• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /**
3  * eCryptfs: Linux filesystem encryption layer
4  *
5  * Copyright (C) 1997-2004 Erez Zadok
6  * Copyright (C) 2001-2004 Stony Brook University
7  * Copyright (C) 2004-2007 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
9  *   		Michael C. Thompson <mcthomps@us.ibm.com>
10  */
11 
12 #include <crypto/hash.h>
13 #include <crypto/skcipher.h>
14 #include <linux/fs.h>
15 #include <linux/mount.h>
16 #include <linux/pagemap.h>
17 #include <linux/random.h>
18 #include <linux/compiler.h>
19 #include <linux/key.h>
20 #include <linux/namei.h>
21 #include <linux/file.h>
22 #include <linux/scatterlist.h>
23 #include <linux/slab.h>
24 #include <asm/unaligned.h>
25 #include <linux/kernel.h>
26 #include <linux/xattr.h>
27 #include "ecryptfs_kernel.h"
28 
29 #define DECRYPT		0
30 #define ENCRYPT		1
31 
32 /**
33  * ecryptfs_from_hex
34  * @dst: Buffer to take the bytes from src hex; must be at least of
35  *       size (src_size / 2)
36  * @src: Buffer to be converted from a hex string representation to raw value
37  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
38  */
ecryptfs_from_hex(char * dst,char * src,int dst_size)39 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
40 {
41 	int x;
42 	char tmp[3] = { 0, };
43 
44 	for (x = 0; x < dst_size; x++) {
45 		tmp[0] = src[x * 2];
46 		tmp[1] = src[x * 2 + 1];
47 		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
48 	}
49 }
50 
ecryptfs_hash_digest(struct crypto_shash * tfm,char * src,int len,char * dst)51 static int ecryptfs_hash_digest(struct crypto_shash *tfm,
52 				char *src, int len, char *dst)
53 {
54 	SHASH_DESC_ON_STACK(desc, tfm);
55 	int err;
56 
57 	desc->tfm = tfm;
58 	err = crypto_shash_digest(desc, src, len, dst);
59 	shash_desc_zero(desc);
60 	return err;
61 }
62 
63 /**
64  * ecryptfs_calculate_md5 - calculates the md5 of @src
65  * @dst: Pointer to 16 bytes of allocated memory
66  * @crypt_stat: Pointer to crypt_stat struct for the current inode
67  * @src: Data to be md5'd
68  * @len: Length of @src
69  *
70  * Uses the allocated crypto context that crypt_stat references to
71  * generate the MD5 sum of the contents of src.
72  */
ecryptfs_calculate_md5(char * dst,struct ecryptfs_crypt_stat * crypt_stat,char * src,int len)73 static int ecryptfs_calculate_md5(char *dst,
74 				  struct ecryptfs_crypt_stat *crypt_stat,
75 				  char *src, int len)
76 {
77 	struct crypto_shash *tfm;
78 	int rc = 0;
79 
80 	tfm = crypt_stat->hash_tfm;
81 	rc = ecryptfs_hash_digest(tfm, src, len, dst);
82 	if (rc) {
83 		printk(KERN_ERR
84 		       "%s: Error computing crypto hash; rc = [%d]\n",
85 		       __func__, rc);
86 		goto out;
87 	}
88 out:
89 	return rc;
90 }
91 
ecryptfs_crypto_api_algify_cipher_name(char ** algified_name,char * cipher_name,char * chaining_modifier)92 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
93 						  char *cipher_name,
94 						  char *chaining_modifier)
95 {
96 	int cipher_name_len = strlen(cipher_name);
97 	int chaining_modifier_len = strlen(chaining_modifier);
98 	int algified_name_len;
99 	int rc;
100 
101 	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
102 	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
103 	if (!(*algified_name)) {
104 		rc = -ENOMEM;
105 		goto out;
106 	}
107 	snprintf((*algified_name), algified_name_len, "%s(%s)",
108 		 chaining_modifier, cipher_name);
109 	rc = 0;
110 out:
111 	return rc;
112 }
113 
114 /**
115  * ecryptfs_derive_iv
116  * @iv: destination for the derived iv vale
117  * @crypt_stat: Pointer to crypt_stat struct for the current inode
118  * @offset: Offset of the extent whose IV we are to derive
119  *
120  * Generate the initialization vector from the given root IV and page
121  * offset.
122  *
123  * Returns zero on success; non-zero on error.
124  */
ecryptfs_derive_iv(char * iv,struct ecryptfs_crypt_stat * crypt_stat,loff_t offset)125 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
126 		       loff_t offset)
127 {
128 	int rc = 0;
129 	char dst[MD5_DIGEST_SIZE];
130 	char src[ECRYPTFS_MAX_IV_BYTES + 16];
131 
132 	if (unlikely(ecryptfs_verbosity > 0)) {
133 		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
134 		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
135 	}
136 	/* TODO: It is probably secure to just cast the least
137 	 * significant bits of the root IV into an unsigned long and
138 	 * add the offset to that rather than go through all this
139 	 * hashing business. -Halcrow */
140 	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
141 	memset((src + crypt_stat->iv_bytes), 0, 16);
142 	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
143 	if (unlikely(ecryptfs_verbosity > 0)) {
144 		ecryptfs_printk(KERN_DEBUG, "source:\n");
145 		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
146 	}
147 	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
148 				    (crypt_stat->iv_bytes + 16));
149 	if (rc) {
150 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
151 				"MD5 while generating IV for a page\n");
152 		goto out;
153 	}
154 	memcpy(iv, dst, crypt_stat->iv_bytes);
155 	if (unlikely(ecryptfs_verbosity > 0)) {
156 		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
157 		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
158 	}
159 out:
160 	return rc;
161 }
162 
163 /**
164  * ecryptfs_init_crypt_stat
165  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
166  *
167  * Initialize the crypt_stat structure.
168  */
ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat * crypt_stat)169 int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
170 {
171 	struct crypto_shash *tfm;
172 	int rc;
173 
174 	tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
175 	if (IS_ERR(tfm)) {
176 		rc = PTR_ERR(tfm);
177 		ecryptfs_printk(KERN_ERR, "Error attempting to "
178 				"allocate crypto context; rc = [%d]\n",
179 				rc);
180 		return rc;
181 	}
182 
183 	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
184 	INIT_LIST_HEAD(&crypt_stat->keysig_list);
185 	mutex_init(&crypt_stat->keysig_list_mutex);
186 	mutex_init(&crypt_stat->cs_mutex);
187 	mutex_init(&crypt_stat->cs_tfm_mutex);
188 	crypt_stat->hash_tfm = tfm;
189 	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
190 
191 	return 0;
192 }
193 
194 /**
195  * ecryptfs_destroy_crypt_stat
196  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
197  *
198  * Releases all memory associated with a crypt_stat struct.
199  */
ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat * crypt_stat)200 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
201 {
202 	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
203 
204 	crypto_free_skcipher(crypt_stat->tfm);
205 	crypto_free_shash(crypt_stat->hash_tfm);
206 	list_for_each_entry_safe(key_sig, key_sig_tmp,
207 				 &crypt_stat->keysig_list, crypt_stat_list) {
208 		list_del(&key_sig->crypt_stat_list);
209 		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
210 	}
211 	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
212 }
213 
ecryptfs_destroy_mount_crypt_stat(struct ecryptfs_mount_crypt_stat * mount_crypt_stat)214 void ecryptfs_destroy_mount_crypt_stat(
215 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
216 {
217 	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
218 
219 	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
220 		return;
221 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
222 	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
223 				 &mount_crypt_stat->global_auth_tok_list,
224 				 mount_crypt_stat_list) {
225 		list_del(&auth_tok->mount_crypt_stat_list);
226 		if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
227 			key_put(auth_tok->global_auth_tok_key);
228 		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
229 	}
230 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
231 	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
232 }
233 
234 /**
235  * virt_to_scatterlist
236  * @addr: Virtual address
237  * @size: Size of data; should be an even multiple of the block size
238  * @sg: Pointer to scatterlist array; set to NULL to obtain only
239  *      the number of scatterlist structs required in array
240  * @sg_size: Max array size
241  *
242  * Fills in a scatterlist array with page references for a passed
243  * virtual address.
