1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2017, Microsoft Corporation.
4 *
5 * Author(s): Long Li <longli@microsoft.com>
6 */
7 #include <linux/module.h>
8 #include <linux/highmem.h>
9 #include "smbdirect.h"
10 #include "cifs_debug.h"
11 #include "cifsproto.h"
12 #include "smb2proto.h"
13
14 static struct smbd_response *get_empty_queue_buffer(
15 struct smbd_connection *info);
16 static struct smbd_response *get_receive_buffer(
17 struct smbd_connection *info);
18 static void put_receive_buffer(
19 struct smbd_connection *info,
20 struct smbd_response *response);
21 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf);
22 static void destroy_receive_buffers(struct smbd_connection *info);
23
24 static void put_empty_packet(
25 struct smbd_connection *info, struct smbd_response *response);
26 static void enqueue_reassembly(
27 struct smbd_connection *info,
28 struct smbd_response *response, int data_length);
29 static struct smbd_response *_get_first_reassembly(
30 struct smbd_connection *info);
31
32 static int smbd_post_recv(
33 struct smbd_connection *info,
34 struct smbd_response *response);
35
36 static int smbd_post_send_empty(struct smbd_connection *info);
37 static int smbd_post_send_data(
38 struct smbd_connection *info,
39 struct kvec *iov, int n_vec, int remaining_data_length);
40 static int smbd_post_send_page(struct smbd_connection *info,
41 struct page *page, unsigned long offset,
42 size_t size, int remaining_data_length);
43
44 static void destroy_mr_list(struct smbd_connection *info);
45 static int allocate_mr_list(struct smbd_connection *info);
46
47 /* SMBD version number */
48 #define SMBD_V1 0x0100
49
50 /* Port numbers for SMBD transport */
51 #define SMB_PORT 445
52 #define SMBD_PORT 5445
53
54 /* Address lookup and resolve timeout in ms */
55 #define RDMA_RESOLVE_TIMEOUT 5000
56
57 /* SMBD negotiation timeout in seconds */
58 #define SMBD_NEGOTIATE_TIMEOUT 120
59
60 /* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */
61 #define SMBD_MIN_RECEIVE_SIZE 128
62 #define SMBD_MIN_FRAGMENTED_SIZE 131072
63
64 /*
65 * Default maximum number of RDMA read/write outstanding on this connection
66 * This value is possibly decreased during QP creation on hardware limit
67 */
68 #define SMBD_CM_RESPONDER_RESOURCES 32
69
70 /* Maximum number of retries on data transfer operations */
71 #define SMBD_CM_RETRY 6
72 /* No need to retry on Receiver Not Ready since SMBD manages credits */
73 #define SMBD_CM_RNR_RETRY 0
74
75 /*
76 * User configurable initial values per SMBD transport connection
77 * as defined in [MS-SMBD] 3.1.1.1
78 * Those may change after a SMBD negotiation
79 */
80 /* The local peer's maximum number of credits to grant to the peer */
81 int smbd_receive_credit_max = 255;
82
83 /* The remote peer's credit request of local peer */
84 int smbd_send_credit_target = 255;
85
86 /* The maximum single message size can be sent to remote peer */
87 int smbd_max_send_size = 1364;
88
89 /* The maximum fragmented upper-layer payload receive size supported */
90 int smbd_max_fragmented_recv_size = 1024 * 1024;
91
92 /* The maximum single-message size which can be received */
93 int smbd_max_receive_size = 8192;
94
95 /* The timeout to initiate send of a keepalive message on idle */
96 int smbd_keep_alive_interval = 120;
97
98 /*
99 * User configurable initial values for RDMA transport
100 * The actual values used may be lower and are limited to hardware capabilities
101 */
102 /* Default maximum number of SGEs in a RDMA write/read */
103 int smbd_max_frmr_depth = 2048;
104
105 /* If payload is less than this byte, use RDMA send/recv not read/write */
106 int rdma_readwrite_threshold = 4096;
107
108 /* Transport logging functions
109 * Logging are defined as classes. They can be OR'ed to define the actual
110 * logging level via module parameter smbd_logging_class
111 * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and
112 * log_rdma_event()
113 */
114 #define LOG_OUTGOING 0x1
115 #define LOG_INCOMING 0x2
116 #define LOG_READ 0x4
117 #define LOG_WRITE 0x8
118 #define LOG_RDMA_SEND 0x10
119 #define LOG_RDMA_RECV 0x20
120 #define LOG_KEEP_ALIVE 0x40
121 #define LOG_RDMA_EVENT 0x80
122 #define LOG_RDMA_MR 0x100
123 static unsigned int smbd_logging_class;
124 module_param(smbd_logging_class, uint, 0644);
125 MODULE_PARM_DESC(smbd_logging_class,
126 "Logging class for SMBD transport 0x0 to 0x100");
127
128 #define ERR 0x0
129 #define INFO 0x1
130 static unsigned int smbd_logging_level = ERR;
131 module_param(smbd_logging_level, uint, 0644);
132 MODULE_PARM_DESC(smbd_logging_level,
133 "Logging level for SMBD transport, 0 (default): error, 1: info");
134
135 #define log_rdma(level, class, fmt, args...) \
136 do { \
137 if (level <= smbd_logging_level || class & smbd_logging_class) \
138 cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\
139 } while (0)
140
141 #define log_outgoing(level, fmt, args...) \
142 log_rdma(level, LOG_OUTGOING, fmt, ##args)
143 #define log_incoming(level, fmt, args...) \
144 log_rdma(level, LOG_INCOMING, fmt, ##args)
145 #define log_read(level, fmt, args...) log_rdma(level, LOG_READ, fmt, ##args)
146 #define log_write(level, fmt, args...) log_rdma(level, LOG_WRITE, fmt, ##args)
147 #define log_rdma_send(level, fmt, args...) \
148 log_rdma(level, LOG_RDMA_SEND, fmt, ##args)
149 #define log_rdma_recv(level, fmt, args...) \
150 log_rdma(level, LOG_RDMA_RECV, fmt, ##args)
151 #define log_keep_alive(level, fmt, args...) \
152 log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args)
153 #define log_rdma_event(level, fmt, args...) \
154 log_rdma(level, LOG_RDMA_EVENT, fmt, ##args)
155 #define log_rdma_mr(level, fmt, args...) \
156 log_rdma(level, LOG_RDMA_MR, fmt, ##args)
157
smbd_disconnect_rdma_work(struct work_struct * work)158 static void smbd_disconnect_rdma_work(struct work_struct *work)
159 {
160 struct smbd_connection *info =
161 container_of(work, struct smbd_connection, disconnect_work);
162
163 if (info->transport_status == SMBD_CONNECTED) {
164 info->transport_status = SMBD_DISCONNECTING;
165 rdma_disconnect(info->id);
166 }
167 }
168
smbd_disconnect_rdma_connection(struct smbd_connection * info)169 static void smbd_disconnect_rdma_connection(struct smbd_connection *info)
170 {
171 queue_work(info->workqueue, &info->disconnect_work);
172 }
173
174 /* Upcall from RDMA CM */
smbd_conn_upcall(struct rdma_cm_id * id,struct rdma_cm_event * event)175 static int smbd_conn_upcall(
176 struct rdma_cm_id *id, struct rdma_cm_event *event)
177 {
178 struct smbd_connection *info = id->context;
179
180 log_rdma_event(INFO, "event=%d status=%d\n",
181 event->event, event->status);
182
183 switch (event->event) {
184 case RDMA_CM_EVENT_ADDR_RESOLVED:
185 case RDMA_CM_EVENT_ROUTE_RESOLVED:
186 info->ri_rc = 0;
187 complete(&info->ri_done);
188 break;
189
190 case RDMA_CM_EVENT_ADDR_ERROR:
191 info->ri_rc = -EHOSTUNREACH;
192 complete(&info->ri_done);
193 break;
194
195 case RDMA_CM_EVENT_ROUTE_ERROR:
196 info->ri_rc = -ENETUNREACH;
197 complete(&info->ri_done);
198 break;
199
200 case RDMA_CM_EVENT_ESTABLISHED:
201 log_rdma_event(INFO, "connected event=%d\n", event->event);
202 info->transport_status = SMBD_CONNECTED;
203 wake_up_interruptible(&info->conn_wait);
204 break;
205
206 case RDMA_CM_EVENT_CONNECT_ERROR:
207 case RDMA_CM_EVENT_UNREACHABLE:
208 case RDMA_CM_EVENT_REJECTED:
209 log_rdma_event(INFO, "connecting failed event=%d\n", event->event);
210 info->transport_status = SMBD_DISCONNECTED;
211 wake_up_interruptible(&info->conn_wait);
212 break;
213
214 case RDMA_CM_EVENT_DEVICE_REMOVAL:
215 case RDMA_CM_EVENT_DISCONNECTED:
216 /* This happenes when we fail the negotiation */
217 if (info->transport_status == SMBD_NEGOTIATE_FAILED) {
218 info->transport_status = SMBD_DISCONNECTED;
219 wake_up(&info->conn_wait);
220 break;
221 }
222
223 info->transport_status = SMBD_DISCONNECTED;
224 wake_up_interruptible(&info->disconn_wait);
225 wake_up_interruptible(&info->wait_reassembly_queue);
226 wake_up_interruptible_all(&info->wait_send_queue);
227 break;
228
229 default:
230 break;
231 }
232
233 return 0;
234 }
235
236 /* Upcall from RDMA QP */
237 static void
smbd_qp_async_error_upcall(struct ib_event * event,void * context)238 smbd_qp_async_error_upcall(struct ib_event *event, void *context)
239 {
240 struct smbd_connection *info = context;
241
242 log_rdma_event(ERR, "%s on device %s info %p\n",
243 ib_event_msg(event->event), event->device->name, info);
244
245 switch (event->event) {
246 case IB_EVENT_CQ_ERR:
247 case IB_EVENT_QP_FATAL:
248 smbd_disconnect_rdma_connection(info);
249
250 default:
251 break;
252 }
253 }
254
smbd_request_payload(struct smbd_request * request)255 static inline void *smbd_request_payload(struct smbd_request *request)
256 {
257 return (void *)request->packet;
258 }
259
smbd_response_payload(struct smbd_response * response)260 static inline void *smbd_response_payload(struct smbd_response *response)
261 {
262 return (void *)response->packet;
263 }
264
265 /* Called when a RDMA send is done */
send_done(struct ib_cq * cq,struct ib_wc * wc)266 static void send_done(struct ib_cq *cq, struct ib_wc *wc)
267 {
268 int i;
269 struct smbd_request *request =
270 container_of(wc->wr_cqe, struct smbd_request, cqe);
271
272 log_rdma_send(INFO, "smbd_request %p completed wc->status=%d\n",
273 request, wc->status);
274
275 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) {
276 log_rdma_send(ERR, "wc->status=%d wc->opcode=%d\n",
277 wc->status, wc->opcode);
278 smbd_disconnect_rdma_connection(request->info);
279 }
280
281 for (i = 0; i < request->num_sge; i++)
282 ib_dma_unmap_single(request->info->id->device,
283 request->sge[i].addr,
284 request->sge[i].length,
285 DMA_TO_DEVICE);
286
287 if (request->has_payload) {
288 if (atomic_dec_and_test(&request->info->send_payload_pending))
289 wake_up(&request->info->wait_send_payload_pending);
290 } else {
291 if (atomic_dec_and_test(&request->info->send_pending))
292 wake_up(&request->info->wait_send_pending);
293 }
294
295 mempool_free(request, request->info->request_mempool);
296 }
297
dump_smbd_negotiate_resp(struct smbd_negotiate_resp * resp)298 static void dump_smbd_negotiate_resp(struct smbd_negotiate_resp *resp)
299 {
300 log_rdma_event(INFO, "resp message min_version %u max_version %u "
301 "negotiated_version %u credits_requested %u "
302 "credits_granted %u status %u max_readwrite_size %u "
303 "preferred_send_size %u max_receive_size %u "
304 "max_fragmented_size %u\n",
305 resp->min_version, resp->max_version, resp->negotiated_version,
306 resp->credits_requested, resp->credits_granted, resp->status,
307 resp->max_readwrite_size, resp->preferred_send_size,
308 resp->max_receive_size, resp->max_fragmented_size);
309 }
310
311 /*
312 * Process a negotiation response message, according to [MS-SMBD]3.1.5.7
313 * response, packet_length: the negotiation response message
314 * return value: true if negotiation is a success, false if failed
315 */
process_negotiation_response(struct smbd_response * response,int packet_length)316 static bool process_negotiation_response(
317 struct smbd_response *response, int packet_length)
318 {
319 struct smbd_connection *info = response->info;
320 struct smbd_negotiate_resp *packet = smbd_response_payload(response);
321
322 if (packet_length < sizeof(struct smbd_negotiate_resp)) {
323 log_rdma_event(ERR,
324 "error: packet_length=%d\n", packet_length);
325 return false;
326 }
327
328 if (le16_to_cpu(packet->negotiated_version) != SMBD_V1) {
329 log_rdma_event(ERR, "error: negotiated_version=%x\n",
330 le16_to_cpu(packet->negotiated_version));
331 return false;
332 }
333 info->protocol = le16_to_cpu(packet->negotiated_version);
334
335 if (packet->credits_requested == 0) {
336 log_rdma_event(ERR, "error: credits_requested==0\n");
337 return false;
338 }
339 info->receive_credit_target = le16_to_cpu(packet->credits_requested);
340
341 if (packet->credits_granted == 0) {
342 log_rdma_event(ERR, "error: credits_granted==0\n");
343 return false;
344 }
345 atomic_set(&info->send_credits, le16_to_cpu(packet->credits_granted));
346
347 atomic_set(&info->receive_credits, 0);
348
349 if (le32_to_cpu(packet->preferred_send_size) > info->max_receive_size) {
350 log_rdma_event(ERR, "error: preferred_send_size=%d\n",
351 le32_to_cpu(packet->preferred_send_size));
352 return false;
353 }
354 info->max_receive_size = le32_to_cpu(packet->preferred_send_size);
355
356 if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) {
357 log_rdma_event(ERR, "error: max_receive_size=%d\n",
358 le32_to_cpu(packet->max_receive_size));
359 return false;
360 }
361 info->max_send_size = min_t(int, info->max_send_size,
362 le32_to_cpu(packet->max_receive_size));
363
364 if (le32_to_cpu(packet->max_fragmented_size) <
365 SMBD_MIN_FRAGMENTED_SIZE) {
366 log_rdma_event(ERR, "error: max_fragmented_size=%d\n",
367 le32_to_cpu(packet->max_fragmented_size));
368 return false;
369 }
370 info->max_fragmented_send_size =
371 le32_to_cpu(packet->max_fragmented_size);
372 info->rdma_readwrite_threshold =
373 rdma_readwrite_threshold > info->max_fragmented_send_size ?
