1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/direct-io.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * O_DIRECT
8 *
9 * 04Jul2002 Andrew Morton
10 * Initial version
11 * 11Sep2002 janetinc@us.ibm.com
12 * added readv/writev support.
13 * 29Oct2002 Andrew Morton
14 * rewrote bio_add_page() support.
15 * 30Oct2002 pbadari@us.ibm.com
16 * added support for non-aligned IO.
17 * 06Nov2002 pbadari@us.ibm.com
18 * added asynchronous IO support.
19 * 21Jul2003 nathans@sgi.com
20 * added IO completion notifier.
21 */
22
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/fscrypt.h>
28 #include <linux/mm.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/bio.h>
34 #include <linux/wait.h>
35 #include <linux/err.h>
36 #include <linux/blkdev.h>
37 #include <linux/buffer_head.h>
38 #include <linux/rwsem.h>
39 #include <linux/uio.h>
40 #include <linux/atomic.h>
41 #include <linux/prefetch.h>
42
43 /*
44 * How many user pages to map in one call to get_user_pages(). This determines
45 * the size of a structure in the slab cache
46 */
47 #define DIO_PAGES 64
48
49 /*
50 * Flags for dio_complete()
51 */
52 #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */
53 #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */
54
55 /*
56 * This code generally works in units of "dio_blocks". A dio_block is
57 * somewhere between the hard sector size and the filesystem block size. it
58 * is determined on a per-invocation basis. When talking to the filesystem
59 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
60 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
61 * to bio_block quantities by shifting left by blkfactor.
62 *
63 * If blkfactor is zero then the user's request was aligned to the filesystem's
64 * blocksize.
65 */
66
67 /* dio_state only used in the submission path */
68
69 struct dio_submit {
70 struct bio *bio; /* bio under assembly */
71 unsigned blkbits; /* doesn't change */
72 unsigned blkfactor; /* When we're using an alignment which
73 is finer than the filesystem's soft
74 blocksize, this specifies how much
75 finer. blkfactor=2 means 1/4-block
76 alignment. Does not change */
77 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
78 been performed at the start of a
79 write */
80 int pages_in_io; /* approximate total IO pages */
81 sector_t block_in_file; /* Current offset into the underlying
82 file in dio_block units. */
83 unsigned blocks_available; /* At block_in_file. changes */
84 int reap_counter; /* rate limit reaping */
85 sector_t final_block_in_request;/* doesn't change */
86 int boundary; /* prev block is at a boundary */
87 get_block_t *get_block; /* block mapping function */
88 dio_submit_t *submit_io; /* IO submition function */
89
90 loff_t logical_offset_in_bio; /* current first logical block in bio */
91 sector_t final_block_in_bio; /* current final block in bio + 1 */
92 sector_t next_block_for_io; /* next block to be put under IO,
93 in dio_blocks units */
94
95 /*
96 * Deferred addition of a page to the dio. These variables are
97 * private to dio_send_cur_page(), submit_page_section() and
98 * dio_bio_add_page().
99 */
100 struct page *cur_page; /* The page */
101 unsigned cur_page_offset; /* Offset into it, in bytes */
102 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
103 sector_t cur_page_block; /* Where it starts */
104 loff_t cur_page_fs_offset; /* Offset in file */
105
106 struct iov_iter *iter;
107 /*
108 * Page queue. These variables belong to dio_refill_pages() and
109 * dio_get_page().
110 */
111 unsigned head; /* next page to process */
112 unsigned tail; /* last valid page + 1 */
113 size_t from, to;
114 };
115
116 /* dio_state communicated between submission path and end_io */
117 struct dio {
118 int flags; /* doesn't change */
119 int op;
120 int op_flags;
121 blk_qc_t bio_cookie;
122 struct gendisk *bio_disk;
123 struct inode *inode;
124 loff_t i_size; /* i_size when submitted */
125 dio_iodone_t *end_io; /* IO completion function */
126
127 void *private; /* copy from map_bh.b_private */
128
129 /* BIO completion state */
130 spinlock_t bio_lock; /* protects BIO fields below */
131 int page_errors; /* errno from get_user_pages() */
132 int is_async; /* is IO async ? */
133 bool defer_completion; /* defer AIO completion to workqueue? */
134 bool should_dirty; /* if pages should be dirtied */
135 int io_error; /* IO error in completion path */
136 unsigned long refcount; /* direct_io_worker() and bios */
137 struct bio *bio_list; /* singly linked via bi_private */
138 struct task_struct *waiter; /* waiting task (NULL if none) */
139
140 /* AIO related stuff */
141 struct kiocb *iocb; /* kiocb */
142 ssize_t result; /* IO result */
143
144 /*
145 * pages[] (and any fields placed after it) are not zeroed out at
146 * allocation time. Don't add new fields after pages[] unless you
147 * wish that they not be zeroed.
148 */
149 union {
150 struct page *pages[DIO_PAGES]; /* page buffer */
151 struct work_struct complete_work;/* deferred AIO completion */
152 };
153 } ____cacheline_aligned_in_smp;
154
155 static struct kmem_cache *dio_cache __read_mostly;
156
157 /*
158 * How many pages are in the queue?
159 */
dio_pages_present(struct dio_submit * sdio)160 static inline unsigned dio_pages_present(struct dio_submit *sdio)
161 {
162 return sdio->tail - sdio->head;
163 }
164
165 /*
166 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
167 */
dio_refill_pages(struct dio * dio,struct dio_submit * sdio)168 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
169 {
170 ssize_t ret;
171
172 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
173 &sdio->from);
174
175 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
176 struct page *page = ZERO_PAGE(0);
177 /*
178 * A memory fault, but the filesystem has some outstanding
179 * mapped blocks. We need to use those blocks up to avoid
180 * leaking stale data in the file.
