1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Red Hat. All rights reserved.
4 */
5
6 #include <linux/init.h>
7 #include <linux/fs.h>
8 #include <linux/slab.h>
9 #include <linux/rwsem.h>
10 #include <linux/xattr.h>
11 #include <linux/security.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/iversion.h>
14 #include <linux/sched/mm.h>
15 #include "ctree.h"
16 #include "btrfs_inode.h"
17 #include "transaction.h"
18 #include "xattr.h"
19 #include "disk-io.h"
20 #include "props.h"
21 #include "locking.h"
22
btrfs_getxattr(struct inode * inode,const char * name,void * buffer,size_t size)23 int btrfs_getxattr(struct inode *inode, const char *name,
24 void *buffer, size_t size)
25 {
26 struct btrfs_dir_item *di;
27 struct btrfs_root *root = BTRFS_I(inode)->root;
28 struct btrfs_path *path;
29 struct extent_buffer *leaf;
30 int ret = 0;
31 unsigned long data_ptr;
32
33 path = btrfs_alloc_path();
34 if (!path)
35 return -ENOMEM;
36
37 /* lookup the xattr by name */
38 di = btrfs_lookup_xattr(NULL, root, path, btrfs_ino(BTRFS_I(inode)),
39 name, strlen(name), 0);
40 if (!di) {
41 ret = -ENODATA;
42 goto out;
43 } else if (IS_ERR(di)) {
44 ret = PTR_ERR(di);
45 goto out;
46 }
47
48 leaf = path->nodes[0];
49 /* if size is 0, that means we want the size of the attr */
50 if (!size) {
51 ret = btrfs_dir_data_len(leaf, di);
52 goto out;
53 }
54
55 /* now get the data out of our dir_item */
56 if (btrfs_dir_data_len(leaf, di) > size) {
57 ret = -ERANGE;
58 goto out;
59 }
60
61 /*
62 * The way things are packed into the leaf is like this
63 * |struct btrfs_dir_item|name|data|
64 * where name is the xattr name, so security.foo, and data is the
65 * content of the xattr. data_ptr points to the location in memory
66 * where the data starts in the in memory leaf
67 */
68 data_ptr = (unsigned long)((char *)(di + 1) +
69 btrfs_dir_name_len(leaf, di));
70 read_extent_buffer(leaf, buffer, data_ptr,
71 btrfs_dir_data_len(leaf, di));
72 ret = btrfs_dir_data_len(leaf, di);
73
74 out:
75 btrfs_free_path(path);
76 return ret;
77 }
78
btrfs_setxattr(struct btrfs_trans_handle * trans,struct inode * inode,const char * name,const void * value,size_t size,int flags)79 int btrfs_setxattr(struct btrfs_trans_handle *trans, struct inode *inode,
80 const char *name, const void *value, size_t size, int flags)
81 {
82 struct btrfs_dir_item *di = NULL;
83 struct btrfs_root *root = BTRFS_I(inode)->root;
84 struct btrfs_fs_info *fs_info = root->fs_info;
85 struct btrfs_path *path;
86 size_t name_len = strlen(name);
87 int ret = 0;
88
89 ASSERT(trans);
90
91 if (name_len + size > BTRFS_MAX_XATTR_SIZE(root->fs_info))
92 return -ENOSPC;
93
94 path = btrfs_alloc_path();
95 if (!path)
96 return -ENOMEM;
97 path->skip_release_on_error = 1;
98
99 if (!value) {
100 di = btrfs_lookup_xattr(trans, root, path,
101 btrfs_ino(BTRFS_I(inode)), name, name_len, -1);
102 if (!di && (flags & XATTR_REPLACE))
103 ret = -ENODATA;
104 else if (IS_ERR(di))
105 ret = PTR_ERR(di);
106 else if (di)
107 ret = btrfs_delete_one_dir_name(trans, root, path, di);
108 goto out;
109 }
110
111 /*
112 * For a replace we can't just do the insert blindly.
113 * Do a lookup first (read-only btrfs_search_slot), and return if xattr
114 * doesn't exist. If it exists, fall down below to the insert/replace
115 * path - we can't race with a concurrent xattr delete, because the VFS
116 * locks the inode's i_mutex before calling setxattr or removexattr.