374 info->max_fragmented_send_size :
375 rdma_readwrite_threshold;
376
377
378 info->max_readwrite_size = min_t(u32,
379 le32_to_cpu(packet->max_readwrite_size),
380 info->max_frmr_depth * PAGE_SIZE);
381 info->max_frmr_depth = info->max_readwrite_size / PAGE_SIZE;
382
383 return true;
384 }
385
386 /*
387 * Check and schedule to send an immediate packet
388 * This is used to extend credtis to remote peer to keep the transport busy
389 */
check_and_send_immediate(struct smbd_connection * info)390 static void check_and_send_immediate(struct smbd_connection *info)
391 {
392 if (info->transport_status != SMBD_CONNECTED)
393 return;
394
395 info->send_immediate = true;
396
397 /*
398 * Promptly send a packet if our peer is running low on receive
399 * credits
400 */
401 if (atomic_read(&info->receive_credits) <
402 info->receive_credit_target - 1)
403 queue_delayed_work(
404 info->workqueue, &info->send_immediate_work, 0);
405 }
406
smbd_post_send_credits(struct work_struct * work)407 static void smbd_post_send_credits(struct work_struct *work)
408 {
409 int ret = 0;
410 int use_receive_queue = 1;
411 int rc;
412 struct smbd_response *response;
413 struct smbd_connection *info =
414 container_of(work, struct smbd_connection,
415 post_send_credits_work);
416
417 if (info->transport_status != SMBD_CONNECTED) {
418 wake_up(&info->wait_receive_queues);
419 return;
420 }
421
422 if (info->receive_credit_target >
423 atomic_read(&info->receive_credits)) {
424 while (true) {
425 if (use_receive_queue)
426 response = get_receive_buffer(info);
427 else
428 response = get_empty_queue_buffer(info);
429 if (!response) {
430 /* now switch to emtpy packet queue */
431 if (use_receive_queue) {
432 use_receive_queue = 0;
433 continue;
434 } else
435 break;
436 }
437
438 response->type = SMBD_TRANSFER_DATA;
439 response->first_segment = false;
440 rc = smbd_post_recv(info, response);
441 if (rc) {
442 log_rdma_recv(ERR,
443 "post_recv failed rc=%d\n", rc);
444 put_receive_buffer(info, response);
445 break;
446 }
447
448 ret++;
449 }
450 }
451
452 spin_lock(&info->lock_new_credits_offered);
453 info->new_credits_offered += ret;
454 spin_unlock(&info->lock_new_credits_offered);
455
456 atomic_add(ret, &info->receive_credits);
457
458 /* Check if we can post new receive and grant credits to peer */
459 check_and_send_immediate(info);
460 }
461
smbd_recv_done_work(struct work_struct * work)462 static void smbd_recv_done_work(struct work_struct *work)
463 {
464 struct smbd_connection *info =
465 container_of(work, struct smbd_connection, recv_done_work);
466
467 /*
468 * We may have new send credits granted from remote peer
469 * If any sender is blcoked on lack of credets, unblock it
470 */
471 if (atomic_read(&info->send_credits))
472 wake_up_interruptible(&info->wait_send_queue);
473
474 /*
475 * Check if we need to send something to remote peer to
476 * grant more credits or respond to KEEP_ALIVE packet
477 */
478 check_and_send_immediate(info);
479 }
480
481 /* Called from softirq, when recv is done */
recv_done(struct ib_cq * cq,struct ib_wc * wc)482 static void recv_done(struct ib_cq *cq, struct ib_wc *wc)
483 {
484 struct smbd_data_transfer *data_transfer;
485 struct smbd_response *response =
486 container_of(wc->wr_cqe, struct smbd_response, cqe);
487 struct smbd_connection *info = response->info;
488 int data_length = 0;
489
490 log_rdma_recv(INFO, "response=%p type=%d wc status=%d wc opcode %d "
491 "byte_len=%d pkey_index=%x\n",
492 response, response->type, wc->status, wc->opcode,
493 wc->byte_len, wc->pkey_index);
494
495 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) {
496 log_rdma_recv(INFO, "wc->status=%d opcode=%d\n",
497 wc->status, wc->opcode);
498 smbd_disconnect_rdma_connection(info);
499 goto error;
500 }
501
502 ib_dma_sync_single_for_cpu(
503 wc->qp->device,
504 response->sge.addr,
505 response->sge.length,
506 DMA_FROM_DEVICE);
507
508 switch (response->type) {
509 /* SMBD negotiation response */
510 case SMBD_NEGOTIATE_RESP:
511 dump_smbd_negotiate_resp(smbd_response_payload(response));
512 info->full_packet_received = true;
513 info->negotiate_done =
514 process_negotiation_response(response, wc->byte_len);
515 complete(&info->negotiate_completion);
516 break;
517
518 /* SMBD data transfer packet */
519 case SMBD_TRANSFER_DATA:
520 data_transfer = smbd_response_payload(response);
521 data_length = le32_to_cpu(data_transfer->data_length);
522
523 /*
524 * If this is a packet with data playload place the data in
525 * reassembly queue and wake up the reading thread
526 */
527 if (data_length) {
528 if (info->full_packet_received)
529 response->first_segment = true;
530
531 if (le32_to_cpu(data_transfer->remaining_data_length))
532 info->full_packet_received = false;
533 else
534 info->full_packet_received = true;
535
536 enqueue_reassembly(
537 info,
538 response,
539 data_length);
540 } else
541 put_empty_packet(info, response);
542
543 if (data_length)
544 wake_up_interruptible(&info->wait_reassembly_queue);
545
546 atomic_dec(&info->receive_credits);
547 info->receive_credit_target =
548 le16_to_cpu(data_transfer->credits_requested);
549 atomic_add(le16_to_cpu(data_transfer->credits_granted),
550 &info->send_credits);
551
552 log_incoming(INFO, "data flags %d data_offset %d "
553 "data_length %d remaining_data_length %d\n",
554 le16_to_cpu(data_transfer->flags),
555 le32_to_cpu(data_transfer->data_offset),
556 le32_to_cpu(data_transfer->data_length),
557 le32_to_cpu(data_transfer->remaining_data_length));
558
559 /* Send a KEEP_ALIVE response right away if requested */
560 info->keep_alive_requested = KEEP_ALIVE_NONE;
561 if (le16_to_cpu(data_transfer->flags) &
562 SMB_DIRECT_RESPONSE_REQUESTED) {
563 info->keep_alive_requested = KEEP_ALIVE_PENDING;
564 }
565
566 queue_work(info->workqueue, &info->recv_done_work);
567 return;
568
569 default:
570 log_rdma_recv(ERR,
571 "unexpected response type=%d\n", response->type);
572 }
573
574 error:
575 put_receive_buffer(info, response);
576 }
577
smbd_create_id(struct smbd_connection * info,struct sockaddr * dstaddr,int port)578 static struct rdma_cm_id *smbd_create_id(
579 struct smbd_connection *info,
580 struct sockaddr *dstaddr, int port)
581 {
582 struct rdma_cm_id *id;
583 int rc;
584 __be16 *sport;
585
586 id = rdma_create_id(&init_net, smbd_conn_upcall, info,
587 RDMA_PS_TCP, IB_QPT_RC);
588 if (IS_ERR(id)) {
589 rc = PTR_ERR(id);
590 log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc);
591 return id;
592 }
593
594 if (dstaddr->sa_family == AF_INET6)
595 sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port;
596 else
597 sport = &((struct sockaddr_in *)dstaddr)->sin_port;
598
599 *sport = htons(port);
600
601 init_completion(&info->ri_done);
602 info->ri_rc = -ETIMEDOUT;
603
604 rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr,
605 RDMA_RESOLVE_TIMEOUT);
606 if (rc) {
607 log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc);
608 goto out;
609 }
610 wait_for_completion_interruptible_timeout(
611 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
612 rc = info->ri_rc;
613 if (rc) {
614 log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
615 goto out;
616 }
617
618 info->ri_rc = -ETIMEDOUT;
619 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
620 if (rc) {
621 log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc);
622 goto out;
623 }
624 wait_for_completion_interruptible_timeout(
625 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
626 rc = info->ri_rc;
627 if (rc) {
628 log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
629 goto out;
630 }
631
632 return id;
633
634 out:
635 rdma_destroy_id(id);
636 return ERR_PTR(rc);
637 }
638
639 /*
640 * Test if FRWR (Fast Registration Work Requests) is supported on the device
641 * This implementation requries FRWR on RDMA read/write
642 * return value: true if it is supported
643 */
frwr_is_supported(struct ib_device_attr * attrs)644 static bool frwr_is_supported(struct ib_device_attr *attrs)
645 {
646 if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
647 return false;
648 if (attrs->max_fast_reg_page_list_len == 0)
649 return false;
650 return true;
651 }
652
smbd_ia_open(struct smbd_connection * info,struct sockaddr * dstaddr,int port)653 static int smbd_ia_open(
654 struct smbd_connection *info,
655 struct sockaddr *dstaddr, int port)
656 {
657 int rc;
658
659 info->id = smbd_create_id(info, dstaddr, port);
660 if (IS_ERR(info->id)) {
661 rc = PTR_ERR(info->id);
662 goto out1;
663 }
664
665 if (!frwr_is_supported(&info->id->device->attrs)) {
666 log_rdma_event(ERR,
667 "Fast Registration Work Requests "
668 "(FRWR) is not supported\n");
669 log_rdma_event(ERR,
670 "Device capability flags = %llx "
671 "max_fast_reg_page_list_len = %u\n",
672 info->id->device->attrs.device_cap_flags,
673 info->id->device->attrs.max_fast_reg_page_list_len);
674 rc = -EPROTONOSUPPORT;
675 goto out2;
676 }
677 info->max_frmr_depth = min_t(int,
678 smbd_max_frmr_depth,
679 info->id->device->attrs.max_fast_reg_page_list_len);
680 info->mr_type = IB_MR_TYPE_MEM_REG;
681 if (info->id->device->attrs.device_cap_flags & IB_DEVICE_SG_GAPS_REG)
682 info->mr_type = IB_MR_TYPE_SG_GAPS;
683
684 info->pd = ib_alloc_pd(info->id->device, 0);
685 if (IS_ERR(info->pd)) {
686 rc = PTR_ERR(info->pd);
687 log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc);
688 goto out2;
689 }
690
691 return 0;
692
693 out2:
694 rdma_destroy_id(info->id);
695 info->id = NULL;
696
697 out1:
698 return rc;
699 }
700
701 /*
702 * Send a negotiation request message to the peer
703 * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3
704 * After negotiation, the transport is connected and ready for
705 * carrying upper layer SMB payload
706 */
smbd_post_send_negotiate_req(struct smbd_connection * info)707 static int smbd_post_send_negotiate_req(struct smbd_connection *info)
708 {
709 struct ib_send_wr send_wr;
710 int rc = -ENOMEM;
711 struct smbd_request *request;
712 struct smbd_negotiate_req *packet;
713
714 request = mempool_alloc(info->request_mempool, GFP_KERNEL);
715 if (!request)
716 return rc;
717
718 request->info = info;
719
720 packet = smbd_request_payload(request);
721 packet->min_version = cpu_to_le16(SMBD_V1);
722 packet->max_version = cpu_to_le16(SMBD_V1);
723 packet->reserved = 0;
724 packet->credits_requested = cpu_to_le16(info->send_credit_target);
725 packet->preferred_send_size = cpu_to_le32(info->max_send_size);
726 packet->max_receive_size = cpu_to_le32(info->max_receive_size);
727 packet->max_fragmented_size =
728 cpu_to_le32(info->max_fragmented_recv_size);
729
730 request->num_sge = 1;
731 request->sge[0].addr = ib_dma_map_single(
732 info->id->device, (void *)packet,
733 sizeof(*packet), DMA_TO_DEVICE);
734 if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
735 rc = -EIO;
736 goto dma_mapping_failed;
737 }
738
739 request->sge[0].length = sizeof(*packet);
740 request->sge[0].lkey = info->pd->local_dma_lkey;
741
742 ib_dma_sync_single_for_device(
743 info->id->device, request->sge[0].addr,
744 request->sge[0].length, DMA_TO_DEVICE);
745
746 request->cqe.done = send_done;
747
748 send_wr.next = NULL;
749 send_wr.wr_cqe = &request->cqe;
750 send_wr.sg_list = request->sge;
751 send_wr.num_sge = request->num_sge;
752 send_wr.opcode = IB_WR_SEND;
753 send_wr.send_flags = IB_SEND_SIGNALED;
754
755 log_rdma_send(INFO, "sge addr=%llx length=%x lkey=%x\n",
756 request->sge[0].addr,
757 request->sge[0].length, request->sge[0].lkey);
758
759 request->has_payload = false;
760 atomic_inc(&info->send_pending);
761 rc = ib_post_send(info->id->qp, &send_wr, NULL);
762 if (!rc)
763 return 0;
764
765 /* if we reach here, post send failed */
766 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
767 atomic_dec(&info->send_pending);
768 ib_dma_unmap_single(info->id->device, request->sge[0].addr,
769 request->sge[0].length, DMA_TO_DEVICE);
770
771 smbd_disconnect_rdma_connection(info);
772
773 dma_mapping_failed:
774 mempool_free(request, info->request_mempool);
775 return rc;
776 }
777
778 /*
779 * Extend the credits to remote peer
780 * This implements [MS-SMBD] 3.1.5.9
781 * The idea is that we should extend credits to remote peer as quickly as
782 * it's allowed, to maintain data flow. We allocate as much receive
783 * buffer as possible, and extend the receive credits to remote peer
784 * return value: the new credtis being granted.