244  *
245  * Returns the number of scatterlist structs in array used
246  */
virt_to_scatterlist(const void * addr,int size,struct scatterlist * sg,int sg_size)247 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
248 			int sg_size)
249 {
250 	int i = 0;
251 	struct page *pg;
252 	int offset;
253 	int remainder_of_page;
254 
255 	sg_init_table(sg, sg_size);
256 
257 	while (size > 0 && i < sg_size) {
258 		pg = virt_to_page(addr);
259 		offset = offset_in_page(addr);
260 		sg_set_page(&sg[i], pg, 0, offset);
261 		remainder_of_page = PAGE_SIZE - offset;
262 		if (size >= remainder_of_page) {
263 			sg[i].length = remainder_of_page;
264 			addr += remainder_of_page;
265 			size -= remainder_of_page;
266 		} else {
267 			sg[i].length = size;
268 			addr += size;
269 			size = 0;
270 		}
271 		i++;
272 	}
273 	if (size > 0)
274 		return -ENOMEM;
275 	return i;
276 }
277 
278 struct extent_crypt_result {
279 	struct completion completion;
280 	int rc;
281 };
282 
extent_crypt_complete(struct crypto_async_request * req,int rc)283 static void extent_crypt_complete(struct crypto_async_request *req, int rc)
284 {
285 	struct extent_crypt_result *ecr = req->data;
286 
287 	if (rc == -EINPROGRESS)
288 		return;
289 
290 	ecr->rc = rc;
291 	complete(&ecr->completion);
292 }
293 
294 /**
295  * crypt_scatterlist
296  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
297  * @dst_sg: Destination of the data after performing the crypto operation
298  * @src_sg: Data to be encrypted or decrypted
299  * @size: Length of data
300  * @iv: IV to use
301  * @op: ENCRYPT or DECRYPT to indicate the desired operation
302  *
303  * Returns the number of bytes encrypted or decrypted; negative value on error
304  */
crypt_scatterlist(struct ecryptfs_crypt_stat * crypt_stat,struct scatterlist * dst_sg,struct scatterlist * src_sg,int size,unsigned char * iv,int op)305 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
306 			     struct scatterlist *dst_sg,
307 			     struct scatterlist *src_sg, int size,
308 			     unsigned char *iv, int op)
309 {
310 	struct skcipher_request *req = NULL;
311 	struct extent_crypt_result ecr;
312 	int rc = 0;
313 
314 	BUG_ON(!crypt_stat || !crypt_stat->tfm
315 	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
316 	if (unlikely(ecryptfs_verbosity > 0)) {
317 		ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
318 				crypt_stat->key_size);
319 		ecryptfs_dump_hex(crypt_stat->key,
320 				  crypt_stat->key_size);
321 	}
322 
323 	init_completion(&ecr.completion);
324 
325 	mutex_lock(&crypt_stat->cs_tfm_mutex);
326 	req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
327 	if (!req) {
328 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
329 		rc = -ENOMEM;
330 		goto out;
331 	}
332 
333 	skcipher_request_set_callback(req,
334 			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
335 			extent_crypt_complete, &ecr);
336 	/* Consider doing this once, when the file is opened */
337 	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
338 		rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
339 					    crypt_stat->key_size);
340 		if (rc) {
341 			ecryptfs_printk(KERN_ERR,
342 					"Error setting key; rc = [%d]\n",
343 					rc);
344 			mutex_unlock(&crypt_stat->cs_tfm_mutex);
345 			rc = -EINVAL;
346 			goto out;
347 		}
348 		crypt_stat->flags |= ECRYPTFS_KEY_SET;
349 	}
350 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
351 	skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
352 	rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
353 			     crypto_skcipher_decrypt(req);
354 	if (rc == -EINPROGRESS || rc == -EBUSY) {
355 		struct extent_crypt_result *ecr = req->base.data;
356 
357 		wait_for_completion(&ecr->completion);
358 		rc = ecr->rc;
359 		reinit_completion(&ecr->completion);
360 	}
361 out:
362 	skcipher_request_free(req);
363 	return rc;
364 }
365 
366 /**
367  * lower_offset_for_page
368  *
369  * Convert an eCryptfs page index into a lower byte offset
370  */
lower_offset_for_page(struct ecryptfs_crypt_stat * crypt_stat,struct page * page)371 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
372 				    struct page *page)
373 {
374 	return ecryptfs_lower_header_size(crypt_stat) +
375 	       ((loff_t)page->index << PAGE_SHIFT);
376 }
377 
378 /**
379  * crypt_extent
380  * @crypt_stat: crypt_stat containing cryptographic context for the
381  *              encryption operation
382  * @dst_page: The page to write the result into
383  * @src_page: The page to read from
384  * @extent_offset: Page extent offset for use in generating IV
385  * @op: ENCRYPT or DECRYPT to indicate the desired operation
386  *
387  * Encrypts or decrypts one extent of data.
388  *
389  * Return zero on success; non-zero otherwise
390  */
crypt_extent(struct ecryptfs_crypt_stat * crypt_stat,struct page * dst_page,struct page * src_page,unsigned long extent_offset,int op)391 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
392 			struct page *dst_page,
393 			struct page *src_page,
394 			unsigned long extent_offset, int op)
395 {
396 	pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
397 	loff_t extent_base;
398 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
399 	struct scatterlist src_sg, dst_sg;
400 	size_t extent_size = crypt_stat->extent_size;
401 	int rc;
402 
403 	extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
404 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
405 				(extent_base + extent_offset));
406 	if (rc) {
407 		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
408 			"extent [0x%.16llx]; rc = [%d]\n",
409 			(unsigned long long)(extent_base + extent_offset), rc);
410 		goto out;
411 	}
412 
413 	sg_init_table(&src_sg, 1);
414 	sg_init_table(&dst_sg, 1);
415 
416 	sg_set_page(&src_sg, src_page, extent_size,
417 		    extent_offset * extent_size);
418 	sg_set_page(&dst_sg, dst_page, extent_size,
419 		    extent_offset * extent_size);
420 
421 	rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
422 			       extent_iv, op);
423 	if (rc < 0) {
424 		printk(KERN_ERR "%s: Error attempting to crypt page with "
425 		       "page_index = [%ld], extent_offset = [%ld]; "
426 		       "rc = [%d]\n", __func__, page_index, extent_offset, rc);
427 		goto out;
428 	}
429 	rc = 0;
430 out:
431 	return rc;
432 }
433 
434 /**
435  * ecryptfs_encrypt_page
436  * @page: Page mapped from the eCryptfs inode for the file; contains
437  *        decrypted content that needs to be encrypted (to a temporary
438  *        page; not in place) and written out to the lower file
439  *
440  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
441  * that eCryptfs pages may straddle the lower pages -- for instance,
442  * if the file was created on a machine with an 8K page size
443  * (resulting in an 8K header), and then the file is copied onto a
444  * host with a 32K page size, then when reading page 0 of the eCryptfs
445  * file, 24K of page 0 of the lower file will be read and decrypted,
446  * and then 8K of page 1 of the lower file will be read and decrypted.
447  *
448  * Returns zero on success; negative on error
449  */
ecryptfs_encrypt_page(struct page * page)450 int ecryptfs_encrypt_page(struct page *page)
451 {
452 	struct inode *ecryptfs_inode;
453 	struct ecryptfs_crypt_stat *crypt_stat;
454 	char *enc_extent_virt;
455 	struct page *enc_extent_page = NULL;
456 	loff_t extent_offset;
457 	loff_t lower_offset;
458 	int rc = 0;
459 
460 	ecryptfs_inode = page->mapping->host;
461 	crypt_stat =
462 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
463 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
464 	enc_extent_page = alloc_page(GFP_USER);
465 	if (!enc_extent_page) {
466 		rc = -ENOMEM;
467 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
468 				"encrypted extent\n");
469 		goto out;
470 	}
471 
472 	for (extent_offset = 0;
473 	     extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
474 	     extent_offset++) {
475 		rc = crypt_extent(crypt_stat, enc_extent_page, page,
476 				  extent_offset, ENCRYPT);
477 		if (rc) {
478 			printk(KERN_ERR "%s: Error encrypting extent; "
479 			       "rc = [%d]\n", __func__, rc);
480 			goto out;
481 		}
482 	}
483 
484 	lower_offset = lower_offset_for_page(crypt_stat, page);
485 	enc_extent_virt = kmap(enc_extent_page);
486 	rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
487 				  PAGE_SIZE);
488 	kunmap(enc_extent_page);
489 	if (rc < 0) {
490 		ecryptfs_printk(KERN_ERR,
491 			"Error attempting to write lower page; rc = [%d]\n",
492 			rc);
493 		goto out;
494 	}
495 	rc = 0;
496 out:
497 	if (enc_extent_page) {
498 		__free_page(enc_extent_page);
499 	}
500 	return rc;
501 }
502 
503 /**
504  * ecryptfs_decrypt_page
505  * @page: Page mapped from the eCryptfs inode for the file; data read
506  *        and decrypted from the lower file will be written into this
507  *        page
508  *
509  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
510  * that eCryptfs pages may straddle the lower pages -- for instance,
511  * if the file was created on a machine with an 8K page size
512  * (resulting in an 8K header), and then the file is copied onto a
513  * host with a 32K page size, then when reading page 0 of the eCryptfs
514  * file, 24K of page 0 of the lower file will be read and decrypted,
515  * and then 8K of page 1 of the lower file will be read and decrypted.