181 */
182 if (dio->page_errors == 0)
183 dio->page_errors = ret;
184 get_page(page);
185 dio->pages[0] = page;
186 sdio->head = 0;
187 sdio->tail = 1;
188 sdio->from = 0;
189 sdio->to = PAGE_SIZE;
190 return 0;
191 }
192
193 if (ret >= 0) {
194 iov_iter_advance(sdio->iter, ret);
195 ret += sdio->from;
196 sdio->head = 0;
197 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
198 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
199 return 0;
200 }
201 return ret;
202 }
203
204 /*
205 * Get another userspace page. Returns an ERR_PTR on error. Pages are
206 * buffered inside the dio so that we can call get_user_pages() against a
207 * decent number of pages, less frequently. To provide nicer use of the
208 * L1 cache.
209 */
dio_get_page(struct dio * dio,struct dio_submit * sdio)210 static inline struct page *dio_get_page(struct dio *dio,
211 struct dio_submit *sdio)
212 {
213 if (dio_pages_present(sdio) == 0) {
214 int ret;
215
216 ret = dio_refill_pages(dio, sdio);
217 if (ret)
218 return ERR_PTR(ret);
219 BUG_ON(dio_pages_present(sdio) == 0);
220 }
221 return dio->pages[sdio->head];
222 }
223
224 /*
225 * Warn about a page cache invalidation failure during a direct io write.
226 */
dio_warn_stale_pagecache(struct file * filp)227 void dio_warn_stale_pagecache(struct file *filp)
228 {
229 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
230 char pathname[128];
231 struct inode *inode = file_inode(filp);
232 char *path;
233
234 errseq_set(&inode->i_mapping->wb_err, -EIO);
235 if (__ratelimit(&_rs)) {
236 path = file_path(filp, pathname, sizeof(pathname));
237 if (IS_ERR(path))
238 path = "(unknown)";
239 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
240 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
241 current->comm);
242 }
243 }
244
245 /*
246 * dio_complete() - called when all DIO BIO I/O has been completed
247 *
248 * This drops i_dio_count, lets interested parties know that a DIO operation
249 * has completed, and calculates the resulting return code for the operation.
250 *
251 * It lets the filesystem know if it registered an interest earlier via
252 * get_block. Pass the private field of the map buffer_head so that
253 * filesystems can use it to hold additional state between get_block calls and
254 * dio_complete.
255 */
dio_complete(struct dio * dio,ssize_t ret,unsigned int flags)256 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
257 {
258 loff_t offset = dio->iocb->ki_pos;
259 ssize_t transferred = 0;
260 int err;
261
262 /*
263 * AIO submission can race with bio completion to get here while
264 * expecting to have the last io completed by bio completion.
265 * In that case -EIOCBQUEUED is in fact not an error we want
266 * to preserve through this call.
267 */
268 if (ret == -EIOCBQUEUED)
269 ret = 0;
270
271 if (dio->result) {
272 transferred = dio->result;
273
274 /* Check for short read case */
275 if ((dio->op == REQ_OP_READ) &&
276 ((offset + transferred) > dio->i_size))
277 transferred = dio->i_size - offset;
278 /* ignore EFAULT if some IO has been done */
279 if (unlikely(ret == -EFAULT) && transferred)
280 ret = 0;
281 }
282
283 if (ret == 0)
284 ret = dio->page_errors;
285 if (ret == 0)
286 ret = dio->io_error;
287 if (ret == 0)
288 ret = transferred;
289
290 if (dio->end_io) {
291 // XXX: ki_pos??
292 err = dio->end_io(dio->iocb, offset, ret, dio->private);
293 if (err)
294 ret = err;
295 }
296
297 /*
298 * Try again to invalidate clean pages which might have been cached by
299 * non-direct readahead, or faulted in by get_user_pages() if the source
300 * of the write was an mmap'ed region of the file we're writing. Either
301 * one is a pretty crazy thing to do, so we don't support it 100%. If
302 * this invalidation fails, tough, the write still worked...
303 *
304 * And this page cache invalidation has to be after dio->end_io(), as
305 * some filesystems convert unwritten extents to real allocations in
306 * end_io() when necessary, otherwise a racing buffer read would cache
307 * zeros from unwritten extents.
308 */
309 if (flags & DIO_COMPLETE_INVALIDATE &&
310 ret > 0 && dio->op == REQ_OP_WRITE &&
311 dio->inode->i_mapping->nrpages) {
312 err = invalidate_inode_pages2_range(dio->inode->i_mapping,
313 offset >> PAGE_SHIFT,
314 (offset + ret - 1) >> PAGE_SHIFT);
315 if (err)
316 dio_warn_stale_pagecache(dio->iocb->ki_filp);
317 }
318
319 inode_dio_end(dio->inode);
320
321 if (flags & DIO_COMPLETE_ASYNC) {
322 /*
323 * generic_write_sync expects ki_pos to have been updated
324 * already, but the submission path only does this for
325 * synchronous I/O.
326 */
327 dio->iocb->ki_pos += transferred;
328
329 if (ret > 0 && dio->op == REQ_OP_WRITE)
330 ret = generic_write_sync(dio->iocb, ret);
331 dio->iocb->ki_complete(dio->iocb, ret, 0);
332 }
333
334 kmem_cache_free(dio_cache, dio);
335 return ret;
336 }
337
dio_aio_complete_work(struct work_struct * work)338 static void dio_aio_complete_work(struct work_struct *work)
339 {
340 struct dio *dio = container_of(work, struct dio, complete_work);
341
342 dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
343 }
344
345 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
346
347 /*
348 * Asynchronous IO callback.
349 */
dio_bio_end_aio(struct bio * bio)350 static void dio_bio_end_aio(struct bio *bio)
351 {
352 struct dio *dio = bio->bi_private;
353 unsigned long remaining;
354 unsigned long flags;
355 bool defer_completion = false;
356
357 /* cleanup the bio */
358 dio_bio_complete(dio, bio);
359
360 spin_lock_irqsave(&dio->bio_lock, flags);
361 remaining = --dio->refcount;
362 if (remaining == 1 && dio->waiter)
363 wake_up_process(dio->waiter);
364 spin_unlock_irqrestore(&dio->bio_lock, flags);
365
366 if (remaining == 0) {
367 /*
368 * Defer completion when defer_completion is set or
369 * when the inode has pages mapped and this is AIO write.