785 */
manage_credits_prior_sending(struct smbd_connection * info)786 static int manage_credits_prior_sending(struct smbd_connection *info)
787 {
788 int new_credits;
789
790 spin_lock(&info->lock_new_credits_offered);
791 new_credits = info->new_credits_offered;
792 info->new_credits_offered = 0;
793 spin_unlock(&info->lock_new_credits_offered);
794
795 return new_credits;
796 }
797
798 /*
799 * Check if we need to send a KEEP_ALIVE message
800 * The idle connection timer triggers a KEEP_ALIVE message when expires
801 * SMB_DIRECT_RESPONSE_REQUESTED is set in the message flag to have peer send
802 * back a response.
803 * return value:
804 * 1 if SMB_DIRECT_RESPONSE_REQUESTED needs to be set
805 * 0: otherwise
806 */
manage_keep_alive_before_sending(struct smbd_connection * info)807 static int manage_keep_alive_before_sending(struct smbd_connection *info)
808 {
809 if (info->keep_alive_requested == KEEP_ALIVE_PENDING) {
810 info->keep_alive_requested = KEEP_ALIVE_SENT;
811 return 1;
812 }
813 return 0;
814 }
815
816 /*
817 * Build and prepare the SMBD packet header
818 * This function waits for avaialbe send credits and build a SMBD packet
819 * header. The caller then optional append payload to the packet after
820 * the header
821 * intput values
822 * size: the size of the payload
823 * remaining_data_length: remaining data to send if this is part of a
824 * fragmented packet
825 * output values
826 * request_out: the request allocated from this function
827 * return values: 0 on success, otherwise actual error code returned
828 */
smbd_create_header(struct smbd_connection * info,int size,int remaining_data_length,struct smbd_request ** request_out)829 static int smbd_create_header(struct smbd_connection *info,
830 int size, int remaining_data_length,
831 struct smbd_request **request_out)
832 {
833 struct smbd_request *request;
834 struct smbd_data_transfer *packet;
835 int header_length;
836 int rc;
837
838 /* Wait for send credits. A SMBD packet needs one credit */
839 rc = wait_event_interruptible(info->wait_send_queue,
840 atomic_read(&info->send_credits) > 0 ||
841 info->transport_status != SMBD_CONNECTED);
842 if (rc)
843 return rc;
844
845 if (info->transport_status != SMBD_CONNECTED) {
846 log_outgoing(ERR, "disconnected not sending\n");
847 return -EAGAIN;
848 }
849 atomic_dec(&info->send_credits);
850
851 request = mempool_alloc(info->request_mempool, GFP_KERNEL);
852 if (!request) {
853 rc = -ENOMEM;
854 goto err;
855 }
856
857 request->info = info;
858
859 /* Fill in the packet header */
860 packet = smbd_request_payload(request);
861 packet->credits_requested = cpu_to_le16(info->send_credit_target);
862 packet->credits_granted =
863 cpu_to_le16(manage_credits_prior_sending(info));
864 info->send_immediate = false;
865
866 packet->flags = 0;
867 if (manage_keep_alive_before_sending(info))
868 packet->flags |= cpu_to_le16(SMB_DIRECT_RESPONSE_REQUESTED);
869
870 packet->reserved = 0;
871 if (!size)
872 packet->data_offset = 0;
873 else
874 packet->data_offset = cpu_to_le32(24);
875 packet->data_length = cpu_to_le32(size);
876 packet->remaining_data_length = cpu_to_le32(remaining_data_length);
877 packet->padding = 0;
878
879 log_outgoing(INFO, "credits_requested=%d credits_granted=%d "
880 "data_offset=%d data_length=%d remaining_data_length=%d\n",
881 le16_to_cpu(packet->credits_requested),
882 le16_to_cpu(packet->credits_granted),
883 le32_to_cpu(packet->data_offset),
884 le32_to_cpu(packet->data_length),
885 le32_to_cpu(packet->remaining_data_length));
886
887 /* Map the packet to DMA */
888 header_length = sizeof(struct smbd_data_transfer);
889 /* If this is a packet without payload, don't send padding */
890 if (!size)
891 header_length = offsetof(struct smbd_data_transfer, padding);
892
893 request->num_sge = 1;
894 request->sge[0].addr = ib_dma_map_single(info->id->device,
895 (void *)packet,
896 header_length,
897 DMA_TO_DEVICE);
898 if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
899 mempool_free(request, info->request_mempool);
900 rc = -EIO;
901 goto err;
902 }
903
904 request->sge[0].length = header_length;
905 request->sge[0].lkey = info->pd->local_dma_lkey;
906
907 *request_out = request;
908 return 0;
909
910 err:
911 atomic_inc(&info->send_credits);
912 return rc;
913 }
914
smbd_destroy_header(struct smbd_connection * info,struct smbd_request * request)915 static void smbd_destroy_header(struct smbd_connection *info,
916 struct smbd_request *request)
917 {
918
919 ib_dma_unmap_single(info->id->device,
920 request->sge[0].addr,
921 request->sge[0].length,
922 DMA_TO_DEVICE);
923 mempool_free(request, info->request_mempool);
924 atomic_inc(&info->send_credits);
925 }
926
927 /* Post the send request */
smbd_post_send(struct smbd_connection * info,struct smbd_request * request,bool has_payload)928 static int smbd_post_send(struct smbd_connection *info,
929 struct smbd_request *request, bool has_payload)
930 {
931 struct ib_send_wr send_wr;
932 int rc, i;
933
934 for (i = 0; i < request->num_sge; i++) {
935 log_rdma_send(INFO,
936 "rdma_request sge[%d] addr=%llu length=%u\n",
937 i, request->sge[i].addr, request->sge[i].length);
938 ib_dma_sync_single_for_device(
939 info->id->device,
940 request->sge[i].addr,
941 request->sge[i].length,
942 DMA_TO_DEVICE);
943 }
944
945 request->cqe.done = send_done;
946
947 send_wr.next = NULL;
948 send_wr.wr_cqe = &request->cqe;
949 send_wr.sg_list = request->sge;
950 send_wr.num_sge = request->num_sge;
951 send_wr.opcode = IB_WR_SEND;
952 send_wr.send_flags = IB_SEND_SIGNALED;
953
954 if (has_payload) {
955 request->has_payload = true;
956 atomic_inc(&info->send_payload_pending);
957 } else {
958 request->has_payload = false;
959 atomic_inc(&info->send_pending);
960 }
961
962 rc = ib_post_send(info->id->qp, &send_wr, NULL);
963 if (rc) {
964 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
965 if (has_payload) {
966 if (atomic_dec_and_test(&info->send_payload_pending))
967 wake_up(&info->wait_send_payload_pending);
968 } else {
969 if (atomic_dec_and_test(&info->send_pending))
970 wake_up(&info->wait_send_pending);
971 }
972 smbd_disconnect_rdma_connection(info);
973 rc = -EAGAIN;
974 } else
975 /* Reset timer for idle connection after packet is sent */
976 mod_delayed_work(info->workqueue, &info->idle_timer_work,
977 info->keep_alive_interval*HZ);
978
979 return rc;
980 }
981
smbd_post_send_sgl(struct smbd_connection * info,struct scatterlist * sgl,int data_length,int remaining_data_length)982 static int smbd_post_send_sgl(struct smbd_connection *info,
983 struct scatterlist *sgl, int data_length, int remaining_data_length)
984 {
985 int num_sgs;
986 int i, rc;
987 struct smbd_request *request;
988 struct scatterlist *sg;
989
990 rc = smbd_create_header(
991 info, data_length, remaining_data_length, &request);
992 if (rc)
993 return rc;
994
995 num_sgs = sgl ? sg_nents(sgl) : 0;
996 for_each_sg(sgl, sg, num_sgs, i) {
997 request->sge[i+1].addr =
998 ib_dma_map_page(info->id->device, sg_page(sg),
999 sg->offset, sg->length, DMA_TO_DEVICE);
1000 if (ib_dma_mapping_error(
1001 info->id->device, request->sge[i+1].addr)) {
1002 rc = -EIO;
1003 request->sge[i+1].addr = 0;
1004 goto dma_mapping_failure;
1005 }
1006 request->sge[i+1].length = sg->length;
1007 request->sge[i+1].lkey = info->pd->local_dma_lkey;
1008 request->num_sge++;
1009 }
1010
1011 rc = smbd_post_send(info, request, data_length);
1012 if (!rc)
1013 return 0;
1014
1015 dma_mapping_failure:
1016 for (i = 1; i < request->num_sge; i++)
1017 if (request->sge[i].addr)
1018 ib_dma_unmap_single(info->id->device,
1019 request->sge[i].addr,
1020 request->sge[i].length,
1021 DMA_TO_DEVICE);
1022 smbd_destroy_header(info, request);
1023 return rc;
1024 }
1025
1026 /*
1027 * Send a page
1028 * page: the page to send
1029 * offset: offset in the page to send
1030 * size: length in the page to send
1031 * remaining_data_length: remaining data to send in this payload
1032 */
smbd_post_send_page(struct smbd_connection * info,struct page * page,unsigned long offset,size_t size,int remaining_data_length)1033 static int smbd_post_send_page(struct smbd_connection *info, struct page *page,
1034 unsigned long offset, size_t size, int remaining_data_length)
1035 {
1036 struct scatterlist sgl;
1037
1038 sg_init_table(&sgl, 1);
1039 sg_set_page(&sgl, page, size, offset);
1040
1041 return smbd_post_send_sgl(info, &sgl, size, remaining_data_length);
1042 }
1043
1044 /*
1045 * Send an empty message
1046 * Empty message is used to extend credits to peer to for keep live
1047 * while there is no upper layer payload to send at the time
1048 */
smbd_post_send_empty(struct smbd_connection * info)1049 static int smbd_post_send_empty(struct smbd_connection *info)
1050 {
1051 info->count_send_empty++;
1052 return smbd_post_send_sgl(info, NULL, 0, 0);
1053 }
1054
1055 /*
1056 * Send a data buffer
1057 * iov: the iov array describing the data buffers
1058 * n_vec: number of iov array
1059 * remaining_data_length: remaining data to send following this packet
1060 * in segmented SMBD packet
1061 */
smbd_post_send_data(struct smbd_connection * info,struct kvec * iov,int n_vec,int remaining_data_length)1062 static int smbd_post_send_data(
1063 struct smbd_connection *info, struct kvec *iov, int n_vec,
1064 int remaining_data_length)
1065 {
1066 int i;
1067 u32 data_length = 0;
1068 struct scatterlist sgl[SMBDIRECT_MAX_SGE];
1069
1070 if (n_vec > SMBDIRECT_MAX_SGE) {
1071 cifs_dbg(VFS, "Can't fit data to SGL, n_vec=%d\n", n_vec);
1072 return -EINVAL;
1073 }
1074
1075 sg_init_table(sgl, n_vec);
1076 for (i = 0; i < n_vec; i++) {
1077 data_length += iov[i].iov_len;
1078 sg_set_buf(&sgl[i], iov[i].iov_base, iov[i].iov_len);
1079 }
1080
1081 return smbd_post_send_sgl(info, sgl, data_length, remaining_data_length);
1082 }
1083
1084 /*
1085 * Post a receive request to the transport
1086 * The remote peer can only send data when a receive request is posted
1087 * The interaction is controlled by send/receive credit system
1088 */
smbd_post_recv(struct smbd_connection * info,struct smbd_response * response)1089 static int smbd_post_recv(
1090 struct smbd_connection *info, struct smbd_response *response)
1091 {
1092 struct ib_recv_wr recv_wr;
1093 int rc = -EIO;
1094
1095 response->sge.addr = ib_dma_map_single(
1096 info->id->device, response->packet,
1097 info->max_receive_size, DMA_FROM_DEVICE);
1098 if (ib_dma_mapping_error(info->id->device, response->sge.addr))
1099 return rc;
1100
1101 response->sge.length = info->max_receive_size;
1102 response->sge.lkey = info->pd->local_dma_lkey;
1103
1104 response->cqe.done = recv_done;
1105
1106 recv_wr.wr_cqe = &response->cqe;
1107 recv_wr.next = NULL;
1108 recv_wr.sg_list = &response->sge;
1109 recv_wr.num_sge = 1;
1110
1111 rc = ib_post_recv(info->id->qp, &recv_wr, NULL);
1112 if (rc) {
1113 ib_dma_unmap_single(info->id->device, response->sge.addr,
1114 response->sge.length, DMA_FROM_DEVICE);
1115 smbd_disconnect_rdma_connection(info);
1116 log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc);
1117 }
1118
1119 return rc;
1120 }
1121
1122 /* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */
smbd_negotiate(struct smbd_connection * info)1123 static int smbd_negotiate(struct smbd_connection *info)
1124 {
1125 int rc;
1126 struct smbd_response *response = get_receive_buffer(info);
1127
1128 response->type = SMBD_NEGOTIATE_RESP;