516  *
517  * Returns zero on success; negative on error
518  */
ecryptfs_decrypt_page(struct page * page)519 int ecryptfs_decrypt_page(struct page *page)
520 {
521 	struct inode *ecryptfs_inode;
522 	struct ecryptfs_crypt_stat *crypt_stat;
523 	char *page_virt;
524 	unsigned long extent_offset;
525 	loff_t lower_offset;
526 	int rc = 0;
527 
528 	ecryptfs_inode = page->mapping->host;
529 	crypt_stat =
530 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
531 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
532 
533 	lower_offset = lower_offset_for_page(crypt_stat, page);
534 	page_virt = kmap(page);
535 	rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
536 				 ecryptfs_inode);
537 	kunmap(page);
538 	if (rc < 0) {
539 		ecryptfs_printk(KERN_ERR,
540 			"Error attempting to read lower page; rc = [%d]\n",
541 			rc);
542 		goto out;
543 	}
544 
545 	for (extent_offset = 0;
546 	     extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
547 	     extent_offset++) {
548 		rc = crypt_extent(crypt_stat, page, page,
549 				  extent_offset, DECRYPT);
550 		if (rc) {
551 			printk(KERN_ERR "%s: Error encrypting extent; "
552 			       "rc = [%d]\n", __func__, rc);
553 			goto out;
554 		}
555 	}
556 out:
557 	return rc;
558 }
559 
560 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
561 
562 /**
563  * ecryptfs_init_crypt_ctx
564  * @crypt_stat: Uninitialized crypt stats structure
565  *
566  * Initialize the crypto context.
567  *
568  * TODO: Performance: Keep a cache of initialized cipher contexts;
569  * only init if needed
570  */
ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat * crypt_stat)571 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
572 {
573 	char *full_alg_name;
574 	int rc = -EINVAL;
575 
576 	ecryptfs_printk(KERN_DEBUG,
577 			"Initializing cipher [%s]; strlen = [%d]; "
578 			"key_size_bits = [%zd]\n",
579 			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
580 			crypt_stat->key_size << 3);
581 	mutex_lock(&crypt_stat->cs_tfm_mutex);
582 	if (crypt_stat->tfm) {
583 		rc = 0;
584 		goto out_unlock;
585 	}
586 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
587 						    crypt_stat->cipher, "cbc");
588 	if (rc)
589 		goto out_unlock;
590 	crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
591 	if (IS_ERR(crypt_stat->tfm)) {
592 		rc = PTR_ERR(crypt_stat->tfm);
593 		crypt_stat->tfm = NULL;
594 		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
595 				"Error initializing cipher [%s]\n",
596 				full_alg_name);
597 		goto out_free;
598 	}
599 	crypto_skcipher_set_flags(crypt_stat->tfm,
600 				  CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
601 	rc = 0;
602 out_free:
603 	kfree(full_alg_name);
604 out_unlock:
605 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
606 	return rc;
607 }
608 
set_extent_mask_and_shift(struct ecryptfs_crypt_stat * crypt_stat)609 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
610 {
611 	int extent_size_tmp;
612 
613 	crypt_stat->extent_mask = 0xFFFFFFFF;
614 	crypt_stat->extent_shift = 0;
615 	if (crypt_stat->extent_size == 0)
616 		return;
617 	extent_size_tmp = crypt_stat->extent_size;
618 	while ((extent_size_tmp & 0x01) == 0) {
619 		extent_size_tmp >>= 1;
620 		crypt_stat->extent_mask <<= 1;
621 		crypt_stat->extent_shift++;
622 	}
623 }
624 
ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat * crypt_stat)625 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
626 {
627 	/* Default values; may be overwritten as we are parsing the
628 	 * packets. */
629 	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
630 	set_extent_mask_and_shift(crypt_stat);
631 	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
632 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
633 		crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
634 	else {
635 		if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
636 			crypt_stat->metadata_size =
637 				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
638 		else
639 			crypt_stat->metadata_size = PAGE_SIZE;
640 	}
641 }
642 
643 /**
644  * ecryptfs_compute_root_iv
645  * @crypt_stats
646  *
647  * On error, sets the root IV to all 0's.
648  */
ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat * crypt_stat)649 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
650 {
651 	int rc = 0;
652 	char dst[MD5_DIGEST_SIZE];
653 
654 	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
655 	BUG_ON(crypt_stat->iv_bytes <= 0);
656 	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
657 		rc = -EINVAL;
658 		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
659 				"cannot generate root IV\n");
660 		goto out;
661 	}
662 	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
663 				    crypt_stat->key_size);
664 	if (rc) {
665 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
666 				"MD5 while generating root IV\n");
667 		goto out;
668 	}
669 	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
670 out:
671 	if (rc) {
672 		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
673 		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
674 	}
675 	return rc;
676 }
677 
ecryptfs_generate_new_key(struct ecryptfs_crypt_stat * crypt_stat)678 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
679 {
680 	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
681 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
682 	ecryptfs_compute_root_iv(crypt_stat);
683 	if (unlikely(ecryptfs_verbosity > 0)) {
684 		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
685 		ecryptfs_dump_hex(crypt_stat->key,
686 				  crypt_stat->key_size);
687 	}
688 }
689 
690 /**
691  * ecryptfs_copy_mount_wide_flags_to_inode_flags
692  * @crypt_stat: The inode's cryptographic context
693  * @mount_crypt_stat: The mount point's cryptographic context
694  *
695  * This function propagates the mount-wide flags to individual inode
696  * flags.
697  */
ecryptfs_copy_mount_wide_flags_to_inode_flags(struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)698 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
699 	struct ecryptfs_crypt_stat *crypt_stat,
700 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
701 {
702 	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
703 		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
704 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
705 		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
706 	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
707 		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
708 		if (mount_crypt_stat->flags
709 		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
710 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
711 		else if (mount_crypt_stat->flags
712 			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
713 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
714 	}
715 }
716 
ecryptfs_copy_mount_wide_sigs_to_inode_sigs(struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)717 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
718 	struct ecryptfs_crypt_stat *crypt_stat,
719 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
720 {
721 	struct ecryptfs_global_auth_tok *global_auth_tok;
722 	int rc = 0;
723 
724 	mutex_lock(&crypt_stat->keysig_list_mutex);
725 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
726 
727 	list_for_each_entry(global_auth_tok,
728 			    &mount_crypt_stat->global_auth_tok_list,
729 			    mount_crypt_stat_list) {
730 		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
731 			continue;
732 		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
733 		if (rc) {
734 			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
735 			goto out;
736 		}
737 	}
738 
739 out:
740 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
741 	mutex_unlock(&crypt_stat->keysig_list_mutex);
742 	return rc;
743 }
744 
745 /**
746  * ecryptfs_set_default_crypt_stat_vals
747  * @crypt_stat: The inode's cryptographic context
748  * @mount_crypt_stat: The mount point's cryptographic context
749  *
750  * Default values in the event that policy does not override them.
751  */
ecryptfs_set_default_crypt_stat_vals(struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)752 static void ecryptfs_set_default_crypt_stat_vals(
753 	struct ecryptfs_crypt_stat *crypt_stat,
754 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
755 {
756 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
757 						      mount_crypt_stat);
758 	ecryptfs_set_default_sizes(crypt_stat);
759 	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
760 	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
761 	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
762 	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
763 	crypt_stat->mount_crypt_stat = mount_crypt_stat;
764 }
765 
766 /**
767  * ecryptfs_new_file_context
768  * @ecryptfs_inode: The eCryptfs inode
769  *
770  * If the crypto context for the file has not yet been established,
771  * this is where we do that.  Establishing a new crypto context
772  * involves the following decisions:
773  *  - What cipher to use?
774  *  - What set of authentication tokens to use?
775  * Here we just worry about getting enough information into the
776  * authentication tokens so that we know that they are available.
777  * We associate the available authentication tokens with the new file
778  * via the set of signatures in the crypt_stat struct.  Later, when
779  * the headers are actually written out, we may again defer to
780  * userspace to perform the encryption of the session key; for the
781  * foreseeable future, this will be the case with public key packets.
