1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
5 *
6 * Davide Libenzi <davidel@xmailserver.org>
7 */
8
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/freezer.h>
33 #include <linux/uaccess.h>
34 #include <asm/io.h>
35 #include <asm/mman.h>
36 #include <linux/atomic.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/compat.h>
40 #include <linux/rculist.h>
41 #include <net/busy_poll.h>
42
43 /*
44 * LOCKING:
45 * There are three level of locking required by epoll :
46 *
47 * 1) epmutex (mutex)
48 * 2) ep->mtx (mutex)
49 * 3) ep->lock (rwlock)
50 *
51 * The acquire order is the one listed above, from 1 to 3.
52 * We need a rwlock (ep->lock) because we manipulate objects
53 * from inside the poll callback, that might be triggered from
54 * a wake_up() that in turn might be called from IRQ context.
55 * So we can't sleep inside the poll callback and hence we need
56 * a spinlock. During the event transfer loop (from kernel to
57 * user space) we could end up sleeping due a copy_to_user(), so
58 * we need a lock that will allow us to sleep. This lock is a
59 * mutex (ep->mtx). It is acquired during the event transfer loop,
60 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
61 * Then we also need a global mutex to serialize eventpoll_release_file()
62 * and ep_free().
63 * This mutex is acquired by ep_free() during the epoll file
64 * cleanup path and it is also acquired by eventpoll_release_file()
65 * if a file has been pushed inside an epoll set and it is then
66 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
67 * It is also acquired when inserting an epoll fd onto another epoll
68 * fd. We do this so that we walk the epoll tree and ensure that this
69 * insertion does not create a cycle of epoll file descriptors, which
70 * could lead to deadlock. We need a global mutex to prevent two
71 * simultaneous inserts (A into B and B into A) from racing and
72 * constructing a cycle without either insert observing that it is
73 * going to.
74 * It is necessary to acquire multiple "ep->mtx"es at once in the
75 * case when one epoll fd is added to another. In this case, we
76 * always acquire the locks in the order of nesting (i.e. after
77 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
78 * before e2->mtx). Since we disallow cycles of epoll file
79 * descriptors, this ensures that the mutexes are well-ordered. In
80 * order to communicate this nesting to lockdep, when walking a tree
81 * of epoll file descriptors, we use the current recursion depth as
82 * the lockdep subkey.
83 * It is possible to drop the "ep->mtx" and to use the global
84 * mutex "epmutex" (together with "ep->lock") to have it working,
85 * but having "ep->mtx" will make the interface more scalable.
86 * Events that require holding "epmutex" are very rare, while for
87 * normal operations the epoll private "ep->mtx" will guarantee
88 * a better scalability.
89 */
90
91 /* Epoll private bits inside the event mask */
92 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
93
94 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
95
96 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
97 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
98
99 /* Maximum number of nesting allowed inside epoll sets */
100 #define EP_MAX_NESTS 4
101
102 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
103
104 #define EP_UNACTIVE_PTR ((void *) -1L)
105
106 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
107
108 struct epoll_filefd {
109 struct file *file;
110 int fd;
111 } __packed;
112
113 /*
114 * Structure used to track possible nested calls, for too deep recursions
115 * and loop cycles.
116 */
117 struct nested_call_node {
118 struct list_head llink;
119 void *cookie;
120 void *ctx;
121 };
122
123 /*
124 * This structure is used as collector for nested calls, to check for
125 * maximum recursion dept and loop cycles.
126 */
127 struct nested_calls {
128 struct list_head tasks_call_list;
129 spinlock_t lock;
130 };
131
132 /*
133 * Each file descriptor added to the eventpoll interface will
134 * have an entry of this type linked to the "rbr" RB tree.
135 * Avoid increasing the size of this struct, there can be many thousands
136 * of these on a server and we do not want this to take another cache line.
137 */
138 struct epitem {
139 union {
140 /* RB tree node links this structure to the eventpoll RB tree */
141 struct rb_node rbn;
142 /* Used to free the struct epitem */
143 struct rcu_head rcu;
144 };
145
146 /* List header used to link this structure to the eventpoll ready list */
147 struct list_head rdllink;
148
149 /*
150 * Works together "struct eventpoll"->ovflist in keeping the
151 * single linked chain of items.
152 */
153 struct epitem *next;
154
155 /* The file descriptor information this item refers to */
156 struct epoll_filefd ffd;
157
158 /* Number of active wait queue attached to poll operations */
159 int nwait;
160
161 /* List containing poll wait queues */
162 struct list_head pwqlist;
163
164 /* The "container" of this item */
165 struct eventpoll *ep;
166
167 /* List header used to link this item to the "struct file" items list */
168 struct list_head fllink;
169
170 /* wakeup_source used when EPOLLWAKEUP is set */
171 struct wakeup_source __rcu *ws;
172
173 /* The structure that describe the interested events and the source fd */
174 struct epoll_event event;
175 };
176
177 /*
178 * This structure is stored inside the "private_data" member of the file
179 * structure and represents the main data structure for the eventpoll
180 * interface.
181 */
182 struct eventpoll {
183 /*
184 * This mutex is used to ensure that files are not removed
185 * while epoll is using them. This is held during the event
186 * collection loop, the file cleanup path, the epoll file exit
187 * code and the ctl operations.
188 */
189 struct mutex mtx;
190
191 /* Wait queue used by sys_epoll_wait() */
192 wait_queue_head_t wq;
193
194 /* Wait queue used by file->poll() */
195 wait_queue_head_t poll_wait;
196
197 /* List of ready file descriptors */
198 struct list_head rdllist;
199
200 /* Lock which protects rdllist and ovflist */
201 rwlock_t lock;
202
203 /* RB tree root used to store monitored fd structs */
204 struct rb_root_cached rbr;
205
206 /*
207 * This is a single linked list that chains all the "struct epitem" that
208 * happened while transferring ready events to userspace w/out
209 * holding ->lock.
210 */
211 struct epitem *ovflist;
212
213 /* wakeup_source used when ep_scan_ready_list is running */
214 struct wakeup_source *ws;
215
216 /* The user that created the eventpoll descriptor */
217 struct user_struct *user;
218
219 struct file *file;
220
221 /* used to optimize loop detection check */
222 int visited;
223 struct list_head visited_list_link;
224
225 #ifdef CONFIG_NET_RX_BUSY_POLL
226 /* used to track busy poll napi_id */
227 unsigned int napi_id;
228 #endif
229 };
230
231 /* Wait structure used by the poll hooks */
232 struct eppoll_entry {
233 /* List header used to link this structure to the "struct epitem" */
234 struct list_head llink;
235
236 /* The "base" pointer is set to the container "struct epitem" */
237 struct epitem *base;
238
239 /*
240 * Wait queue item that will be linked to the target file wait
241 * queue head.
242 */
243 wait_queue_entry_t wait;
244
245 /* The wait queue head that linked the "wait" wait queue item */
246 wait_queue_head_t *whead;
247 };
248
249 /* Wrapper struct used by poll queueing */
250 struct ep_pqueue {
251 poll_table pt;
252 struct epitem *epi;
253 };
254
255 /* Used by the ep_send_events() function as callback private data */
256 struct ep_send_events_data {
257 int maxevents;
258 struct epoll_event __user *events;
259 int res;
260 };
261
262 /*
263 * Configuration options available inside /proc/sys/fs/epoll/
264 */
265 /* Maximum number of epoll watched descriptors, per user */
266 static long max_user_watches __read_mostly;
267
268 /*
269 * This mutex is used to serialize ep_free() and eventpoll_release_file().
270 */
271 static DEFINE_MUTEX(epmutex);
272
273 /* Used to check for epoll file descriptor inclusion loops */
274 static struct nested_calls poll_loop_ncalls;
275
276 /* Slab cache used to allocate "struct epitem" */
277 static struct kmem_cache *epi_cache __read_mostly;
278
279 /* Slab cache used to allocate "struct eppoll_entry" */
280 static struct kmem_cache *pwq_cache __read_mostly;
281
282 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
283 static LIST_HEAD(visited_list);
284
285 /*
286 * List of files with newly added links, where we may need to limit the number
287 * of emanating paths. Protected by the epmutex.
288 */
289 static LIST_HEAD(tfile_check_list);
290
291 #ifdef CONFIG_SYSCTL
292
293 #include <linux/sysctl.h>
294
295 static long long_zero;
296 static long long_max = LONG_MAX;
297
298 struct ctl_table epoll_table[] = {
299 {
300 .procname = "max_user_watches",
301 .data = &max_user_watches,
302 .maxlen = sizeof(max_user_watches),
303 .mode = 0644,
304 .proc_handler = proc_doulongvec_minmax,
305 .extra1 = &long_zero,
306 .extra2 = &long_max,
307 },
308 { }
309 };
310 #endif /* CONFIG_SYSCTL */
311
312 static const struct file_operations eventpoll_fops;
313
is_file_epoll(struct file * f)314 static inline int is_file_epoll(struct file *f)
315 {
316 return f->f_op == &eventpoll_fops;
317 }
318
319 /* Setup the structure that is used as key for the RB tree */
ep_set_ffd(struct epoll_filefd * ffd,struct file * file,int fd)320 static inline void ep_set_ffd(struct epoll_filefd *ffd,
321 struct file *file, int fd)
322 {
323 ffd->file = file;
324 ffd->fd = fd;
325 }
326
327 /* Compare RB tree keys */
ep_cmp_ffd(struct epoll_filefd * p1,struct epoll_filefd * p2)328 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
329 struct epoll_filefd *p2)
330 {
331 return (p1->file > p2->file ? +1:
332 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
333 }
334
335 /* Tells us if the item is currently linked */
ep_is_linked(struct epitem * epi)336 static inline int ep_is_linked(struct epitem *epi)
337 {
338 return !list_empty(&epi->rdllink);
339 }
340
ep_pwq_from_wait(wait_queue_entry_t * p)341 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
342 {
343 return container_of(p, struct eppoll_entry, wait);
344 }
345
346 /* Get the "struct epitem" from a wait queue pointer */
ep_item_from_wait(wait_queue_entry_t * p)347 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
348 {
349 return container_of(p, struct eppoll_entry, wait)->base;
350 }
351
352 /* Get the "struct epitem" from an epoll queue wrapper */
ep_item_from_epqueue(poll_table * p)353 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
354 {
355 return container_of(p, struct ep_pqueue, pt)->epi;
356 }
357
358 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
ep_op_has_event(int op)359 static inline int ep_op_has_event(int op)
360 {
361 return op != EPOLL_CTL_DEL;
362 }
363
364 /* Initialize the poll safe wake up structure */
ep_nested_calls_init(struct nested_calls * ncalls)365 static void ep_nested_calls_init(struct nested_calls *ncalls)
366 {
367 INIT_LIST_HEAD(&ncalls->tasks_call_list);
368 spin_lock_init(&ncalls->lock);
369 }
370
371 /**
372 * ep_events_available - Checks if ready events might be available.
