5513 		}
5514 
5515 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5516 		right_offset = btrfs_file_extent_offset(eb, ei);
5517 		right_gen = btrfs_file_extent_generation(eb, ei);
5518 
5519 		left_offset_fixed = left_offset;
5520 		if (key.offset < ekey->offset) {
5521 			/* Fix the right offset for 2a and 7. */
5522 			right_offset += ekey->offset - key.offset;
5523 		} else {
5524 			/* Fix the left offset for all behind 2a and 2b */
5525 			left_offset_fixed += key.offset - ekey->offset;
5526 		}
5527 
5528 		/*
5529 		 * Check if we have the same extent.
5530 		 */
5531 		if (left_disknr != right_disknr ||
5532 		    left_offset_fixed != right_offset ||
5533 		    left_gen != right_gen) {
5534 			ret = 0;
5535 			goto out;
5536 		}
5537 
5538 		/*
5539 		 * Go to the next extent.
5540 		 */
5541 		ret = btrfs_next_item(sctx->parent_root, path);
5542 		if (ret < 0)
5543 			goto out;
5544 		if (!ret) {
5545 			eb = path->nodes[0];
5546 			slot = path->slots[0];
5547 			btrfs_item_key_to_cpu(eb, &found_key, slot);
5548 		}
5549 		if (ret || found_key.objectid != key.objectid ||
5550 		    found_key.type != key.type) {
5551 			key.offset += right_len;
5552 			break;
5553 		}
5554 		if (found_key.offset != key.offset + right_len) {
5555 			ret = 0;
5556 			goto out;
5557 		}
5558 		key = found_key;
5559 	}
5560 
5561 	/*
5562 	 * We're now behind the left extent (treat as unchanged) or at the end
5563 	 * of the right side (treat as changed).
5564 	 */
5565 	if (key.offset >= ekey->offset + left_len)
5566 		ret = 1;
5567 	else
5568 		ret = 0;
5569 
5570 
5571 out:
5572 	btrfs_free_path(path);
5573 	return ret;
5574 }
5575 
get_last_extent(struct send_ctx * sctx,u64 offset)5576 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5577 {
5578 	struct btrfs_path *path;
5579 	struct btrfs_root *root = sctx->send_root;
5580 	struct btrfs_file_extent_item *fi;
5581 	struct btrfs_key key;
5582 	u64 extent_end;
5583 	u8 type;
5584 	int ret;
5585 
5586 	path = alloc_path_for_send();
5587 	if (!path)
5588 		return -ENOMEM;
5589 
5590 	sctx->cur_inode_last_extent = 0;
5591 
5592 	key.objectid = sctx->cur_ino;
5593 	key.type = BTRFS_EXTENT_DATA_KEY;
5594 	key.offset = offset;
5595 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5596 	if (ret < 0)
5597 		goto out;
5598 	ret = 0;
5599 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5600 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5601 		goto out;
5602 
5603 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5604 			    struct btrfs_file_extent_item);
5605 	type = btrfs_file_extent_type(path->nodes[0], fi);
5606 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5607 		u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi);
5608 		extent_end = ALIGN(key.offset + size,
5609 				   sctx->send_root->fs_info->sectorsize);
5610 	} else {
5611 		extent_end = key.offset +
5612 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5613 	}
5614 	sctx->cur_inode_last_extent = extent_end;
5615 out:
5616 	btrfs_free_path(path);
5617 	return ret;
5618 }
5619 
range_is_hole_in_parent(struct send_ctx * sctx,const u64 start,const u64 end)5620 static int range_is_hole_in_parent(struct send_ctx *sctx,
5621 				   const u64 start,
5622 				   const u64 end)
5623 {
5624 	struct btrfs_path *path;
5625 	struct btrfs_key key;
5626 	struct btrfs_root *root = sctx->parent_root;
5627 	u64 search_start = start;
5628 	int ret;
5629 
5630 	path = alloc_path_for_send();
5631 	if (!path)
5632 		return -ENOMEM;
5633 
5634 	key.objectid = sctx->cur_ino;
5635 	key.type = BTRFS_EXTENT_DATA_KEY;
5636 	key.offset = search_start;
5637 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5638 	if (ret < 0)
5639 		goto out;
5640 	if (ret > 0 && path->slots[0] > 0)
5641 		path->slots[0]--;
5642 
5643 	while (search_start < end) {
5644 		struct extent_buffer *leaf = path->nodes[0];
5645 		int slot = path->slots[0];
5646 		struct btrfs_file_extent_item *fi;
5647 		u64 extent_end;
5648 
5649 		if (slot >= btrfs_header_nritems(leaf)) {
5650 			ret = btrfs_next_leaf(root, path);
5651 			if (ret < 0)
5652 				goto out;
5653 			else if (ret > 0)
5654 				break;
5655 			continue;
5656 		}
5657 
5658 		btrfs_item_key_to_cpu(leaf, &key, slot);
5659 		if (key.objectid < sctx->cur_ino ||
5660 		    key.type < BTRFS_EXTENT_DATA_KEY)
5661 			goto next;
5662 		if (key.objectid > sctx->cur_ino ||
5663 		    key.type > BTRFS_EXTENT_DATA_KEY ||
5664 		    key.offset >= end)
5665 			break;
5666 
5667 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5668 		if (btrfs_file_extent_type(leaf, fi) ==
5669 		    BTRFS_FILE_EXTENT_INLINE) {
5670 			u64 size = btrfs_file_extent_ram_bytes(leaf, fi);
5671 
5672 			extent_end = ALIGN(key.offset + size,
5673 					   root->fs_info->sectorsize);
5674 		} else {
5675 			extent_end = key.offset +
5676 				btrfs_file_extent_num_bytes(leaf, fi);
5677 		}
5678 		if (extent_end <= start)
5679 			goto next;
5680 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5681 			search_start = extent_end;
5682 			goto next;
5683 		}
5684 		ret = 0;
5685 		goto out;
5686 next:
5687 		path->slots[0]++;
5688 	}
5689 	ret = 1;
5690 out:
5691 	btrfs_free_path(path);
5692 	return ret;
5693 }
5694 
maybe_send_hole(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)5695 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5696 			   struct btrfs_key *key)
5697 {
5698 	struct btrfs_file_extent_item *fi;
5699 	u64 extent_end;
5700 	u8 type;
5701 	int ret = 0;
5702 
5703 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5704 		return 0;
5705 
5706 	if (sctx->cur_inode_last_extent == (u64)-1) {
5707 		ret = get_last_extent(sctx, key->offset - 1);
5708 		if (ret)
5709 			return ret;
5710 	}
5711 
5712 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5713 			    struct btrfs_file_extent_item);
5714 	type = btrfs_file_extent_type(path->nodes[0], fi);
5715 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5716 		u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi);
5717 		extent_end = ALIGN(key->offset + size,
5718 				   sctx->send_root->fs_info->sectorsize);
5719 	} else {
5720 		extent_end = key->offset +
5721 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5722 	}
5723 
5724 	if (path->slots[0] == 0 &&
5725 	    sctx->cur_inode_last_extent < key->offset) {
5726 		/*
5727 		 * We might have skipped entire leafs that contained only
5728 		 * file extent items for our current inode. These leafs have
5729 		 * a generation number smaller (older) than the one in the
5730 		 * current leaf and the leaf our last extent came from, and
5731 		 * are located between these 2 leafs.