782  *
783  * Returns zero on success; non-zero otherwise
784  */
ecryptfs_new_file_context(struct inode * ecryptfs_inode)785 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
786 {
787 	struct ecryptfs_crypt_stat *crypt_stat =
788 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
789 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
790 	    &ecryptfs_superblock_to_private(
791 		    ecryptfs_inode->i_sb)->mount_crypt_stat;
792 	int cipher_name_len;
793 	int rc = 0;
794 
795 	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
796 	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
797 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
798 						      mount_crypt_stat);
799 	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
800 							 mount_crypt_stat);
801 	if (rc) {
802 		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
803 		       "to the inode key sigs; rc = [%d]\n", rc);
804 		goto out;
805 	}
806 	cipher_name_len =
807 		strlen(mount_crypt_stat->global_default_cipher_name);
808 	memcpy(crypt_stat->cipher,
809 	       mount_crypt_stat->global_default_cipher_name,
810 	       cipher_name_len);
811 	crypt_stat->cipher[cipher_name_len] = '\0';
812 	crypt_stat->key_size =
813 		mount_crypt_stat->global_default_cipher_key_size;
814 	ecryptfs_generate_new_key(crypt_stat);
815 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
816 	if (rc)
817 		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
818 				"context for cipher [%s]: rc = [%d]\n",
819 				crypt_stat->cipher, rc);
820 out:
821 	return rc;
822 }
823 
824 /**
825  * ecryptfs_validate_marker - check for the ecryptfs marker
826  * @data: The data block in which to check
827  *
828  * Returns zero if marker found; -EINVAL if not found
829  */
ecryptfs_validate_marker(char * data)830 static int ecryptfs_validate_marker(char *data)
831 {
832 	u32 m_1, m_2;
833 
834 	m_1 = get_unaligned_be32(data);
835 	m_2 = get_unaligned_be32(data + 4);
836 	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
837 		return 0;
838 	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
839 			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
840 			MAGIC_ECRYPTFS_MARKER);
841 	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
842 			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
843 	return -EINVAL;
844 }
845 
846 struct ecryptfs_flag_map_elem {
847 	u32 file_flag;
848 	u32 local_flag;
849 };
850 
851 /* Add support for additional flags by adding elements here. */
852 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
853 	{0x00000001, ECRYPTFS_ENABLE_HMAC},
854 	{0x00000002, ECRYPTFS_ENCRYPTED},
855 	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
856 	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
857 };
858 
859 /**
860  * ecryptfs_process_flags
861  * @crypt_stat: The cryptographic context
862  * @page_virt: Source data to be parsed
863  * @bytes_read: Updated with the number of bytes read
864  */
ecryptfs_process_flags(struct ecryptfs_crypt_stat * crypt_stat,char * page_virt,int * bytes_read)865 static void ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
866 				  char *page_virt, int *bytes_read)
867 {
868 	int i;
869 	u32 flags;
870 
871 	flags = get_unaligned_be32(page_virt);
872 	for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
873 		if (flags & ecryptfs_flag_map[i].file_flag) {
874 			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
875 		} else
876 			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
877 	/* Version is in top 8 bits of the 32-bit flag vector */
878 	crypt_stat->file_version = ((flags >> 24) & 0xFF);
879 	(*bytes_read) = 4;
880 }
881 
882 /**
883  * write_ecryptfs_marker
884  * @page_virt: The pointer to in a page to begin writing the marker
885  * @written: Number of bytes written
886  *
887  * Marker = 0x3c81b7f5
888  */
write_ecryptfs_marker(char * page_virt,size_t * written)889 static void write_ecryptfs_marker(char *page_virt, size_t *written)
890 {
891 	u32 m_1, m_2;
892 
893 	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
894 	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
895 	put_unaligned_be32(m_1, page_virt);
896 	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
897 	put_unaligned_be32(m_2, page_virt);
898 	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
899 }
900 
ecryptfs_write_crypt_stat_flags(char * page_virt,struct ecryptfs_crypt_stat * crypt_stat,size_t * written)901 void ecryptfs_write_crypt_stat_flags(char *page_virt,
902 				     struct ecryptfs_crypt_stat *crypt_stat,
903 				     size_t *written)
904 {
905 	u32 flags = 0;
906 	int i;
907 
908 	for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
909 		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
910 			flags |= ecryptfs_flag_map[i].file_flag;
911 	/* Version is in top 8 bits of the 32-bit flag vector */
912 	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
913 	put_unaligned_be32(flags, page_virt);
914 	(*written) = 4;
915 }
916 
917 struct ecryptfs_cipher_code_str_map_elem {
918 	char cipher_str[16];
919 	u8 cipher_code;
920 };
921 
922 /* Add support for additional ciphers by adding elements here. The
923  * cipher_code is whatever OpenPGP applications use to identify the
924  * ciphers. List in order of probability. */
925 static struct ecryptfs_cipher_code_str_map_elem
926 ecryptfs_cipher_code_str_map[] = {
927 	{"aes",RFC2440_CIPHER_AES_128 },
928 	{"blowfish", RFC2440_CIPHER_BLOWFISH},
929 	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
930 	{"cast5", RFC2440_CIPHER_CAST_5},
931 	{"twofish", RFC2440_CIPHER_TWOFISH},
932 	{"cast6", RFC2440_CIPHER_CAST_6},
933 	{"aes", RFC2440_CIPHER_AES_192},
934 	{"aes", RFC2440_CIPHER_AES_256}
935 };
936 
937 /**
938  * ecryptfs_code_for_cipher_string
939  * @cipher_name: The string alias for the cipher
940  * @key_bytes: Length of key in bytes; used for AES code selection
941  *
942  * Returns zero on no match, or the cipher code on match
943  */
ecryptfs_code_for_cipher_string(char * cipher_name,size_t key_bytes)944 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
945 {
946 	int i;
947 	u8 code = 0;
948 	struct ecryptfs_cipher_code_str_map_elem *map =
949 		ecryptfs_cipher_code_str_map;
950 
951 	if (strcmp(cipher_name, "aes") == 0) {
952 		switch (key_bytes) {
953 		case 16:
954 			code = RFC2440_CIPHER_AES_128;
955 			break;
956 		case 24:
957 			code = RFC2440_CIPHER_AES_192;
958 			break;
959 		case 32:
960 			code = RFC2440_CIPHER_AES_256;
961 		}
962 	} else {
963 		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
964 			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
965 				code = map[i].cipher_code;
966 				break;
967 			}
968 	}
969 	return code;
970 }
971 
972 /**
973  * ecryptfs_cipher_code_to_string
974  * @str: Destination to write out the cipher name
975  * @cipher_code: The code to convert to cipher name string
976  *
977  * Returns zero on success
978  */
ecryptfs_cipher_code_to_string(char * str,u8 cipher_code)979 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
980 {
981 	int rc = 0;
982 	int i;
983 
984 	str[0] = '\0';
985 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
986 		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
987 			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
988 	if (str[0] == '\0') {
989 		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
990 				"[%d]\n", cipher_code);
991 		rc = -EINVAL;
992 	}
993 	return rc;
994 }
995 
ecryptfs_read_and_validate_header_region(struct inode * inode)996 int ecryptfs_read_and_validate_header_region(struct inode *inode)
997 {
998 	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
999 	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1000 	int rc;
1001 
1002 	rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1003 				 inode);
1004 	if (rc < 0)
1005 		return rc;
1006 	else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1007 		return -EINVAL;
1008 	rc = ecryptfs_validate_marker(marker);
1009 	if (!rc)
1010 		ecryptfs_i_size_init(file_size, inode);
1011 	return rc;
1012 }
1013 
1014 void
ecryptfs_write_header_metadata(char * virt,struct ecryptfs_crypt_stat * crypt_stat,size_t * written)1015 ecryptfs_write_header_metadata(char *virt,
1016 			       struct ecryptfs_crypt_stat *crypt_stat,
1017 			       size_t *written)
1018 {
1019 	u32 header_extent_size;
1020 	u16 num_header_extents_at_front;
1021 
1022 	header_extent_size = (u32)crypt_stat->extent_size;
1023 	num_header_extents_at_front =
1024 		(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1025 	put_unaligned_be32(header_extent_size, virt);
1026 	virt += 4;
1027 	put_unaligned_be16(num_header_extents_at_front, virt);
1028 	(*written) = 6;
1029 }
1030 
1031 struct kmem_cache *ecryptfs_header_cache;
1032 
1033 /**
1034  * ecryptfs_write_headers_virt
1035  * @page_virt: The virtual address to write the headers to
1036  * @max: The size of memory allocated at page_virt
1037  * @size: Set to the number of bytes written by this function
1038  * @crypt_stat: The cryptographic context
1039  * @ecryptfs_dentry: The eCryptfs dentry
1040  *
1041  * Format version: 1
1042  *
1043  *   Header Extent:
1044  *     Octets 0-7:        Unencrypted file size (big-endian)
1045  *     Octets 8-15:       eCryptfs special marker
1046  *     Octets 16-19:      Flags
1047  *      Octet 16:         File format version number (between 0 and 255)
1048  *      Octets 17-18:     Reserved
1049  *      Octet 19:         Bit 1 (lsb): Reserved
1050  *                        Bit 2: Encrypted?
1051  *                        Bits 3-8: Reserved
1052  *     Octets 20-23:      Header extent size (big-endian)
1053  *     Octets 24-25:      Number of header extents at front of file
1054  *                        (big-endian)
1055  *     Octet  26:         Begin RFC 2440 authentication token packet set
1056  *   Data Extent 0:
1057  *     Lower data (CBC encrypted)
1058  *   Data Extent 1:
1059  *     Lower data (CBC encrypted)
1060  *   ...