1129 rc = smbd_post_recv(info, response);
1130 log_rdma_event(INFO,
1131 "smbd_post_recv rc=%d iov.addr=%llx iov.length=%x "
1132 "iov.lkey=%x\n",
1133 rc, response->sge.addr,
1134 response->sge.length, response->sge.lkey);
1135 if (rc)
1136 return rc;
1137
1138 init_completion(&info->negotiate_completion);
1139 info->negotiate_done = false;
1140 rc = smbd_post_send_negotiate_req(info);
1141 if (rc)
1142 return rc;
1143
1144 rc = wait_for_completion_interruptible_timeout(
1145 &info->negotiate_completion, SMBD_NEGOTIATE_TIMEOUT * HZ);
1146 log_rdma_event(INFO, "wait_for_completion_timeout rc=%d\n", rc);
1147
1148 if (info->negotiate_done)
1149 return 0;
1150
1151 if (rc == 0)
1152 rc = -ETIMEDOUT;
1153 else if (rc == -ERESTARTSYS)
1154 rc = -EINTR;
1155 else
1156 rc = -ENOTCONN;
1157
1158 return rc;
1159 }
1160
put_empty_packet(struct smbd_connection * info,struct smbd_response * response)1161 static void put_empty_packet(
1162 struct smbd_connection *info, struct smbd_response *response)
1163 {
1164 spin_lock(&info->empty_packet_queue_lock);
1165 list_add_tail(&response->list, &info->empty_packet_queue);
1166 info->count_empty_packet_queue++;
1167 spin_unlock(&info->empty_packet_queue_lock);
1168
1169 queue_work(info->workqueue, &info->post_send_credits_work);
1170 }
1171
1172 /*
1173 * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1
1174 * This is a queue for reassembling upper layer payload and present to upper
1175 * layer. All the inncoming payload go to the reassembly queue, regardless of
1176 * if reassembly is required. The uuper layer code reads from the queue for all
1177 * incoming payloads.
1178 * Put a received packet to the reassembly queue
1179 * response: the packet received
1180 * data_length: the size of payload in this packet
1181 */
enqueue_reassembly(struct smbd_connection * info,struct smbd_response * response,int data_length)1182 static void enqueue_reassembly(
1183 struct smbd_connection *info,
1184 struct smbd_response *response,
1185 int data_length)
1186 {
1187 spin_lock(&info->reassembly_queue_lock);
1188 list_add_tail(&response->list, &info->reassembly_queue);
1189 info->reassembly_queue_length++;
1190 /*
1191 * Make sure reassembly_data_length is updated after list and
1192 * reassembly_queue_length are updated. On the dequeue side
1193 * reassembly_data_length is checked without a lock to determine
1194 * if reassembly_queue_length and list is up to date
1195 */
1196 virt_wmb();
1197 info->reassembly_data_length += data_length;
1198 spin_unlock(&info->reassembly_queue_lock);
1199 info->count_reassembly_queue++;
1200 info->count_enqueue_reassembly_queue++;
1201 }
1202
1203 /*
1204 * Get the first entry at the front of reassembly queue
1205 * Caller is responsible for locking
1206 * return value: the first entry if any, NULL if queue is empty
1207 */
_get_first_reassembly(struct smbd_connection * info)1208 static struct smbd_response *_get_first_reassembly(struct smbd_connection *info)
1209 {
1210 struct smbd_response *ret = NULL;
1211
1212 if (!list_empty(&info->reassembly_queue)) {
1213 ret = list_first_entry(
1214 &info->reassembly_queue,
1215 struct smbd_response, list);
1216 }
1217 return ret;
1218 }
1219
get_empty_queue_buffer(struct smbd_connection * info)1220 static struct smbd_response *get_empty_queue_buffer(
1221 struct smbd_connection *info)
1222 {
1223 struct smbd_response *ret = NULL;
1224 unsigned long flags;
1225
1226 spin_lock_irqsave(&info->empty_packet_queue_lock, flags);
1227 if (!list_empty(&info->empty_packet_queue)) {
1228 ret = list_first_entry(
1229 &info->empty_packet_queue,
1230 struct smbd_response, list);
1231 list_del(&ret->list);
1232 info->count_empty_packet_queue--;
1233 }
1234 spin_unlock_irqrestore(&info->empty_packet_queue_lock, flags);
1235
1236 return ret;
1237 }
1238
1239 /*
1240 * Get a receive buffer
1241 * For each remote send, we need to post a receive. The receive buffers are
1242 * pre-allocated in advance.
1243 * return value: the receive buffer, NULL if none is available
1244 */
get_receive_buffer(struct smbd_connection * info)1245 static struct smbd_response *get_receive_buffer(struct smbd_connection *info)
1246 {
1247 struct smbd_response *ret = NULL;
1248 unsigned long flags;
1249
1250 spin_lock_irqsave(&info->receive_queue_lock, flags);
1251 if (!list_empty(&info->receive_queue)) {
1252 ret = list_first_entry(
1253 &info->receive_queue,
1254 struct smbd_response, list);
1255 list_del(&ret->list);
1256 info->count_receive_queue--;
1257 info->count_get_receive_buffer++;
1258 }
1259 spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1260
1261 return ret;
1262 }
1263
1264 /*
1265 * Return a receive buffer
1266 * Upon returning of a receive buffer, we can post new receive and extend
1267 * more receive credits to remote peer. This is done immediately after a
1268 * receive buffer is returned.
1269 */
put_receive_buffer(struct smbd_connection * info,struct smbd_response * response)1270 static void put_receive_buffer(
1271 struct smbd_connection *info, struct smbd_response *response)
1272 {
1273 unsigned long flags;
1274
1275 ib_dma_unmap_single(info->id->device, response->sge.addr,
1276 response->sge.length, DMA_FROM_DEVICE);
1277
1278 spin_lock_irqsave(&info->receive_queue_lock, flags);
1279 list_add_tail(&response->list, &info->receive_queue);
1280 info->count_receive_queue++;
1281 info->count_put_receive_buffer++;
1282 spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1283
1284 queue_work(info->workqueue, &info->post_send_credits_work);
1285 }
1286
1287 /* Preallocate all receive buffer on transport establishment */
allocate_receive_buffers(struct smbd_connection * info,int num_buf)1288 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf)
1289 {
1290 int i;
1291 struct smbd_response *response;
1292
1293 INIT_LIST_HEAD(&info->reassembly_queue);
1294 spin_lock_init(&info->reassembly_queue_lock);
1295 info->reassembly_data_length = 0;
1296 info->reassembly_queue_length = 0;
1297
1298 INIT_LIST_HEAD(&info->receive_queue);
1299 spin_lock_init(&info->receive_queue_lock);
1300 info->count_receive_queue = 0;
1301
1302 INIT_LIST_HEAD(&info->empty_packet_queue);
1303 spin_lock_init(&info->empty_packet_queue_lock);
1304 info->count_empty_packet_queue = 0;
1305
1306 init_waitqueue_head(&info->wait_receive_queues);
1307
1308 for (i = 0; i < num_buf; i++) {
1309 response = mempool_alloc(info->response_mempool, GFP_KERNEL);
1310 if (!response)
1311 goto allocate_failed;
1312
1313 response->info = info;
1314 list_add_tail(&response->list, &info->receive_queue);
1315 info->count_receive_queue++;
1316 }
1317
1318 return 0;
1319
1320 allocate_failed:
1321 while (!list_empty(&info->receive_queue)) {
1322 response = list_first_entry(
1323 &info->receive_queue,
1324 struct smbd_response, list);
1325 list_del(&response->list);
1326 info->count_receive_queue--;
1327
1328 mempool_free(response, info->response_mempool);
1329 }
1330 return -ENOMEM;
1331 }
1332
destroy_receive_buffers(struct smbd_connection * info)1333 static void destroy_receive_buffers(struct smbd_connection *info)
1334 {
1335 struct smbd_response *response;
1336
1337 while ((response = get_receive_buffer(info)))
1338 mempool_free(response, info->response_mempool);
1339
1340 while ((response = get_empty_queue_buffer(info)))
1341 mempool_free(response, info->response_mempool);
1342 }
1343
1344 /*
1345 * Check and send an immediate or keep alive packet
1346 * The condition to send those packets are defined in [MS-SMBD] 3.1.1.1
1347 * Connection.KeepaliveRequested and Connection.SendImmediate
1348 * The idea is to extend credits to server as soon as it becomes available
1349 */
send_immediate_work(struct work_struct * work)1350 static void send_immediate_work(struct work_struct *work)
1351 {
1352 struct smbd_connection *info = container_of(
1353 work, struct smbd_connection,
1354 send_immediate_work.work);
1355
1356 if (info->keep_alive_requested == KEEP_ALIVE_PENDING ||
1357 info->send_immediate) {
1358 log_keep_alive(INFO, "send an empty message\n");
1359 smbd_post_send_empty(info);
1360 }
1361 }
1362
1363 /* Implement idle connection timer [MS-SMBD] 3.1.6.2 */
idle_connection_timer(struct work_struct * work)1364 static void idle_connection_timer(struct work_struct *work)
1365 {
1366 struct smbd_connection *info = container_of(
1367 work, struct smbd_connection,
1368 idle_timer_work.work);
1369
1370 if (info->keep_alive_requested != KEEP_ALIVE_NONE) {
1371 log_keep_alive(ERR,
1372 "error status info->keep_alive_requested=%d\n",
1373 info->keep_alive_requested);
1374 smbd_disconnect_rdma_connection(info);
1375 return;
1376 }
1377
1378 log_keep_alive(INFO, "about to send an empty idle message\n");
1379 smbd_post_send_empty(info);
1380
1381 /* Setup the next idle timeout work */
1382 queue_delayed_work(info->workqueue, &info->idle_timer_work,
1383 info->keep_alive_interval*HZ);
1384 }
1385
1386 /*
1387 * Destroy the transport and related RDMA and memory resources
1388 * Need to go through all the pending counters and make sure on one is using
1389 * the transport while it is destroyed
1390 */
smbd_destroy(struct TCP_Server_Info * server)1391 void smbd_destroy(struct TCP_Server_Info *server)
1392 {
1393 struct smbd_connection *info = server->smbd_conn;
1394 struct smbd_response *response;
1395 unsigned long flags;
1396
1397 if (!info) {
1398 log_rdma_event(INFO, "rdma session already destroyed\n");
1399 return;
1400 }
1401
1402 log_rdma_event(INFO, "destroying rdma session\n");
1403 if (info->transport_status != SMBD_DISCONNECTED) {
1404 rdma_disconnect(server->smbd_conn->id);
1405 log_rdma_event(INFO, "wait for transport being disconnected\n");
1406 wait_event_interruptible(
1407 info->disconn_wait,
1408 info->transport_status == SMBD_DISCONNECTED);
1409 }
1410
1411 log_rdma_event(INFO, "destroying qp\n");
1412 ib_drain_qp(info->id->qp);
1413 rdma_destroy_qp(info->id);
1414
1415 log_rdma_event(INFO, "cancelling idle timer\n");
1416 cancel_delayed_work_sync(&info->idle_timer_work);
1417 log_rdma_event(INFO, "cancelling send immediate work\n");
1418 cancel_delayed_work_sync(&info->send_immediate_work);
1419
1420 log_rdma_event(INFO, "wait for all send posted to IB to finish\n");
1421 wait_event(info->wait_send_pending,
1422 atomic_read(&info->send_pending) == 0);
1423 wait_event(info->wait_send_payload_pending,
1424 atomic_read(&info->send_payload_pending) == 0);
1425
1426 /* It's not posssible for upper layer to get to reassembly */
1427 log_rdma_event(INFO, "drain the reassembly queue\n");
1428 do {
1429 spin_lock_irqsave(&info->reassembly_queue_lock, flags);
1430 response = _get_first_reassembly(info);
1431 if (response) {
1432 list_del(&response->list);
1433 spin_unlock_irqrestore(
1434 &info->reassembly_queue_lock, flags);
1435 put_receive_buffer(info, response);
1436 } else
1437 spin_unlock_irqrestore(
1438 &info->reassembly_queue_lock, flags);
1439 } while (response);
1440 info->reassembly_data_length = 0;
1441
1442 log_rdma_event(INFO, "free receive buffers\n");
1443 wait_event(info->wait_receive_queues,
1444 info->count_receive_queue + info->count_empty_packet_queue
1445 == info->receive_credit_max);
1446 destroy_receive_buffers(info);
1447
1448 /*
1449 * For performance reasons, memory registration and deregistration
1450 * are not locked by srv_mutex. It is possible some processes are
1451 * blocked on transport srv_mutex while holding memory registration.