5732 		 */
5733 		ret = get_last_extent(sctx, key->offset - 1);
5734 		if (ret)
5735 			return ret;
5736 	}
5737 
5738 	if (sctx->cur_inode_last_extent < key->offset) {
5739 		ret = range_is_hole_in_parent(sctx,
5740 					      sctx->cur_inode_last_extent,
5741 					      key->offset);
5742 		if (ret < 0)
5743 			return ret;
5744 		else if (ret == 0)
5745 			ret = send_hole(sctx, key->offset);
5746 		else
5747 			ret = 0;
5748 	}
5749 	sctx->cur_inode_last_extent = extent_end;
5750 	return ret;
5751 }
5752 
process_extent(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)5753 static int process_extent(struct send_ctx *sctx,
5754 			  struct btrfs_path *path,
5755 			  struct btrfs_key *key)
5756 {
5757 	struct clone_root *found_clone = NULL;
5758 	int ret = 0;
5759 
5760 	if (S_ISLNK(sctx->cur_inode_mode))
5761 		return 0;
5762 
5763 	if (sctx->parent_root && !sctx->cur_inode_new) {
5764 		ret = is_extent_unchanged(sctx, path, key);
5765 		if (ret < 0)
5766 			goto out;
5767 		if (ret) {
5768 			ret = 0;
5769 			goto out_hole;
5770 		}
5771 	} else {
5772 		struct btrfs_file_extent_item *ei;
5773 		u8 type;
5774 
5775 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5776 				    struct btrfs_file_extent_item);
5777 		type = btrfs_file_extent_type(path->nodes[0], ei);
5778 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5779 		    type == BTRFS_FILE_EXTENT_REG) {
5780 			/*
5781 			 * The send spec does not have a prealloc command yet,
5782 			 * so just leave a hole for prealloc'ed extents until
5783 			 * we have enough commands queued up to justify rev'ing
5784 			 * the send spec.
5785 			 */
5786 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5787 				ret = 0;
5788 				goto out;
5789 			}
5790 
5791 			/* Have a hole, just skip it. */
5792 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5793 				ret = 0;
5794 				goto out;
5795 			}
5796 		}
5797 	}
5798 
5799 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5800 			sctx->cur_inode_size, &found_clone);
5801 	if (ret != -ENOENT && ret < 0)
5802 		goto out;
5803 
5804 	ret = send_write_or_clone(sctx, path, key, found_clone);
5805 	if (ret)
5806 		goto out;
5807 out_hole:
5808 	ret = maybe_send_hole(sctx, path, key);
5809 out:
5810 	return ret;
5811 }
5812 
process_all_extents(struct send_ctx * sctx)5813 static int process_all_extents(struct send_ctx *sctx)
5814 {
5815 	int ret;
5816 	struct btrfs_root *root;
5817 	struct btrfs_path *path;
5818 	struct btrfs_key key;
5819 	struct btrfs_key found_key;
5820 	struct extent_buffer *eb;
5821 	int slot;
5822 
5823 	root = sctx->send_root;
5824 	path = alloc_path_for_send();
5825 	if (!path)
5826 		return -ENOMEM;
5827 
5828 	key.objectid = sctx->cmp_key->objectid;
5829 	key.type = BTRFS_EXTENT_DATA_KEY;
5830 	key.offset = 0;
5831 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5832 	if (ret < 0)
5833 		goto out;
5834 
5835 	while (1) {
5836 		eb = path->nodes[0];
5837 		slot = path->slots[0];
5838 
5839 		if (slot >= btrfs_header_nritems(eb)) {
5840 			ret = btrfs_next_leaf(root, path);
5841 			if (ret < 0) {
5842 				goto out;
5843 			} else if (ret > 0) {
5844 				ret = 0;
5845 				break;
5846 			}
5847 			continue;
5848 		}
5849 
5850 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5851 
5852 		if (found_key.objectid != key.objectid ||
5853 		    found_key.type != key.type) {
5854 			ret = 0;
5855 			goto out;
5856 		}
5857 
5858 		ret = process_extent(sctx, path, &found_key);
5859 		if (ret < 0)
5860 			goto out;
5861 
5862 		path->slots[0]++;
5863 	}
5864 
5865 out:
5866 	btrfs_free_path(path);
5867 	return ret;
5868 }
5869 
process_recorded_refs_if_needed(struct send_ctx * sctx,int at_end,int * pending_move,int * refs_processed)5870 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5871 					   int *pending_move,
5872 					   int *refs_processed)
5873 {
5874 	int ret = 0;
5875 
5876 	if (sctx->cur_ino == 0)
5877 		goto out;
5878 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5879 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5880 		goto out;
5881 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5882 		goto out;
5883 
5884 	ret = process_recorded_refs(sctx, pending_move);
5885 	if (ret < 0)
5886 		goto out;
5887 
5888 	*refs_processed = 1;
5889 out:
5890 	return ret;
5891 }
5892 
finish_inode_if_needed(struct send_ctx * sctx,int at_end)5893 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5894 {
5895 	int ret = 0;
5896 	u64 left_mode;
5897 	u64 left_uid;
5898 	u64 left_gid;
5899 	u64 right_mode;
5900 	u64 right_uid;
5901 	u64 right_gid;
5902 	int need_chmod = 0;
5903 	int need_chown = 0;
5904 	int need_truncate = 1;
5905 	int pending_move = 0;
5906 	int refs_processed = 0;
5907 
5908 	if (sctx->ignore_cur_inode)
5909 		return 0;
5910 
5911 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5912 					      &refs_processed);
5913 	if (ret < 0)
5914 		goto out;
5915 
5916 	/*
5917 	 * We have processed the refs and thus need to advance send_progress.
5918 	 * Now, calls to get_cur_xxx will take the updated refs of the current
5919 	 * inode into account.
5920 	 *
5921 	 * On the other hand, if our current inode is a directory and couldn't
5922 	 * be moved/renamed because its parent was renamed/moved too and it has
5923 	 * a higher inode number, we can only move/rename our current inode
5924 	 * after we moved/renamed its parent. Therefore in this case operate on
5925 	 * the old path (pre move/rename) of our current inode, and the
5926 	 * move/rename will be performed later.
5927 	 */
5928 	if (refs_processed && !pending_move)
5929 		sctx->send_progress = sctx->cur_ino + 1;
5930 
5931 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5932 		goto out;
5933 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5934 		goto out;
5935 
5936 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5937 			&left_mode, &left_uid, &left_gid, NULL);
5938 	if (ret < 0)
5939 		goto out;
5940 
5941 	if (!sctx->parent_root || sctx->cur_inode_new) {
5942 		need_chown = 1;
5943 		if (!S_ISLNK(sctx->cur_inode_mode))
5944 			need_chmod = 1;
5945 		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
5946 			need_truncate = 0;
5947 	} else {
5948 		u64 old_size;
5949 
5950 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5951 				&old_size, NULL, &right_mode, &right_uid,
5952 				&right_gid, NULL);
5953 		if (ret < 0)
5954 			goto out;
5955 
5956 		if (left_uid != right_uid || left_gid != right_gid)
5957 			need_chown = 1;
5958 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5959 			need_chmod = 1;
5960 		if ((old_size == sctx->cur_inode_size) ||
5961 		    (sctx->cur_inode_size > old_size &&
5962 		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
5963 			need_truncate = 0;
5964 	}
5965 
5966 	if (S_ISREG(sctx->cur_inode_mode)) {
5967 		if (need_send_hole(sctx)) {
5968 			if (sctx->cur_inode_last_extent == (u64)-1 ||
5969 			    sctx->cur_inode_last_extent <
5970 			    sctx->cur_inode_size) {
5971 				ret = get_last_extent(sctx, (u64)-1);
5972 				if (ret)
5973 					goto out;
5974 			}
5975 			if (sctx->cur_inode_last_extent <
5976 			    sctx->cur_inode_size) {
5977 				ret = send_hole(sctx, sctx->cur_inode_size);
5978 				if (ret)
5979 					goto out;
5980 			}
5981 		}
5982 		if (need_truncate) {
5983 			ret = send_truncate(sctx, sctx->cur_ino,
5984 					    sctx->cur_inode_gen,
5985 					    sctx->cur_inode_size);
5986 			if (ret < 0)
5987 				goto out;
5988 		}
5989 	}
5990 
5991 	if (need_chown) {
5992 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5993 				left_uid, left_gid);
5994 		if (ret < 0)
5995 			goto out;
5996 	}
5997 	if (need_chmod) {
5998 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5999 				left_mode);
6000 		if (ret < 0)
6001 			goto out;
6002 	}
6003 
6004 	/*
6005 	 * If other directory inodes depended on our current directory
6006 	 * inode's move/rename, now do their move/rename operations.
6007 	 */
6008 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6009 		ret = apply_children_dir_moves(sctx);
6010 		if (ret)
6011 			goto out;
6012 		/*
6013 		 * Need to send that every time, no matter if it actually
6014 		 * changed between the two trees as we have done changes to
6015 		 * the inode before. If our inode is a directory and it's
6016 		 * waiting to be moved/renamed, we will send its utimes when
6017 		 * it's moved/renamed, therefore we don't need to do it here.