1061  *
1062  * Returns zero on success
1063  */
ecryptfs_write_headers_virt(char * page_virt,size_t max,size_t * size,struct ecryptfs_crypt_stat * crypt_stat,struct dentry * ecryptfs_dentry)1064 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1065 				       size_t *size,
1066 				       struct ecryptfs_crypt_stat *crypt_stat,
1067 				       struct dentry *ecryptfs_dentry)
1068 {
1069 	int rc;
1070 	size_t written;
1071 	size_t offset;
1072 
1073 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1074 	write_ecryptfs_marker((page_virt + offset), &written);
1075 	offset += written;
1076 	ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1077 					&written);
1078 	offset += written;
1079 	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1080 				       &written);
1081 	offset += written;
1082 	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1083 					      ecryptfs_dentry, &written,
1084 					      max - offset);
1085 	if (rc)
1086 		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1087 				"set; rc = [%d]\n", rc);
1088 	if (size) {
1089 		offset += written;
1090 		*size = offset;
1091 	}
1092 	return rc;
1093 }
1094 
1095 static int
ecryptfs_write_metadata_to_contents(struct inode * ecryptfs_inode,char * virt,size_t virt_len)1096 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1097 				    char *virt, size_t virt_len)
1098 {
1099 	int rc;
1100 
1101 	rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1102 				  0, virt_len);
1103 	if (rc < 0)
1104 		printk(KERN_ERR "%s: Error attempting to write header "
1105 		       "information to lower file; rc = [%d]\n", __func__, rc);
1106 	else
1107 		rc = 0;
1108 	return rc;
1109 }
1110 
1111 static int
ecryptfs_write_metadata_to_xattr(struct dentry * ecryptfs_dentry,struct inode * ecryptfs_inode,char * page_virt,size_t size)1112 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1113 				 struct inode *ecryptfs_inode,
1114 				 char *page_virt, size_t size)
1115 {
1116 	int rc;
1117 	struct dentry *lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
1118 	struct inode *lower_inode = d_inode(lower_dentry);
1119 
1120 	if (!(lower_inode->i_opflags & IOP_XATTR)) {
1121 		rc = -EOPNOTSUPP;
1122 		goto out;
1123 	}
1124 
1125 	inode_lock(lower_inode);
1126 	rc = __vfs_setxattr(lower_dentry, lower_inode, ECRYPTFS_XATTR_NAME,
1127 			    page_virt, size, 0);
1128 	if (!rc && ecryptfs_inode)
1129 		fsstack_copy_attr_all(ecryptfs_inode, lower_inode);
1130 	inode_unlock(lower_inode);
1131 out:
1132 	return rc;
1133 }
1134 
ecryptfs_get_zeroed_pages(gfp_t gfp_mask,unsigned int order)1135 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1136 					       unsigned int order)
1137 {
1138 	struct page *page;
1139 
1140 	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1141 	if (page)
1142 		return (unsigned long) page_address(page);
1143 	return 0;
1144 }
1145 
1146 /**
1147  * ecryptfs_write_metadata
1148  * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1149  * @ecryptfs_inode: The newly created eCryptfs inode
1150  *
1151  * Write the file headers out.  This will likely involve a userspace
1152  * callout, in which the session key is encrypted with one or more
1153  * public keys and/or the passphrase necessary to do the encryption is
1154  * retrieved via a prompt.  Exactly what happens at this point should
1155  * be policy-dependent.
1156  *
1157  * Returns zero on success; non-zero on error
1158  */
ecryptfs_write_metadata(struct dentry * ecryptfs_dentry,struct inode * ecryptfs_inode)1159 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1160 			    struct inode *ecryptfs_inode)
1161 {
1162 	struct ecryptfs_crypt_stat *crypt_stat =
1163 		&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1164 	unsigned int order;
1165 	char *virt;
1166 	size_t virt_len;
1167 	size_t size = 0;
1168 	int rc = 0;
1169 
1170 	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1171 		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1172 			printk(KERN_ERR "Key is invalid; bailing out\n");
1173 			rc = -EINVAL;
1174 			goto out;
1175 		}
1176 	} else {
1177 		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1178 		       __func__);
1179 		rc = -EINVAL;
1180 		goto out;
1181 	}
1182 	virt_len = crypt_stat->metadata_size;
1183 	order = get_order(virt_len);
1184 	/* Released in this function */
1185 	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1186 	if (!virt) {
1187 		printk(KERN_ERR "%s: Out of memory\n", __func__);
1188 		rc = -ENOMEM;
1189 		goto out;
1190 	}
1191 	/* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1192 	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1193 					 ecryptfs_dentry);
1194 	if (unlikely(rc)) {
1195 		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1196 		       __func__, rc);
1197 		goto out_free;
1198 	}
1199 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1200 		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1201 						      virt, size);
1202 	else
1203 		rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1204 							 virt_len);
1205 	if (rc) {
1206 		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1207 		       "rc = [%d]\n", __func__, rc);
1208 		goto out_free;
1209 	}
1210 out_free:
1211 	free_pages((unsigned long)virt, order);
1212 out:
1213 	return rc;
1214 }
1215 
1216 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1217 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
parse_header_metadata(struct ecryptfs_crypt_stat * crypt_stat,char * virt,int * bytes_read,int validate_header_size)1218 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1219 				 char *virt, int *bytes_read,
1220 				 int validate_header_size)
1221 {
1222 	int rc = 0;
1223 	u32 header_extent_size;
1224 	u16 num_header_extents_at_front;
1225 
1226 	header_extent_size = get_unaligned_be32(virt);
1227 	virt += sizeof(__be32);
1228 	num_header_extents_at_front = get_unaligned_be16(virt);
1229 	crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1230 				     * (size_t)header_extent_size));
1231 	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1232 	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1233 	    && (crypt_stat->metadata_size
1234 		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1235 		rc = -EINVAL;
1236 		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1237 		       crypt_stat->metadata_size);
1238 	}
1239 	return rc;
1240 }
1241 
1242 /**
1243  * set_default_header_data
1244  * @crypt_stat: The cryptographic context
1245  *
1246  * For version 0 file format; this function is only for backwards
1247  * compatibility for files created with the prior versions of
1248  * eCryptfs.
1249  */
set_default_header_data(struct ecryptfs_crypt_stat * crypt_stat)1250 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1251 {
1252 	crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1253 }
1254 
ecryptfs_i_size_init(const char * page_virt,struct inode * inode)1255 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1256 {
1257 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1258 	struct ecryptfs_crypt_stat *crypt_stat;
1259 	u64 file_size;
1260 
1261 	crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1262 	mount_crypt_stat =
1263 		&ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1264 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1265 		file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1266 		if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1267 			file_size += crypt_stat->metadata_size;
1268 	} else
1269 		file_size = get_unaligned_be64(page_virt);
1270 	i_size_write(inode, (loff_t)file_size);
1271 	crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1272 }
1273 
1274 /**
1275  * ecryptfs_read_headers_virt
1276  * @page_virt: The virtual address into which to read the headers
1277  * @crypt_stat: The cryptographic context
1278  * @ecryptfs_dentry: The eCryptfs dentry
1279  * @validate_header_size: Whether to validate the header size while reading
1280  *
1281  * Read/parse the header data. The header format is detailed in the
1282  * comment block for the ecryptfs_write_headers_virt() function.
1283  *
1284  * Returns zero on success
1285  */
ecryptfs_read_headers_virt(char * page_virt,struct ecryptfs_crypt_stat * crypt_stat,struct dentry * ecryptfs_dentry,int validate_header_size)1286 static int ecryptfs_read_headers_virt(char *page_virt,
1287 				      struct ecryptfs_crypt_stat *crypt_stat,
1288 				      struct dentry *ecryptfs_dentry,
1289 				      int validate_header_size)
1290 {
1291 	int rc = 0;
1292 	int offset;
1293 	int bytes_read;
1294 
1295 	ecryptfs_set_default_sizes(crypt_stat);
1296 	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1297 		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1298 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1299 	rc = ecryptfs_validate_marker(page_virt + offset);
1300 	if (rc)
1301 		goto out;
1302 	if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1303 		ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1304 	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1305 	ecryptfs_process_flags(crypt_stat, (page_virt + offset), &bytes_read);
1306 	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1307 		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1308 				"file version [%d] is supported by this "
1309 				"version of eCryptfs\n",
1310 				crypt_stat->file_version,
1311 				ECRYPTFS_SUPPORTED_FILE_VERSION);
1312 		rc = -EINVAL;
1313 		goto out;
1314 	}
1315 	offset += bytes_read;
1316 	if (crypt_stat->file_version >= 1) {
1317 		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1318 					   &bytes_read, validate_header_size);
1319 		if (rc) {
1320 			ecryptfs_printk(KERN_WARNING, "Error reading header "
1321 					"metadata; rc = [%d]\n", rc);
1322 		}
1323 		offset += bytes_read;
1324 	} else
1325 		set_default_header_data(crypt_stat);
1326 	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1327 				       ecryptfs_dentry);
1328 out:
1329 	return rc;
1330 }
1331 
1332 /**
1333  * ecryptfs_read_xattr_region
1334  * @page_virt: The vitual address into which to read the xattr data
1335  * @ecryptfs_inode: The eCryptfs inode
1336  *
1337  * Attempts to read the crypto metadata from the extended attribute
1338  * region of the lower file.