1452 * Release the transport srv_mutex to allow them to hit the failure
1453 * path when sending data, and then release memory registartions.
1454 */
1455 log_rdma_event(INFO, "freeing mr list\n");
1456 wake_up_interruptible_all(&info->wait_mr);
1457 while (atomic_read(&info->mr_used_count)) {
1458 mutex_unlock(&server->srv_mutex);
1459 msleep(1000);
1460 mutex_lock(&server->srv_mutex);
1461 }
1462 destroy_mr_list(info);
1463
1464 ib_free_cq(info->send_cq);
1465 ib_free_cq(info->recv_cq);
1466 ib_dealloc_pd(info->pd);
1467 rdma_destroy_id(info->id);
1468
1469 /* free mempools */
1470 mempool_destroy(info->request_mempool);
1471 kmem_cache_destroy(info->request_cache);
1472
1473 mempool_destroy(info->response_mempool);
1474 kmem_cache_destroy(info->response_cache);
1475
1476 info->transport_status = SMBD_DESTROYED;
1477
1478 destroy_workqueue(info->workqueue);
1479 log_rdma_event(INFO, "rdma session destroyed\n");
1480 kfree(info);
1481 }
1482
1483 /*
1484 * Reconnect this SMBD connection, called from upper layer
1485 * return value: 0 on success, or actual error code
1486 */
smbd_reconnect(struct TCP_Server_Info * server)1487 int smbd_reconnect(struct TCP_Server_Info *server)
1488 {
1489 log_rdma_event(INFO, "reconnecting rdma session\n");
1490
1491 if (!server->smbd_conn) {
1492 log_rdma_event(INFO, "rdma session already destroyed\n");
1493 goto create_conn;
1494 }
1495
1496 /*
1497 * This is possible if transport is disconnected and we haven't received
1498 * notification from RDMA, but upper layer has detected timeout
1499 */
1500 if (server->smbd_conn->transport_status == SMBD_CONNECTED) {
1501 log_rdma_event(INFO, "disconnecting transport\n");
1502 smbd_destroy(server);
1503 }
1504
1505 create_conn:
1506 log_rdma_event(INFO, "creating rdma session\n");
1507 server->smbd_conn = smbd_get_connection(
1508 server, (struct sockaddr *) &server->dstaddr);
1509
1510 if (server->smbd_conn)
1511 cifs_dbg(VFS, "RDMA transport re-established\n");
1512
1513 return server->smbd_conn ? 0 : -ENOENT;
1514 }
1515
destroy_caches_and_workqueue(struct smbd_connection * info)1516 static void destroy_caches_and_workqueue(struct smbd_connection *info)
1517 {
1518 destroy_receive_buffers(info);
1519 destroy_workqueue(info->workqueue);
1520 mempool_destroy(info->response_mempool);
1521 kmem_cache_destroy(info->response_cache);
1522 mempool_destroy(info->request_mempool);
1523 kmem_cache_destroy(info->request_cache);
1524 }
1525
1526 #define MAX_NAME_LEN 80
allocate_caches_and_workqueue(struct smbd_connection * info)1527 static int allocate_caches_and_workqueue(struct smbd_connection *info)
1528 {
1529 char name[MAX_NAME_LEN];
1530 int rc;
1531
1532 scnprintf(name, MAX_NAME_LEN, "smbd_request_%p", info);
1533 info->request_cache =
1534 kmem_cache_create(
1535 name,
1536 sizeof(struct smbd_request) +
1537 sizeof(struct smbd_data_transfer),
1538 0, SLAB_HWCACHE_ALIGN, NULL);
1539 if (!info->request_cache)
1540 return -ENOMEM;
1541
1542 info->request_mempool =
1543 mempool_create(info->send_credit_target, mempool_alloc_slab,
1544 mempool_free_slab, info->request_cache);
1545 if (!info->request_mempool)
1546 goto out1;
1547
1548 scnprintf(name, MAX_NAME_LEN, "smbd_response_%p", info);
1549 info->response_cache =
1550 kmem_cache_create(
1551 name,
1552 sizeof(struct smbd_response) +
1553 info->max_receive_size,
1554 0, SLAB_HWCACHE_ALIGN, NULL);
1555 if (!info->response_cache)
1556 goto out2;
1557
1558 info->response_mempool =
1559 mempool_create(info->receive_credit_max, mempool_alloc_slab,
1560 mempool_free_slab, info->response_cache);
1561 if (!info->response_mempool)
1562 goto out3;
1563
1564 scnprintf(name, MAX_NAME_LEN, "smbd_%p", info);
1565 info->workqueue = create_workqueue(name);
1566 if (!info->workqueue)
1567 goto out4;
1568
1569 rc = allocate_receive_buffers(info, info->receive_credit_max);
1570 if (rc) {
1571 log_rdma_event(ERR, "failed to allocate receive buffers\n");
1572 goto out5;
1573 }
1574
1575 return 0;
1576
1577 out5:
1578 destroy_workqueue(info->workqueue);
1579 out4:
1580 mempool_destroy(info->response_mempool);
1581 out3:
1582 kmem_cache_destroy(info->response_cache);
1583 out2:
1584 mempool_destroy(info->request_mempool);
1585 out1:
1586 kmem_cache_destroy(info->request_cache);
1587 return -ENOMEM;
1588 }
1589
1590 /* Create a SMBD connection, called by upper layer */
_smbd_get_connection(struct TCP_Server_Info * server,struct sockaddr * dstaddr,int port)1591 static struct smbd_connection *_smbd_get_connection(
1592 struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port)
1593 {
1594 int rc;
1595 struct smbd_connection *info;
1596 struct rdma_conn_param conn_param;
1597 struct ib_qp_init_attr qp_attr;
1598 struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr;
1599 struct ib_port_immutable port_immutable;
1600 u32 ird_ord_hdr[2];
1601
1602 info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL);
1603 if (!info)
1604 return NULL;
1605
1606 info->transport_status = SMBD_CONNECTING;
1607 rc = smbd_ia_open(info, dstaddr, port);
1608 if (rc) {
1609 log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc);
1610 goto create_id_failed;
1611 }
1612
1613 if (smbd_send_credit_target > info->id->device->attrs.max_cqe ||
1614 smbd_send_credit_target > info->id->device->attrs.max_qp_wr) {
1615 log_rdma_event(ERR,
1616 "consider lowering send_credit_target = %d. "
1617 "Possible CQE overrun, device "
1618 "reporting max_cpe %d max_qp_wr %d\n",
1619 smbd_send_credit_target,
1620 info->id->device->attrs.max_cqe,
1621 info->id->device->attrs.max_qp_wr);
1622 goto config_failed;
1623 }
1624
1625 if (smbd_receive_credit_max > info->id->device->attrs.max_cqe ||
1626 smbd_receive_credit_max > info->id->device->attrs.max_qp_wr) {
1627 log_rdma_event(ERR,
1628 "consider lowering receive_credit_max = %d. "
1629 "Possible CQE overrun, device "
1630 "reporting max_cpe %d max_qp_wr %d\n",
1631 smbd_receive_credit_max,
1632 info->id->device->attrs.max_cqe,
1633 info->id->device->attrs.max_qp_wr);
1634 goto config_failed;
1635 }
1636
1637 info->receive_credit_max = smbd_receive_credit_max;
1638 info->send_credit_target = smbd_send_credit_target;
1639 info->max_send_size = smbd_max_send_size;
1640 info->max_fragmented_recv_size = smbd_max_fragmented_recv_size;
1641 info->max_receive_size = smbd_max_receive_size;
1642 info->keep_alive_interval = smbd_keep_alive_interval;
1643
1644 if (info->id->device->attrs.max_send_sge < SMBDIRECT_MAX_SGE) {
1645 log_rdma_event(ERR,
1646 "warning: device max_send_sge = %d too small\n",
1647 info->id->device->attrs.max_send_sge);
1648 log_rdma_event(ERR, "Queue Pair creation may fail\n");
1649 }
1650 if (info->id->device->attrs.max_recv_sge < SMBDIRECT_MAX_SGE) {
1651 log_rdma_event(ERR,
1652 "warning: device max_recv_sge = %d too small\n",
1653 info->id->device->attrs.max_recv_sge);
1654 log_rdma_event(ERR, "Queue Pair creation may fail\n");
1655 }
1656
1657 info->send_cq = NULL;
1658 info->recv_cq = NULL;
1659 info->send_cq =
1660 ib_alloc_cq_any(info->id->device, info,
1661 info->send_credit_target, IB_POLL_SOFTIRQ);
1662 if (IS_ERR(info->send_cq)) {
1663 info->send_cq = NULL;
1664 goto alloc_cq_failed;
1665 }
1666
1667 info->recv_cq =
1668 ib_alloc_cq_any(info->id->device, info,
1669 info->receive_credit_max, IB_POLL_SOFTIRQ);
1670 if (IS_ERR(info->recv_cq)) {
1671 info->recv_cq = NULL;
1672 goto alloc_cq_failed;
1673 }
1674
1675 memset(&qp_attr, 0, sizeof(qp_attr));
1676 qp_attr.event_handler = smbd_qp_async_error_upcall;
1677 qp_attr.qp_context = info;
1678 qp_attr.cap.max_send_wr = info->send_credit_target;
1679 qp_attr.cap.max_recv_wr = info->receive_credit_max;
1680 qp_attr.cap.max_send_sge = SMBDIRECT_MAX_SGE;
1681 qp_attr.cap.max_recv_sge = SMBDIRECT_MAX_SGE;
1682 qp_attr.cap.max_inline_data = 0;
1683 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1684 qp_attr.qp_type = IB_QPT_RC;
1685 qp_attr.send_cq = info->send_cq;
1686 qp_attr.recv_cq = info->recv_cq;
1687 qp_attr.port_num = ~0;
1688
1689 rc = rdma_create_qp(info->id, info->pd, &qp_attr);
1690 if (rc) {
1691 log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc);
1692 goto create_qp_failed;
1693 }
1694
1695 memset(&conn_param, 0, sizeof(conn_param));
1696 conn_param.initiator_depth = 0;
1697
1698 conn_param.responder_resources =
1699 info->id->device->attrs.max_qp_rd_atom
1700 < SMBD_CM_RESPONDER_RESOURCES ?