370 * We need to invalidate those pages because there is a
371 * chance they contain stale data in the case buffered IO
372 * went in between AIO submission and completion into the
373 * same region.
374 */
375 if (dio->result)
376 defer_completion = dio->defer_completion ||
377 (dio->op == REQ_OP_WRITE &&
378 dio->inode->i_mapping->nrpages);
379 if (defer_completion) {
380 INIT_WORK(&dio->complete_work, dio_aio_complete_work);
381 queue_work(dio->inode->i_sb->s_dio_done_wq,
382 &dio->complete_work);
383 } else {
384 dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
385 }
386 }
387 }
388
389 /*
390 * The BIO completion handler simply queues the BIO up for the process-context
391 * handler.
392 *
393 * During I/O bi_private points at the dio. After I/O, bi_private is used to
394 * implement a singly-linked list of completed BIOs, at dio->bio_list.
395 */
dio_bio_end_io(struct bio * bio)396 static void dio_bio_end_io(struct bio *bio)
397 {
398 struct dio *dio = bio->bi_private;
399 unsigned long flags;
400
401 spin_lock_irqsave(&dio->bio_lock, flags);
402 bio->bi_private = dio->bio_list;
403 dio->bio_list = bio;
404 if (--dio->refcount == 1 && dio->waiter)
405 wake_up_process(dio->waiter);
406 spin_unlock_irqrestore(&dio->bio_lock, flags);
407 }
408
409 /**
410 * dio_end_io - handle the end io action for the given bio
411 * @bio: The direct io bio thats being completed
412 *
413 * This is meant to be called by any filesystem that uses their own dio_submit_t
414 * so that the DIO specific endio actions are dealt with after the filesystem
415 * has done it's completion work.
416 */
dio_end_io(struct bio * bio)417 void dio_end_io(struct bio *bio)
418 {
419 struct dio *dio = bio->bi_private;
420
421 if (dio->is_async)
422 dio_bio_end_aio(bio);
423 else
424 dio_bio_end_io(bio);
425 }
426 EXPORT_SYMBOL_GPL(dio_end_io);
427
428 static inline void
dio_bio_alloc(struct dio * dio,struct dio_submit * sdio,struct block_device * bdev,sector_t first_sector,int nr_vecs)429 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
430 struct block_device *bdev,
431 sector_t first_sector, int nr_vecs)
432 {
433 struct bio *bio;
434 struct inode *inode = dio->inode;
435
436 /*
437 * bio_alloc() is guaranteed to return a bio when allowed to sleep and
438 * we request a valid number of vectors.
439 */
440 bio = bio_alloc(GFP_KERNEL, nr_vecs);
441
442 fscrypt_set_bio_crypt_ctx(bio, inode,
443 sdio->cur_page_fs_offset >> inode->i_blkbits,
444 GFP_KERNEL);
445 bio_set_dev(bio, bdev);
446 bio->bi_iter.bi_sector = first_sector;
447 bio_set_op_attrs(bio, dio->op, dio->op_flags);
448 if (dio->is_async)
449 bio->bi_end_io = dio_bio_end_aio;
450 else
451 bio->bi_end_io = dio_bio_end_io;
452
453 bio->bi_write_hint = dio->iocb->ki_hint;
454
455 sdio->bio = bio;
456 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
457 }
458
459 /*
460 * In the AIO read case we speculatively dirty the pages before starting IO.
461 * During IO completion, any of these pages which happen to have been written
462 * back will be redirtied by bio_check_pages_dirty().
463 *
464 * bios hold a dio reference between submit_bio and ->end_io.
465 */
dio_bio_submit(struct dio * dio,struct dio_submit * sdio)466 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
467 {
468 struct bio *bio = sdio->bio;
469 unsigned long flags;
470
471 bio->bi_private = dio;
472
473 spin_lock_irqsave(&dio->bio_lock, flags);
474 dio->refcount++;
475 spin_unlock_irqrestore(&dio->bio_lock, flags);
476
477 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
478 bio_set_pages_dirty(bio);
479
480 dio->bio_disk = bio->bi_disk;
481
482 if (sdio->submit_io) {
483 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
484 dio->bio_cookie = BLK_QC_T_NONE;
485 } else
486 dio->bio_cookie = submit_bio(bio);
487
488 sdio->bio = NULL;
489 sdio->boundary = 0;
490 sdio->logical_offset_in_bio = 0;
491 }
492
493 /*
494 * Release any resources in case of a failure
495 */
dio_cleanup(struct dio * dio,struct dio_submit * sdio)496 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
497 {
498 while (sdio->head < sdio->tail)
499 put_page(dio->pages[sdio->head++]);
500 }
501
502 /*
503 * Wait for the next BIO to complete. Remove it and return it. NULL is
504 * returned once all BIOs have been completed. This must only be called once
505 * all bios have been issued so that dio->refcount can only decrease. This
506 * requires that that the caller hold a reference on the dio.
507 */
dio_await_one(struct dio * dio)508 static struct bio *dio_await_one(struct dio *dio)
509 {
510 unsigned long flags;
511 struct bio *bio = NULL;
512
513 spin_lock_irqsave(&dio->bio_lock, flags);
514
515 /*
516 * Wait as long as the list is empty and there are bios in flight. bio
517 * completion drops the count, maybe adds to the list, and wakes while
518 * holding the bio_lock so we don't need set_current_state()'s barrier
519 * and can call it after testing our condition.
520 */
521 while (dio->refcount > 1 && dio->bio_list == NULL) {
522 __set_current_state(TASK_UNINTERRUPTIBLE);
523 dio->waiter = current;
524 spin_unlock_irqrestore(&dio->bio_lock, flags);
525 if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
526 !blk_poll(dio->bio_disk->queue, dio->bio_cookie, true))
527 io_schedule();
528 /* wake up sets us TASK_RUNNING */
529 spin_lock_irqsave(&dio->bio_lock, flags);
530 dio->waiter = NULL;
531 }
532 if (dio->bio_list) {
533 bio = dio->bio_list;
534 dio->bio_list = bio->bi_private;
535 }
536 spin_unlock_irqrestore(&dio->bio_lock, flags);
537 return bio;
538 }
539
540 /*
541 * Process one completed BIO. No locks are held.