6018 		 */
6019 		sctx->send_progress = sctx->cur_ino + 1;
6020 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6021 		if (ret < 0)
6022 			goto out;
6023 	}
6024 
6025 out:
6026 	return ret;
6027 }
6028 
6029 struct parent_paths_ctx {
6030 	struct list_head *refs;
6031 	struct send_ctx *sctx;
6032 };
6033 
record_parent_ref(int num,u64 dir,int index,struct fs_path * name,void * ctx)6034 static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name,
6035 			     void *ctx)
6036 {
6037 	struct parent_paths_ctx *ppctx = ctx;
6038 
6039 	return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx,
6040 			  ppctx->refs);
6041 }
6042 
6043 /*
6044  * Issue unlink operations for all paths of the current inode found in the
6045  * parent snapshot.
6046  */
btrfs_unlink_all_paths(struct send_ctx * sctx)6047 static int btrfs_unlink_all_paths(struct send_ctx *sctx)
6048 {
6049 	LIST_HEAD(deleted_refs);
6050 	struct btrfs_path *path;
6051 	struct btrfs_key key;
6052 	struct parent_paths_ctx ctx;
6053 	int ret;
6054 
6055 	path = alloc_path_for_send();
6056 	if (!path)
6057 		return -ENOMEM;
6058 
6059 	key.objectid = sctx->cur_ino;
6060 	key.type = BTRFS_INODE_REF_KEY;
6061 	key.offset = 0;
6062 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
6063 	if (ret < 0)
6064 		goto out;
6065 
6066 	ctx.refs = &deleted_refs;
6067 	ctx.sctx = sctx;
6068 
6069 	while (true) {
6070 		struct extent_buffer *eb = path->nodes[0];
6071 		int slot = path->slots[0];
6072 
6073 		if (slot >= btrfs_header_nritems(eb)) {
6074 			ret = btrfs_next_leaf(sctx->parent_root, path);
6075 			if (ret < 0)
6076 				goto out;
6077 			else if (ret > 0)
6078 				break;
6079 			continue;
6080 		}
6081 
6082 		btrfs_item_key_to_cpu(eb, &key, slot);
6083 		if (key.objectid != sctx->cur_ino)
6084 			break;
6085 		if (key.type != BTRFS_INODE_REF_KEY &&
6086 		    key.type != BTRFS_INODE_EXTREF_KEY)
6087 			break;
6088 
6089 		ret = iterate_inode_ref(sctx->parent_root, path, &key, 1,
6090 					record_parent_ref, &ctx);
6091 		if (ret < 0)
6092 			goto out;
6093 
6094 		path->slots[0]++;
6095 	}
6096 
6097 	while (!list_empty(&deleted_refs)) {
6098 		struct recorded_ref *ref;
6099 
6100 		ref = list_first_entry(&deleted_refs, struct recorded_ref, list);
6101 		ret = send_unlink(sctx, ref->full_path);
6102 		if (ret < 0)
6103 			goto out;
6104 		fs_path_free(ref->full_path);
6105 		list_del(&ref->list);
6106 		kfree(ref);
6107 	}
6108 	ret = 0;
6109 out:
6110 	btrfs_free_path(path);
6111 	if (ret)
6112 		__free_recorded_refs(&deleted_refs);
6113 	return ret;
6114 }
6115 
changed_inode(struct send_ctx * sctx,enum btrfs_compare_tree_result result)6116 static int changed_inode(struct send_ctx *sctx,
6117 			 enum btrfs_compare_tree_result result)
6118 {
6119 	int ret = 0;
6120 	struct btrfs_key *key = sctx->cmp_key;
6121 	struct btrfs_inode_item *left_ii = NULL;
6122 	struct btrfs_inode_item *right_ii = NULL;
6123 	u64 left_gen = 0;
6124 	u64 right_gen = 0;
6125 
6126 	sctx->cur_ino = key->objectid;
6127 	sctx->cur_inode_new_gen = 0;
6128 	sctx->cur_inode_last_extent = (u64)-1;
6129 	sctx->cur_inode_next_write_offset = 0;
6130 	sctx->ignore_cur_inode = false;
6131 
6132 	/*
6133 	 * Set send_progress to current inode. This will tell all get_cur_xxx
6134 	 * functions that the current inode's refs are not updated yet. Later,
6135 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6136 	 */
6137 	sctx->send_progress = sctx->cur_ino;
6138 
6139 	if (result == BTRFS_COMPARE_TREE_NEW ||
6140 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6141 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6142 				sctx->left_path->slots[0],
6143 				struct btrfs_inode_item);
6144 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6145 				left_ii);
6146 	} else {
6147 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6148 				sctx->right_path->slots[0],
6149 				struct btrfs_inode_item);
6150 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6151 				right_ii);
6152 	}
6153 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
6154 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6155 				sctx->right_path->slots[0],
6156 				struct btrfs_inode_item);
6157 
6158 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6159 				right_ii);
6160 
6161 		/*
6162 		 * The cur_ino = root dir case is special here. We can't treat
6163 		 * the inode as deleted+reused because it would generate a
6164 		 * stream that tries to delete/mkdir the root dir.
6165 		 */
6166 		if (left_gen != right_gen &&
6167 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6168 			sctx->cur_inode_new_gen = 1;
6169 	}
6170 
6171 	/*
6172 	 * Normally we do not find inodes with a link count of zero (orphans)
6173 	 * because the most common case is to create a snapshot and use it
6174 	 * for a send operation. However other less common use cases involve
6175 	 * using a subvolume and send it after turning it to RO mode just
6176 	 * after deleting all hard links of a file while holding an open
6177 	 * file descriptor against it or turning a RO snapshot into RW mode,
6178 	 * keep an open file descriptor against a file, delete it and then
6179 	 * turn the snapshot back to RO mode before using it for a send
6180 	 * operation. So if we find such cases, ignore the inode and all its
6181 	 * items completely if it's a new inode, or if it's a changed inode
6182 	 * make sure all its previous paths (from the parent snapshot) are all
6183 	 * unlinked and all other the inode items are ignored.
6184 	 */
6185 	if (result == BTRFS_COMPARE_TREE_NEW ||
6186 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6187 		u32 nlinks;
6188 
6189 		nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6190 		if (nlinks == 0) {
6191 			sctx->ignore_cur_inode = true;
6192 			if (result == BTRFS_COMPARE_TREE_CHANGED)
6193 				ret = btrfs_unlink_all_paths(sctx);
6194 			goto out;
6195 		}
6196 	}
6197 
6198 	if (result == BTRFS_COMPARE_TREE_NEW) {
6199 		sctx->cur_inode_gen = left_gen;
6200 		sctx->cur_inode_new = 1;
6201 		sctx->cur_inode_deleted = 0;
6202 		sctx->cur_inode_size = btrfs_inode_size(
6203 				sctx->left_path->nodes[0], left_ii);
6204 		sctx->cur_inode_mode = btrfs_inode_mode(
6205 				sctx->left_path->nodes[0], left_ii);
6206 		sctx->cur_inode_rdev = btrfs_inode_rdev(
6207 				sctx->left_path->nodes[0], left_ii);
6208 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6209 			ret = send_create_inode_if_needed(sctx);
6210 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
6211 		sctx->cur_inode_gen = right_gen;
6212 		sctx->cur_inode_new = 0;
6213 		sctx->cur_inode_deleted = 1;
6214 		sctx->cur_inode_size = btrfs_inode_size(
6215 				sctx->right_path->nodes[0], right_ii);
6216 		sctx->cur_inode_mode = btrfs_inode_mode(
6217 				sctx->right_path->nodes[0], right_ii);
6218 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6219 		/*
6220 		 * We need to do some special handling in case the inode was
6221 		 * reported as changed with a changed generation number. This
6222 		 * means that the original inode was deleted and new inode
6223 		 * reused the same inum. So we have to treat the old inode as
6224 		 * deleted and the new one as new.
6225 		 */
6226 		if (sctx->cur_inode_new_gen) {
6227 			/*
6228 			 * First, process the inode as if it was deleted.