117 */
118 if (flags & XATTR_REPLACE) {
119 ASSERT(inode_is_locked(inode));
120 di = btrfs_lookup_xattr(NULL, root, path,
121 btrfs_ino(BTRFS_I(inode)), name, name_len, 0);
122 if (!di)
123 ret = -ENODATA;
124 else if (IS_ERR(di))
125 ret = PTR_ERR(di);
126 if (ret)
127 goto out;
128 btrfs_release_path(path);
129 di = NULL;
130 }
131
132 ret = btrfs_insert_xattr_item(trans, root, path, btrfs_ino(BTRFS_I(inode)),
133 name, name_len, value, size);
134 if (ret == -EOVERFLOW) {
135 /*
136 * We have an existing item in a leaf, split_leaf couldn't
137 * expand it. That item might have or not a dir_item that
138 * matches our target xattr, so lets check.
139 */
140 ret = 0;
141 btrfs_assert_tree_locked(path->nodes[0]);
142 di = btrfs_match_dir_item_name(fs_info, path, name, name_len);
143 if (!di && !(flags & XATTR_REPLACE)) {
144 ret = -ENOSPC;
145 goto out;
146 }
147 } else if (ret == -EEXIST) {
148 ret = 0;
149 di = btrfs_match_dir_item_name(fs_info, path, name, name_len);
150 ASSERT(di); /* logic error */
151 } else if (ret) {
152 goto out;
153 }
154
155 if (di && (flags & XATTR_CREATE)) {
156 ret = -EEXIST;
157 goto out;
158 }
159
160 if (di) {
161 /*
162 * We're doing a replace, and it must be atomic, that is, at
163 * any point in time we have either the old or the new xattr
164 * value in the tree. We don't want readers (getxattr and
165 * listxattrs) to miss a value, this is specially important
166 * for ACLs.
167 */
168 const int slot = path->slots[0];
169 struct extent_buffer *leaf = path->nodes[0];
170 const u16 old_data_len = btrfs_dir_data_len(leaf, di);
171 const u32 item_size = btrfs_item_size_nr(leaf, slot);
172 const u32 data_size = sizeof(*di) + name_len + size;
173 struct btrfs_item *item;
174 unsigned long data_ptr;
175 char *ptr;
176
177 if (size > old_data_len) {
178 if (btrfs_leaf_free_space(leaf) <
179 (size - old_data_len)) {
180 ret = -ENOSPC;
181 goto out;
182 }
183 }
184
185 if (old_data_len + name_len + sizeof(*di) == item_size) {
186 /* No other xattrs packed in the same leaf item. */
187 if (size > old_data_len)
188 btrfs_extend_item(path, size - old_data_len);
189 else if (size < old_data_len)
190 btrfs_truncate_item(path, data_size, 1);
191 } else {
192 /* There are other xattrs packed in the same item. */
193 ret = btrfs_delete_one_dir_name(trans, root, path, di);
194 if (ret)
195 goto out;
196 btrfs_extend_item(path, data_size);
197 }
198
199 item = btrfs_item_nr(slot);
200 ptr = btrfs_item_ptr(leaf, slot, char);
201 ptr += btrfs_item_size(leaf, item) - data_size;
202 di = (struct btrfs_dir_item *)ptr;
203 btrfs_set_dir_data_len(leaf, di, size);
204 data_ptr = ((unsigned long)(di + 1)) + name_len;
205 write_extent_buffer(leaf, value, data_ptr, size);
206 btrfs_mark_buffer_dirty(leaf);
207 } else {
208 /*
209 * Insert, and we had space for the xattr, so path->slots[0] is
210 * where our xattr dir_item is and btrfs_insert_xattr_item()
211 * filled it.