373 *
374 * @ep: Pointer to the eventpoll context.
375 *
376 * Returns: Returns a value different than zero if ready events are available,
377 * or zero otherwise.
378 */
ep_events_available(struct eventpoll * ep)379 static inline int ep_events_available(struct eventpoll *ep)
380 {
381 return !list_empty_careful(&ep->rdllist) ||
382 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
383 }
384
385 #ifdef CONFIG_NET_RX_BUSY_POLL
ep_busy_loop_end(void * p,unsigned long start_time)386 static bool ep_busy_loop_end(void *p, unsigned long start_time)
387 {
388 struct eventpoll *ep = p;
389
390 return ep_events_available(ep) || busy_loop_timeout(start_time);
391 }
392
393 /*
394 * Busy poll if globally on and supporting sockets found && no events,
395 * busy loop will return if need_resched or ep_events_available.
396 *
397 * we must do our busy polling with irqs enabled
398 */
ep_busy_loop(struct eventpoll * ep,int nonblock)399 static void ep_busy_loop(struct eventpoll *ep, int nonblock)
400 {
401 unsigned int napi_id = READ_ONCE(ep->napi_id);
402
403 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
404 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
405 }
406
ep_reset_busy_poll_napi_id(struct eventpoll * ep)407 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
408 {
409 if (ep->napi_id)
410 ep->napi_id = 0;
411 }
412
413 /*
414 * Set epoll busy poll NAPI ID from sk.
415 */
ep_set_busy_poll_napi_id(struct epitem * epi)416 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
417 {
418 struct eventpoll *ep;
419 unsigned int napi_id;
420 struct socket *sock;
421 struct sock *sk;
422 int err;
423
424 if (!net_busy_loop_on())
425 return;
426
427 sock = sock_from_file(epi->ffd.file, &err);
428 if (!sock)
429 return;
430
431 sk = sock->sk;
432 if (!sk)
433 return;
434
435 napi_id = READ_ONCE(sk->sk_napi_id);
436 ep = epi->ep;
437
438 /* Non-NAPI IDs can be rejected
439 * or
440 * Nothing to do if we already have this ID
441 */
442 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
443 return;
444
445 /* record NAPI ID for use in next busy poll */
446 ep->napi_id = napi_id;
447 }
448
449 #else
450
ep_busy_loop(struct eventpoll * ep,int nonblock)451 static inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
452 {
453 }
454
ep_reset_busy_poll_napi_id(struct eventpoll * ep)455 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
456 {
457 }
458
ep_set_busy_poll_napi_id(struct epitem * epi)459 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
460 {
461 }
462
463 #endif /* CONFIG_NET_RX_BUSY_POLL */
464
465 /**
466 * ep_call_nested - Perform a bound (possibly) nested call, by checking
467 * that the recursion limit is not exceeded, and that
468 * the same nested call (by the meaning of same cookie) is
469 * no re-entered.
470 *
471 * @ncalls: Pointer to the nested_calls structure to be used for this call.
472 * @nproc: Nested call core function pointer.
473 * @priv: Opaque data to be passed to the @nproc callback.
474 * @cookie: Cookie to be used to identify this nested call.
475 * @ctx: This instance context.
476 *
477 * Returns: Returns the code returned by the @nproc callback, or -1 if
478 * the maximum recursion limit has been exceeded.
479 */
ep_call_nested(struct nested_calls * ncalls,int (* nproc)(void *,void *,int),void * priv,void * cookie,void * ctx)480 static int ep_call_nested(struct nested_calls *ncalls,
481 int (*nproc)(void *, void *, int), void *priv,
482 void *cookie, void *ctx)
483 {
484 int error, call_nests = 0;
485 unsigned long flags;
486 struct list_head *lsthead = &ncalls->tasks_call_list;
487 struct nested_call_node *tncur;
488 struct nested_call_node tnode;
489
490 spin_lock_irqsave(&ncalls->lock, flags);
491
492 /*
493 * Try to see if the current task is already inside this wakeup call.
494 * We use a list here, since the population inside this set is always
495 * very much limited.
496 */
497 list_for_each_entry(tncur, lsthead, llink) {
498 if (tncur->ctx == ctx &&
499 (tncur->cookie == cookie || ++call_nests > EP_MAX_NESTS)) {
500 /*
501 * Ops ... loop detected or maximum nest level reached.
502 * We abort this wake by breaking the cycle itself.
503 */
504 error = -1;
505 goto out_unlock;
506 }
507 }
508
509 /* Add the current task and cookie to the list */
510 tnode.ctx = ctx;
511 tnode.cookie = cookie;
512 list_add(&tnode.llink, lsthead);
513
514 spin_unlock_irqrestore(&ncalls->lock, flags);
515
516 /* Call the nested function */
517 error = (*nproc)(priv, cookie, call_nests);
518
519 /* Remove the current task from the list */
520 spin_lock_irqsave(&ncalls->lock, flags);
521 list_del(&tnode.llink);
522 out_unlock:
523 spin_unlock_irqrestore(&ncalls->lock, flags);
524
525 return error;
526 }
527
528 /*
529 * As described in commit 0ccf831cb lockdep: annotate epoll
530 * the use of wait queues used by epoll is done in a very controlled
531 * manner. Wake ups can nest inside each other, but are never done
532 * with the same locking. For example:
533 *
534 * dfd = socket(...);
535 * efd1 = epoll_create();
536 * efd2 = epoll_create();
537 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
538 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
539 *
540 * When a packet arrives to the device underneath "dfd", the net code will
541 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
542 * callback wakeup entry on that queue, and the wake_up() performed by the
543 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
544 * (efd1) notices that it may have some event ready, so it needs to wake up
545 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
546 * that ends up in another wake_up(), after having checked about the
547 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
548 * avoid stack blasting.
549 *
550 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
551 * this special case of epoll.
552 */
553 #ifdef CONFIG_DEBUG_LOCK_ALLOC
554
555 static struct nested_calls poll_safewake_ncalls;
556
ep_poll_wakeup_proc(void * priv,void * cookie,int call_nests)557 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
558 {
559 unsigned long flags;
560 wait_queue_head_t *wqueue = (wait_queue_head_t *)cookie;
561
562 spin_lock_irqsave_nested(&wqueue->lock, flags, call_nests + 1);
563 wake_up_locked_poll(wqueue, EPOLLIN);
564 spin_unlock_irqrestore(&wqueue->lock, flags);
565
566 return 0;
567 }
568
ep_poll_safewake(wait_queue_head_t * wq)569 static void ep_poll_safewake(wait_queue_head_t *wq)
570 {
571 int this_cpu = get_cpu();
572
573 ep_call_nested(&poll_safewake_ncalls,
574 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
575
576 put_cpu();
577 }
578
579 #else
580
ep_poll_safewake(wait_queue_head_t * wq)581 static void ep_poll_safewake(wait_queue_head_t *wq)
582 {
583 wake_up_poll(wq, EPOLLIN);
584 }
585
586 #endif
587
ep_remove_wait_queue(struct eppoll_entry * pwq)588 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
589 {
590 wait_queue_head_t *whead;
591
592 rcu_read_lock();
593 /*
594 * If it is cleared by POLLFREE, it should be rcu-safe.
595 * If we read NULL we need a barrier paired with
596 * smp_store_release() in ep_poll_callback(), otherwise
597 * we rely on whead->lock.
598 */
599 whead = smp_load_acquire(&pwq->whead);
600 if (whead)
601 remove_wait_queue(whead, &pwq->wait);
602 rcu_read_unlock();
603 }
604
605 /*
606 * This function unregisters poll callbacks from the associated file
607 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
608 * ep_free).
609 */
ep_unregister_pollwait(struct eventpoll * ep,struct epitem * epi)610 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
611 {
612 struct list_head *lsthead = &epi->pwqlist;
613 struct eppoll_entry *pwq;
614
615 while (!list_empty(lsthead)) {
616 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
617
618 list_del(&pwq->llink);
619 ep_remove_wait_queue(pwq);
620 kmem_cache_free(pwq_cache, pwq);
621 }
622 }
623
624 /* call only when ep->mtx is held */
ep_wakeup_source(struct epitem * epi)625 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
626 {
627 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
628 }
629
630 /* call only when ep->mtx is held */
ep_pm_stay_awake(struct epitem * epi)631 static inline void ep_pm_stay_awake(struct epitem *epi)
632 {
633 struct wakeup_source *ws = ep_wakeup_source(epi);
634
635 if (ws)
636 __pm_stay_awake(ws);
637 }
638
ep_has_wakeup_source(struct epitem * epi)639 static inline bool ep_has_wakeup_source(struct epitem *epi)
640 {
641 return rcu_access_pointer(epi->ws) ? true : false;
642 }
643
644 /* call when ep->mtx cannot be held (ep_poll_callback) */
ep_pm_stay_awake_rcu(struct epitem * epi)645 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
646 {
647 struct wakeup_source *ws;
648
649 rcu_read_lock();
650 ws = rcu_dereference(epi->ws);
651 if (ws)
652 __pm_stay_awake(ws);
653 rcu_read_unlock();
654 }
655
656 /**
657 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
658 * the scan code, to call f_op->poll(). Also allows for
659 * O(NumReady) performance.