6229 			 */
6230 			sctx->cur_inode_gen = right_gen;
6231 			sctx->cur_inode_new = 0;
6232 			sctx->cur_inode_deleted = 1;
6233 			sctx->cur_inode_size = btrfs_inode_size(
6234 					sctx->right_path->nodes[0], right_ii);
6235 			sctx->cur_inode_mode = btrfs_inode_mode(
6236 					sctx->right_path->nodes[0], right_ii);
6237 			ret = process_all_refs(sctx,
6238 					BTRFS_COMPARE_TREE_DELETED);
6239 			if (ret < 0)
6240 				goto out;
6241 
6242 			/*
6243 			 * Now process the inode as if it was new.
6244 			 */
6245 			sctx->cur_inode_gen = left_gen;
6246 			sctx->cur_inode_new = 1;
6247 			sctx->cur_inode_deleted = 0;
6248 			sctx->cur_inode_size = btrfs_inode_size(
6249 					sctx->left_path->nodes[0], left_ii);
6250 			sctx->cur_inode_mode = btrfs_inode_mode(
6251 					sctx->left_path->nodes[0], left_ii);
6252 			sctx->cur_inode_rdev = btrfs_inode_rdev(
6253 					sctx->left_path->nodes[0], left_ii);
6254 			ret = send_create_inode_if_needed(sctx);
6255 			if (ret < 0)
6256 				goto out;
6257 
6258 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6259 			if (ret < 0)
6260 				goto out;
6261 			/*
6262 			 * Advance send_progress now as we did not get into
6263 			 * process_recorded_refs_if_needed in the new_gen case.
6264 			 */
6265 			sctx->send_progress = sctx->cur_ino + 1;
6266 
6267 			/*
6268 			 * Now process all extents and xattrs of the inode as if
6269 			 * they were all new.
6270 			 */
6271 			ret = process_all_extents(sctx);
6272 			if (ret < 0)
6273 				goto out;
6274 			ret = process_all_new_xattrs(sctx);
6275 			if (ret < 0)
6276 				goto out;
6277 		} else {
6278 			sctx->cur_inode_gen = left_gen;
6279 			sctx->cur_inode_new = 0;
6280 			sctx->cur_inode_new_gen = 0;
6281 			sctx->cur_inode_deleted = 0;
6282 			sctx->cur_inode_size = btrfs_inode_size(
6283 					sctx->left_path->nodes[0], left_ii);
6284 			sctx->cur_inode_mode = btrfs_inode_mode(
6285 					sctx->left_path->nodes[0], left_ii);
6286 		}
6287 	}
6288 
6289 out:
6290 	return ret;
6291 }
6292 
6293 /*
6294  * We have to process new refs before deleted refs, but compare_trees gives us
6295  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6296  * first and later process them in process_recorded_refs.
6297  * For the cur_inode_new_gen case, we skip recording completely because
6298  * changed_inode did already initiate processing of refs. The reason for this is
6299  * that in this case, compare_tree actually compares the refs of 2 different
6300  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6301  * refs of the right tree as deleted and all refs of the left tree as new.
6302  */
changed_ref(struct send_ctx * sctx,enum btrfs_compare_tree_result result)6303 static int changed_ref(struct send_ctx *sctx,
6304 		       enum btrfs_compare_tree_result result)
6305 {
6306 	int ret = 0;
6307 
6308 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6309 		inconsistent_snapshot_error(sctx, result, "reference");
6310 		return -EIO;
6311 	}
6312 
6313 	if (!sctx->cur_inode_new_gen &&
6314 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6315 		if (result == BTRFS_COMPARE_TREE_NEW)
6316 			ret = record_new_ref(sctx);
6317 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6318 			ret = record_deleted_ref(sctx);
6319 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6320 			ret = record_changed_ref(sctx);
6321 	}
6322 
6323 	return ret;
6324 }
6325 
6326 /*
6327  * Process new/deleted/changed xattrs. We skip processing in the
6328  * cur_inode_new_gen case because changed_inode did already initiate processing
6329  * of xattrs. The reason is the same as in changed_ref
6330  */
changed_xattr(struct send_ctx * sctx,enum btrfs_compare_tree_result result)6331 static int changed_xattr(struct send_ctx *sctx,
6332 			 enum btrfs_compare_tree_result result)
6333 {
6334 	int ret = 0;
6335 
6336 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6337 		inconsistent_snapshot_error(sctx, result, "xattr");
6338 		return -EIO;
6339 	}
6340 
6341 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6342 		if (result == BTRFS_COMPARE_TREE_NEW)
6343 			ret = process_new_xattr(sctx);
6344 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6345 			ret = process_deleted_xattr(sctx);
6346 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6347 			ret = process_changed_xattr(sctx);
6348 	}
6349 
6350 	return ret;
6351 }
6352 
6353 /*
6354  * Process new/deleted/changed extents. We skip processing in the
6355  * cur_inode_new_gen case because changed_inode did already initiate processing
6356  * of extents. The reason is the same as in changed_ref
6357  */
changed_extent(struct send_ctx * sctx,enum btrfs_compare_tree_result result)6358 static int changed_extent(struct send_ctx *sctx,
6359 			  enum btrfs_compare_tree_result result)
6360 {
6361 	int ret = 0;
6362 
6363 	/*
6364 	 * We have found an extent item that changed without the inode item
6365 	 * having changed. This can happen either after relocation (where the
6366 	 * disk_bytenr of an extent item is replaced at
6367 	 * relocation.c:replace_file_extents()) or after deduplication into a
6368 	 * file in both the parent and send snapshots (where an extent item can
6369 	 * get modified or replaced with a new one). Note that deduplication
6370 	 * updates the inode item, but it only changes the iversion (sequence
6371 	 * field in the inode item) of the inode, so if a file is deduplicated
6372 	 * the same amount of times in both the parent and send snapshots, its
6373 	 * iversion becames the same in both snapshots, whence the inode item is
6374 	 * the same on both snapshots.
6375 	 */
6376 	if (sctx->cur_ino != sctx->cmp_key->objectid)
6377 		return 0;
6378 
6379 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6380 		if (result != BTRFS_COMPARE_TREE_DELETED)
6381 			ret = process_extent(sctx, sctx->left_path,
6382 					sctx->cmp_key);
6383 	}
6384 
6385 	return ret;
6386 }
6387 
dir_changed(struct send_ctx * sctx,u64 dir)6388 static int dir_changed(struct send_ctx *sctx, u64 dir)
6389 {
6390 	u64 orig_gen, new_gen;
6391 	int ret;
6392 
6393 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6394 			     NULL, NULL);
6395 	if (ret)
6396 		return ret;
6397 
6398 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6399 			     NULL, NULL, NULL);
6400 	if (ret)
6401 		return ret;
6402 
6403 	return (orig_gen != new_gen) ? 1 : 0;
6404 }
6405 
compare_refs(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)6406 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6407 			struct btrfs_key *key)
6408 {
6409 	struct btrfs_inode_extref *extref;
6410 	struct extent_buffer *leaf;
6411 	u64 dirid = 0, last_dirid = 0;
6412 	unsigned long ptr;
6413 	u32 item_size;
6414 	u32 cur_offset = 0;
6415 	int ref_name_len;
6416 	int ret = 0;
6417 
6418 	/* Easy case, just check this one dirid */
6419 	if (key->type == BTRFS_INODE_REF_KEY) {
6420 		dirid = key->offset;
6421 
6422 		ret = dir_changed(sctx, dirid);
6423 		goto out;
6424 	}
6425 
6426 	leaf = path->nodes[0];
6427 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6428 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6429 	while (cur_offset < item_size) {
6430 		extref = (struct btrfs_inode_extref *)(ptr +
6431 						       cur_offset);
6432 		dirid = btrfs_inode_extref_parent(leaf, extref);
6433 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6434 		cur_offset += ref_name_len + sizeof(*extref);
6435 		if (dirid == last_dirid)
6436 			continue;
6437 		ret = dir_changed(sctx, dirid);
6438 		if (ret)
6439 			break;
6440 		last_dirid = dirid;
6441 	}
6442 out:
6443 	return ret;
6444 }
6445 
6446 /*
6447  * Updates compare related fields in sctx and simply forwards to the actual
6448  * changed_xxx functions.