542 */
dio_bio_complete(struct dio * dio,struct bio * bio)543 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
544 {
545 blk_status_t err = bio->bi_status;
546 bool should_dirty = dio->op == REQ_OP_READ && dio->should_dirty;
547
548 if (err) {
549 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
550 dio->io_error = -EAGAIN;
551 else
552 dio->io_error = -EIO;
553 }
554
555 if (dio->is_async && should_dirty) {
556 bio_check_pages_dirty(bio); /* transfers ownership */
557 } else {
558 bio_release_pages(bio, should_dirty);
559 bio_put(bio);
560 }
561 return err;
562 }
563
564 /*
565 * Wait on and process all in-flight BIOs. This must only be called once
566 * all bios have been issued so that the refcount can only decrease.
567 * This just waits for all bios to make it through dio_bio_complete. IO
568 * errors are propagated through dio->io_error and should be propagated via
569 * dio_complete().
570 */
dio_await_completion(struct dio * dio)571 static void dio_await_completion(struct dio *dio)
572 {
573 struct bio *bio;
574 do {
575 bio = dio_await_one(dio);
576 if (bio)
577 dio_bio_complete(dio, bio);
578 } while (bio);
579 }
580
581 /*
582 * A really large O_DIRECT read or write can generate a lot of BIOs. So
583 * to keep the memory consumption sane we periodically reap any completed BIOs
584 * during the BIO generation phase.
585 *
586 * This also helps to limit the peak amount of pinned userspace memory.
587 */
dio_bio_reap(struct dio * dio,struct dio_submit * sdio)588 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
589 {
590 int ret = 0;
591
592 if (sdio->reap_counter++ >= 64) {
593 while (dio->bio_list) {
594 unsigned long flags;
595 struct bio *bio;
596 int ret2;
597
598 spin_lock_irqsave(&dio->bio_lock, flags);
599 bio = dio->bio_list;
600 dio->bio_list = bio->bi_private;
601 spin_unlock_irqrestore(&dio->bio_lock, flags);
602 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
603 if (ret == 0)
604 ret = ret2;
605 }
606 sdio->reap_counter = 0;
607 }
608 return ret;
609 }
610
611 /*
612 * Create workqueue for deferred direct IO completions. We allocate the
613 * workqueue when it's first needed. This avoids creating workqueue for
614 * filesystems that don't need it and also allows us to create the workqueue
615 * late enough so the we can include s_id in the name of the workqueue.
616 */
sb_init_dio_done_wq(struct super_block * sb)617 int sb_init_dio_done_wq(struct super_block *sb)
618 {
619 struct workqueue_struct *old;
620 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
621 WQ_MEM_RECLAIM, 0,
622 sb->s_id);
623 if (!wq)
624 return -ENOMEM;
625 /*
626 * This has to be atomic as more DIOs can race to create the workqueue
627 */
628 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
629 /* Someone created workqueue before us? Free ours... */
630 if (old)
631 destroy_workqueue(wq);
632 return 0;
633 }
634
dio_set_defer_completion(struct dio * dio)635 static int dio_set_defer_completion(struct dio *dio)
636 {
637 struct super_block *sb = dio->inode->i_sb;
638
639 if (dio->defer_completion)
640 return 0;
641 dio->defer_completion = true;
642 if (!sb->s_dio_done_wq)
643 return sb_init_dio_done_wq(sb);
644 return 0;
645 }
646
647 /*
648 * Call into the fs to map some more disk blocks. We record the current number
649 * of available blocks at sdio->blocks_available. These are in units of the
650 * fs blocksize, i_blocksize(inode).
651 *
652 * The fs is allowed to map lots of blocks at once. If it wants to do that,
653 * it uses the passed inode-relative block number as the file offset, as usual.
654 *
655 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
656 * has remaining to do. The fs should not map more than this number of blocks.
657 *
658 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
659 * indicate how much contiguous disk space has been made available at
660 * bh->b_blocknr.
661 *
662 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
663 * This isn't very efficient...
664 *
665 * In the case of filesystem holes: the fs may return an arbitrarily-large
666 * hole by returning an appropriate value in b_size and by clearing
667 * buffer_mapped(). However the direct-io code will only process holes one
668 * block at a time - it will repeatedly call get_block() as it walks the hole.
669 */
get_more_blocks(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)670 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
671 struct buffer_head *map_bh)
672 {
673 int ret;
674 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
675 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
676 unsigned long fs_count; /* Number of filesystem-sized blocks */
677 int create;
678 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
679 loff_t i_size;
680
681 /*
682 * If there was a memory error and we've overwritten all the
683 * mapped blocks then we can now return that memory error
684 */
685 ret = dio->page_errors;
686 if (ret == 0) {
687 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
688 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
689 fs_endblk = (sdio->final_block_in_request - 1) >>
690 sdio->blkfactor;
691 fs_count = fs_endblk - fs_startblk + 1;
692
693 map_bh->b_state = 0;
694 map_bh->b_size = fs_count << i_blkbits;
695
696 /*
697 * For writes that could fill holes inside i_size on a
698 * DIO_SKIP_HOLES filesystem we forbid block creations: only
699 * overwrites are permitted. We will return early to the caller
700 * once we see an unmapped buffer head returned, and the caller
701 * will fall back to buffered I/O.
702 *
703 * Otherwise the decision is left to the get_blocks method,
704 * which may decide to handle it or also return an unmapped
705 * buffer head.
706 */
707 create = dio->op == REQ_OP_WRITE;
708 if (dio->flags & DIO_SKIP_HOLES) {
709 i_size = i_size_read(dio->inode);
710 if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
711 create = 0;
712 }
713
714 ret = (*sdio->get_block)(dio->inode, fs_startblk,
715 map_bh, create);
716
717 /* Store for completion */
718 dio->private = map_bh->b_private;
719
720 if (ret == 0 && buffer_defer_completion(map_bh))
721 ret = dio_set_defer_completion(dio);
722 }
723 return ret;
724 }
725
726 /*
727 * There is no bio. Make one now.