212 */
213 }
214 out:
215 btrfs_free_path(path);
216 if (!ret)
217 set_bit(BTRFS_INODE_COPY_EVERYTHING,
218 &BTRFS_I(inode)->runtime_flags);
219 return ret;
220 }
221
222 /*
223 * @value: "" makes the attribute to empty, NULL removes it
224 */
btrfs_setxattr_trans(struct inode * inode,const char * name,const void * value,size_t size,int flags)225 int btrfs_setxattr_trans(struct inode *inode, const char *name,
226 const void *value, size_t size, int flags)
227 {
228 struct btrfs_root *root = BTRFS_I(inode)->root;
229 struct btrfs_trans_handle *trans;
230 int ret;
231
232 trans = btrfs_start_transaction(root, 2);
233 if (IS_ERR(trans))
234 return PTR_ERR(trans);
235
236 ret = btrfs_setxattr(trans, inode, name, value, size, flags);
237 if (ret)
238 goto out;
239
240 inode_inc_iversion(inode);
241 inode->i_ctime = current_time(inode);
242 ret = btrfs_update_inode(trans, root, inode);
243 BUG_ON(ret);
244 out:
245 btrfs_end_transaction(trans);
246 return ret;
247 }
248
btrfs_listxattr(struct dentry * dentry,char * buffer,size_t size)249 ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size)
250 {
251 struct btrfs_key key;
252 struct inode *inode = d_inode(dentry);
253 struct btrfs_root *root = BTRFS_I(inode)->root;
254 struct btrfs_path *path;
255 int ret = 0;
256 size_t total_size = 0, size_left = size;
257
258 /*
259 * ok we want all objects associated with this id.
260 * NOTE: we set key.offset = 0; because we want to start with the
261 * first xattr that we find and walk forward
262 */
263 key.objectid = btrfs_ino(BTRFS_I(inode));
264 key.type = BTRFS_XATTR_ITEM_KEY;
265 key.offset = 0;
266
267 path = btrfs_alloc_path();
268 if (!path)
269 return -ENOMEM;
270 path->reada = READA_FORWARD;
271
272 /* search for our xattrs */
273 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
274 if (ret < 0)
275 goto err;
276
277 while (1) {
278 struct extent_buffer *leaf;
279 int slot;
280 struct btrfs_dir_item *di;
281 struct btrfs_key found_key;
282 u32 item_size;
283 u32 cur;
284
285 leaf = path->nodes[0];
286 slot = path->slots[0];
287
288 /* this is where we start walking through the path */
289 if (slot >= btrfs_header_nritems(leaf)) {
290 /*
291 * if we've reached the last slot in this leaf we need
292 * to go to the next leaf and reset everything
293 */
294 ret = btrfs_next_leaf(root, path);
295 if (ret < 0)
296 goto err;
297 else if (ret > 0)
298 break;
299 continue;
300 }
301
302 btrfs_item_key_to_cpu(leaf, &found_key, slot);
303
304 /* check to make sure this item is what we want */
305 if (found_key.objectid != key.objectid)
306 break;
307 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
308 break;
309 if (found_key.type < BTRFS_XATTR_ITEM_KEY)
310 goto next_item;
311
312 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
313 item_size = btrfs_item_size_nr(leaf, slot);
314 cur = 0;
315 while (cur < item_size) {
316 u16 name_len = btrfs_dir_name_len(leaf, di);
317 u16 data_len = btrfs_dir_data_len(leaf, di);
318 u32 this_len = sizeof(*di) + name_len + data_len;
319 unsigned long name_ptr = (unsigned long)(di + 1);
320
321 total_size += name_len + 1;
322 /*
323 * We are just looking for how big our buffer needs to
324 * be.
325 */
326 if (!size)
327 goto next;
328
329 if (!buffer || (name_len + 1) > size_left) {
330 ret = -ERANGE;
331 goto err;
332 }
333
334 read_extent_buffer(leaf, buffer, name_ptr, name_len);
335 buffer[name_len] = '\0';
336
337 size_left -= name_len + 1;
338 buffer += name_len + 1;
339 next:
340 cur += this_len;
341 di = (struct btrfs_dir_item *)((char *)di + this_len);
342 }
343 next_item:
344 path->slots[0]++;
345 }
346 ret = total_size;
347
348 err:
349 btrfs_free_path(path);
350
351 return ret;
352 }
353
btrfs_xattr_handler_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,void * buffer,size_t size,int flags)354 static int btrfs_xattr_handler_get(const struct xattr_handler *handler,
355 struct dentry *unused, struct inode *inode,
356 const char *name, void *buffer, size_t size,
357 int flags)