6449  */
changed_cb(struct btrfs_path * left_path,struct btrfs_path * right_path,struct btrfs_key * key,enum btrfs_compare_tree_result result,void * ctx)6450 static int changed_cb(struct btrfs_path *left_path,
6451 		      struct btrfs_path *right_path,
6452 		      struct btrfs_key *key,
6453 		      enum btrfs_compare_tree_result result,
6454 		      void *ctx)
6455 {
6456 	int ret = 0;
6457 	struct send_ctx *sctx = ctx;
6458 
6459 	if (result == BTRFS_COMPARE_TREE_SAME) {
6460 		if (key->type == BTRFS_INODE_REF_KEY ||
6461 		    key->type == BTRFS_INODE_EXTREF_KEY) {
6462 			ret = compare_refs(sctx, left_path, key);
6463 			if (!ret)
6464 				return 0;
6465 			if (ret < 0)
6466 				return ret;
6467 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6468 			return maybe_send_hole(sctx, left_path, key);
6469 		} else {
6470 			return 0;
6471 		}
6472 		result = BTRFS_COMPARE_TREE_CHANGED;
6473 		ret = 0;
6474 	}
6475 
6476 	sctx->left_path = left_path;
6477 	sctx->right_path = right_path;
6478 	sctx->cmp_key = key;
6479 
6480 	ret = finish_inode_if_needed(sctx, 0);
6481 	if (ret < 0)
6482 		goto out;
6483 
6484 	/* Ignore non-FS objects */
6485 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6486 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6487 		goto out;
6488 
6489 	if (key->type == BTRFS_INODE_ITEM_KEY) {
6490 		ret = changed_inode(sctx, result);
6491 	} else if (!sctx->ignore_cur_inode) {
6492 		if (key->type == BTRFS_INODE_REF_KEY ||
6493 		    key->type == BTRFS_INODE_EXTREF_KEY)
6494 			ret = changed_ref(sctx, result);
6495 		else if (key->type == BTRFS_XATTR_ITEM_KEY)
6496 			ret = changed_xattr(sctx, result);
6497 		else if (key->type == BTRFS_EXTENT_DATA_KEY)
6498 			ret = changed_extent(sctx, result);
6499 	}
6500 
6501 out:
6502 	return ret;
6503 }
6504 
full_send_tree(struct send_ctx * sctx)6505 static int full_send_tree(struct send_ctx *sctx)
6506 {
6507 	int ret;
6508 	struct btrfs_root *send_root = sctx->send_root;
6509 	struct btrfs_key key;
6510 	struct btrfs_path *path;
6511 	struct extent_buffer *eb;
6512 	int slot;
6513 
6514 	path = alloc_path_for_send();
6515 	if (!path)
6516 		return -ENOMEM;
6517 
6518 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6519 	key.type = BTRFS_INODE_ITEM_KEY;
6520 	key.offset = 0;
6521 
6522 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6523 	if (ret < 0)
6524 		goto out;
6525 	if (ret)
6526 		goto out_finish;
6527 
6528 	while (1) {
6529 		eb = path->nodes[0];
6530 		slot = path->slots[0];
6531 		btrfs_item_key_to_cpu(eb, &key, slot);
6532 
6533 		ret = changed_cb(path, NULL, &key,
6534 				 BTRFS_COMPARE_TREE_NEW, sctx);
6535 		if (ret < 0)
6536 			goto out;
6537 
6538 		ret = btrfs_next_item(send_root, path);
6539 		if (ret < 0)
6540 			goto out;
6541 		if (ret) {
6542 			ret  = 0;
6543 			break;
6544 		}
6545 	}
6546 
6547 out_finish:
6548 	ret = finish_inode_if_needed(sctx, 1);
6549 
6550 out:
6551 	btrfs_free_path(path);
6552 	return ret;
6553 }
6554 
tree_move_down(struct btrfs_path * path,int * level)6555 static int tree_move_down(struct btrfs_path *path, int *level)
6556 {
6557 	struct extent_buffer *eb;
6558 
6559 	BUG_ON(*level == 0);
6560 	eb = btrfs_read_node_slot(path->nodes[*level], path->slots[*level]);
6561 	if (IS_ERR(eb))
6562 		return PTR_ERR(eb);
6563 
6564 	path->nodes[*level - 1] = eb;
6565 	path->slots[*level - 1] = 0;
6566 	(*level)--;
6567 	return 0;
6568 }
6569 
tree_move_next_or_upnext(struct btrfs_path * path,int * level,int root_level)6570 static int tree_move_next_or_upnext(struct btrfs_path *path,
6571 				    int *level, int root_level)
6572 {
6573 	int ret = 0;
6574 	int nritems;
6575 	nritems = btrfs_header_nritems(path->nodes[*level]);
6576 
6577 	path->slots[*level]++;
6578 
6579 	while (path->slots[*level] >= nritems) {
6580 		if (*level == root_level)
6581 			return -1;
6582 
6583 		/* move upnext */
6584 		path->slots[*level] = 0;
6585 		free_extent_buffer(path->nodes[*level]);
6586 		path->nodes[*level] = NULL;
6587 		(*level)++;
6588 		path->slots[*level]++;
6589 
6590 		nritems = btrfs_header_nritems(path->nodes[*level]);
6591 		ret = 1;
6592 	}
6593 	return ret;
6594 }
6595 
6596 /*
6597  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
6598  * or down.
6599  */
tree_advance(struct btrfs_path * path,int * level,int root_level,int allow_down,struct btrfs_key * key)6600 static int tree_advance(struct btrfs_path *path,
6601 			int *level, int root_level,
6602 			int allow_down,
6603 			struct btrfs_key *key)
6604 {
6605 	int ret;
6606 
6607 	if (*level == 0 || !allow_down) {
6608 		ret = tree_move_next_or_upnext(path, level, root_level);
6609 	} else {
6610 		ret = tree_move_down(path, level);
6611 	}
6612 	if (ret >= 0) {
6613 		if (*level == 0)
6614 			btrfs_item_key_to_cpu(path->nodes[*level], key,
6615 					path->slots[*level]);
6616 		else
6617 			btrfs_node_key_to_cpu(path->nodes[*level], key,
6618 					path->slots[*level]);
6619 	}
6620 	return ret;
6621 }
6622 
tree_compare_item(struct btrfs_path * left_path,struct btrfs_path * right_path,char * tmp_buf)6623 static int tree_compare_item(struct btrfs_path *left_path,
6624 			     struct btrfs_path *right_path,
6625 			     char *tmp_buf)
6626 {
6627 	int cmp;
6628 	int len1, len2;
6629 	unsigned long off1, off2;
6630 
6631 	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
6632 	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
6633 	if (len1 != len2)
6634 		return 1;
6635 
6636 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
6637 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
6638 				right_path->slots[0]);
6639 
6640 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
6641 
6642 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
6643 	if (cmp)
6644 		return 1;
6645 	return 0;
6646 }
6647 
6648 /*
6649  * This function compares two trees and calls the provided callback for
6650  * every changed/new/deleted item it finds.
6651  * If shared tree blocks are encountered, whole subtrees are skipped, making
6652  * the compare pretty fast on snapshotted subvolumes.
6653  *
6654  * This currently works on commit roots only. As commit roots are read only,
6655  * we don't do any locking. The commit roots are protected with transactions.
6656  * Transactions are ended and rejoined when a commit is tried in between.
6657  *
6658  * This function checks for modifications done to the trees while comparing.
6659  * If it detects a change, it aborts immediately.