728 */
dio_new_bio(struct dio * dio,struct dio_submit * sdio,sector_t start_sector,struct buffer_head * map_bh)729 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
730 sector_t start_sector, struct buffer_head *map_bh)
731 {
732 sector_t sector;
733 int ret, nr_pages;
734
735 ret = dio_bio_reap(dio, sdio);
736 if (ret)
737 goto out;
738 sector = start_sector << (sdio->blkbits - 9);
739 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
740 BUG_ON(nr_pages <= 0);
741 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
742 sdio->boundary = 0;
743 out:
744 return ret;
745 }
746
747 /*
748 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
749 * that was successful then update final_block_in_bio and take a ref against
750 * the just-added page.
751 *
752 * Return zero on success. Non-zero means the caller needs to start a new BIO.
753 */
dio_bio_add_page(struct dio_submit * sdio)754 static inline int dio_bio_add_page(struct dio_submit *sdio)
755 {
756 int ret;
757
758 ret = bio_add_page(sdio->bio, sdio->cur_page,
759 sdio->cur_page_len, sdio->cur_page_offset);
760 if (ret == sdio->cur_page_len) {
761 /*
762 * Decrement count only, if we are done with this page
763 */
764 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
765 sdio->pages_in_io--;
766 get_page(sdio->cur_page);
767 sdio->final_block_in_bio = sdio->cur_page_block +
768 (sdio->cur_page_len >> sdio->blkbits);
769 ret = 0;
770 } else {
771 ret = 1;
772 }
773 return ret;
774 }
775
776 /*
777 * Put cur_page under IO. The section of cur_page which is described by
778 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
779 * starts on-disk at cur_page_block.
780 *
781 * We take a ref against the page here (on behalf of its presence in the bio).
782 *
783 * The caller of this function is responsible for removing cur_page from the
784 * dio, and for dropping the refcount which came from that presence.
785 */
dio_send_cur_page(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)786 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
787 struct buffer_head *map_bh)
788 {
789 int ret = 0;
790
791 if (sdio->bio) {
792 loff_t cur_offset = sdio->cur_page_fs_offset;
793 loff_t bio_next_offset = sdio->logical_offset_in_bio +
794 sdio->bio->bi_iter.bi_size;
795
796 /*
797 * See whether this new request is contiguous with the old.
798 *
799 * Btrfs cannot handle having logically non-contiguous requests
800 * submitted. For example if you have
801 *
802 * Logical: [0-4095][HOLE][8192-12287]
803 * Physical: [0-4095] [4096-8191]
804 *
805 * We cannot submit those pages together as one BIO. So if our
806 * current logical offset in the file does not equal what would
807 * be the next logical offset in the bio, submit the bio we
808 * have.
809 */
810 if (sdio->final_block_in_bio != sdio->cur_page_block ||
811 cur_offset != bio_next_offset)
812 dio_bio_submit(dio, sdio);
813 }
814
815 if (sdio->bio == NULL) {
816 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
817 if (ret)
818 goto out;
819 }
820
821 if (dio_bio_add_page(sdio) != 0) {
822 dio_bio_submit(dio, sdio);
823 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
824 if (ret == 0) {
825 ret = dio_bio_add_page(sdio);
826 BUG_ON(ret != 0);
827 }
828 }
829 out:
830 return ret;
831 }
832
833 /*
834 * An autonomous function to put a chunk of a page under deferred IO.
835 *
836 * The caller doesn't actually know (or care) whether this piece of page is in
837 * a BIO, or is under IO or whatever. We just take care of all possible
838 * situations here. The separation between the logic of do_direct_IO() and
839 * that of submit_page_section() is important for clarity. Please don't break.
840 *
841 * The chunk of page starts on-disk at blocknr.
842 *
843 * We perform deferred IO, by recording the last-submitted page inside our
844 * private part of the dio structure. If possible, we just expand the IO
845 * across that page here.
846 *
847 * If that doesn't work out then we put the old page into the bio and add this
848 * page to the dio instead.
849 */
850 static inline int
submit_page_section(struct dio * dio,struct dio_submit * sdio,struct page * page,unsigned offset,unsigned len,sector_t blocknr,struct buffer_head * map_bh)851 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
852 unsigned offset, unsigned len, sector_t blocknr,
853 struct buffer_head *map_bh)
854 {
855 int ret = 0;
856
857 if (dio->op == REQ_OP_WRITE) {
858 /*
859 * Read accounting is performed in submit_bio()
860 */
861 task_io_account_write(len);
862 }
863
864 /*
865 * Can we just grow the current page's presence in the dio?
866 */
867 if (sdio->cur_page == page &&
868 sdio->cur_page_offset + sdio->cur_page_len == offset &&
869 sdio->cur_page_block +
870 (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
871 sdio->cur_page_len += len;
872 goto out;
873 }
874
875 /*
876 * If there's a deferred page already there then send it.
877 */
878 if (sdio->cur_page) {
879 ret = dio_send_cur_page(dio, sdio, map_bh);
880 put_page(sdio->cur_page);
881 sdio->cur_page = NULL;
882 if (ret)
883 return ret;
884 }
885
886 get_page(page); /* It is in dio */
887 sdio->cur_page = page;
888 sdio->cur_page_offset = offset;
889 sdio->cur_page_len = len;
890 sdio->cur_page_block = blocknr;
891 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
892 out:
893 /*
894 * If sdio->boundary then we want to schedule the IO now to
895 * avoid metadata seeks.
896 */
897 if (sdio->boundary) {
898 ret = dio_send_cur_page(dio, sdio, map_bh);
899 if (sdio->bio)
900 dio_bio_submit(dio, sdio);
901 put_page(sdio->cur_page);
902 sdio->cur_page = NULL;
903 }
904 return ret;
905 }
906
907 /*
908 * If we are not writing the entire block and get_block() allocated
909 * the block for us, we need to fill-in the unused portion of the
910 * block with zeros. This happens only if user-buffer, fileoffset or
911 * io length is not filesystem block-size multiple.