660 *
661 * @ep: Pointer to the epoll private data structure.
662 * @sproc: Pointer to the scan callback.
663 * @priv: Private opaque data passed to the @sproc callback.
664 * @depth: The current depth of recursive f_op->poll calls.
665 * @ep_locked: caller already holds ep->mtx
666 *
667 * Returns: The same integer error code returned by the @sproc callback.
668 */
ep_scan_ready_list(struct eventpoll * ep,__poll_t (* sproc)(struct eventpoll *,struct list_head *,void *),void * priv,int depth,bool ep_locked)669 static __poll_t ep_scan_ready_list(struct eventpoll *ep,
670 __poll_t (*sproc)(struct eventpoll *,
671 struct list_head *, void *),
672 void *priv, int depth, bool ep_locked)
673 {
674 __poll_t res;
675 int pwake = 0;
676 struct epitem *epi, *nepi;
677 LIST_HEAD(txlist);
678
679 lockdep_assert_irqs_enabled();
680
681 /*
682 * We need to lock this because we could be hit by
683 * eventpoll_release_file() and epoll_ctl().
684 */
685
686 if (!ep_locked)
687 mutex_lock_nested(&ep->mtx, depth);
688
689 /*
690 * Steal the ready list, and re-init the original one to the
691 * empty list. Also, set ep->ovflist to NULL so that events
692 * happening while looping w/out locks, are not lost. We cannot
693 * have the poll callback to queue directly on ep->rdllist,
694 * because we want the "sproc" callback to be able to do it
695 * in a lockless way.
696 */
697 write_lock_irq(&ep->lock);
698 list_splice_init(&ep->rdllist, &txlist);
699 WRITE_ONCE(ep->ovflist, NULL);
700 write_unlock_irq(&ep->lock);
701
702 /*
703 * Now call the callback function.
704 */
705 res = (*sproc)(ep, &txlist, priv);
706
707 write_lock_irq(&ep->lock);
708 /*
709 * During the time we spent inside the "sproc" callback, some
710 * other events might have been queued by the poll callback.
711 * We re-insert them inside the main ready-list here.
712 */
713 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
714 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
715 /*
716 * We need to check if the item is already in the list.
717 * During the "sproc" callback execution time, items are
718 * queued into ->ovflist but the "txlist" might already
719 * contain them, and the list_splice() below takes care of them.
720 */
721 if (!ep_is_linked(epi)) {
722 /*
723 * ->ovflist is LIFO, so we have to reverse it in order
724 * to keep in FIFO.
725 */
726 list_add(&epi->rdllink, &ep->rdllist);
727 ep_pm_stay_awake(epi);
728 }
729 }
730 /*
731 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
732 * releasing the lock, events will be queued in the normal way inside
733 * ep->rdllist.
734 */
735 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
736
737 /*
738 * Quickly re-inject items left on "txlist".
739 */
740 list_splice(&txlist, &ep->rdllist);
741 __pm_relax(ep->ws);
742
743 if (!list_empty(&ep->rdllist)) {
744 /*
745 * Wake up (if active) both the eventpoll wait list and
746 * the ->poll() wait list (delayed after we release the lock).
747 */
748 if (waitqueue_active(&ep->wq))
749 wake_up(&ep->wq);
750 if (waitqueue_active(&ep->poll_wait))
751 pwake++;
752 }
753 write_unlock_irq(&ep->lock);
754
755 if (!ep_locked)
756 mutex_unlock(&ep->mtx);
757
758 /* We have to call this outside the lock */
759 if (pwake)
760 ep_poll_safewake(&ep->poll_wait);
761
762 return res;
763 }
764
epi_rcu_free(struct rcu_head * head)765 static void epi_rcu_free(struct rcu_head *head)
766 {
767 struct epitem *epi = container_of(head, struct epitem, rcu);
768 kmem_cache_free(epi_cache, epi);
769 }
770
771 /*
772 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
773 * all the associated resources. Must be called with "mtx" held.
774 */
ep_remove(struct eventpoll * ep,struct epitem * epi)775 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
776 {
777 struct file *file = epi->ffd.file;
778
779 lockdep_assert_irqs_enabled();
780
781 /*
782 * Removes poll wait queue hooks.
783 */
784 ep_unregister_pollwait(ep, epi);
785
786 /* Remove the current item from the list of epoll hooks */
787 spin_lock(&file->f_lock);
788 list_del_rcu(&epi->fllink);
789 spin_unlock(&file->f_lock);
790
791 rb_erase_cached(&epi->rbn, &ep->rbr);
792
793 write_lock_irq(&ep->lock);
794 if (ep_is_linked(epi))
795 list_del_init(&epi->rdllink);
796 write_unlock_irq(&ep->lock);
797
798 wakeup_source_unregister(ep_wakeup_source(epi));
799 /*
800 * At this point it is safe to free the eventpoll item. Use the union
801 * field epi->rcu, since we are trying to minimize the size of
802 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
803 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
804 * use of the rbn field.
805 */
806 call_rcu(&epi->rcu, epi_rcu_free);
807
808 atomic_long_dec(&ep->user->epoll_watches);
809
810 return 0;
811 }
812
ep_free(struct eventpoll * ep)813 static void ep_free(struct eventpoll *ep)
814 {
815 struct rb_node *rbp;
816 struct epitem *epi;
817
818 /* We need to release all tasks waiting for these file */
819 if (waitqueue_active(&ep->poll_wait))
820 ep_poll_safewake(&ep->poll_wait);
821
822 /*
823 * We need to lock this because we could be hit by
824 * eventpoll_release_file() while we're freeing the "struct eventpoll".
825 * We do not need to hold "ep->mtx" here because the epoll file
826 * is on the way to be removed and no one has references to it
827 * anymore. The only hit might come from eventpoll_release_file() but
828 * holding "epmutex" is sufficient here.
829 */
830 mutex_lock(&epmutex);
831
832 /*
833 * Walks through the whole tree by unregistering poll callbacks.
834 */
835 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
836 epi = rb_entry(rbp, struct epitem, rbn);
837
838 ep_unregister_pollwait(ep, epi);
839 cond_resched();
840 }
841
842 /*
843 * Walks through the whole tree by freeing each "struct epitem". At this
844 * point we are sure no poll callbacks will be lingering around, and also by
845 * holding "epmutex" we can be sure that no file cleanup code will hit
846 * us during this operation. So we can avoid the lock on "ep->lock".
847 * We do not need to lock ep->mtx, either, we only do it to prevent
848 * a lockdep warning.
849 */
850 mutex_lock(&ep->mtx);
851 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
852 epi = rb_entry(rbp, struct epitem, rbn);
853 ep_remove(ep, epi);
854 cond_resched();
855 }
856 mutex_unlock(&ep->mtx);
857
858 mutex_unlock(&epmutex);
859 mutex_destroy(&ep->mtx);
860 free_uid(ep->user);
861 wakeup_source_unregister(ep->ws);
862 kfree(ep);
863 }
864
ep_eventpoll_release(struct inode * inode,struct file * file)865 static int ep_eventpoll_release(struct inode *inode, struct file *file)
866 {
867 struct eventpoll *ep = file->private_data;
868
869 if (ep)
870 ep_free(ep);
871
872 return 0;
873 }
874
875 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
876 void *priv);
877 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
878 poll_table *pt);
879
880 /*
881 * Differs from ep_eventpoll_poll() in that internal callers already have
882 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
883 * is correctly annotated.
884 */
ep_item_poll(const struct epitem * epi,poll_table * pt,int depth)885 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
886 int depth)
887 {
888 struct eventpoll *ep;
889 bool locked;
890
891 pt->_key = epi->event.events;
892 if (!is_file_epoll(epi->ffd.file))
893 return vfs_poll(epi->ffd.file, pt) & epi->event.events;
894
895 ep = epi->ffd.file->private_data;
896 poll_wait(epi->ffd.file, &ep->poll_wait, pt);
897 locked = pt && (pt->_qproc == ep_ptable_queue_proc);
898
899 return ep_scan_ready_list(epi->ffd.file->private_data,
900 ep_read_events_proc, &depth, depth,
901 locked) & epi->event.events;
902 }
903
ep_read_events_proc(struct eventpoll * ep,struct list_head * head,void * priv)904 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
905 void *priv)
906 {
907 struct epitem *epi, *tmp;
908 poll_table pt;
909 int depth = *(int *)priv;
910
911 init_poll_funcptr(&pt, NULL);
912 depth++;
913
914 list_for_each_entry_safe(epi, tmp, head, rdllink) {
915 if (ep_item_poll(epi, &pt, depth)) {
916 return EPOLLIN | EPOLLRDNORM;
917 } else {
918 /*
919 * Item has been dropped into the ready list by the poll
920 * callback, but it's not actually ready, as far as
921 * caller requested events goes. We can remove it here.
922 */
923 __pm_relax(ep_wakeup_source(epi));
924 list_del_init(&epi->rdllink);
925 }
926 }
927
928 return 0;
929 }
930
ep_eventpoll_poll(struct file * file,poll_table * wait)931 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
932 {
933 struct eventpoll *ep = file->private_data;
934 int depth = 0;
935
936 /* Insert inside our poll wait queue */
937 poll_wait(file, &ep->poll_wait, wait);
938
939 /*
940 * Proceed to find out if wanted events are really available inside
941 * the ready list.