6660  */
btrfs_compare_trees(struct btrfs_root * left_root,struct btrfs_root * right_root,btrfs_changed_cb_t changed_cb,void * ctx)6661 static int btrfs_compare_trees(struct btrfs_root *left_root,
6662 			struct btrfs_root *right_root,
6663 			btrfs_changed_cb_t changed_cb, void *ctx)
6664 {
6665 	struct btrfs_fs_info *fs_info = left_root->fs_info;
6666 	int ret;
6667 	int cmp;
6668 	struct btrfs_path *left_path = NULL;
6669 	struct btrfs_path *right_path = NULL;
6670 	struct btrfs_key left_key;
6671 	struct btrfs_key right_key;
6672 	char *tmp_buf = NULL;
6673 	int left_root_level;
6674 	int right_root_level;
6675 	int left_level;
6676 	int right_level;
6677 	int left_end_reached;
6678 	int right_end_reached;
6679 	int advance_left;
6680 	int advance_right;
6681 	u64 left_blockptr;
6682 	u64 right_blockptr;
6683 	u64 left_gen;
6684 	u64 right_gen;
6685 
6686 	left_path = btrfs_alloc_path();
6687 	if (!left_path) {
6688 		ret = -ENOMEM;
6689 		goto out;
6690 	}
6691 	right_path = btrfs_alloc_path();
6692 	if (!right_path) {
6693 		ret = -ENOMEM;
6694 		goto out;
6695 	}
6696 
6697 	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
6698 	if (!tmp_buf) {
6699 		ret = -ENOMEM;
6700 		goto out;
6701 	}
6702 
6703 	left_path->search_commit_root = 1;
6704 	left_path->skip_locking = 1;
6705 	right_path->search_commit_root = 1;
6706 	right_path->skip_locking = 1;
6707 
6708 	/*
6709 	 * Strategy: Go to the first items of both trees. Then do
6710 	 *
6711 	 * If both trees are at level 0
6712 	 *   Compare keys of current items
6713 	 *     If left < right treat left item as new, advance left tree
6714 	 *       and repeat
6715 	 *     If left > right treat right item as deleted, advance right tree
6716 	 *       and repeat
6717 	 *     If left == right do deep compare of items, treat as changed if
6718 	 *       needed, advance both trees and repeat
6719 	 * If both trees are at the same level but not at level 0
6720 	 *   Compare keys of current nodes/leafs
6721 	 *     If left < right advance left tree and repeat
6722 	 *     If left > right advance right tree and repeat
6723 	 *     If left == right compare blockptrs of the next nodes/leafs
6724 	 *       If they match advance both trees but stay at the same level
6725 	 *         and repeat
6726 	 *       If they don't match advance both trees while allowing to go
6727 	 *         deeper and repeat
6728 	 * If tree levels are different
6729 	 *   Advance the tree that needs it and repeat
6730 	 *
6731 	 * Advancing a tree means:
6732 	 *   If we are at level 0, try to go to the next slot. If that's not
6733 	 *   possible, go one level up and repeat. Stop when we found a level
6734 	 *   where we could go to the next slot. We may at this point be on a
6735 	 *   node or a leaf.
6736 	 *
6737 	 *   If we are not at level 0 and not on shared tree blocks, go one
6738 	 *   level deeper.
6739 	 *
6740 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
6741 	 *   the right if possible or go up and right.
6742 	 */
6743 
6744 	down_read(&fs_info->commit_root_sem);
6745 	left_level = btrfs_header_level(left_root->commit_root);
6746 	left_root_level = left_level;
6747 	left_path->nodes[left_level] =
6748 			btrfs_clone_extent_buffer(left_root->commit_root);
6749 	if (!left_path->nodes[left_level]) {
6750 		up_read(&fs_info->commit_root_sem);
6751 		ret = -ENOMEM;
6752 		goto out;
6753 	}
6754 
6755 	right_level = btrfs_header_level(right_root->commit_root);
6756 	right_root_level = right_level;
6757 	right_path->nodes[right_level] =
6758 			btrfs_clone_extent_buffer(right_root->commit_root);
6759 	if (!right_path->nodes[right_level]) {
6760 		up_read(&fs_info->commit_root_sem);
6761 		ret = -ENOMEM;
6762 		goto out;
6763 	}
6764 	up_read(&fs_info->commit_root_sem);
6765 
6766 	if (left_level == 0)
6767 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
6768 				&left_key, left_path->slots[left_level]);
6769 	else
6770 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
6771 				&left_key, left_path->slots[left_level]);
6772 	if (right_level == 0)
6773 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
6774 				&right_key, right_path->slots[right_level]);
6775 	else
6776 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
6777 				&right_key, right_path->slots[right_level]);
6778 
6779 	left_end_reached = right_end_reached = 0;
6780 	advance_left = advance_right = 0;
6781 
6782 	while (1) {
6783 		cond_resched();
6784 		if (advance_left && !left_end_reached) {
6785 			ret = tree_advance(left_path, &left_level,
6786 					left_root_level,
6787 					advance_left != ADVANCE_ONLY_NEXT,
6788 					&left_key);
6789 			if (ret == -1)
6790 				left_end_reached = ADVANCE;
6791 			else if (ret < 0)
6792 				goto out;
6793 			advance_left = 0;
6794 		}
6795 		if (advance_right && !right_end_reached) {
6796 			ret = tree_advance(right_path, &right_level,
6797 					right_root_level,
6798 					advance_right != ADVANCE_ONLY_NEXT,
6799 					&right_key);
6800 			if (ret == -1)
6801 				right_end_reached = ADVANCE;
6802 			else if (ret < 0)
6803 				goto out;
6804 			advance_right = 0;
6805 		}
6806 
6807 		if (left_end_reached && right_end_reached) {
6808 			ret = 0;
6809 			goto out;
6810 		} else if (left_end_reached) {
6811 			if (right_level == 0) {
6812 				ret = changed_cb(left_path, right_path,
6813 						&right_key,
6814 						BTRFS_COMPARE_TREE_DELETED,
6815 						ctx);
6816 				if (ret < 0)
6817 					goto out;
6818 			}
6819 			advance_right = ADVANCE;
6820 			continue;
6821 		} else if (right_end_reached) {
6822 			if (left_level == 0) {
6823 				ret = changed_cb(left_path, right_path,
6824 						&left_key,
6825 						BTRFS_COMPARE_TREE_NEW,
6826 						ctx);
6827 				if (ret < 0)
6828 					goto out;
6829 			}
6830 			advance_left = ADVANCE;
6831 			continue;
6832 		}
6833 
6834 		if (left_level == 0 && right_level == 0) {
6835 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
6836 			if (cmp < 0) {
6837 				ret = changed_cb(left_path, right_path,
6838 						&left_key,
6839 						BTRFS_COMPARE_TREE_NEW,
6840 						ctx);
6841 				if (ret < 0)
6842 					goto out;
6843 				advance_left = ADVANCE;
6844 			} else if (cmp > 0) {
6845 				ret = changed_cb(left_path, right_path,
6846 						&right_key,
6847 						BTRFS_COMPARE_TREE_DELETED,
6848 						ctx);
6849 				if (ret < 0)
6850 					goto out;
6851 				advance_right = ADVANCE;
6852 			} else {
6853 				enum btrfs_compare_tree_result result;
6854 
6855 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
6856 				ret = tree_compare_item(left_path, right_path,
6857 							tmp_buf);
6858 				if (ret)
6859 					result = BTRFS_COMPARE_TREE_CHANGED;
6860 				else
6861 					result = BTRFS_COMPARE_TREE_SAME;
6862 				ret = changed_cb(left_path, right_path,
6863 						 &left_key, result, ctx);
6864 				if (ret < 0)
6865 					goto out;
6866 				advance_left = ADVANCE;
6867 				advance_right = ADVANCE;
6868 			}
6869 		} else if (left_level == right_level) {
6870 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
6871 			if (cmp < 0) {
6872 				advance_left = ADVANCE;
6873 			} else if (cmp > 0) {
6874 				advance_right = ADVANCE;
6875 			} else {
6876 				left_blockptr = btrfs_node_blockptr(
6877 						left_path->nodes[left_level],
6878 						left_path->slots[left_level]);
6879 				right_blockptr = btrfs_node_blockptr(
6880 						right_path->nodes[right_level],
6881 						right_path->slots[right_level]);
6882 				left_gen = btrfs_node_ptr_generation(
6883 						left_path->nodes[left_level],
6884 						left_path->slots[left_level]);
6885 				right_gen = btrfs_node_ptr_generation(
6886 						right_path->nodes[right_level],
6887 						right_path->slots[right_level]);
6888 				if (left_blockptr == right_blockptr &&
6889 				    left_gen == right_gen) {
6890 					/*
6891 					 * As we're on a shared block, don't
6892 					 * allow to go deeper.