1701 info->id->device->attrs.max_qp_rd_atom :
1702 SMBD_CM_RESPONDER_RESOURCES;
1703 info->responder_resources = conn_param.responder_resources;
1704 log_rdma_mr(INFO, "responder_resources=%d\n",
1705 info->responder_resources);
1706
1707 /* Need to send IRD/ORD in private data for iWARP */
1708 info->id->device->ops.get_port_immutable(
1709 info->id->device, info->id->port_num, &port_immutable);
1710 if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) {
1711 ird_ord_hdr[0] = info->responder_resources;
1712 ird_ord_hdr[1] = 1;
1713 conn_param.private_data = ird_ord_hdr;
1714 conn_param.private_data_len = sizeof(ird_ord_hdr);
1715 } else {
1716 conn_param.private_data = NULL;
1717 conn_param.private_data_len = 0;
1718 }
1719
1720 conn_param.retry_count = SMBD_CM_RETRY;
1721 conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY;
1722 conn_param.flow_control = 0;
1723
1724 log_rdma_event(INFO, "connecting to IP %pI4 port %d\n",
1725 &addr_in->sin_addr, port);
1726
1727 init_waitqueue_head(&info->conn_wait);
1728 init_waitqueue_head(&info->disconn_wait);
1729 init_waitqueue_head(&info->wait_reassembly_queue);
1730 rc = rdma_connect(info->id, &conn_param);
1731 if (rc) {
1732 log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc);
1733 goto rdma_connect_failed;
1734 }
1735
1736 wait_event_interruptible(
1737 info->conn_wait, info->transport_status != SMBD_CONNECTING);
1738
1739 if (info->transport_status != SMBD_CONNECTED) {
1740 log_rdma_event(ERR, "rdma_connect failed port=%d\n", port);
1741 goto rdma_connect_failed;
1742 }
1743
1744 log_rdma_event(INFO, "rdma_connect connected\n");
1745
1746 rc = allocate_caches_and_workqueue(info);
1747 if (rc) {
1748 log_rdma_event(ERR, "cache allocation failed\n");
1749 goto allocate_cache_failed;
1750 }
1751
1752 init_waitqueue_head(&info->wait_send_queue);
1753 INIT_DELAYED_WORK(&info->idle_timer_work, idle_connection_timer);
1754 INIT_DELAYED_WORK(&info->send_immediate_work, send_immediate_work);
1755 queue_delayed_work(info->workqueue, &info->idle_timer_work,
1756 info->keep_alive_interval*HZ);
1757
1758 init_waitqueue_head(&info->wait_send_pending);
1759 atomic_set(&info->send_pending, 0);
1760
1761 init_waitqueue_head(&info->wait_send_payload_pending);
1762 atomic_set(&info->send_payload_pending, 0);
1763
1764 INIT_WORK(&info->disconnect_work, smbd_disconnect_rdma_work);
1765 INIT_WORK(&info->recv_done_work, smbd_recv_done_work);
1766 INIT_WORK(&info->post_send_credits_work, smbd_post_send_credits);
1767 info->new_credits_offered = 0;
1768 spin_lock_init(&info->lock_new_credits_offered);
1769
1770 rc = smbd_negotiate(info);
1771 if (rc) {
1772 log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc);
1773 goto negotiation_failed;
1774 }
1775
1776 rc = allocate_mr_list(info);
1777 if (rc) {
1778 log_rdma_mr(ERR, "memory registration allocation failed\n");
1779 goto allocate_mr_failed;
1780 }
1781
1782 return info;
1783
1784 allocate_mr_failed:
1785 /* At this point, need to a full transport shutdown */
1786 smbd_destroy(server);
1787 return NULL;
1788
1789 negotiation_failed:
1790 cancel_delayed_work_sync(&info->idle_timer_work);
1791 destroy_caches_and_workqueue(info);
1792 info->transport_status = SMBD_NEGOTIATE_FAILED;
1793 init_waitqueue_head(&info->conn_wait);
1794 rdma_disconnect(info->id);
1795 wait_event(info->conn_wait,
1796 info->transport_status == SMBD_DISCONNECTED);
1797
1798 allocate_cache_failed:
1799 rdma_connect_failed:
1800 rdma_destroy_qp(info->id);
1801
1802 create_qp_failed:
1803 alloc_cq_failed:
1804 if (info->send_cq)
1805 ib_free_cq(info->send_cq);
1806 if (info->recv_cq)
1807 ib_free_cq(info->recv_cq);
1808
1809 config_failed:
1810 ib_dealloc_pd(info->pd);
1811 rdma_destroy_id(info->id);
1812
1813 create_id_failed:
1814 kfree(info);
1815 return NULL;
1816 }
1817
smbd_get_connection(struct TCP_Server_Info * server,struct sockaddr * dstaddr)1818 struct smbd_connection *smbd_get_connection(
1819 struct TCP_Server_Info *server, struct sockaddr *dstaddr)
1820 {
1821 struct smbd_connection *ret;
1822 int port = SMBD_PORT;
1823
1824 try_again:
1825 ret = _smbd_get_connection(server, dstaddr, port);
1826
1827 /* Try SMB_PORT if SMBD_PORT doesn't work */
1828 if (!ret && port == SMBD_PORT) {
1829 port = SMB_PORT;
1830 goto try_again;
1831 }
1832 return ret;
1833 }
1834
1835 /*
1836 * Receive data from receive reassembly queue
1837 * All the incoming data packets are placed in reassembly queue
1838 * buf: the buffer to read data into
1839 * size: the length of data to read
1840 * return value: actual data read
1841 * Note: this implementation copies the data from reassebmly queue to receive
1842 * buffers used by upper layer. This is not the optimal code path. A better way
1843 * to do it is to not have upper layer allocate its receive buffers but rather
1844 * borrow the buffer from reassembly queue, and return it after data is
1845 * consumed. But this will require more changes to upper layer code, and also
1846 * need to consider packet boundaries while they still being reassembled.
1847 */
smbd_recv_buf(struct smbd_connection * info,char * buf,unsigned int size)1848 static int smbd_recv_buf(struct smbd_connection *info, char *buf,
1849 unsigned int size)
1850 {
1851 struct smbd_response *response;
1852 struct smbd_data_transfer *data_transfer;
1853 int to_copy, to_read, data_read, offset;
1854 u32 data_length, remaining_data_length, data_offset;
1855 int rc;
1856
1857 again:
1858 /*
1859 * No need to hold the reassembly queue lock all the time as we are
1860 * the only one reading from the front of the queue. The transport
1861 * may add more entries to the back of the queue at the same time
1862 */
1863 log_read(INFO, "size=%d info->reassembly_data_length=%d\n", size,
1864 info->reassembly_data_length);
1865 if (info->reassembly_data_length >= size) {
1866 int queue_length;
1867 int queue_removed = 0;
1868
1869 /*
1870 * Need to make sure reassembly_data_length is read before
1871 * reading reassembly_queue_length and calling
1872 * _get_first_reassembly. This call is lock free
1873 * as we never read at the end of the queue which are being
1874 * updated in SOFTIRQ as more data is received
1875 */
1876 virt_rmb();
1877 queue_length = info->reassembly_queue_length;
1878 data_read = 0;
1879 to_read = size;
1880 offset = info->first_entry_offset;
1881 while (data_read < size) {
1882 response = _get_first_reassembly(info);
1883 data_transfer = smbd_response_payload(response);
1884 data_length = le32_to_cpu(data_transfer->data_length);
1885 remaining_data_length =
1886 le32_to_cpu(
1887 data_transfer->remaining_data_length);
1888 data_offset = le32_to_cpu(data_transfer->data_offset);
1889
1890 /*
1891 * The upper layer expects RFC1002 length at the
1892 * beginning of the payload. Return it to indicate
1893 * the total length of the packet. This minimize the
1894 * change to upper layer packet processing logic. This
1895 * will be eventually remove when an intermediate
1896 * transport layer is added
1897 */
1898 if (response->first_segment && size == 4) {
1899 unsigned int rfc1002_len =
1900 data_length + remaining_data_length;
1901 *((__be32 *)buf) = cpu_to_be32(rfc1002_len);
1902 data_read = 4;
1903 response->first_segment = false;
1904 log_read(INFO, "returning rfc1002 length %d\n",
1905 rfc1002_len);
1906 goto read_rfc1002_done;
1907 }
1908
1909 to_copy = min_t(int, data_length - offset, to_read);
1910 memcpy(
1911 buf + data_read,
1912 (char *)data_transfer + data_offset + offset,
1913 to_copy);
1914
1915 /* move on to the next buffer? */
1916 if (to_copy == data_length - offset) {
1917 queue_length--;
1918 /*
1919 * No need to lock if we are not at the
1920 * end of the queue
1921 */
1922 if (queue_length)
1923 list_del(&response->list);
1924 else {
1925 spin_lock_irq(
1926 &info->reassembly_queue_lock);
1927 list_del(&response->list);
1928 spin_unlock_irq(
1929 &info->reassembly_queue_lock);
1930 }
1931 queue_removed++;
1932 info->count_reassembly_queue--;
1933 info->count_dequeue_reassembly_queue++;
1934 put_receive_buffer(info, response);
1935 offset = 0;
1936 log_read(INFO, "put_receive_buffer offset=0\n");
1937 } else
1938 offset += to_copy;
1939
1940 to_read -= to_copy;
1941 data_read += to_copy;
1942
1943 log_read(INFO, "_get_first_reassembly memcpy %d bytes "
1944 "data_transfer_length-offset=%d after that "
1945 "to_read=%d data_read=%d offset=%d\n",
1946 to_copy, data_length - offset,
1947 to_read, data_read, offset);
1948 }
1949
1950 spin_lock_irq(&info->reassembly_queue_lock);
1951 info->reassembly_data_length -= data_read;
1952 info->reassembly_queue_length -= queue_removed;
1953 spin_unlock_irq(&info->reassembly_queue_lock);
1954
1955 info->first_entry_offset = offset;
1956 log_read(INFO, "returning to thread data_read=%d "
1957 "reassembly_data_length=%d first_entry_offset=%d\n",
1958 data_read, info->reassembly_data_length,
1959 info->first_entry_offset);
1960 read_rfc1002_done:
1961 return data_read;
1962 }
1963
1964 log_read(INFO, "wait_event on more data\n");
1965 rc = wait_event_interruptible(
1966 info->wait_reassembly_queue,
1967 info->reassembly_data_length >= size ||
1968 info->transport_status != SMBD_CONNECTED);
1969 /* Don't return any data if interrupted */
1970 if (rc)
1971 return rc;
1972
1973 if (info->transport_status != SMBD_CONNECTED) {
1974 log_read(ERR, "disconnected\n");
1975 return -ECONNABORTED;
1976 }
1977
1978 goto again;
1979 }
1980
1981 /*
1982 * Receive a page from receive reassembly queue
1983 * page: the page to read data into
1984 * to_read: the length of data to read
1985 * return value: actual data read
1986 */
smbd_recv_page(struct smbd_connection * info,struct page * page,unsigned int page_offset,unsigned int to_read)1987 static int smbd_recv_page(struct smbd_connection *info,
1988 struct page *page, unsigned int page_offset,
1989 unsigned int to_read)
1990 {
1991 int ret;
1992 char *to_address;
1993 void *page_address;
1994
1995 /* make sure we have the page ready for read */
1996 ret = wait_event_interruptible(
1997 info->wait_reassembly_queue,
1998 info->reassembly_data_length >= to_read ||
1999 info->transport_status != SMBD_CONNECTED);
2000 if (ret)
2001 return ret;
2002
2003 /* now we can read from reassembly queue and not sleep */
2004 page_address = kmap_atomic(page);
2005 to_address = (char *) page_address + page_offset;
2006
2007 log_read(INFO, "reading from page=%p address=%p to_read=%d\n",
2008 page, to_address, to_read);
2009
2010 ret = smbd_recv_buf(info, to_address, to_read);
2011 kunmap_atomic(page_address);
2012
2013 return ret;
2014 }
2015
2016 /*
2017 * Receive data from transport
2018 * msg: a msghdr point to the buffer, can be ITER_KVEC or ITER_BVEC
2019 * return: total bytes read, or 0. SMB Direct will not do partial read.