942 */
943 return ep_scan_ready_list(ep, ep_read_events_proc,
944 &depth, depth, false);
945 }
946
947 #ifdef CONFIG_PROC_FS
ep_show_fdinfo(struct seq_file * m,struct file * f)948 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
949 {
950 struct eventpoll *ep = f->private_data;
951 struct rb_node *rbp;
952
953 mutex_lock(&ep->mtx);
954 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
955 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
956 struct inode *inode = file_inode(epi->ffd.file);
957
958 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
959 " pos:%lli ino:%lx sdev:%x\n",
960 epi->ffd.fd, epi->event.events,
961 (long long)epi->event.data,
962 (long long)epi->ffd.file->f_pos,
963 inode->i_ino, inode->i_sb->s_dev);
964 if (seq_has_overflowed(m))
965 break;
966 }
967 mutex_unlock(&ep->mtx);
968 }
969 #endif
970
971 /* File callbacks that implement the eventpoll file behaviour */
972 static const struct file_operations eventpoll_fops = {
973 #ifdef CONFIG_PROC_FS
974 .show_fdinfo = ep_show_fdinfo,
975 #endif
976 .release = ep_eventpoll_release,
977 .poll = ep_eventpoll_poll,
978 .llseek = noop_llseek,
979 };
980
981 /*
982 * This is called from eventpoll_release() to unlink files from the eventpoll
983 * interface. We need to have this facility to cleanup correctly files that are
984 * closed without being removed from the eventpoll interface.
985 */
eventpoll_release_file(struct file * file)986 void eventpoll_release_file(struct file *file)
987 {
988 struct eventpoll *ep;
989 struct epitem *epi, *next;
990
991 /*
992 * We don't want to get "file->f_lock" because it is not
993 * necessary. It is not necessary because we're in the "struct file"
994 * cleanup path, and this means that no one is using this file anymore.
995 * So, for example, epoll_ctl() cannot hit here since if we reach this
996 * point, the file counter already went to zero and fget() would fail.
997 * The only hit might come from ep_free() but by holding the mutex
998 * will correctly serialize the operation. We do need to acquire
999 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
1000 * from anywhere but ep_free().
1001 *
1002 * Besides, ep_remove() acquires the lock, so we can't hold it here.
1003 */
1004 mutex_lock(&epmutex);
1005 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
1006 ep = epi->ep;
1007 mutex_lock_nested(&ep->mtx, 0);
1008 ep_remove(ep, epi);
1009 mutex_unlock(&ep->mtx);
1010 }
1011 mutex_unlock(&epmutex);
1012 }
1013
ep_alloc(struct eventpoll ** pep)1014 static int ep_alloc(struct eventpoll **pep)
1015 {
1016 int error;
1017 struct user_struct *user;
1018 struct eventpoll *ep;
1019
1020 user = get_current_user();
1021 error = -ENOMEM;
1022 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1023 if (unlikely(!ep))
1024 goto free_uid;
1025
1026 mutex_init(&ep->mtx);
1027 rwlock_init(&ep->lock);
1028 init_waitqueue_head(&ep->wq);
1029 init_waitqueue_head(&ep->poll_wait);
1030 INIT_LIST_HEAD(&ep->rdllist);
1031 ep->rbr = RB_ROOT_CACHED;
1032 ep->ovflist = EP_UNACTIVE_PTR;
1033 ep->user = user;
1034
1035 *pep = ep;
1036
1037 return 0;
1038
1039 free_uid:
1040 free_uid(user);
1041 return error;
1042 }
1043
1044 /*
1045 * Search the file inside the eventpoll tree. The RB tree operations
1046 * are protected by the "mtx" mutex, and ep_find() must be called with
1047 * "mtx" held.
1048 */
ep_find(struct eventpoll * ep,struct file * file,int fd)1049 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1050 {
1051 int kcmp;
1052 struct rb_node *rbp;
1053 struct epitem *epi, *epir = NULL;
1054 struct epoll_filefd ffd;
1055
1056 ep_set_ffd(&ffd, file, fd);
1057 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1058 epi = rb_entry(rbp, struct epitem, rbn);
1059 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1060 if (kcmp > 0)
1061 rbp = rbp->rb_right;
1062 else if (kcmp < 0)
1063 rbp = rbp->rb_left;
1064 else {
1065 epir = epi;
1066 break;
1067 }
1068 }
1069
1070 return epir;
1071 }
1072
1073 #ifdef CONFIG_CHECKPOINT_RESTORE
ep_find_tfd(struct eventpoll * ep,int tfd,unsigned long toff)1074 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1075 {
1076 struct rb_node *rbp;
1077 struct epitem *epi;
1078
1079 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1080 epi = rb_entry(rbp, struct epitem, rbn);
1081 if (epi->ffd.fd == tfd) {
1082 if (toff == 0)
1083 return epi;
1084 else
1085 toff--;
1086 }
1087 cond_resched();
1088 }
1089
1090 return NULL;
1091 }
1092
get_epoll_tfile_raw_ptr(struct file * file,int tfd,unsigned long toff)1093 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1094 unsigned long toff)
1095 {
1096 struct file *file_raw;
1097 struct eventpoll *ep;
1098 struct epitem *epi;
1099
1100 if (!is_file_epoll(file))
1101 return ERR_PTR(-EINVAL);
1102
1103 ep = file->private_data;
1104
1105 mutex_lock(&ep->mtx);
1106 epi = ep_find_tfd(ep, tfd, toff);
1107 if (epi)
1108 file_raw = epi->ffd.file;
1109 else
1110 file_raw = ERR_PTR(-ENOENT);
1111 mutex_unlock(&ep->mtx);
1112
1113 return file_raw;
1114 }
1115 #endif /* CONFIG_CHECKPOINT_RESTORE */
1116
1117 /**
1118 * Adds a new entry to the tail of the list in a lockless way, i.e.
1119 * multiple CPUs are allowed to call this function concurrently.
1120 *
1121 * Beware: it is necessary to prevent any other modifications of the
1122 * existing list until all changes are completed, in other words
1123 * concurrent list_add_tail_lockless() calls should be protected
1124 * with a read lock, where write lock acts as a barrier which
1125 * makes sure all list_add_tail_lockless() calls are fully
1126 * completed.
1127 *
1128 * Also an element can be locklessly added to the list only in one
1129 * direction i.e. either to the tail either to the head, otherwise
1130 * concurrent access will corrupt the list.
1131 *
1132 * Returns %false if element has been already added to the list, %true
1133 * otherwise.
1134 */
list_add_tail_lockless(struct list_head * new,struct list_head * head)1135 static inline bool list_add_tail_lockless(struct list_head *new,
1136 struct list_head *head)
1137 {
1138 struct list_head *prev;
1139
1140 /*
1141 * This is simple 'new->next = head' operation, but cmpxchg()
1142 * is used in order to detect that same element has been just
1143 * added to the list from another CPU: the winner observes
1144 * new->next == new.
1145 */
1146 if (cmpxchg(&new->next, new, head) != new)
1147 return false;
1148
1149 /*
1150 * Initially ->next of a new element must be updated with the head
1151 * (we are inserting to the tail) and only then pointers are atomically
1152 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1153 * updated before pointers are actually swapped and pointers are
1154 * swapped before prev->next is updated.
1155 */
1156
1157 prev = xchg(&head->prev, new);
1158
1159 /*
1160 * It is safe to modify prev->next and new->prev, because a new element
1161 * is added only to the tail and new->next is updated before XCHG.
1162 */
1163
1164 prev->next = new;
1165 new->prev = prev;
1166
1167 return true;
1168 }
1169
1170 /**
1171 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1172 * i.e. multiple CPUs are allowed to call this function concurrently.
1173 *
1174 * Returns %false if epi element has been already chained, %true otherwise.
1175 */
chain_epi_lockless(struct epitem * epi)1176 static inline bool chain_epi_lockless(struct epitem *epi)
1177 {
1178 struct eventpoll *ep = epi->ep;
1179
1180 /* Check that the same epi has not been just chained from another CPU */
1181 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1182 return false;
1183
1184 /* Atomically exchange tail */
1185 epi->next = xchg(&ep->ovflist, epi);
1186
1187 return true;
1188 }
1189
1190 /*
1191 * This is the callback that is passed to the wait queue wakeup
1192 * mechanism. It is called by the stored file descriptors when they
1193 * have events to report.
1194 *
1195 * This callback takes a read lock in order not to content with concurrent
1196 * events from another file descriptors, thus all modifications to ->rdllist
1197 * or ->ovflist are lockless. Read lock is paired with the write lock from
1198 * ep_scan_ready_list(), which stops all list modifications and guarantees
1199 * that lists state is seen correctly.
1200 *
1201 * Another thing worth to mention is that ep_poll_callback() can be called
1202 * concurrently for the same @epi from different CPUs if poll table was inited
1203 * with several wait queues entries. Plural wakeup from different CPUs of a
1204 * single wait queue is serialized by wq.lock, but the case when multiple wait
1205 * queues are used should be detected accordingly. This is detected using
1206 * cmpxchg() operation.
1207 */
ep_poll_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1208 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1209 {
1210 int pwake = 0;
1211 struct epitem *epi = ep_item_from_wait(wait);
1212 struct eventpoll *ep = epi->ep;
1213 __poll_t pollflags = key_to_poll(key);
1214 unsigned long flags;
1215 int ewake = 0;
1216
1217 read_lock_irqsave(&ep->lock, flags);
1218
1219 ep_set_busy_poll_napi_id(epi);
1220
1221 /*
1222 * If the event mask does not contain any poll(2) event, we consider the
1223 * descriptor to be disabled. This condition is likely the effect of the
1224 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1225 * until the next EPOLL_CTL_MOD will be issued.