1339  *
1340  * Returns zero on success; non-zero on error
1341  */
ecryptfs_read_xattr_region(char * page_virt,struct inode * ecryptfs_inode)1342 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1343 {
1344 	struct dentry *lower_dentry =
1345 		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1346 	ssize_t size;
1347 	int rc = 0;
1348 
1349 	size = ecryptfs_getxattr_lower(lower_dentry,
1350 				       ecryptfs_inode_to_lower(ecryptfs_inode),
1351 				       ECRYPTFS_XATTR_NAME,
1352 				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1353 	if (size < 0) {
1354 		if (unlikely(ecryptfs_verbosity > 0))
1355 			printk(KERN_INFO "Error attempting to read the [%s] "
1356 			       "xattr from the lower file; return value = "
1357 			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1358 		rc = -EINVAL;
1359 		goto out;
1360 	}
1361 out:
1362 	return rc;
1363 }
1364 
ecryptfs_read_and_validate_xattr_region(struct dentry * dentry,struct inode * inode)1365 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1366 					    struct inode *inode)
1367 {
1368 	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1369 	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1370 	int rc;
1371 
1372 	rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1373 				     ecryptfs_inode_to_lower(inode),
1374 				     ECRYPTFS_XATTR_NAME, file_size,
1375 				     ECRYPTFS_SIZE_AND_MARKER_BYTES);
1376 	if (rc < 0)
1377 		return rc;
1378 	else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1379 		return -EINVAL;
1380 	rc = ecryptfs_validate_marker(marker);
1381 	if (!rc)
1382 		ecryptfs_i_size_init(file_size, inode);
1383 	return rc;
1384 }
1385 
1386 /**
1387  * ecryptfs_read_metadata
1388  *
1389  * Common entry point for reading file metadata. From here, we could
1390  * retrieve the header information from the header region of the file,
1391  * the xattr region of the file, or some other repository that is
1392  * stored separately from the file itself. The current implementation
1393  * supports retrieving the metadata information from the file contents
1394  * and from the xattr region.
1395  *
1396  * Returns zero if valid headers found and parsed; non-zero otherwise
1397  */
ecryptfs_read_metadata(struct dentry * ecryptfs_dentry)1398 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1399 {
1400 	int rc;
1401 	char *page_virt;
1402 	struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1403 	struct ecryptfs_crypt_stat *crypt_stat =
1404 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1405 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1406 		&ecryptfs_superblock_to_private(
1407 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1408 
1409 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1410 						      mount_crypt_stat);
1411 	/* Read the first page from the underlying file */
1412 	page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1413 	if (!page_virt) {
1414 		rc = -ENOMEM;
1415 		goto out;
1416 	}
1417 	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1418 				 ecryptfs_inode);
1419 	if (rc >= 0)
1420 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1421 						ecryptfs_dentry,
1422 						ECRYPTFS_VALIDATE_HEADER_SIZE);
1423 	if (rc) {
1424 		/* metadata is not in the file header, so try xattrs */
1425 		memset(page_virt, 0, PAGE_SIZE);
1426 		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1427 		if (rc) {
1428 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1429 			       "file header region or xattr region, inode %lu\n",
1430 				ecryptfs_inode->i_ino);
1431 			rc = -EINVAL;
1432 			goto out;
1433 		}
1434 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1435 						ecryptfs_dentry,
1436 						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1437 		if (rc) {
1438 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1439 			       "file xattr region either, inode %lu\n",
1440 				ecryptfs_inode->i_ino);
1441 			rc = -EINVAL;
1442 		}
1443 		if (crypt_stat->mount_crypt_stat->flags
1444 		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1445 			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1446 		} else {
1447 			printk(KERN_WARNING "Attempt to access file with "
1448 			       "crypto metadata only in the extended attribute "
1449 			       "region, but eCryptfs was mounted without "
1450 			       "xattr support enabled. eCryptfs will not treat "
1451 			       "this like an encrypted file, inode %lu\n",
1452 				ecryptfs_inode->i_ino);
1453 			rc = -EINVAL;
1454 		}
1455 	}
1456 out:
1457 	if (page_virt) {
1458 		memset(page_virt, 0, PAGE_SIZE);
1459 		kmem_cache_free(ecryptfs_header_cache, page_virt);
1460 	}
1461 	return rc;
1462 }
1463 
1464 /**
1465  * ecryptfs_encrypt_filename - encrypt filename
1466  *
1467  * CBC-encrypts the filename. We do not want to encrypt the same
1468  * filename with the same key and IV, which may happen with hard
1469  * links, so we prepend random bits to each filename.
1470  *
1471  * Returns zero on success; non-zero otherwise
1472  */
1473 static int
ecryptfs_encrypt_filename(struct ecryptfs_filename * filename,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)1474 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1475 			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1476 {
1477 	int rc = 0;
1478 
1479 	filename->encrypted_filename = NULL;
1480 	filename->encrypted_filename_size = 0;
1481 	if (mount_crypt_stat && (mount_crypt_stat->flags
1482 				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1483 		size_t packet_size;
1484 		size_t remaining_bytes;
1485 
1486 		rc = ecryptfs_write_tag_70_packet(
1487 			NULL, NULL,
1488 			&filename->encrypted_filename_size,
1489 			mount_crypt_stat, NULL,
1490 			filename->filename_size);
1491 		if (rc) {
1492 			printk(KERN_ERR "%s: Error attempting to get packet "
1493 			       "size for tag 72; rc = [%d]\n", __func__,
1494 			       rc);
1495 			filename->encrypted_filename_size = 0;
1496 			goto out;
1497 		}
1498 		filename->encrypted_filename =
1499 			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1500 		if (!filename->encrypted_filename) {
1501 			rc = -ENOMEM;
1502 			goto out;
1503 		}
1504 		remaining_bytes = filename->encrypted_filename_size;
1505 		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1506 						  &remaining_bytes,
1507 						  &packet_size,
1508 						  mount_crypt_stat,
1509 						  filename->filename,
1510 						  filename->filename_size);
1511 		if (rc) {
1512 			printk(KERN_ERR "%s: Error attempting to generate "
1513 			       "tag 70 packet; rc = [%d]\n", __func__,
1514 			       rc);
1515 			kfree(filename->encrypted_filename);
1516 			filename->encrypted_filename = NULL;
1517 			filename->encrypted_filename_size = 0;
1518 			goto out;
1519 		}
1520 		filename->encrypted_filename_size = packet_size;
1521 	} else {
1522 		printk(KERN_ERR "%s: No support for requested filename "
1523 		       "encryption method in this release\n", __func__);
1524 		rc = -EOPNOTSUPP;
1525 		goto out;
1526 	}
1527 out:
1528 	return rc;
1529 }
1530 
ecryptfs_copy_filename(char ** copied_name,size_t * copied_name_size,const char * name,size_t name_size)1531 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1532 				  const char *name, size_t name_size)
1533 {
1534 	int rc = 0;
1535 
1536 	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1537 	if (!(*copied_name)) {
1538 		rc = -ENOMEM;
1539 		goto out;
1540 	}
1541 	memcpy((void *)(*copied_name), (void *)name, name_size);
1542 	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
1543 						 * in printing out the
1544 						 * string in debug
1545 						 * messages */
1546 	(*copied_name_size) = name_size;
1547 out:
1548 	return rc;
1549 }
1550 
1551 /**
1552  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1553  * @key_tfm: Crypto context for key material, set by this function
1554  * @cipher_name: Name of the cipher
1555  * @key_size: Size of the key in bytes
1556  *
1557  * Returns zero on success. Any crypto_tfm structs allocated here
1558  * should be released by other functions, such as on a superblock put
1559  * event, regardless of whether this function succeeds for fails.