2020 */
smbd_recv(struct smbd_connection * info,struct msghdr * msg)2021 int smbd_recv(struct smbd_connection *info, struct msghdr *msg)
2022 {
2023 char *buf;
2024 struct page *page;
2025 unsigned int to_read, page_offset;
2026 int rc;
2027
2028 if (iov_iter_rw(&msg->msg_iter) == WRITE) {
2029 /* It's a bug in upper layer to get there */
2030 cifs_dbg(VFS, "CIFS: invalid msg iter dir %u\n",
2031 iov_iter_rw(&msg->msg_iter));
2032 rc = -EINVAL;
2033 goto out;
2034 }
2035
2036 switch (iov_iter_type(&msg->msg_iter)) {
2037 case ITER_KVEC:
2038 buf = msg->msg_iter.kvec->iov_base;
2039 to_read = msg->msg_iter.kvec->iov_len;
2040 rc = smbd_recv_buf(info, buf, to_read);
2041 break;
2042
2043 case ITER_BVEC:
2044 page = msg->msg_iter.bvec->bv_page;
2045 page_offset = msg->msg_iter.bvec->bv_offset;
2046 to_read = msg->msg_iter.bvec->bv_len;
2047 rc = smbd_recv_page(info, page, page_offset, to_read);
2048 break;
2049
2050 default:
2051 /* It's a bug in upper layer to get there */
2052 cifs_dbg(VFS, "CIFS: invalid msg type %d\n",
2053 iov_iter_type(&msg->msg_iter));
2054 rc = -EINVAL;
2055 }
2056
2057 out:
2058 /* SMBDirect will read it all or nothing */
2059 if (rc > 0)
2060 msg->msg_iter.count = 0;
2061 return rc;
2062 }
2063
2064 /*
2065 * Send data to transport
2066 * Each rqst is transported as a SMBDirect payload
2067 * rqst: the data to write
2068 * return value: 0 if successfully write, otherwise error code
2069 */
smbd_send(struct TCP_Server_Info * server,int num_rqst,struct smb_rqst * rqst_array)2070 int smbd_send(struct TCP_Server_Info *server,
2071 int num_rqst, struct smb_rqst *rqst_array)
2072 {
2073 struct smbd_connection *info = server->smbd_conn;
2074 struct kvec vec;
2075 int nvecs;
2076 int size;
2077 unsigned int buflen, remaining_data_length;
2078 int start, i, j;
2079 int max_iov_size =
2080 info->max_send_size - sizeof(struct smbd_data_transfer);
2081 struct kvec *iov;
2082 int rc;
2083 struct smb_rqst *rqst;
2084 int rqst_idx;
2085
2086 if (info->transport_status != SMBD_CONNECTED) {
2087 rc = -EAGAIN;
2088 goto done;
2089 }
2090
2091 /*
2092 * Add in the page array if there is one. The caller needs to set
2093 * rq_tailsz to PAGE_SIZE when the buffer has multiple pages and
2094 * ends at page boundary
2095 */
2096 remaining_data_length = 0;
2097 for (i = 0; i < num_rqst; i++)
2098 remaining_data_length += smb_rqst_len(server, &rqst_array[i]);
2099
2100 if (remaining_data_length + sizeof(struct smbd_data_transfer) >
2101 info->max_fragmented_send_size) {
2102 log_write(ERR, "payload size %d > max size %d\n",
2103 remaining_data_length, info->max_fragmented_send_size);
2104 rc = -EINVAL;
2105 goto done;
2106 }
2107
2108 log_write(INFO, "num_rqst=%d total length=%u\n",
2109 num_rqst, remaining_data_length);
2110
2111 rqst_idx = 0;
2112 next_rqst:
2113 rqst = &rqst_array[rqst_idx];
2114 iov = rqst->rq_iov;
2115
2116 cifs_dbg(FYI, "Sending smb (RDMA): idx=%d smb_len=%lu\n",
2117 rqst_idx, smb_rqst_len(server, rqst));
2118 for (i = 0; i < rqst->rq_nvec; i++)
2119 dump_smb(iov[i].iov_base, iov[i].iov_len);
2120
2121
2122 log_write(INFO, "rqst_idx=%d nvec=%d rqst->rq_npages=%d rq_pagesz=%d "
2123 "rq_tailsz=%d buflen=%lu\n",
2124 rqst_idx, rqst->rq_nvec, rqst->rq_npages, rqst->rq_pagesz,
2125 rqst->rq_tailsz, smb_rqst_len(server, rqst));
2126
2127 start = i = 0;
2128 buflen = 0;
2129 while (true) {
2130 buflen += iov[i].iov_len;
2131 if (buflen > max_iov_size) {
2132 if (i > start) {
2133 remaining_data_length -=
2134 (buflen-iov[i].iov_len);
2135 log_write(INFO, "sending iov[] from start=%d "
2136 "i=%d nvecs=%d "
2137 "remaining_data_length=%d\n",
2138 start, i, i-start,
2139 remaining_data_length);
2140 rc = smbd_post_send_data(
2141 info, &iov[start], i-start,
2142 remaining_data_length);
2143 if (rc)
2144 goto done;
2145 } else {
2146 /* iov[start] is too big, break it */
2147 nvecs = (buflen+max_iov_size-1)/max_iov_size;
2148 log_write(INFO, "iov[%d] iov_base=%p buflen=%d"
2149 " break to %d vectors\n",
2150 start, iov[start].iov_base,
2151 buflen, nvecs);
2152 for (j = 0; j < nvecs; j++) {
2153 vec.iov_base =
2154 (char *)iov[start].iov_base +
2155 j*max_iov_size;
2156 vec.iov_len = max_iov_size;
2157 if (j == nvecs-1)
2158 vec.iov_len =
2159 buflen -
2160 max_iov_size*(nvecs-1);
2161 remaining_data_length -= vec.iov_len;
2162 log_write(INFO,
2163 "sending vec j=%d iov_base=%p"
2164 " iov_len=%zu "
2165 "remaining_data_length=%d\n",
2166 j, vec.iov_base, vec.iov_len,
2167 remaining_data_length);
2168 rc = smbd_post_send_data(
2169 info, &vec, 1,
2170 remaining_data_length);
2171 if (rc)
2172 goto done;
2173 }
2174 i++;
2175 if (i == rqst->rq_nvec)
2176 break;
2177 }
2178 start = i;
2179 buflen = 0;
2180 } else {
2181 i++;
2182 if (i == rqst->rq_nvec) {
2183 /* send out all remaining vecs */
2184 remaining_data_length -= buflen;
2185 log_write(INFO,
2186 "sending iov[] from start=%d i=%d "
2187 "nvecs=%d remaining_data_length=%d\n",
2188 start, i, i-start,
2189 remaining_data_length);
2190 rc = smbd_post_send_data(info, &iov[start],
2191 i-start, remaining_data_length);
2192 if (rc)
2193 goto done;
2194 break;
2195 }
2196 }
2197 log_write(INFO, "looping i=%d buflen=%d\n", i, buflen);
2198 }
2199
2200 /* now sending pages if there are any */
2201 for (i = 0; i < rqst->rq_npages; i++) {
2202 unsigned int offset;
2203
2204 rqst_page_get_length(rqst, i, &buflen, &offset);
2205 nvecs = (buflen + max_iov_size - 1) / max_iov_size;
2206 log_write(INFO, "sending pages buflen=%d nvecs=%d\n",
2207 buflen, nvecs);
2208 for (j = 0; j < nvecs; j++) {
2209 size = max_iov_size;
2210 if (j == nvecs-1)
2211 size = buflen - j*max_iov_size;
2212 remaining_data_length -= size;
2213 log_write(INFO, "sending pages i=%d offset=%d size=%d"
2214 " remaining_data_length=%d\n",
2215 i, j*max_iov_size+offset, size,
2216 remaining_data_length);
2217 rc = smbd_post_send_page(
2218 info, rqst->rq_pages[i],
2219 j*max_iov_size + offset,
2220 size, remaining_data_length);
2221 if (rc)
2222 goto done;
2223 }
2224 }
2225
2226 rqst_idx++;
2227 if (rqst_idx < num_rqst)
2228 goto next_rqst;
2229
2230 done:
2231 /*
2232 * As an optimization, we don't wait for individual I/O to finish
2233 * before sending the next one.
2234 * Send them all and wait for pending send count to get to 0
2235 * that means all the I/Os have been out and we are good to return
2236 */
2237
2238 wait_event(info->wait_send_payload_pending,
2239 atomic_read(&info->send_payload_pending) == 0);
2240
2241 return rc;
2242 }
2243
register_mr_done(struct ib_cq * cq,struct ib_wc * wc)2244 static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc)
2245 {
2246 struct smbd_mr *mr;
2247 struct ib_cqe *cqe;
2248
2249 if (wc->status) {
2250 log_rdma_mr(ERR, "status=%d\n", wc->status);
2251 cqe = wc->wr_cqe;
2252 mr = container_of(cqe, struct smbd_mr, cqe);
2253 smbd_disconnect_rdma_connection(mr->conn);
2254 }
2255 }
2256
2257 /*
2258 * The work queue function that recovers MRs
2259 * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used
2260 * again. Both calls are slow, so finish them in a workqueue. This will not
2261 * block I/O path.
2262 * There is one workqueue that recovers MRs, there is no need to lock as the
2263 * I/O requests calling smbd_register_mr will never update the links in the
2264 * mr_list.