1226 */
1227 if (!(epi->event.events & ~EP_PRIVATE_BITS))
1228 goto out_unlock;
1229
1230 /*
1231 * Check the events coming with the callback. At this stage, not
1232 * every device reports the events in the "key" parameter of the
1233 * callback. We need to be able to handle both cases here, hence the
1234 * test for "key" != NULL before the event match test.
1235 */
1236 if (pollflags && !(pollflags & epi->event.events))
1237 goto out_unlock;
1238
1239 /*
1240 * If we are transferring events to userspace, we can hold no locks
1241 * (because we're accessing user memory, and because of linux f_op->poll()
1242 * semantics). All the events that happen during that period of time are
1243 * chained in ep->ovflist and requeued later on.
1244 */
1245 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1246 if (epi->next == EP_UNACTIVE_PTR &&
1247 chain_epi_lockless(epi))
1248 ep_pm_stay_awake_rcu(epi);
1249 goto out_unlock;
1250 }
1251
1252 /* If this file is already in the ready list we exit soon */
1253 if (!ep_is_linked(epi) &&
1254 list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) {
1255 ep_pm_stay_awake_rcu(epi);
1256 }
1257
1258 /*
1259 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1260 * wait list.
1261 */
1262 if (waitqueue_active(&ep->wq)) {
1263 if ((epi->event.events & EPOLLEXCLUSIVE) &&
1264 !(pollflags & POLLFREE)) {
1265 switch (pollflags & EPOLLINOUT_BITS) {
1266 case EPOLLIN:
1267 if (epi->event.events & EPOLLIN)
1268 ewake = 1;
1269 break;
1270 case EPOLLOUT:
1271 if (epi->event.events & EPOLLOUT)
1272 ewake = 1;
1273 break;
1274 case 0:
1275 ewake = 1;
1276 break;
1277 }
1278 }
1279 wake_up(&ep->wq);
1280 }
1281 if (waitqueue_active(&ep->poll_wait))
1282 pwake++;
1283
1284 out_unlock:
1285 read_unlock_irqrestore(&ep->lock, flags);
1286
1287 /* We have to call this outside the lock */
1288 if (pwake)
1289 ep_poll_safewake(&ep->poll_wait);
1290
1291 if (!(epi->event.events & EPOLLEXCLUSIVE))
1292 ewake = 1;
1293
1294 if (pollflags & POLLFREE) {
1295 /*
1296 * If we race with ep_remove_wait_queue() it can miss
1297 * ->whead = NULL and do another remove_wait_queue() after
1298 * us, so we can't use __remove_wait_queue().
1299 */
1300 list_del_init(&wait->entry);
1301 /*
1302 * ->whead != NULL protects us from the race with ep_free()
1303 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1304 * held by the caller. Once we nullify it, nothing protects
1305 * ep/epi or even wait.
1306 */
1307 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1308 }
1309
1310 return ewake;
1311 }
1312
1313 /*
1314 * This is the callback that is used to add our wait queue to the
1315 * target file wakeup lists.
1316 */
ep_ptable_queue_proc(struct file * file,wait_queue_head_t * whead,poll_table * pt)1317 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1318 poll_table *pt)
1319 {
1320 struct epitem *epi = ep_item_from_epqueue(pt);
1321 struct eppoll_entry *pwq;
1322
1323 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1324 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1325 pwq->whead = whead;
1326 pwq->base = epi;
1327 if (epi->event.events & EPOLLEXCLUSIVE)
1328 add_wait_queue_exclusive(whead, &pwq->wait);
1329 else
1330 add_wait_queue(whead, &pwq->wait);
1331 list_add_tail(&pwq->llink, &epi->pwqlist);
1332 epi->nwait++;
1333 } else {
1334 /* We have to signal that an error occurred */
1335 epi->nwait = -1;
1336 }
1337 }
1338
ep_rbtree_insert(struct eventpoll * ep,struct epitem * epi)1339 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1340 {
1341 int kcmp;
1342 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1343 struct epitem *epic;
1344 bool leftmost = true;
1345
1346 while (*p) {
1347 parent = *p;
1348 epic = rb_entry(parent, struct epitem, rbn);
1349 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1350 if (kcmp > 0) {
1351 p = &parent->rb_right;
1352 leftmost = false;
1353 } else
1354 p = &parent->rb_left;
1355 }
1356 rb_link_node(&epi->rbn, parent, p);
1357 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1358 }
1359
1360
1361
1362 #define PATH_ARR_SIZE 5
1363 /*
1364 * These are the number paths of length 1 to 5, that we are allowing to emanate
1365 * from a single file of interest. For example, we allow 1000 paths of length
1366 * 1, to emanate from each file of interest. This essentially represents the
1367 * potential wakeup paths, which need to be limited in order to avoid massive
1368 * uncontrolled wakeup storms. The common use case should be a single ep which
1369 * is connected to n file sources. In this case each file source has 1 path
1370 * of length 1. Thus, the numbers below should be more than sufficient. These
1371 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1372 * and delete can't add additional paths. Protected by the epmutex.
1373 */
1374 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1375 static int path_count[PATH_ARR_SIZE];
1376
path_count_inc(int nests)1377 static int path_count_inc(int nests)
1378 {
1379 /* Allow an arbitrary number of depth 1 paths */
1380 if (nests == 0)
1381 return 0;
1382
1383 if (++path_count[nests] > path_limits[nests])
1384 return -1;
1385 return 0;
1386 }
1387
path_count_init(void)1388 static void path_count_init(void)
1389 {
1390 int i;
1391
1392 for (i = 0; i < PATH_ARR_SIZE; i++)
1393 path_count[i] = 0;
1394 }
1395
reverse_path_check_proc(void * priv,void * cookie,int call_nests)1396 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1397 {
1398 int error = 0;
1399 struct file *file = priv;
1400 struct file *child_file;
1401 struct epitem *epi;
1402
1403 /* CTL_DEL can remove links here, but that can't increase our count */
1404 rcu_read_lock();
1405 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1406 child_file = epi->ep->file;
1407 if (is_file_epoll(child_file)) {
1408 if (list_empty(&child_file->f_ep_links)) {
1409 if (path_count_inc(call_nests)) {
1410 error = -1;
1411 break;
1412 }
1413 } else {
1414 error = ep_call_nested(&poll_loop_ncalls,
1415 reverse_path_check_proc,
1416 child_file, child_file,
1417 current);
1418 }
1419 if (error != 0)
1420 break;
1421 } else {
1422 printk(KERN_ERR "reverse_path_check_proc: "
1423 "file is not an ep!\n");
1424 }
1425 }
1426 rcu_read_unlock();
1427 return error;
1428 }
1429
1430 /**
1431 * reverse_path_check - The tfile_check_list is list of file *, which have
1432 * links that are proposed to be newly added. We need to
1433 * make sure that those added links don't add too many
1434 * paths such that we will spend all our time waking up
1435 * eventpoll objects.
1436 *
1437 * Returns: Returns zero if the proposed links don't create too many paths,
1438 * -1 otherwise.
1439 */
reverse_path_check(void)1440 static int reverse_path_check(void)
1441 {
1442 int error = 0;
1443 struct file *current_file;
1444
1445 /* let's call this for all tfiles */
1446 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1447 path_count_init();
1448 error = ep_call_nested(&poll_loop_ncalls,
1449 reverse_path_check_proc, current_file,
1450 current_file, current);
1451 if (error)
1452 break;
1453 }
1454 return error;
1455 }
1456
ep_create_wakeup_source(struct epitem * epi)1457 static int ep_create_wakeup_source(struct epitem *epi)
1458 {
1459 const char *name;
1460 struct wakeup_source *ws;
1461
1462 if (!epi->ep->ws) {
1463 epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1464 if (!epi->ep->ws)
1465 return -ENOMEM;
1466 }
1467
1468 name = epi->ffd.file->f_path.dentry->d_name.name;
1469 ws = wakeup_source_register(NULL, name);
1470
1471 if (!ws)
1472 return -ENOMEM;
1473 rcu_assign_pointer(epi->ws, ws);
1474
1475 return 0;
1476 }
1477
1478 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
ep_destroy_wakeup_source(struct epitem * epi)1479 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1480 {
1481 struct wakeup_source *ws = ep_wakeup_source(epi);
1482
1483 RCU_INIT_POINTER(epi->ws, NULL);
1484
1485 /*
1486 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1487 * used internally by wakeup_source_remove, too (called by
1488 * wakeup_source_unregister), so we cannot use call_rcu
1489 */
1490 synchronize_rcu();
1491 wakeup_source_unregister(ws);
1492 }
1493
1494 /*
1495 * Must be called with "mtx" held.
1496 */
ep_insert(struct eventpoll * ep,const struct epoll_event * event,struct file * tfile,int fd,int full_check)1497 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1498 struct file *tfile, int fd, int full_check)
1499 {
1500 int error, pwake = 0;
1501 __poll_t revents;
1502 long user_watches;
1503 struct epitem *epi;
1504 struct ep_pqueue epq;
1505
1506 lockdep_assert_irqs_enabled();
1507
1508 user_watches = atomic_long_read(&ep->user->epoll_watches);
1509 if (unlikely(user_watches >= max_user_watches))
1510 return -ENOSPC;
1511 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1512 return -ENOMEM;
1513
1514 /* Item initialization follow here ... */
1515 INIT_LIST_HEAD(&epi->rdllink);
1516 INIT_LIST_HEAD(&epi->fllink);
1517 INIT_LIST_HEAD(&epi->pwqlist);
1518 epi->ep = ep;
1519 ep_set_ffd(&epi->ffd, tfile, fd);
1520 epi->event = *event;
1521 epi->nwait = 0;
1522 epi->next = EP_UNACTIVE_PTR;
1523 if (epi->event.events & EPOLLWAKEUP) {
1524 error = ep_create_wakeup_source(epi);
1525 if (error)
1526 goto error_create_wakeup_source;
1527 } else {
1528 RCU_INIT_POINTER(epi->ws, NULL);
1529 }
1530
1531 /* Initialize the poll table using the queue callback */
1532 epq.epi = epi;
1533 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1534
1535 /*
1536 * Attach the item to the poll hooks and get current event bits.