1560  */
1561 static int
ecryptfs_process_key_cipher(struct crypto_skcipher ** key_tfm,char * cipher_name,size_t * key_size)1562 ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1563 			    char *cipher_name, size_t *key_size)
1564 {
1565 	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1566 	char *full_alg_name = NULL;
1567 	int rc;
1568 
1569 	*key_tfm = NULL;
1570 	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1571 		rc = -EINVAL;
1572 		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1573 		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1574 		goto out;
1575 	}
1576 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1577 						    "ecb");
1578 	if (rc)
1579 		goto out;
1580 	*key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1581 	if (IS_ERR(*key_tfm)) {
1582 		rc = PTR_ERR(*key_tfm);
1583 		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1584 		       "[%s]; rc = [%d]\n", full_alg_name, rc);
1585 		goto out;
1586 	}
1587 	crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
1588 	if (*key_size == 0)
1589 		*key_size = crypto_skcipher_default_keysize(*key_tfm);
1590 	get_random_bytes(dummy_key, *key_size);
1591 	rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1592 	if (rc) {
1593 		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1594 		       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1595 		       rc);
1596 		rc = -EINVAL;
1597 		goto out;
1598 	}
1599 out:
1600 	kfree(full_alg_name);
1601 	return rc;
1602 }
1603 
1604 struct kmem_cache *ecryptfs_key_tfm_cache;
1605 static struct list_head key_tfm_list;
1606 struct mutex key_tfm_list_mutex;
1607 
ecryptfs_init_crypto(void)1608 int __init ecryptfs_init_crypto(void)
1609 {
1610 	mutex_init(&key_tfm_list_mutex);
1611 	INIT_LIST_HEAD(&key_tfm_list);
1612 	return 0;
1613 }
1614 
1615 /**
1616  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1617  *
1618  * Called only at module unload time
1619  */
ecryptfs_destroy_crypto(void)1620 int ecryptfs_destroy_crypto(void)
1621 {
1622 	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1623 
1624 	mutex_lock(&key_tfm_list_mutex);
1625 	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1626 				 key_tfm_list) {
1627 		list_del(&key_tfm->key_tfm_list);
1628 		crypto_free_skcipher(key_tfm->key_tfm);
1629 		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1630 	}
1631 	mutex_unlock(&key_tfm_list_mutex);
1632 	return 0;
1633 }
1634 
1635 int
ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm ** key_tfm,char * cipher_name,size_t key_size)1636 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1637 			 size_t key_size)
1638 {
1639 	struct ecryptfs_key_tfm *tmp_tfm;
1640 	int rc = 0;
1641 
1642 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1643 
1644 	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1645 	if (key_tfm)
1646 		(*key_tfm) = tmp_tfm;
1647 	if (!tmp_tfm) {
1648 		rc = -ENOMEM;
1649 		goto out;
1650 	}
1651 	mutex_init(&tmp_tfm->key_tfm_mutex);
1652 	strncpy(tmp_tfm->cipher_name, cipher_name,
1653 		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1654 	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1655 	tmp_tfm->key_size = key_size;
1656 	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1657 					 tmp_tfm->cipher_name,
1658 					 &tmp_tfm->key_size);
1659 	if (rc) {
1660 		printk(KERN_ERR "Error attempting to initialize key TFM "
1661 		       "cipher with name = [%s]; rc = [%d]\n",
1662 		       tmp_tfm->cipher_name, rc);
1663 		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1664 		if (key_tfm)
1665 			(*key_tfm) = NULL;
1666 		goto out;
1667 	}
1668 	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1669 out:
1670 	return rc;
1671 }
1672 
1673 /**
1674  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1675  * @cipher_name: the name of the cipher to search for
1676  * @key_tfm: set to corresponding tfm if found
1677  *
1678  * Searches for cached key_tfm matching @cipher_name
1679  * Must be called with &key_tfm_list_mutex held
1680  * Returns 1 if found, with @key_tfm set
1681  * Returns 0 if not found, with @key_tfm set to NULL
1682  */
ecryptfs_tfm_exists(char * cipher_name,struct ecryptfs_key_tfm ** key_tfm)1683 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1684 {
1685 	struct ecryptfs_key_tfm *tmp_key_tfm;
1686 
1687 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1688 
1689 	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1690 		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1691 			if (key_tfm)
1692 				(*key_tfm) = tmp_key_tfm;
1693 			return 1;
1694 		}
1695 	}
1696 	if (key_tfm)
1697 		(*key_tfm) = NULL;
1698 	return 0;
1699 }
1700 
1701 /**
1702  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1703  *
1704  * @tfm: set to cached tfm found, or new tfm created
1705  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1706  * @cipher_name: the name of the cipher to search for and/or add
1707  *
1708  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1709  * Searches for cached item first, and creates new if not found.
1710  * Returns 0 on success, non-zero if adding new cipher failed
1711  */
ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher ** tfm,struct mutex ** tfm_mutex,char * cipher_name)1712 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1713 					       struct mutex **tfm_mutex,
1714 					       char *cipher_name)
1715 {
1716 	struct ecryptfs_key_tfm *key_tfm;
1717 	int rc = 0;
1718 
1719 	(*tfm) = NULL;
1720 	(*tfm_mutex) = NULL;
1721 
1722 	mutex_lock(&key_tfm_list_mutex);
1723 	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1724 		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1725 		if (rc) {
1726 			printk(KERN_ERR "Error adding new key_tfm to list; "
1727 					"rc = [%d]\n", rc);
1728 			goto out;
1729 		}
1730 	}
1731 	(*tfm) = key_tfm->key_tfm;
1732 	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1733 out:
1734 	mutex_unlock(&key_tfm_list_mutex);
1735 	return rc;
1736 }
1737 
1738 /* 64 characters forming a 6-bit target field */
1739 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1740 						 "EFGHIJKLMNOPQRST"
1741 						 "UVWXYZabcdefghij"
1742 						 "klmnopqrstuvwxyz");
1743 
1744 /* We could either offset on every reverse map or just pad some 0x00's
1745  * at the front here */
1746 static const unsigned char filename_rev_map[256] = {
1747 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1748 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1749 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1750 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1751 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1752 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1753 	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1754 	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1755 	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1756 	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1757 	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1758 	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1759 	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1760 	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1761 	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1762 	0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1763 };
1764 
1765 /**
1766  * ecryptfs_encode_for_filename
1767  * @dst: Destination location for encoded filename
1768  * @dst_size: Size of the encoded filename in bytes
1769  * @src: Source location for the filename to encode
1770  * @src_size: Size of the source in bytes
1771  */
ecryptfs_encode_for_filename(unsigned char * dst,size_t * dst_size,unsigned char * src,size_t src_size)1772 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1773 				  unsigned char *src, size_t src_size)
1774 {
1775 	size_t num_blocks;
1776 	size_t block_num = 0;
1777 	size_t dst_offset = 0;
1778 	unsigned char last_block[3];
1779 
1780 	if (src_size == 0) {
1781 		(*dst_size) = 0;
1782 		goto out;
1783 	}
1784 	num_blocks = (src_size / 3);
1785 	if ((src_size % 3) == 0) {
1786 		memcpy(last_block, (&src[src_size - 3]), 3);
1787 	} else {
1788 		num_blocks++;
1789 		last_block[2] = 0x00;
1790 		switch (src_size % 3) {
1791 		case 1:
1792 			last_block[0] = src[src_size - 1];
1793 			last_block[1] = 0x00;
1794 			break;
1795 		case 2:
1796 			last_block[0] = src[src_size - 2];
1797 			last_block[1] = src[src_size - 1];
1798 		}
1799 	}
1800 	(*dst_size) = (num_blocks * 4);
1801 	if (!dst)
1802 		goto out;
1803 	while (block_num < num_blocks) {
1804 		unsigned char *src_block;
1805 		unsigned char dst_block[4];
1806 
1807 		if (block_num == (num_blocks - 1))
1808 			src_block = last_block;
1809 		else
1810 			src_block = &src[block_num * 3];
1811 		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1812 		dst_block[1] = (((src_block[0] << 4) & 0x30)
1813 				| ((src_block[1] >> 4) & 0x0F));
1814 		dst_block[2] = (((src_block[1] << 2) & 0x3C)
1815 				| ((src_block[2] >> 6) & 0x03));
1816 		dst_block[3] = (src_block[2] & 0x3F);
1817 		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1818 		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1819 		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1820 		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1821 		block_num++;
1822 	}
1823 out:
1824 	return;
1825 }
1826 
ecryptfs_max_decoded_size(size_t encoded_size)1827 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1828 {
1829 	/* Not exact; conservatively long. Every block of 4
1830 	 * encoded characters decodes into a block of 3
1831 	 * decoded characters. This segment of code provides
1832 	 * the caller with the maximum amount of allocated
1833 	 * space that @dst will need to point to in a
1834 	 * subsequent call. */
1835 	return ((encoded_size + 1) * 3) / 4;
1836 }
1837 
1838 /**
1839  * ecryptfs_decode_from_filename
1840  * @dst: If NULL, this function only sets @dst_size and returns. If
1841  *       non-NULL, this function decodes the encoded octets in @src
1842  *       into the memory that @dst points to.
1843  * @dst_size: Set to the size of the decoded string.
1844  * @src: The encoded set of octets to decode.
1845  * @src_size: The size of the encoded set of octets to decode.