6893 					 */
6894 					advance_left = ADVANCE_ONLY_NEXT;
6895 					advance_right = ADVANCE_ONLY_NEXT;
6896 				} else {
6897 					advance_left = ADVANCE;
6898 					advance_right = ADVANCE;
6899 				}
6900 			}
6901 		} else if (left_level < right_level) {
6902 			advance_right = ADVANCE;
6903 		} else {
6904 			advance_left = ADVANCE;
6905 		}
6906 	}
6907 
6908 out:
6909 	btrfs_free_path(left_path);
6910 	btrfs_free_path(right_path);
6911 	kvfree(tmp_buf);
6912 	return ret;
6913 }
6914 
send_subvol(struct send_ctx * sctx)6915 static int send_subvol(struct send_ctx *sctx)
6916 {
6917 	int ret;
6918 
6919 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6920 		ret = send_header(sctx);
6921 		if (ret < 0)
6922 			goto out;
6923 	}
6924 
6925 	ret = send_subvol_begin(sctx);
6926 	if (ret < 0)
6927 		goto out;
6928 
6929 	if (sctx->parent_root) {
6930 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6931 				changed_cb, sctx);
6932 		if (ret < 0)
6933 			goto out;
6934 		ret = finish_inode_if_needed(sctx, 1);
6935 		if (ret < 0)
6936 			goto out;
6937 	} else {
6938 		ret = full_send_tree(sctx);
6939 		if (ret < 0)
6940 			goto out;
6941 	}
6942 
6943 out:
6944 	free_recorded_refs(sctx);
6945 	return ret;
6946 }
6947 
6948 /*
6949  * If orphan cleanup did remove any orphans from a root, it means the tree
6950  * was modified and therefore the commit root is not the same as the current
6951  * root anymore. This is a problem, because send uses the commit root and
6952  * therefore can see inode items that don't exist in the current root anymore,
6953  * and for example make calls to btrfs_iget, which will do tree lookups based
6954  * on the current root and not on the commit root. Those lookups will fail,
6955  * returning a -ESTALE error, and making send fail with that error. So make
6956  * sure a send does not see any orphans we have just removed, and that it will
6957  * see the same inodes regardless of whether a transaction commit happened
6958  * before it started (meaning that the commit root will be the same as the
6959  * current root) or not.
6960  */
ensure_commit_roots_uptodate(struct send_ctx * sctx)6961 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6962 {
6963 	int i;
6964 	struct btrfs_trans_handle *trans = NULL;
6965 
6966 again:
6967 	if (sctx->parent_root &&
6968 	    sctx->parent_root->node != sctx->parent_root->commit_root)
6969 		goto commit_trans;
6970 
6971 	for (i = 0; i < sctx->clone_roots_cnt; i++)
6972 		if (sctx->clone_roots[i].root->node !=
6973 		    sctx->clone_roots[i].root->commit_root)
6974 			goto commit_trans;
6975 
6976 	if (trans)
6977 		return btrfs_end_transaction(trans);
6978 
6979 	return 0;
6980 
6981 commit_trans:
6982 	/* Use any root, all fs roots will get their commit roots updated. */
6983 	if (!trans) {
6984 		trans = btrfs_join_transaction(sctx->send_root);
6985 		if (IS_ERR(trans))
6986 			return PTR_ERR(trans);
6987 		goto again;
6988 	}
6989 
6990 	return btrfs_commit_transaction(trans);
6991 }
6992 
6993 /*
6994  * Make sure any existing dellaloc is flushed for any root used by a send
6995  * operation so that we do not miss any data and we do not race with writeback
6996  * finishing and changing a tree while send is using the tree. This could
6997  * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
6998  * a send operation then uses the subvolume.
6999  * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7000  */
flush_delalloc_roots(struct send_ctx * sctx)7001 static int flush_delalloc_roots(struct send_ctx *sctx)
7002 {
7003 	struct btrfs_root *root = sctx->parent_root;
7004 	int ret;
7005 	int i;
7006 
7007 	if (root) {
7008 		ret = btrfs_start_delalloc_snapshot(root);
7009 		if (ret)
7010 			return ret;
7011 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7012 	}
7013 
7014 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
7015 		root = sctx->clone_roots[i].root;
7016 		ret = btrfs_start_delalloc_snapshot(root);
7017 		if (ret)
7018 			return ret;
7019 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7020 	}
7021 
7022 	return 0;
7023 }
7024 
btrfs_root_dec_send_in_progress(struct btrfs_root * root)7025 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
7026 {
7027 	spin_lock(&root->root_item_lock);
7028 	root->send_in_progress--;
7029 	/*
7030 	 * Not much left to do, we don't know why it's unbalanced and
7031 	 * can't blindly reset it to 0.
7032 	 */
7033 	if (root->send_in_progress < 0)
7034 		btrfs_err(root->fs_info,
7035 			  "send_in_progress unbalanced %d root %llu",
7036 			  root->send_in_progress, root->root_key.objectid);
7037 	spin_unlock(&root->root_item_lock);
7038 }
7039 
dedupe_in_progress_warn(const struct btrfs_root * root)7040 static void dedupe_in_progress_warn(const struct btrfs_root *root)
7041 {
7042 	btrfs_warn_rl(root->fs_info,
7043 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
7044 		      root->root_key.objectid, root->dedupe_in_progress);
7045 }
7046 
btrfs_ioctl_send(struct file * mnt_file,struct btrfs_ioctl_send_args * arg)7047 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
7048 {
7049 	int ret = 0;
7050 	struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
7051 	struct btrfs_fs_info *fs_info = send_root->fs_info;
7052 	struct btrfs_root *clone_root;
7053 	struct btrfs_key key;
7054 	struct send_ctx *sctx = NULL;
7055 	u32 i;
7056 	u64 *clone_sources_tmp = NULL;
7057 	int clone_sources_to_rollback = 0;
7058 	unsigned alloc_size;
7059 	int sort_clone_roots = 0;
7060 	int index;
7061 
7062 	if (!capable(CAP_SYS_ADMIN))
7063 		return -EPERM;
7064 
7065 	/*
7066 	 * The subvolume must remain read-only during send, protect against
7067 	 * making it RW. This also protects against deletion.
7068 	 */
7069 	spin_lock(&send_root->root_item_lock);
7070 	if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
7071 		dedupe_in_progress_warn(send_root);
7072 		spin_unlock(&send_root->root_item_lock);
7073 		return -EAGAIN;
7074 	}
7075 	send_root->send_in_progress++;
7076 	spin_unlock(&send_root->root_item_lock);
7077 
7078 	/*
7079 	 * Userspace tools do the checks and warn the user if it's
7080 	 * not RO.
7081 	 */
7082 	if (!btrfs_root_readonly(send_root)) {
7083 		ret = -EPERM;
7084 		goto out;
7085 	}
7086 
7087 	/*
7088 	 * Check that we don't overflow at later allocations, we request
7089 	 * clone_sources_count + 1 items, and compare to unsigned long inside
7090 	 * access_ok.