1537 * We can safely use the file* here because its usage count has
1538 * been increased by the caller of this function. Note that after
1539 * this operation completes, the poll callback can start hitting
1540 * the new item.
1541 */
1542 revents = ep_item_poll(epi, &epq.pt, 1);
1543
1544 /*
1545 * We have to check if something went wrong during the poll wait queue
1546 * install process. Namely an allocation for a wait queue failed due
1547 * high memory pressure.
1548 */
1549 error = -ENOMEM;
1550 if (epi->nwait < 0)
1551 goto error_unregister;
1552
1553 /* Add the current item to the list of active epoll hook for this file */
1554 spin_lock(&tfile->f_lock);
1555 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1556 spin_unlock(&tfile->f_lock);
1557
1558 /*
1559 * Add the current item to the RB tree. All RB tree operations are
1560 * protected by "mtx", and ep_insert() is called with "mtx" held.
1561 */
1562 ep_rbtree_insert(ep, epi);
1563
1564 /* now check if we've created too many backpaths */
1565 error = -EINVAL;
1566 if (full_check && reverse_path_check())
1567 goto error_remove_epi;
1568
1569 /* We have to drop the new item inside our item list to keep track of it */
1570 write_lock_irq(&ep->lock);
1571
1572 /* record NAPI ID of new item if present */
1573 ep_set_busy_poll_napi_id(epi);
1574
1575 /* If the file is already "ready" we drop it inside the ready list */
1576 if (revents && !ep_is_linked(epi)) {
1577 list_add_tail(&epi->rdllink, &ep->rdllist);
1578 ep_pm_stay_awake(epi);
1579
1580 /* Notify waiting tasks that events are available */
1581 if (waitqueue_active(&ep->wq))
1582 wake_up(&ep->wq);
1583 if (waitqueue_active(&ep->poll_wait))
1584 pwake++;
1585 }
1586
1587 write_unlock_irq(&ep->lock);
1588
1589 atomic_long_inc(&ep->user->epoll_watches);
1590
1591 /* We have to call this outside the lock */
1592 if (pwake)
1593 ep_poll_safewake(&ep->poll_wait);
1594
1595 return 0;
1596
1597 error_remove_epi:
1598 spin_lock(&tfile->f_lock);
1599 list_del_rcu(&epi->fllink);
1600 spin_unlock(&tfile->f_lock);
1601
1602 rb_erase_cached(&epi->rbn, &ep->rbr);
1603
1604 error_unregister:
1605 ep_unregister_pollwait(ep, epi);
1606
1607 /*
1608 * We need to do this because an event could have been arrived on some
1609 * allocated wait queue. Note that we don't care about the ep->ovflist
1610 * list, since that is used/cleaned only inside a section bound by "mtx".
1611 * And ep_insert() is called with "mtx" held.
1612 */
1613 write_lock_irq(&ep->lock);
1614 if (ep_is_linked(epi))
1615 list_del_init(&epi->rdllink);
1616 write_unlock_irq(&ep->lock);
1617
1618 wakeup_source_unregister(ep_wakeup_source(epi));
1619
1620 error_create_wakeup_source:
1621 kmem_cache_free(epi_cache, epi);
1622
1623 return error;
1624 }
1625
1626 /*
1627 * Modify the interest event mask by dropping an event if the new mask
1628 * has a match in the current file status. Must be called with "mtx" held.
1629 */
ep_modify(struct eventpoll * ep,struct epitem * epi,const struct epoll_event * event)1630 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1631 const struct epoll_event *event)
1632 {
1633 int pwake = 0;
1634 poll_table pt;
1635
1636 lockdep_assert_irqs_enabled();
1637
1638 init_poll_funcptr(&pt, NULL);
1639
1640 /*
1641 * Set the new event interest mask before calling f_op->poll();
1642 * otherwise we might miss an event that happens between the
1643 * f_op->poll() call and the new event set registering.
1644 */
1645 epi->event.events = event->events; /* need barrier below */
1646 epi->event.data = event->data; /* protected by mtx */
1647 if (epi->event.events & EPOLLWAKEUP) {
1648 if (!ep_has_wakeup_source(epi))
1649 ep_create_wakeup_source(epi);
1650 } else if (ep_has_wakeup_source(epi)) {
1651 ep_destroy_wakeup_source(epi);
1652 }
1653
1654 /*
1655 * The following barrier has two effects:
1656 *
1657 * 1) Flush epi changes above to other CPUs. This ensures
1658 * we do not miss events from ep_poll_callback if an
1659 * event occurs immediately after we call f_op->poll().
1660 * We need this because we did not take ep->lock while
1661 * changing epi above (but ep_poll_callback does take
1662 * ep->lock).
1663 *
1664 * 2) We also need to ensure we do not miss _past_ events
1665 * when calling f_op->poll(). This barrier also
1666 * pairs with the barrier in wq_has_sleeper (see
1667 * comments for wq_has_sleeper).
1668 *
1669 * This barrier will now guarantee ep_poll_callback or f_op->poll
1670 * (or both) will notice the readiness of an item.
1671 */
1672 smp_mb();
1673
1674 /*
1675 * Get current event bits. We can safely use the file* here because
1676 * its usage count has been increased by the caller of this function.
1677 * If the item is "hot" and it is not registered inside the ready
1678 * list, push it inside.
1679 */
1680 if (ep_item_poll(epi, &pt, 1)) {
1681 write_lock_irq(&ep->lock);
1682 if (!ep_is_linked(epi)) {
1683 list_add_tail(&epi->rdllink, &ep->rdllist);
1684 ep_pm_stay_awake(epi);
1685
1686 /* Notify waiting tasks that events are available */
1687 if (waitqueue_active(&ep->wq))
1688 wake_up(&ep->wq);
1689 if (waitqueue_active(&ep->poll_wait))
1690 pwake++;
1691 }
1692 write_unlock_irq(&ep->lock);
1693 }
1694
1695 /* We have to call this outside the lock */
1696 if (pwake)
1697 ep_poll_safewake(&ep->poll_wait);
1698
1699 return 0;
1700 }
1701
ep_send_events_proc(struct eventpoll * ep,struct list_head * head,void * priv)1702 static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1703 void *priv)
1704 {
1705 struct ep_send_events_data *esed = priv;
1706 __poll_t revents;
1707 struct epitem *epi, *tmp;
1708 struct epoll_event __user *uevent = esed->events;
1709 struct wakeup_source *ws;
1710 poll_table pt;
1711
1712 init_poll_funcptr(&pt, NULL);
1713 esed->res = 0;
1714
1715 /*
1716 * We can loop without lock because we are passed a task private list.
1717 * Items cannot vanish during the loop because ep_scan_ready_list() is
1718 * holding "mtx" during this call.
1719 */
1720 lockdep_assert_held(&ep->mtx);
1721
1722 list_for_each_entry_safe(epi, tmp, head, rdllink) {
1723 if (esed->res >= esed->maxevents)
1724 break;
1725
1726 /*
1727 * Activate ep->ws before deactivating epi->ws to prevent
1728 * triggering auto-suspend here (in case we reactive epi->ws
1729 * below).
1730 *
1731 * This could be rearranged to delay the deactivation of epi->ws
1732 * instead, but then epi->ws would temporarily be out of sync
1733 * with ep_is_linked().
1734 */
1735 ws = ep_wakeup_source(epi);
1736 if (ws) {
1737 if (ws->active)
1738 __pm_stay_awake(ep->ws);
1739 __pm_relax(ws);
1740 }
1741
1742 list_del_init(&epi->rdllink);
1743
1744 /*
1745 * If the event mask intersect the caller-requested one,
1746 * deliver the event to userspace. Again, ep_scan_ready_list()
1747 * is holding ep->mtx, so no operations coming from userspace
1748 * can change the item.
1749 */
1750 revents = ep_item_poll(epi, &pt, 1);
1751 if (!revents)
1752 continue;
1753
1754 if (__put_user(revents, &uevent->events) ||
1755 __put_user(epi->event.data, &uevent->data)) {
1756 list_add(&epi->rdllink, head);
1757 ep_pm_stay_awake(epi);
1758 if (!esed->res)
1759 esed->res = -EFAULT;
1760 return 0;
1761 }
1762 esed->res++;
1763 uevent++;
1764 if (epi->event.events & EPOLLONESHOT)
1765 epi->event.events &= EP_PRIVATE_BITS;
1766 else if (!(epi->event.events & EPOLLET)) {
1767 /*
1768 * If this file has been added with Level
1769 * Trigger mode, we need to insert back inside
1770 * the ready list, so that the next call to
1771 * epoll_wait() will check again the events
1772 * availability. At this point, no one can insert
1773 * into ep->rdllist besides us. The epoll_ctl()
1774 * callers are locked out by
1775 * ep_scan_ready_list() holding "mtx" and the
1776 * poll callback will queue them in ep->ovflist.
1777 */
1778 list_add_tail(&epi->rdllink, &ep->rdllist);
1779 ep_pm_stay_awake(epi);
1780 }
1781 }
1782
1783 return 0;
1784 }
1785
ep_send_events(struct eventpoll * ep,struct epoll_event __user * events,int maxevents)1786 static int ep_send_events(struct eventpoll *ep,
1787 struct epoll_event __user *events, int maxevents)
1788 {
1789 struct ep_send_events_data esed;
1790
1791 esed.maxevents = maxevents;
1792 esed.events = events;
1793
1794 ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1795 return esed.res;
1796 }
1797
ep_set_mstimeout(long ms)1798 static inline struct timespec64 ep_set_mstimeout(long ms)
1799 {
1800 struct timespec64 now, ts = {
1801 .tv_sec = ms / MSEC_PER_SEC,
1802 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1803 };
1804
1805 ktime_get_ts64(&now);
1806 return timespec64_add_safe(now, ts);
1807 }
1808
1809 /**
1810 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1811 * event buffer.