912 *
913 * `end' is zero if we're doing the start of the IO, 1 at the end of the
914 * IO.
915 */
dio_zero_block(struct dio * dio,struct dio_submit * sdio,int end,struct buffer_head * map_bh)916 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
917 int end, struct buffer_head *map_bh)
918 {
919 unsigned dio_blocks_per_fs_block;
920 unsigned this_chunk_blocks; /* In dio_blocks */
921 unsigned this_chunk_bytes;
922 struct page *page;
923
924 sdio->start_zero_done = 1;
925 if (!sdio->blkfactor || !buffer_new(map_bh))
926 return;
927
928 dio_blocks_per_fs_block = 1 << sdio->blkfactor;
929 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
930
931 if (!this_chunk_blocks)
932 return;
933
934 /*
935 * We need to zero out part of an fs block. It is either at the
936 * beginning or the end of the fs block.
937 */
938 if (end)
939 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
940
941 this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
942
943 page = ZERO_PAGE(0);
944 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
945 sdio->next_block_for_io, map_bh))
946 return;
947
948 sdio->next_block_for_io += this_chunk_blocks;
949 }
950
951 /*
952 * Walk the user pages, and the file, mapping blocks to disk and generating
953 * a sequence of (page,offset,len,block) mappings. These mappings are injected
954 * into submit_page_section(), which takes care of the next stage of submission
955 *
956 * Direct IO against a blockdev is different from a file. Because we can
957 * happily perform page-sized but 512-byte aligned IOs. It is important that
958 * blockdev IO be able to have fine alignment and large sizes.
959 *
960 * So what we do is to permit the ->get_block function to populate bh.b_size
961 * with the size of IO which is permitted at this offset and this i_blkbits.
962 *
963 * For best results, the blockdev should be set up with 512-byte i_blkbits and
964 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
965 * fine alignment but still allows this function to work in PAGE_SIZE units.
966 */
do_direct_IO(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)967 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
968 struct buffer_head *map_bh)
969 {
970 const unsigned blkbits = sdio->blkbits;
971 const unsigned i_blkbits = blkbits + sdio->blkfactor;
972 int ret = 0;
973
974 while (sdio->block_in_file < sdio->final_block_in_request) {
975 struct page *page;
976 size_t from, to;
977
978 page = dio_get_page(dio, sdio);
979 if (IS_ERR(page)) {
980 ret = PTR_ERR(page);
981 goto out;
982 }
983 from = sdio->head ? 0 : sdio->from;
984 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
985 sdio->head++;
986
987 while (from < to) {
988 unsigned this_chunk_bytes; /* # of bytes mapped */
989 unsigned this_chunk_blocks; /* # of blocks */
990 unsigned u;
991
992 if (sdio->blocks_available == 0) {
993 /*
994 * Need to go and map some more disk
995 */
996 unsigned long blkmask;
997 unsigned long dio_remainder;
998
999 ret = get_more_blocks(dio, sdio, map_bh);
1000 if (ret) {
1001 put_page(page);
1002 goto out;
1003 }
1004 if (!buffer_mapped(map_bh))
1005 goto do_holes;
1006
1007 sdio->blocks_available =
1008 map_bh->b_size >> blkbits;
1009 sdio->next_block_for_io =
1010 map_bh->b_blocknr << sdio->blkfactor;
1011 if (buffer_new(map_bh)) {
1012 clean_bdev_aliases(
1013 map_bh->b_bdev,
1014 map_bh->b_blocknr,
1015 map_bh->b_size >> i_blkbits);
1016 }
1017
1018 if (!sdio->blkfactor)
1019 goto do_holes;
1020
1021 blkmask = (1 << sdio->blkfactor) - 1;
1022 dio_remainder = (sdio->block_in_file & blkmask);
1023
1024 /*
1025 * If we are at the start of IO and that IO
1026 * starts partway into a fs-block,
1027 * dio_remainder will be non-zero. If the IO
1028 * is a read then we can simply advance the IO
1029 * cursor to the first block which is to be
1030 * read. But if the IO is a write and the
1031 * block was newly allocated we cannot do that;
1032 * the start of the fs block must be zeroed out
1033 * on-disk
1034 */
1035 if (!buffer_new(map_bh))
1036 sdio->next_block_for_io += dio_remainder;
1037 sdio->blocks_available -= dio_remainder;
1038 }
1039 do_holes:
1040 /* Handle holes */
1041 if (!buffer_mapped(map_bh)) {
1042 loff_t i_size_aligned;
1043
1044 /* AKPM: eargh, -ENOTBLK is a hack */
1045 if (dio->op == REQ_OP_WRITE) {
1046 put_page(page);
1047 return -ENOTBLK;
1048 }
1049
1050 /*
1051 * Be sure to account for a partial block as the
1052 * last block in the file
1053 */
1054 i_size_aligned = ALIGN(i_size_read(dio->inode),
1055 1 << blkbits);
1056 if (sdio->block_in_file >=
1057 i_size_aligned >> blkbits) {
1058 /* We hit eof */
1059 put_page(page);
1060 goto out;
1061 }
1062 zero_user(page, from, 1 << blkbits);
1063 sdio->block_in_file++;
1064 from += 1 << blkbits;
1065 dio->result += 1 << blkbits;
1066 goto next_block;
1067 }
1068
1069 /*
1070 * If we're performing IO which has an alignment which
1071 * is finer than the underlying fs, go check to see if
1072 * we must zero out the start of this block.