1846  */
1847 static void
ecryptfs_decode_from_filename(unsigned char * dst,size_t * dst_size,const unsigned char * src,size_t src_size)1848 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1849 			      const unsigned char *src, size_t src_size)
1850 {
1851 	u8 current_bit_offset = 0;
1852 	size_t src_byte_offset = 0;
1853 	size_t dst_byte_offset = 0;
1854 
1855 	if (!dst) {
1856 		(*dst_size) = ecryptfs_max_decoded_size(src_size);
1857 		goto out;
1858 	}
1859 	while (src_byte_offset < src_size) {
1860 		unsigned char src_byte =
1861 				filename_rev_map[(int)src[src_byte_offset]];
1862 
1863 		switch (current_bit_offset) {
1864 		case 0:
1865 			dst[dst_byte_offset] = (src_byte << 2);
1866 			current_bit_offset = 6;
1867 			break;
1868 		case 6:
1869 			dst[dst_byte_offset++] |= (src_byte >> 4);
1870 			dst[dst_byte_offset] = ((src_byte & 0xF)
1871 						 << 4);
1872 			current_bit_offset = 4;
1873 			break;
1874 		case 4:
1875 			dst[dst_byte_offset++] |= (src_byte >> 2);
1876 			dst[dst_byte_offset] = (src_byte << 6);
1877 			current_bit_offset = 2;
1878 			break;
1879 		case 2:
1880 			dst[dst_byte_offset++] |= (src_byte);
1881 			current_bit_offset = 0;
1882 			break;
1883 		}
1884 		src_byte_offset++;
1885 	}
1886 	(*dst_size) = dst_byte_offset;
1887 out:
1888 	return;
1889 }
1890 
1891 /**
1892  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1893  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1894  * @name: The plaintext name
1895  * @length: The length of the plaintext
1896  * @encoded_name: The encypted name
1897  *
1898  * Encrypts and encodes a filename into something that constitutes a
1899  * valid filename for a filesystem, with printable characters.
1900  *
1901  * We assume that we have a properly initialized crypto context,
1902  * pointed to by crypt_stat->tfm.
1903  *
1904  * Returns zero on success; non-zero on otherwise
1905  */
ecryptfs_encrypt_and_encode_filename(char ** encoded_name,size_t * encoded_name_size,struct ecryptfs_mount_crypt_stat * mount_crypt_stat,const char * name,size_t name_size)1906 int ecryptfs_encrypt_and_encode_filename(
1907 	char **encoded_name,
1908 	size_t *encoded_name_size,
1909 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1910 	const char *name, size_t name_size)
1911 {
1912 	size_t encoded_name_no_prefix_size;
1913 	int rc = 0;
1914 
1915 	(*encoded_name) = NULL;
1916 	(*encoded_name_size) = 0;
1917 	if (mount_crypt_stat && (mount_crypt_stat->flags
1918 				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1919 		struct ecryptfs_filename *filename;
1920 
1921 		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1922 		if (!filename) {
1923 			rc = -ENOMEM;
1924 			goto out;
1925 		}
1926 		filename->filename = (char *)name;
1927 		filename->filename_size = name_size;
1928 		rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
1929 		if (rc) {
1930 			printk(KERN_ERR "%s: Error attempting to encrypt "
1931 			       "filename; rc = [%d]\n", __func__, rc);
1932 			kfree(filename);
1933 			goto out;
1934 		}
1935 		ecryptfs_encode_for_filename(
1936 			NULL, &encoded_name_no_prefix_size,
1937 			filename->encrypted_filename,
1938 			filename->encrypted_filename_size);
1939 		if (mount_crypt_stat
1940 			&& (mount_crypt_stat->flags
1941 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1942 			(*encoded_name_size) =
1943 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1944 				 + encoded_name_no_prefix_size);
1945 		else
1946 			(*encoded_name_size) =
1947 				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1948 				 + encoded_name_no_prefix_size);
1949 		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1950 		if (!(*encoded_name)) {
1951 			rc = -ENOMEM;
1952 			kfree(filename->encrypted_filename);
1953 			kfree(filename);
1954 			goto out;
1955 		}
1956 		if (mount_crypt_stat
1957 			&& (mount_crypt_stat->flags
1958 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1959 			memcpy((*encoded_name),
1960 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1961 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1962 			ecryptfs_encode_for_filename(
1963 			    ((*encoded_name)
1964 			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1965 			    &encoded_name_no_prefix_size,
1966 			    filename->encrypted_filename,
1967 			    filename->encrypted_filename_size);
1968 			(*encoded_name_size) =
1969 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1970 				 + encoded_name_no_prefix_size);
1971 			(*encoded_name)[(*encoded_name_size)] = '\0';
1972 		} else {
1973 			rc = -EOPNOTSUPP;
1974 		}
1975 		if (rc) {
1976 			printk(KERN_ERR "%s: Error attempting to encode "
1977 			       "encrypted filename; rc = [%d]\n", __func__,
1978 			       rc);
1979 			kfree((*encoded_name));
1980 			(*encoded_name) = NULL;
1981 			(*encoded_name_size) = 0;
1982 		}
1983 		kfree(filename->encrypted_filename);
1984 		kfree(filename);
1985 	} else {
1986 		rc = ecryptfs_copy_filename(encoded_name,
1987 					    encoded_name_size,
1988 					    name, name_size);
1989 	}
1990 out:
1991 	return rc;
1992 }
1993 
is_dot_dotdot(const char * name,size_t name_size)1994 static bool is_dot_dotdot(const char *name, size_t name_size)
1995 {
1996 	if (name_size == 1 && name[0] == '.')
1997 		return true;
1998 	else if (name_size == 2 && name[0] == '.' && name[1] == '.')
1999 		return true;
2000 
2001 	return false;
2002 }
2003 
2004 /**
2005  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2006  * @plaintext_name: The plaintext name
2007  * @plaintext_name_size: The plaintext name size
2008  * @ecryptfs_dir_dentry: eCryptfs directory dentry
2009  * @name: The filename in cipher text
2010  * @name_size: The cipher text name size
2011  *
2012  * Decrypts and decodes the filename.
2013  *
2014  * Returns zero on error; non-zero otherwise
2015  */
ecryptfs_decode_and_decrypt_filename(char ** plaintext_name,size_t * plaintext_name_size,struct super_block * sb,const char * name,size_t name_size)2016 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2017 					 size_t *plaintext_name_size,
2018 					 struct super_block *sb,
2019 					 const char *name, size_t name_size)
2020 {
2021 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2022 		&ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2023 	char *decoded_name;
2024 	size_t decoded_name_size;
2025 	size_t packet_size;
2026 	int rc = 0;
2027 
2028 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) &&
2029 	    !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) {
2030 		if (is_dot_dotdot(name, name_size)) {
2031 			rc = ecryptfs_copy_filename(plaintext_name,
2032 						    plaintext_name_size,
2033 						    name, name_size);
2034 			goto out;
2035 		}
2036 
2037 		if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE ||
2038 		    strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2039 			    ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) {
2040 			rc = -EINVAL;
2041 			goto out;
2042 		}
2043 
2044 		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2045 		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2046 		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2047 					      name, name_size);
2048 		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2049 		if (!decoded_name) {
2050 			rc = -ENOMEM;
2051 			goto out;
2052 		}
2053 		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2054 					      name, name_size);
2055 		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2056 						  plaintext_name_size,
2057 						  &packet_size,
2058 						  mount_crypt_stat,
2059 						  decoded_name,
2060 						  decoded_name_size);
2061 		if (rc) {
2062 			ecryptfs_printk(KERN_DEBUG,
2063 					"%s: Could not parse tag 70 packet from filename\n",
2064 					__func__);
2065 			goto out_free;
2066 		}
2067 	} else {
2068 		rc = ecryptfs_copy_filename(plaintext_name,
2069 					    plaintext_name_size,
2070 					    name, name_size);
2071 		goto out;
2072 	}
2073 out_free:
2074 	kfree(decoded_name);
2075 out:
2076 	return rc;
2077 }
2078 
2079 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16	143
2080 
ecryptfs_set_f_namelen(long * namelen,long lower_namelen,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)2081 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2082 			   struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2083 {
2084 	struct crypto_skcipher *tfm;
2085 	struct mutex *tfm_mutex;
2086 	size_t cipher_blocksize;
2087 	int rc;
2088 
2089 	if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2090 		(*namelen) = lower_namelen;
2091 		return 0;
2092 	}
2093 
2094 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2095 			mount_crypt_stat->global_default_fn_cipher_name);
2096 	if (unlikely(rc)) {
2097 		(*namelen) = 0;
2098 		return rc;
2099 	}
2100 
2101 	mutex_lock(tfm_mutex);
2102 	cipher_blocksize = crypto_skcipher_blocksize(tfm);
2103 	mutex_unlock(tfm_mutex);
2104 
2105 	/* Return an exact amount for the common cases */
2106 	if (lower_namelen == NAME_MAX
2107 	    && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2108 		(*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2109 		return 0;
2110 	}
2111 
2112 	/* Return a safe estimate for the uncommon cases */
2113 	(*namelen) = lower_namelen;
2114 	(*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2115 	/* Since this is the max decoded size, subtract 1 "decoded block" len */
2116 	(*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2117 	(*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2118 	(*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2119 	/* Worst case is that the filename is padded nearly a full block size */
2120 	(*namelen) -= cipher_blocksize - 1;
2121 
2122 	if ((*namelen) < 0)
2123 		(*namelen) = 0;
2124 
2125 	return 0;
2126 }
2127