1812 *
1813 * @ep: Pointer to the eventpoll context.
1814 * @events: Pointer to the userspace buffer where the ready events should be
1815 * stored.
1816 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1817 * @timeout: Maximum timeout for the ready events fetch operation, in
1818 * milliseconds. If the @timeout is zero, the function will not block,
1819 * while if the @timeout is less than zero, the function will block
1820 * until at least one event has been retrieved (or an error
1821 * occurred).
1822 *
1823 * Returns: Returns the number of ready events which have been fetched, or an
1824 * error code, in case of error.
1825 */
ep_poll(struct eventpoll * ep,struct epoll_event __user * events,int maxevents,long timeout)1826 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1827 int maxevents, long timeout)
1828 {
1829 int res = 0, eavail, timed_out = 0;
1830 u64 slack = 0;
1831 bool waiter = false;
1832 wait_queue_entry_t wait;
1833 ktime_t expires, *to = NULL;
1834
1835 lockdep_assert_irqs_enabled();
1836
1837 if (timeout > 0) {
1838 struct timespec64 end_time = ep_set_mstimeout(timeout);
1839
1840 slack = select_estimate_accuracy(&end_time);
1841 to = &expires;
1842 *to = timespec64_to_ktime(end_time);
1843 } else if (timeout == 0) {
1844 /*
1845 * Avoid the unnecessary trip to the wait queue loop, if the
1846 * caller specified a non blocking operation. We still need
1847 * lock because we could race and not see an epi being added
1848 * to the ready list while in irq callback. Thus incorrectly
1849 * returning 0 back to userspace.
1850 */
1851 timed_out = 1;
1852
1853 write_lock_irq(&ep->lock);
1854 eavail = ep_events_available(ep);
1855 write_unlock_irq(&ep->lock);
1856
1857 goto send_events;
1858 }
1859
1860 fetch_events:
1861
1862 if (!ep_events_available(ep))
1863 ep_busy_loop(ep, timed_out);
1864
1865 eavail = ep_events_available(ep);
1866 if (eavail)
1867 goto send_events;
1868
1869 /*
1870 * Busy poll timed out. Drop NAPI ID for now, we can add
1871 * it back in when we have moved a socket with a valid NAPI
1872 * ID onto the ready list.
1873 */
1874 ep_reset_busy_poll_napi_id(ep);
1875
1876 /*
1877 * We don't have any available event to return to the caller. We need
1878 * to sleep here, and we will be woken by ep_poll_callback() when events
1879 * become available.
1880 */
1881 if (!waiter) {
1882 waiter = true;
1883 init_waitqueue_entry(&wait, current);
1884
1885 spin_lock_irq(&ep->wq.lock);
1886 __add_wait_queue_exclusive(&ep->wq, &wait);
1887 spin_unlock_irq(&ep->wq.lock);
1888 }
1889
1890 for (;;) {
1891 /*
1892 * We don't want to sleep if the ep_poll_callback() sends us
1893 * a wakeup in between. That's why we set the task state
1894 * to TASK_INTERRUPTIBLE before doing the checks.
1895 */
1896 set_current_state(TASK_INTERRUPTIBLE);
1897 /*
1898 * Always short-circuit for fatal signals to allow
1899 * threads to make a timely exit without the chance of
1900 * finding more events available and fetching
1901 * repeatedly.
1902 */
1903 if (fatal_signal_pending(current)) {
1904 res = -EINTR;
1905 break;
1906 }
1907
1908 eavail = ep_events_available(ep);
1909 if (eavail)
1910 break;
1911 if (signal_pending(current)) {
1912 res = -EINTR;
1913 break;
1914 }
1915
1916 if (!freezable_schedule_hrtimeout_range(to, slack,
1917 HRTIMER_MODE_ABS)) {
1918 timed_out = 1;
1919 break;
1920 }
1921 }
1922
1923 __set_current_state(TASK_RUNNING);
1924
1925 send_events:
1926 /*
1927 * Try to transfer events to user space. In case we get 0 events and
1928 * there's still timeout left over, we go trying again in search of
1929 * more luck.
1930 */
1931 if (!res && eavail &&
1932 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1933 goto fetch_events;
1934
1935 if (waiter) {
1936 spin_lock_irq(&ep->wq.lock);
1937 __remove_wait_queue(&ep->wq, &wait);
1938 spin_unlock_irq(&ep->wq.lock);
1939 }
1940
1941 return res;
1942 }
1943
1944 /**
1945 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1946 * API, to verify that adding an epoll file inside another
1947 * epoll structure, does not violate the constraints, in
1948 * terms of closed loops, or too deep chains (which can
1949 * result in excessive stack usage).
1950 *
1951 * @priv: Pointer to the epoll file to be currently checked.
1952 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1953 * data structure pointer.
1954 * @call_nests: Current dept of the @ep_call_nested() call stack.
1955 *
1956 * Returns: Returns zero if adding the epoll @file inside current epoll
1957 * structure @ep does not violate the constraints, or -1 otherwise.
1958 */
ep_loop_check_proc(void * priv,void * cookie,int call_nests)1959 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1960 {
1961 int error = 0;
1962 struct file *file = priv;
1963 struct eventpoll *ep = file->private_data;
1964 struct eventpoll *ep_tovisit;
1965 struct rb_node *rbp;
1966 struct epitem *epi;
1967
1968 mutex_lock_nested(&ep->mtx, call_nests + 1);
1969 ep->visited = 1;
1970 list_add(&ep->visited_list_link, &visited_list);
1971 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1972 epi = rb_entry(rbp, struct epitem, rbn);
1973 if (unlikely(is_file_epoll(epi->ffd.file))) {
1974 ep_tovisit = epi->ffd.file->private_data;
1975 if (ep_tovisit->visited)
1976 continue;
1977 error = ep_call_nested(&poll_loop_ncalls,
1978 ep_loop_check_proc, epi->ffd.file,
1979 ep_tovisit, current);
1980 if (error != 0)
1981 break;
1982 } else {
1983 /*
1984 * If we've reached a file that is not associated with
1985 * an ep, then we need to check if the newly added
1986 * links are going to add too many wakeup paths. We do
1987 * this by adding it to the tfile_check_list, if it's
1988 * not already there, and calling reverse_path_check()
1989 * during ep_insert().
1990 */
1991 if (list_empty(&epi->ffd.file->f_tfile_llink))
1992 list_add(&epi->ffd.file->f_tfile_llink,
1993 &tfile_check_list);
1994 }
1995 }
1996 mutex_unlock(&ep->mtx);
1997
1998 return error;
1999 }
2000
2001 /**
2002 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
2003 * another epoll file (represented by @ep) does not create
2004 * closed loops or too deep chains.
2005 *
2006 * @ep: Pointer to the epoll private data structure.
2007 * @file: Pointer to the epoll file to be checked.
2008 *
2009 * Returns: Returns zero if adding the epoll @file inside current epoll
2010 * structure @ep does not violate the constraints, or -1 otherwise.
2011 */
ep_loop_check(struct eventpoll * ep,struct file * file)2012 static int ep_loop_check(struct eventpoll *ep, struct file *file)
2013 {
2014 int ret;
2015 struct eventpoll *ep_cur, *ep_next;
2016
2017 ret = ep_call_nested(&poll_loop_ncalls,
2018 ep_loop_check_proc, file, ep, current);
2019 /* clear visited list */
2020 list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
2021 visited_list_link) {
2022 ep_cur->visited = 0;
2023 list_del(&ep_cur->visited_list_link);
2024 }
2025 return ret;
2026 }
2027
clear_tfile_check_list(void)2028 static void clear_tfile_check_list(void)
2029 {
2030 struct file *file;
2031
2032 /* first clear the tfile_check_list */
2033 while (!list_empty(&tfile_check_list)) {
2034 file = list_first_entry(&tfile_check_list, struct file,
2035 f_tfile_llink);
2036 list_del_init(&file->f_tfile_llink);
2037 }
2038 INIT_LIST_HEAD(&tfile_check_list);
2039 }
2040
2041 /*
2042 * Open an eventpoll file descriptor.
2043 */
do_epoll_create(int flags)2044 static int do_epoll_create(int flags)
2045 {
2046 int error, fd;
2047 struct eventpoll *ep = NULL;
2048 struct file *file;
2049
2050 /* Check the EPOLL_* constant for consistency. */
2051 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2052
2053 if (flags & ~EPOLL_CLOEXEC)
2054 return -EINVAL;
2055 /*
2056 * Create the internal data structure ("struct eventpoll").
2057 */
2058 error = ep_alloc(&ep);
2059 if (error < 0)
2060 return error;
2061 /*
2062 * Creates all the items needed to setup an eventpoll file. That is,
2063 * a file structure and a free file descriptor.
2064 */
2065 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2066 if (fd < 0) {
2067 error = fd;
2068 goto out_free_ep;
2069 }
2070 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2071 O_RDWR | (flags & O_CLOEXEC));
2072 if (IS_ERR(file)) {
2073 error = PTR_ERR(file);
2074 goto out_free_fd;
2075 }
2076 ep->file = file;
2077 fd_install(fd, file);
2078 return fd;
2079
2080 out_free_fd:
2081 put_unused_fd(fd);
2082 out_free_ep:
2083 ep_free(ep);
2084 return error;
2085 }
2086
SYSCALL_DEFINE1(epoll_create1,int,flags)2087 SYSCALL_DEFINE1(epoll_create1, int, flags)
2088 {
2089 return do_epoll_create(flags);
2090 }
2091
SYSCALL_DEFINE1(epoll_create,int,size)2092 SYSCALL_DEFINE1(epoll_create, int, size)
2093 {
2094 if (size <= 0)
2095 return -EINVAL;
2096
2097 return do_epoll_create(0);
2098 }
2099
2100 /*
2101 * The following function implements the controller interface for
2102 * the eventpoll file that enables the insertion/removal/change of
2103 * file descriptors inside the interest set.