1073 */
1074 if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1075 dio_zero_block(dio, sdio, 0, map_bh);
1076
1077 /*
1078 * Work out, in this_chunk_blocks, how much disk we
1079 * can add to this page
1080 */
1081 this_chunk_blocks = sdio->blocks_available;
1082 u = (to - from) >> blkbits;
1083 if (this_chunk_blocks > u)
1084 this_chunk_blocks = u;
1085 u = sdio->final_block_in_request - sdio->block_in_file;
1086 if (this_chunk_blocks > u)
1087 this_chunk_blocks = u;
1088 this_chunk_bytes = this_chunk_blocks << blkbits;
1089 BUG_ON(this_chunk_bytes == 0);
1090
1091 if (this_chunk_blocks == sdio->blocks_available)
1092 sdio->boundary = buffer_boundary(map_bh);
1093 ret = submit_page_section(dio, sdio, page,
1094 from,
1095 this_chunk_bytes,
1096 sdio->next_block_for_io,
1097 map_bh);
1098 if (ret) {
1099 put_page(page);
1100 goto out;
1101 }
1102 sdio->next_block_for_io += this_chunk_blocks;
1103
1104 sdio->block_in_file += this_chunk_blocks;
1105 from += this_chunk_bytes;
1106 dio->result += this_chunk_bytes;
1107 sdio->blocks_available -= this_chunk_blocks;
1108 next_block:
1109 BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1110 if (sdio->block_in_file == sdio->final_block_in_request)
1111 break;
1112 }
1113
1114 /* Drop the ref which was taken in get_user_pages() */
1115 put_page(page);
1116 }
1117 out:
1118 return ret;
1119 }
1120
drop_refcount(struct dio * dio)1121 static inline int drop_refcount(struct dio *dio)
1122 {
1123 int ret2;
1124 unsigned long flags;
1125
1126 /*
1127 * Sync will always be dropping the final ref and completing the
1128 * operation. AIO can if it was a broken operation described above or
1129 * in fact if all the bios race to complete before we get here. In
1130 * that case dio_complete() translates the EIOCBQUEUED into the proper
1131 * return code that the caller will hand to ->complete().
1132 *
1133 * This is managed by the bio_lock instead of being an atomic_t so that
1134 * completion paths can drop their ref and use the remaining count to
1135 * decide to wake the submission path atomically.
1136 */
1137 spin_lock_irqsave(&dio->bio_lock, flags);
1138 ret2 = --dio->refcount;
1139 spin_unlock_irqrestore(&dio->bio_lock, flags);
1140 return ret2;
1141 }
1142
1143 /*
1144 * This is a library function for use by filesystem drivers.
1145 *
1146 * The locking rules are governed by the flags parameter:
1147 * - if the flags value contains DIO_LOCKING we use a fancy locking
1148 * scheme for dumb filesystems.
1149 * For writes this function is called under i_mutex and returns with
1150 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1151 * taken and dropped again before returning.
1152 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1153 * internal locking but rather rely on the filesystem to synchronize
1154 * direct I/O reads/writes versus each other and truncate.
1155 *
1156 * To help with locking against truncate we incremented the i_dio_count
1157 * counter before starting direct I/O, and decrement it once we are done.
1158 * Truncate can wait for it to reach zero to provide exclusion. It is
1159 * expected that filesystem provide exclusion between new direct I/O
1160 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1161 * but other filesystems need to take care of this on their own.
1162 *
1163 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1164 * is always inlined. Otherwise gcc is unable to split the structure into
1165 * individual fields and will generate much worse code. This is important
1166 * for the whole file.
1167 */
1168 static inline ssize_t
do_blockdev_direct_IO(struct kiocb * iocb,struct inode * inode,struct block_device * bdev,struct iov_iter * iter,get_block_t get_block,dio_iodone_t end_io,dio_submit_t submit_io,int flags)1169 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1170 struct block_device *bdev, struct iov_iter *iter,
1171 get_block_t get_block, dio_iodone_t end_io,
1172 dio_submit_t submit_io, int flags)
1173 {
1174 unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1175 unsigned blkbits = i_blkbits;
1176 unsigned blocksize_mask = (1 << blkbits) - 1;
1177 ssize_t retval = -EINVAL;
1178 const size_t count = iov_iter_count(iter);
1179 loff_t offset = iocb->ki_pos;
1180 const loff_t end = offset + count;
1181 struct dio *dio;
1182 struct dio_submit sdio = { 0, };
1183 struct buffer_head map_bh = { 0, };
1184 struct blk_plug plug;
1185 unsigned long align = offset | iov_iter_alignment(iter);
1186
1187 /*
1188 * Avoid references to bdev if not absolutely needed to give
1189 * the early prefetch in the caller enough time.
1190 */
1191
1192 if (align & blocksize_mask) {
1193 if (bdev)
1194 blkbits = blksize_bits(bdev_logical_block_size(bdev));
1195 blocksize_mask = (1 << blkbits) - 1;
1196 if (align & blocksize_mask)
1197 goto out;
1198 }
1199
1200 /* watch out for a 0 len io from a tricksy fs */
1201 if (iov_iter_rw(iter) == READ && !count)
1202 return 0;
1203
1204 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1205 retval = -ENOMEM;
1206 if (!dio)
1207 goto out;
1208 /*
1209 * Believe it or not, zeroing out the page array caused a .5%
1210 * performance regression in a database benchmark. So, we take
1211 * care to only zero out what's needed.
1212 */
1213 memset(dio, 0, offsetof(struct dio, pages));
1214
1215 dio->flags = flags;
1216 if (dio->flags & DIO_LOCKING) {
1217 if (iov_iter_rw(iter) == READ) {
1218 struct address_space *mapping =
1219 iocb->ki_filp->f_mapping;
1220
1221 /* will be released by direct_io_worker */
1222 inode_lock(inode);
1223
1224 retval = filemap_write_and_wait_range(mapping, offset,
1225 end - 1);
1226 if (retval) {
1227 inode_unlock(inode);
1228 kmem_cache_free(dio_cache, dio);
1229 goto out;
1230 }
1231 }
1232 }
1233
1234 /* Once we sampled i_size check for reads beyond EOF */
1235 dio->i_size = i_size_read(inode);
1236 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1237 if (dio->flags & DIO_LOCKING)
1238 inode_unlock(inode);
1239 kmem_cache_free(dio_cache, dio);
1240 retval = 0;
1241 goto out;
1242 }
1243
1244 /*
1245 * For file extending writes updating i_size before data writeouts
1246 * complete can expose uninitialized blocks in dumb filesystems.
1247 * In that case we need to wait for I/O completion even if asked
1248 * for an asynchronous write.