2265 */
smbd_mr_recovery_work(struct work_struct * work)2266 static void smbd_mr_recovery_work(struct work_struct *work)
2267 {
2268 struct smbd_connection *info =
2269 container_of(work, struct smbd_connection, mr_recovery_work);
2270 struct smbd_mr *smbdirect_mr;
2271 int rc;
2272
2273 list_for_each_entry(smbdirect_mr, &info->mr_list, list) {
2274 if (smbdirect_mr->state == MR_ERROR) {
2275
2276 /* recover this MR entry */
2277 rc = ib_dereg_mr(smbdirect_mr->mr);
2278 if (rc) {
2279 log_rdma_mr(ERR,
2280 "ib_dereg_mr failed rc=%x\n",
2281 rc);
2282 smbd_disconnect_rdma_connection(info);
2283 continue;
2284 }
2285
2286 smbdirect_mr->mr = ib_alloc_mr(
2287 info->pd, info->mr_type,
2288 info->max_frmr_depth);
2289 if (IS_ERR(smbdirect_mr->mr)) {
2290 log_rdma_mr(ERR,
2291 "ib_alloc_mr failed mr_type=%x "
2292 "max_frmr_depth=%x\n",
2293 info->mr_type,
2294 info->max_frmr_depth);
2295 smbd_disconnect_rdma_connection(info);
2296 continue;
2297 }
2298 } else
2299 /* This MR is being used, don't recover it */
2300 continue;
2301
2302 smbdirect_mr->state = MR_READY;
2303
2304 /* smbdirect_mr->state is updated by this function
2305 * and is read and updated by I/O issuing CPUs trying
2306 * to get a MR, the call to atomic_inc_return
2307 * implicates a memory barrier and guarantees this
2308 * value is updated before waking up any calls to
2309 * get_mr() from the I/O issuing CPUs
2310 */
2311 if (atomic_inc_return(&info->mr_ready_count) == 1)
2312 wake_up_interruptible(&info->wait_mr);
2313 }
2314 }
2315
destroy_mr_list(struct smbd_connection * info)2316 static void destroy_mr_list(struct smbd_connection *info)
2317 {
2318 struct smbd_mr *mr, *tmp;
2319
2320 cancel_work_sync(&info->mr_recovery_work);
2321 list_for_each_entry_safe(mr, tmp, &info->mr_list, list) {
2322 if (mr->state == MR_INVALIDATED)
2323 ib_dma_unmap_sg(info->id->device, mr->sgl,
2324 mr->sgl_count, mr->dir);
2325 ib_dereg_mr(mr->mr);
2326 kfree(mr->sgl);
2327 kfree(mr);
2328 }
2329 }
2330
2331 /*
2332 * Allocate MRs used for RDMA read/write
2333 * The number of MRs will not exceed hardware capability in responder_resources
2334 * All MRs are kept in mr_list. The MR can be recovered after it's used
2335 * Recovery is done in smbd_mr_recovery_work. The content of list entry changes
2336 * as MRs are used and recovered for I/O, but the list links will not change
2337 */
allocate_mr_list(struct smbd_connection * info)2338 static int allocate_mr_list(struct smbd_connection *info)
2339 {
2340 int i;
2341 struct smbd_mr *smbdirect_mr, *tmp;
2342
2343 INIT_LIST_HEAD(&info->mr_list);
2344 init_waitqueue_head(&info->wait_mr);
2345 spin_lock_init(&info->mr_list_lock);
2346 atomic_set(&info->mr_ready_count, 0);
2347 atomic_set(&info->mr_used_count, 0);
2348 init_waitqueue_head(&info->wait_for_mr_cleanup);
2349 /* Allocate more MRs (2x) than hardware responder_resources */
2350 for (i = 0; i < info->responder_resources * 2; i++) {
2351 smbdirect_mr = kzalloc(sizeof(*smbdirect_mr), GFP_KERNEL);
2352 if (!smbdirect_mr)
2353 goto out;
2354 smbdirect_mr->mr = ib_alloc_mr(info->pd, info->mr_type,
2355 info->max_frmr_depth);
2356 if (IS_ERR(smbdirect_mr->mr)) {
2357 log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x "
2358 "max_frmr_depth=%x\n",
2359 info->mr_type, info->max_frmr_depth);
2360 goto out;
2361 }
2362 smbdirect_mr->sgl = kcalloc(
2363 info->max_frmr_depth,
2364 sizeof(struct scatterlist),
2365 GFP_KERNEL);
2366 if (!smbdirect_mr->sgl) {
2367 log_rdma_mr(ERR, "failed to allocate sgl\n");
2368 ib_dereg_mr(smbdirect_mr->mr);
2369 goto out;
2370 }
2371 smbdirect_mr->state = MR_READY;
2372 smbdirect_mr->conn = info;
2373
2374 list_add_tail(&smbdirect_mr->list, &info->mr_list);
2375 atomic_inc(&info->mr_ready_count);
2376 }
2377 INIT_WORK(&info->mr_recovery_work, smbd_mr_recovery_work);
2378 return 0;
2379
2380 out:
2381 kfree(smbdirect_mr);
2382
2383 list_for_each_entry_safe(smbdirect_mr, tmp, &info->mr_list, list) {
2384 ib_dereg_mr(smbdirect_mr->mr);
2385 kfree(smbdirect_mr->sgl);
2386 kfree(smbdirect_mr);
2387 }
2388 return -ENOMEM;
2389 }
2390
2391 /*
2392 * Get a MR from mr_list. This function waits until there is at least one
2393 * MR available in the list. It may access the list while the
2394 * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock
2395 * as they never modify the same places. However, there may be several CPUs
2396 * issueing I/O trying to get MR at the same time, mr_list_lock is used to
2397 * protect this situation.
2398 */
get_mr(struct smbd_connection * info)2399 static struct smbd_mr *get_mr(struct smbd_connection *info)
2400 {
2401 struct smbd_mr *ret;
2402 int rc;
2403 again:
2404 rc = wait_event_interruptible(info->wait_mr,
2405 atomic_read(&info->mr_ready_count) ||
2406 info->transport_status != SMBD_CONNECTED);
2407 if (rc) {
2408 log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc);
2409 return NULL;
2410 }
2411
2412 if (info->transport_status != SMBD_CONNECTED) {
2413 log_rdma_mr(ERR, "info->transport_status=%x\n",
2414 info->transport_status);
2415 return NULL;
2416 }
2417
2418 spin_lock(&info->mr_list_lock);
2419 list_for_each_entry(ret, &info->mr_list, list) {
2420 if (ret->state == MR_READY) {
2421 ret->state = MR_REGISTERED;
2422 spin_unlock(&info->mr_list_lock);
2423 atomic_dec(&info->mr_ready_count);
2424 atomic_inc(&info->mr_used_count);
2425 return ret;
2426 }
2427 }
2428
2429 spin_unlock(&info->mr_list_lock);
2430 /*
2431 * It is possible that we could fail to get MR because other processes may
2432 * try to acquire a MR at the same time. If this is the case, retry it.
2433 */
2434 goto again;
2435 }
2436
2437 /*
2438 * Register memory for RDMA read/write
2439 * pages[]: the list of pages to register memory with
2440 * num_pages: the number of pages to register
2441 * tailsz: if non-zero, the bytes to register in the last page
2442 * writing: true if this is a RDMA write (SMB read), false for RDMA read
2443 * need_invalidate: true if this MR needs to be locally invalidated after I/O
2444 * return value: the MR registered, NULL if failed.
2445 */
smbd_register_mr(struct smbd_connection * info,struct page * pages[],int num_pages,int offset,int tailsz,bool writing,bool need_invalidate)2446 struct smbd_mr *smbd_register_mr(
2447 struct smbd_connection *info, struct page *pages[], int num_pages,
2448 int offset, int tailsz, bool writing, bool need_invalidate)
2449 {
2450 struct smbd_mr *smbdirect_mr;
2451 int rc, i;
2452 enum dma_data_direction dir;
2453 struct ib_reg_wr *reg_wr;
2454
2455 if (num_pages > info->max_frmr_depth) {
2456 log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n",
2457 num_pages, info->max_frmr_depth);
2458 return NULL;
2459 }
2460
2461 smbdirect_mr = get_mr(info);
2462 if (!smbdirect_mr) {
2463 log_rdma_mr(ERR, "get_mr returning NULL\n");
2464 return NULL;
2465 }
2466 smbdirect_mr->need_invalidate = need_invalidate;
2467 smbdirect_mr->sgl_count = num_pages;
2468 sg_init_table(smbdirect_mr->sgl, num_pages);
2469
2470 log_rdma_mr(INFO, "num_pages=0x%x offset=0x%x tailsz=0x%x\n",
2471 num_pages, offset, tailsz);
2472
2473 if (num_pages == 1) {
2474 sg_set_page(&smbdirect_mr->sgl[0], pages[0], tailsz, offset);
2475 goto skip_multiple_pages;
2476 }
2477
2478 /* We have at least two pages to register */
2479 sg_set_page(
2480 &smbdirect_mr->sgl[0], pages[0], PAGE_SIZE - offset, offset);
2481 i = 1;
2482 while (i < num_pages - 1) {
2483 sg_set_page(&smbdirect_mr->sgl[i], pages[i], PAGE_SIZE, 0);
2484 i++;
2485 }
2486 sg_set_page(&smbdirect_mr->sgl[i], pages[i],
2487 tailsz ? tailsz : PAGE_SIZE, 0);
2488
2489 skip_multiple_pages:
2490 dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2491 smbdirect_mr->dir = dir;
2492 rc = ib_dma_map_sg(info->id->device, smbdirect_mr->sgl, num_pages, dir);
2493 if (!rc) {
2494 log_rdma_mr(ERR, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n",
2495 num_pages, dir, rc);
2496 goto dma_map_error;
2497 }
2498
2499 rc = ib_map_mr_sg(smbdirect_mr->mr, smbdirect_mr->sgl, num_pages,
2500 NULL, PAGE_SIZE);
2501 if (rc != num_pages) {
2502 log_rdma_mr(ERR,
2503 "ib_map_mr_sg failed rc = %d num_pages = %x\n",
2504 rc, num_pages);
2505 goto map_mr_error;
2506 }
2507
2508 ib_update_fast_reg_key(smbdirect_mr->mr,
2509 ib_inc_rkey(smbdirect_mr->mr->rkey));
2510 reg_wr = &smbdirect_mr->wr;
2511 reg_wr->wr.opcode = IB_WR_REG_MR;
2512 smbdirect_mr->cqe.done = register_mr_done;
2513 reg_wr->wr.wr_cqe = &smbdirect_mr->cqe;
2514 reg_wr->wr.num_sge = 0;
2515 reg_wr->wr.send_flags = IB_SEND_SIGNALED;
2516 reg_wr->mr = smbdirect_mr->mr;
2517 reg_wr->key = smbdirect_mr->mr->rkey;
2518 reg_wr->access = writing ?
2519 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
2520 IB_ACCESS_REMOTE_READ;
2521
2522 /*
2523 * There is no need for waiting for complemtion on ib_post_send
2524 * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution
2525 * on the next ib_post_send when we actaully send I/O to remote peer
2526 */
2527 rc = ib_post_send(info->id->qp, ®_wr->wr, NULL);
2528 if (!rc)
2529 return smbdirect_mr;
2530
2531 log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n",
2532 rc, reg_wr->key);
2533
2534 /* If all failed, attempt to recover this MR by setting it MR_ERROR*/
2535 map_mr_error:
2536 ib_dma_unmap_sg(info->id->device, smbdirect_mr->sgl,
2537 smbdirect_mr->sgl_count, smbdirect_mr->dir);
2538
2539 dma_map_error:
2540 smbdirect_mr->state = MR_ERROR;
2541 if (atomic_dec_and_test(&info->mr_used_count))
2542 wake_up(&info->wait_for_mr_cleanup);
2543
2544 smbd_disconnect_rdma_connection(info);
2545
2546 return NULL;
2547 }
2548
local_inv_done(struct ib_cq * cq,struct ib_wc * wc)2549 static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc)
2550 {
2551 struct smbd_mr *smbdirect_mr;
2552 struct ib_cqe *cqe;
2553
2554 cqe = wc->wr_cqe;
2555 smbdirect_mr = container_of(cqe, struct smbd_mr, cqe);
2556 smbdirect_mr->state = MR_INVALIDATED;
2557 if (wc->status != IB_WC_SUCCESS) {
2558 log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status);
2559 smbdirect_mr->state = MR_ERROR;
2560 }
2561 complete(&smbdirect_mr->invalidate_done);
2562 }
2563
2564 /*
2565 * Deregister a MR after I/O is done
2566 * This function may wait if remote invalidation is not used
2567 * and we have to locally invalidate the buffer to prevent data is being
2568 * modified by remote peer after upper layer consumes it
2569 */
smbd_deregister_mr(struct smbd_mr * smbdirect_mr)2570 int smbd_deregister_mr(struct smbd_mr *smbdirect_mr)
2571 {
2572 struct ib_send_wr *wr;
2573 struct smbd_connection *info = smbdirect_mr->conn;
2574 int rc = 0;
2575
2576 if (smbdirect_mr->need_invalidate) {
2577 /* Need to finish local invalidation before returning */
2578 wr = &smbdirect_mr->inv_wr;
2579 wr->opcode = IB_WR_LOCAL_INV;
2580 smbdirect_mr->cqe.done = local_inv_done;
2581 wr->wr_cqe = &smbdirect_mr->cqe;
2582 wr->num_sge = 0;
2583 wr->ex.invalidate_rkey = smbdirect_mr->mr->rkey;
2584 wr->send_flags = IB_SEND_SIGNALED;
2585
2586 init_completion(&smbdirect_mr->invalidate_done);
2587 rc = ib_post_send(info->id->qp, wr, NULL);
2588 if (rc) {
2589 log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc);
2590 smbd_disconnect_rdma_connection(info);
2591 goto done;
2592 }
2593 wait_for_completion(&smbdirect_mr->invalidate_done);
2594 smbdirect_mr->need_invalidate = false;
2595 } else
2596 /*
2597 * For remote invalidation, just set it to MR_INVALIDATED
2598 * and defer to mr_recovery_work to recover the MR for next use
2599 */
2600 smbdirect_mr->state = MR_INVALIDATED;
2601
2602 if (smbdirect_mr->state == MR_INVALIDATED) {
2603 ib_dma_unmap_sg(
2604 info->id->device, smbdirect_mr->sgl,
2605 smbdirect_mr->sgl_count,
2606 smbdirect_mr->dir);
2607 smbdirect_mr->state = MR_READY;
2608 if (atomic_inc_return(&info->mr_ready_count) == 1)
2609 wake_up_interruptible(&info->wait_mr);
2610 } else
2611 /*
2612 * Schedule the work to do MR recovery for future I/Os MR
2613 * recovery is slow and don't want it to block current I/O
2614 */
2615 queue_work(info->workqueue, &info->mr_recovery_work);
2616
2617 done:
2618 if (atomic_dec_and_test(&info->mr_used_count))
2619 wake_up(&info->wait_for_mr_cleanup);
2620
2621 return rc;
2622 }
2623