2104 */
SYSCALL_DEFINE4(epoll_ctl,int,epfd,int,op,int,fd,struct epoll_event __user *,event)2105 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2106 struct epoll_event __user *, event)
2107 {
2108 int error;
2109 int full_check = 0;
2110 struct fd f, tf;
2111 struct eventpoll *ep;
2112 struct epitem *epi;
2113 struct epoll_event epds;
2114 struct eventpoll *tep = NULL;
2115
2116 error = -EFAULT;
2117 if (ep_op_has_event(op) &&
2118 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2119 goto error_return;
2120
2121 error = -EBADF;
2122 f = fdget(epfd);
2123 if (!f.file)
2124 goto error_return;
2125
2126 /* Get the "struct file *" for the target file */
2127 tf = fdget(fd);
2128 if (!tf.file)
2129 goto error_fput;
2130
2131 /* The target file descriptor must support poll */
2132 error = -EPERM;
2133 if (!file_can_poll(tf.file))
2134 goto error_tgt_fput;
2135
2136 /* Check if EPOLLWAKEUP is allowed */
2137 if (ep_op_has_event(op))
2138 ep_take_care_of_epollwakeup(&epds);
2139
2140 /*
2141 * We have to check that the file structure underneath the file descriptor
2142 * the user passed to us _is_ an eventpoll file. And also we do not permit
2143 * adding an epoll file descriptor inside itself.
2144 */
2145 error = -EINVAL;
2146 if (f.file == tf.file || !is_file_epoll(f.file))
2147 goto error_tgt_fput;
2148
2149 /*
2150 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2151 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2152 * Also, we do not currently supported nested exclusive wakeups.
2153 */
2154 if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) {
2155 if (op == EPOLL_CTL_MOD)
2156 goto error_tgt_fput;
2157 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2158 (epds.events & ~EPOLLEXCLUSIVE_OK_BITS)))
2159 goto error_tgt_fput;
2160 }
2161
2162 /*
2163 * At this point it is safe to assume that the "private_data" contains
2164 * our own data structure.
2165 */
2166 ep = f.file->private_data;
2167
2168 /*
2169 * When we insert an epoll file descriptor, inside another epoll file
2170 * descriptor, there is the change of creating closed loops, which are
2171 * better be handled here, than in more critical paths. While we are
2172 * checking for loops we also determine the list of files reachable
2173 * and hang them on the tfile_check_list, so we can check that we
2174 * haven't created too many possible wakeup paths.
2175 *
2176 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2177 * the epoll file descriptor is attaching directly to a wakeup source,
2178 * unless the epoll file descriptor is nested. The purpose of taking the
2179 * 'epmutex' on add is to prevent complex toplogies such as loops and
2180 * deep wakeup paths from forming in parallel through multiple
2181 * EPOLL_CTL_ADD operations.
2182 */
2183 mutex_lock_nested(&ep->mtx, 0);
2184 if (op == EPOLL_CTL_ADD) {
2185 if (!list_empty(&f.file->f_ep_links) ||
2186 is_file_epoll(tf.file)) {
2187 full_check = 1;
2188 mutex_unlock(&ep->mtx);
2189 mutex_lock(&epmutex);
2190 if (is_file_epoll(tf.file)) {
2191 error = -ELOOP;
2192 if (ep_loop_check(ep, tf.file) != 0) {
2193 clear_tfile_check_list();
2194 goto error_tgt_fput;
2195 }
2196 } else
2197 list_add(&tf.file->f_tfile_llink,
2198 &tfile_check_list);
2199 mutex_lock_nested(&ep->mtx, 0);
2200 if (is_file_epoll(tf.file)) {
2201 tep = tf.file->private_data;
2202 mutex_lock_nested(&tep->mtx, 1);
2203 }
2204 }
2205 }
2206
2207 /*
2208 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2209 * above, we can be sure to be able to use the item looked up by
2210 * ep_find() till we release the mutex.
2211 */
2212 epi = ep_find(ep, tf.file, fd);
2213
2214 error = -EINVAL;
2215 switch (op) {
2216 case EPOLL_CTL_ADD:
2217 if (!epi) {
2218 epds.events |= EPOLLERR | EPOLLHUP;
2219 error = ep_insert(ep, &epds, tf.file, fd, full_check);
2220 } else
2221 error = -EEXIST;
2222 if (full_check)
2223 clear_tfile_check_list();
2224 break;
2225 case EPOLL_CTL_DEL:
2226 if (epi)
2227 error = ep_remove(ep, epi);
2228 else
2229 error = -ENOENT;
2230 break;
2231 case EPOLL_CTL_MOD:
2232 if (epi) {
2233 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2234 epds.events |= EPOLLERR | EPOLLHUP;
2235 error = ep_modify(ep, epi, &epds);
2236 }
2237 } else
2238 error = -ENOENT;
2239 break;
2240 }
2241 if (tep != NULL)
2242 mutex_unlock(&tep->mtx);
2243 mutex_unlock(&ep->mtx);
2244
2245 error_tgt_fput:
2246 if (full_check)
2247 mutex_unlock(&epmutex);
2248
2249 fdput(tf);
2250 error_fput:
2251 fdput(f);
2252 error_return:
2253
2254 return error;
2255 }
2256
2257 /*
2258 * Implement the event wait interface for the eventpoll file. It is the kernel
2259 * part of the user space epoll_wait(2).
2260 */
do_epoll_wait(int epfd,struct epoll_event __user * events,int maxevents,int timeout)2261 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2262 int maxevents, int timeout)
2263 {
2264 int error;
2265 struct fd f;
2266 struct eventpoll *ep;
2267
2268 /* The maximum number of event must be greater than zero */
2269 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2270 return -EINVAL;
2271
2272 /* Verify that the area passed by the user is writeable */
2273 if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2274 return -EFAULT;
2275
2276 /* Get the "struct file *" for the eventpoll file */
2277 f = fdget(epfd);
2278 if (!f.file)
2279 return -EBADF;
2280
2281 /*
2282 * We have to check that the file structure underneath the fd
2283 * the user passed to us _is_ an eventpoll file.
2284 */
2285 error = -EINVAL;
2286 if (!is_file_epoll(f.file))
2287 goto error_fput;
2288
2289 /*
2290 * At this point it is safe to assume that the "private_data" contains
2291 * our own data structure.
2292 */
2293 ep = f.file->private_data;
2294
2295 /* Time to fish for events ... */
2296 error = ep_poll(ep, events, maxevents, timeout);
2297
2298 error_fput:
2299 fdput(f);
2300 return error;
2301 }
2302
SYSCALL_DEFINE4(epoll_wait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout)2303 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2304 int, maxevents, int, timeout)
2305 {
2306 return do_epoll_wait(epfd, events, maxevents, timeout);
2307 }
2308
2309 /*
2310 * Implement the event wait interface for the eventpoll file. It is the kernel
2311 * part of the user space epoll_pwait(2).
2312 */
SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const sigset_t __user *,sigmask,size_t,sigsetsize)2313 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2314 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2315 size_t, sigsetsize)
2316 {
2317 int error;
2318
2319 /*
2320 * If the caller wants a certain signal mask to be set during the wait,
2321 * we apply it here.
2322 */
2323 error = set_user_sigmask(sigmask, sigsetsize);
2324 if (error)
2325 return error;
2326
2327 error = do_epoll_wait(epfd, events, maxevents, timeout);
2328 restore_saved_sigmask_unless(error == -EINTR);
2329
2330 return error;
2331 }
2332
2333 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const compat_sigset_t __user *,sigmask,compat_size_t,sigsetsize)2334 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2335 struct epoll_event __user *, events,
2336 int, maxevents, int, timeout,
2337 const compat_sigset_t __user *, sigmask,
2338 compat_size_t, sigsetsize)
2339 {
2340 long err;
2341
2342 /*
2343 * If the caller wants a certain signal mask to be set during the wait,
2344 * we apply it here.
2345 */
2346 err = set_compat_user_sigmask(sigmask, sigsetsize);
2347 if (err)
2348 return err;
2349
2350 err = do_epoll_wait(epfd, events, maxevents, timeout);
2351 restore_saved_sigmask_unless(err == -EINTR);
2352
2353 return err;
2354 }
2355 #endif
2356
eventpoll_init(void)2357 static int __init eventpoll_init(void)
2358 {
2359 struct sysinfo si;
2360
2361 si_meminfo(&si);
2362 /*
2363 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2364 */
2365 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2366 EP_ITEM_COST;
2367 BUG_ON(max_user_watches < 0);
2368
2369 /*
2370 * Initialize the structure used to perform epoll file descriptor
2371 * inclusion loops checks.
2372 */
2373 ep_nested_calls_init(&poll_loop_ncalls);
2374
2375 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2376 /* Initialize the structure used to perform safe poll wait head wake ups */
2377 ep_nested_calls_init(&poll_safewake_ncalls);
2378 #endif
2379
2380 /*
2381 * We can have many thousands of epitems, so prevent this from
2382 * using an extra cache line on 64-bit (and smaller) CPUs
2383 */
2384 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2385
2386 /* Allocates slab cache used to allocate "struct epitem" items */
2387 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2388 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2389
2390 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2391 pwq_cache = kmem_cache_create("eventpoll_pwq",
2392 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2393
2394 return 0;
2395 }
2396 fs_initcall(eventpoll_init);
2397