358 {
359 name = xattr_full_name(handler, name);
360 return btrfs_getxattr(inode, name, buffer, size);
361 }
362
btrfs_xattr_handler_set(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,const void * buffer,size_t size,int flags)363 static int btrfs_xattr_handler_set(const struct xattr_handler *handler,
364 struct dentry *unused, struct inode *inode,
365 const char *name, const void *buffer,
366 size_t size, int flags)
367 {
368 name = xattr_full_name(handler, name);
369 return btrfs_setxattr_trans(inode, name, buffer, size, flags);
370 }
371
btrfs_xattr_handler_set_prop(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,const void * value,size_t size,int flags)372 static int btrfs_xattr_handler_set_prop(const struct xattr_handler *handler,
373 struct dentry *unused, struct inode *inode,
374 const char *name, const void *value,
375 size_t size, int flags)
376 {
377 int ret;
378 struct btrfs_trans_handle *trans;
379 struct btrfs_root *root = BTRFS_I(inode)->root;
380
381 name = xattr_full_name(handler, name);
382 ret = btrfs_validate_prop(name, value, size);
383 if (ret)
384 return ret;
385
386 trans = btrfs_start_transaction(root, 2);
387 if (IS_ERR(trans))
388 return PTR_ERR(trans);
389
390 ret = btrfs_set_prop(trans, inode, name, value, size, flags);
391 if (!ret) {
392 inode_inc_iversion(inode);
393 inode->i_ctime = current_time(inode);
394 ret = btrfs_update_inode(trans, root, inode);
395 BUG_ON(ret);
396 }
397
398 btrfs_end_transaction(trans);
399
400 return ret;
401 }
402
403 static const struct xattr_handler btrfs_security_xattr_handler = {
404 .prefix = XATTR_SECURITY_PREFIX,
405 .get = btrfs_xattr_handler_get,
406 .set = btrfs_xattr_handler_set,
407 };
408
409 static const struct xattr_handler btrfs_trusted_xattr_handler = {
410 .prefix = XATTR_TRUSTED_PREFIX,
411 .get = btrfs_xattr_handler_get,
412 .set = btrfs_xattr_handler_set,
413 };
414
415 static const struct xattr_handler btrfs_user_xattr_handler = {
416 .prefix = XATTR_USER_PREFIX,
417 .get = btrfs_xattr_handler_get,
418 .set = btrfs_xattr_handler_set,
419 };
420
421 static const struct xattr_handler btrfs_btrfs_xattr_handler = {
422 .prefix = XATTR_BTRFS_PREFIX,
423 .get = btrfs_xattr_handler_get,
424 .set = btrfs_xattr_handler_set_prop,
425 };
426
427 const struct xattr_handler *btrfs_xattr_handlers[] = {
428 &btrfs_security_xattr_handler,
429 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
430 &posix_acl_access_xattr_handler,
431 &posix_acl_default_xattr_handler,
432 #endif
433 &btrfs_trusted_xattr_handler,
434 &btrfs_user_xattr_handler,
435 &btrfs_btrfs_xattr_handler,
436 NULL,
437 };
438
btrfs_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_private)439 static int btrfs_initxattrs(struct inode *inode,
440 const struct xattr *xattr_array, void *fs_private)
441 {
442 struct btrfs_trans_handle *trans = fs_private;
443 const struct xattr *xattr;
444 unsigned int nofs_flag;
445 char *name;
446 int err = 0;
447
448 /*
449 * We're holding a transaction handle, so use a NOFS memory allocation
450 * context to avoid deadlock if reclaim happens.
451 */
452 nofs_flag = memalloc_nofs_save();
453 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
454 name = kmalloc(XATTR_SECURITY_PREFIX_LEN +
455 strlen(xattr->name) + 1, GFP_KERNEL);
456 if (!name) {
457 err = -ENOMEM;
458 break;
459 }
460 strcpy(name, XATTR_SECURITY_PREFIX);
461 strcpy(name + XATTR_SECURITY_PREFIX_LEN, xattr->name);
462 err = btrfs_setxattr(trans, inode, name, xattr->value,
463 xattr->value_len, 0);
464 kfree(name);
465 if (err < 0)
466 break;
467 }
468 memalloc_nofs_restore(nofs_flag);
469 return err;
470 }
471
btrfs_xattr_security_init(struct btrfs_trans_handle * trans,struct inode * inode,struct inode * dir,const struct qstr * qstr)472 int btrfs_xattr_security_init(struct btrfs_trans_handle *trans,
473 struct inode *inode, struct inode *dir,
474 const struct qstr *qstr)
475 {
476 return security_inode_init_security(inode, dir, qstr,
477 &btrfs_initxattrs, trans);
478 }
479