1249 */
1250 if (is_sync_kiocb(iocb))
1251 dio->is_async = false;
1252 else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1253 dio->is_async = false;
1254 else
1255 dio->is_async = true;
1256
1257 dio->inode = inode;
1258 if (iov_iter_rw(iter) == WRITE) {
1259 dio->op = REQ_OP_WRITE;
1260 dio->op_flags = REQ_SYNC | REQ_IDLE;
1261 if (iocb->ki_flags & IOCB_NOWAIT)
1262 dio->op_flags |= REQ_NOWAIT;
1263 } else {
1264 dio->op = REQ_OP_READ;
1265 }
1266 if (iocb->ki_flags & IOCB_HIPRI)
1267 dio->op_flags |= REQ_HIPRI;
1268
1269 /*
1270 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1271 * so that we can call ->fsync.
1272 */
1273 if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1274 retval = 0;
1275 if (iocb->ki_flags & IOCB_DSYNC)
1276 retval = dio_set_defer_completion(dio);
1277 else if (!dio->inode->i_sb->s_dio_done_wq) {
1278 /*
1279 * In case of AIO write racing with buffered read we
1280 * need to defer completion. We can't decide this now,
1281 * however the workqueue needs to be initialized here.
1282 */
1283 retval = sb_init_dio_done_wq(dio->inode->i_sb);
1284 }
1285 if (retval) {
1286 /*
1287 * We grab i_mutex only for reads so we don't have
1288 * to release it here
1289 */
1290 kmem_cache_free(dio_cache, dio);
1291 goto out;
1292 }
1293 }
1294
1295 /*
1296 * Will be decremented at I/O completion time.
1297 */
1298 inode_dio_begin(inode);
1299
1300 retval = 0;
1301 sdio.blkbits = blkbits;
1302 sdio.blkfactor = i_blkbits - blkbits;
1303 sdio.block_in_file = offset >> blkbits;
1304
1305 sdio.get_block = get_block;
1306 dio->end_io = end_io;
1307 sdio.submit_io = submit_io;
1308 sdio.final_block_in_bio = -1;
1309 sdio.next_block_for_io = -1;
1310
1311 dio->iocb = iocb;
1312
1313 spin_lock_init(&dio->bio_lock);
1314 dio->refcount = 1;
1315
1316 dio->should_dirty = iter_is_iovec(iter) && iov_iter_rw(iter) == READ;
1317 sdio.iter = iter;
1318 sdio.final_block_in_request = end >> blkbits;
1319
1320 /*
1321 * In case of non-aligned buffers, we may need 2 more
1322 * pages since we need to zero out first and last block.
1323 */
1324 if (unlikely(sdio.blkfactor))
1325 sdio.pages_in_io = 2;
1326
1327 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1328
1329 blk_start_plug(&plug);
1330
1331 retval = do_direct_IO(dio, &sdio, &map_bh);
1332 if (retval)
1333 dio_cleanup(dio, &sdio);
1334
1335 if (retval == -ENOTBLK) {
1336 /*
1337 * The remaining part of the request will be
1338 * be handled by buffered I/O when we return
1339 */
1340 retval = 0;
1341 }
1342 /*
1343 * There may be some unwritten disk at the end of a part-written
1344 * fs-block-sized block. Go zero that now.
1345 */
1346 dio_zero_block(dio, &sdio, 1, &map_bh);
1347
1348 if (sdio.cur_page) {
1349 ssize_t ret2;
1350
1351 ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1352 if (retval == 0)
1353 retval = ret2;
1354 put_page(sdio.cur_page);
1355 sdio.cur_page = NULL;
1356 }
1357 if (sdio.bio)
1358 dio_bio_submit(dio, &sdio);
1359
1360 blk_finish_plug(&plug);
1361
1362 /*
1363 * It is possible that, we return short IO due to end of file.
1364 * In that case, we need to release all the pages we got hold on.
1365 */
1366 dio_cleanup(dio, &sdio);
1367
1368 /*
1369 * All block lookups have been performed. For READ requests
1370 * we can let i_mutex go now that its achieved its purpose
1371 * of protecting us from looking up uninitialized blocks.
1372 */
1373 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1374 inode_unlock(dio->inode);
1375
1376 /*
1377 * The only time we want to leave bios in flight is when a successful
1378 * partial aio read or full aio write have been setup. In that case
1379 * bio completion will call aio_complete. The only time it's safe to
1380 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1381 * This had *better* be the only place that raises -EIOCBQUEUED.
1382 */
1383 BUG_ON(retval == -EIOCBQUEUED);
1384 if (dio->is_async && retval == 0 && dio->result &&
1385 (iov_iter_rw(iter) == READ || dio->result == count))
1386 retval = -EIOCBQUEUED;
1387 else
1388 dio_await_completion(dio);
1389
1390 if (drop_refcount(dio) == 0) {
1391 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1392 } else
1393 BUG_ON(retval != -EIOCBQUEUED);
1394
1395 out:
1396 return retval;
1397 }
1398
__blockdev_direct_IO(struct kiocb * iocb,struct inode * inode,struct block_device * bdev,struct iov_iter * iter,get_block_t get_block,dio_iodone_t end_io,dio_submit_t submit_io,int flags)1399 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1400 struct block_device *bdev, struct iov_iter *iter,
1401 get_block_t get_block,
1402 dio_iodone_t end_io, dio_submit_t submit_io,
1403 int flags)
1404 {
1405 /*
1406 * The block device state is needed in the end to finally
1407 * submit everything. Since it's likely to be cache cold
1408 * prefetch it here as first thing to hide some of the
1409 * latency.
1410 *
1411 * Attempt to prefetch the pieces we likely need later.
1412 */
1413 prefetch(&bdev->bd_disk->part_tbl);
1414 prefetch(bdev->bd_queue);
1415 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1416
1417 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
1418 end_io, submit_io, flags);
1419 }
1420
1421 EXPORT_SYMBOL(__blockdev_direct_IO);
1422
dio_init(void)1423 static __init int dio_init(void)
1424 {
1425 dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1426 return 0;
1427 }
1428 module_init(dio_init)
1429