7091 	 */
7092 	if (arg->clone_sources_count >
7093 	    ULONG_MAX / sizeof(struct clone_root) - 1) {
7094 		ret = -EINVAL;
7095 		goto out;
7096 	}
7097 
7098 	if (!access_ok(arg->clone_sources,
7099 			sizeof(*arg->clone_sources) *
7100 			arg->clone_sources_count)) {
7101 		ret = -EFAULT;
7102 		goto out;
7103 	}
7104 
7105 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
7106 		ret = -EINVAL;
7107 		goto out;
7108 	}
7109 
7110 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
7111 	if (!sctx) {
7112 		ret = -ENOMEM;
7113 		goto out;
7114 	}
7115 
7116 	INIT_LIST_HEAD(&sctx->new_refs);
7117 	INIT_LIST_HEAD(&sctx->deleted_refs);
7118 	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
7119 	INIT_LIST_HEAD(&sctx->name_cache_list);
7120 
7121 	sctx->flags = arg->flags;
7122 
7123 	sctx->send_filp = fget(arg->send_fd);
7124 	if (!sctx->send_filp) {
7125 		ret = -EBADF;
7126 		goto out;
7127 	}
7128 
7129 	sctx->send_root = send_root;
7130 	/*
7131 	 * Unlikely but possible, if the subvolume is marked for deletion but
7132 	 * is slow to remove the directory entry, send can still be started
7133 	 */
7134 	if (btrfs_root_dead(sctx->send_root)) {
7135 		ret = -EPERM;
7136 		goto out;
7137 	}
7138 
7139 	sctx->clone_roots_cnt = arg->clone_sources_count;
7140 
7141 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
7142 	sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
7143 	if (!sctx->send_buf) {
7144 		ret = -ENOMEM;
7145 		goto out;
7146 	}
7147 
7148 	sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
7149 	if (!sctx->read_buf) {
7150 		ret = -ENOMEM;
7151 		goto out;
7152 	}
7153 
7154 	sctx->pending_dir_moves = RB_ROOT;
7155 	sctx->waiting_dir_moves = RB_ROOT;
7156 	sctx->orphan_dirs = RB_ROOT;
7157 
7158 	alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
7159 
7160 	sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL);
7161 	if (!sctx->clone_roots) {
7162 		ret = -ENOMEM;
7163 		goto out;
7164 	}
7165 
7166 	alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
7167 
7168 	if (arg->clone_sources_count) {
7169 		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
7170 		if (!clone_sources_tmp) {
7171 			ret = -ENOMEM;
7172 			goto out;
7173 		}
7174 
7175 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
7176 				alloc_size);
7177 		if (ret) {
7178 			ret = -EFAULT;
7179 			goto out;
7180 		}
7181 
7182 		for (i = 0; i < arg->clone_sources_count; i++) {
7183 			key.objectid = clone_sources_tmp[i];
7184 			key.type = BTRFS_ROOT_ITEM_KEY;
7185 			key.offset = (u64)-1;
7186 
7187 			index = srcu_read_lock(&fs_info->subvol_srcu);
7188 
7189 			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
7190 			if (IS_ERR(clone_root)) {
7191 				srcu_read_unlock(&fs_info->subvol_srcu, index);
7192 				ret = PTR_ERR(clone_root);
7193 				goto out;
7194 			}
7195 			spin_lock(&clone_root->root_item_lock);
7196 			if (!btrfs_root_readonly(clone_root) ||
7197 			    btrfs_root_dead(clone_root)) {
7198 				spin_unlock(&clone_root->root_item_lock);
7199 				srcu_read_unlock(&fs_info->subvol_srcu, index);
7200 				ret = -EPERM;
7201 				goto out;
7202 			}
7203 			if (clone_root->dedupe_in_progress) {
7204 				dedupe_in_progress_warn(clone_root);
7205 				spin_unlock(&clone_root->root_item_lock);
7206 				srcu_read_unlock(&fs_info->subvol_srcu, index);
7207 				ret = -EAGAIN;
7208 				goto out;
7209 			}
7210 			clone_root->send_in_progress++;
7211 			spin_unlock(&clone_root->root_item_lock);
7212 			srcu_read_unlock(&fs_info->subvol_srcu, index);
7213 
7214 			sctx->clone_roots[i].root = clone_root;
7215 			clone_sources_to_rollback = i + 1;
7216 		}
7217 		kvfree(clone_sources_tmp);
7218 		clone_sources_tmp = NULL;
7219 	}
7220 
7221 	if (arg->parent_root) {
7222 		key.objectid = arg->parent_root;
7223 		key.type = BTRFS_ROOT_ITEM_KEY;
7224 		key.offset = (u64)-1;
7225 
7226 		index = srcu_read_lock(&fs_info->subvol_srcu);
7227 
7228 		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
7229 		if (IS_ERR(sctx->parent_root)) {
7230 			srcu_read_unlock(&fs_info->subvol_srcu, index);
7231 			ret = PTR_ERR(sctx->parent_root);
7232 			goto out;
7233 		}
7234 
7235 		spin_lock(&sctx->parent_root->root_item_lock);
7236 		sctx->parent_root->send_in_progress++;
7237 		if (!btrfs_root_readonly(sctx->parent_root) ||
7238 				btrfs_root_dead(sctx->parent_root)) {
7239 			spin_unlock(&sctx->parent_root->root_item_lock);
7240 			srcu_read_unlock(&fs_info->subvol_srcu, index);
7241 			ret = -EPERM;
7242 			goto out;
7243 		}
7244 		if (sctx->parent_root->dedupe_in_progress) {
7245 			dedupe_in_progress_warn(sctx->parent_root);
7246 			spin_unlock(&sctx->parent_root->root_item_lock);
7247 			srcu_read_unlock(&fs_info->subvol_srcu, index);
7248 			ret = -EAGAIN;
7249 			goto out;
7250 		}
7251 		spin_unlock(&sctx->parent_root->root_item_lock);
7252 
7253 		srcu_read_unlock(&fs_info->subvol_srcu, index);
7254 	}
7255 
7256 	/*
7257 	 * Clones from send_root are allowed, but only if the clone source
7258 	 * is behind the current send position. This is checked while searching
7259 	 * for possible clone sources.
7260 	 */
7261 	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
7262 
7263 	/* We do a bsearch later */
7264 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
7265 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
7266 			NULL);
7267 	sort_clone_roots = 1;
7268 
7269 	ret = flush_delalloc_roots(sctx);
7270 	if (ret)
7271 		goto out;
7272 
7273 	ret = ensure_commit_roots_uptodate(sctx);
7274 	if (ret)
7275 		goto out;
7276 
7277 	mutex_lock(&fs_info->balance_mutex);
7278 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
7279 		mutex_unlock(&fs_info->balance_mutex);
7280 		btrfs_warn_rl(fs_info,
7281 		"cannot run send because a balance operation is in progress");
7282 		ret = -EAGAIN;
7283 		goto out;
7284 	}
7285 	fs_info->send_in_progress++;
7286 	mutex_unlock(&fs_info->balance_mutex);
7287 
7288 	current->journal_info = BTRFS_SEND_TRANS_STUB;
7289 	ret = send_subvol(sctx);
7290 	current->journal_info = NULL;
7291 	mutex_lock(&fs_info->balance_mutex);
7292 	fs_info->send_in_progress--;
7293 	mutex_unlock(&fs_info->balance_mutex);
7294 	if (ret < 0)
7295 		goto out;
7296 
7297 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
7298 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
7299 		if (ret < 0)
7300 			goto out;
7301 		ret = send_cmd(sctx);
7302 		if (ret < 0)
7303 			goto out;
7304 	}
7305 
7306 out:
7307 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
7308 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
7309 		struct rb_node *n;
7310 		struct pending_dir_move *pm;
7311 
7312 		n = rb_first(&sctx->pending_dir_moves);
7313 		pm = rb_entry(n, struct pending_dir_move, node);
7314 		while (!list_empty(&pm->list)) {
7315 			struct pending_dir_move *pm2;
7316 
7317 			pm2 = list_first_entry(&pm->list,
7318 					       struct pending_dir_move, list);
7319 			free_pending_move(sctx, pm2);
7320 		}
7321 		free_pending_move(sctx, pm);
7322 	}
7323 
7324 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
7325 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
7326 		struct rb_node *n;
7327 		struct waiting_dir_move *dm;
7328 
7329 		n = rb_first(&sctx->waiting_dir_moves);
7330 		dm = rb_entry(n, struct waiting_dir_move, node);
7331 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
7332 		kfree(dm);
7333 	}
7334 
7335 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
7336 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
7337 		struct rb_node *n;
7338 		struct orphan_dir_info *odi;
7339 
7340 		n = rb_first(&sctx->orphan_dirs);
7341 		odi = rb_entry(n, struct orphan_dir_info, node);
7342 		free_orphan_dir_info(sctx, odi);
7343 	}
7344 
7345 	if (sort_clone_roots) {
7346 		for (i = 0; i < sctx->clone_roots_cnt; i++)
7347 			btrfs_root_dec_send_in_progress(
7348 					sctx->clone_roots[i].root);
7349 	} else {
7350 		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
7351 			btrfs_root_dec_send_in_progress(
7352 					sctx->clone_roots[i].root);
7353 
7354 		btrfs_root_dec_send_in_progress(send_root);
7355 	}
7356 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
7357 		btrfs_root_dec_send_in_progress(sctx->parent_root);
7358 
7359 	kvfree(clone_sources_tmp);
7360 
7361 	if (sctx) {
7362 		if (sctx->send_filp)
7363 			fput(sctx->send_filp);
7364 
7365 		kvfree(sctx->clone_roots);
7366 		kvfree(sctx->send_buf);
7367 		kvfree(sctx->read_buf);
7368 
7369 		name_cache_free(sctx);
7370 
7371 		kfree(sctx);
7372 	}
7373 
7374 	return ret;
7375 }
7376