• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  fs/eventpoll.c (Efficient event retrieval implementation)
4  *  Copyright (C) 2001,...,2009	 Davide Libenzi
5  *
6  *  Davide Libenzi <davidel@xmailserver.org>
7  */
8 
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/freezer.h>
33 #include <linux/uaccess.h>
34 #include <asm/io.h>
35 #include <asm/mman.h>
36 #include <linux/atomic.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/compat.h>
40 #include <linux/rculist.h>
41 #include <net/busy_poll.h>
42 
43 /*
44  * LOCKING:
45  * There are three level of locking required by epoll :
46  *
47  * 1) epmutex (mutex)
48  * 2) ep->mtx (mutex)
49  * 3) ep->lock (rwlock)
50  *
51  * The acquire order is the one listed above, from 1 to 3.
52  * We need a rwlock (ep->lock) because we manipulate objects
53  * from inside the poll callback, that might be triggered from
54  * a wake_up() that in turn might be called from IRQ context.
55  * So we can't sleep inside the poll callback and hence we need
56  * a spinlock. During the event transfer loop (from kernel to
57  * user space) we could end up sleeping due a copy_to_user(), so
58  * we need a lock that will allow us to sleep. This lock is a
59  * mutex (ep->mtx). It is acquired during the event transfer loop,
60  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
61  * Then we also need a global mutex to serialize eventpoll_release_file()
62  * and ep_free().
63  * This mutex is acquired by ep_free() during the epoll file
64  * cleanup path and it is also acquired by eventpoll_release_file()
65  * if a file has been pushed inside an epoll set and it is then
66  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
67  * It is also acquired when inserting an epoll fd onto another epoll
68  * fd. We do this so that we walk the epoll tree and ensure that this
69  * insertion does not create a cycle of epoll file descriptors, which
70  * could lead to deadlock. We need a global mutex to prevent two
71  * simultaneous inserts (A into B and B into A) from racing and
72  * constructing a cycle without either insert observing that it is
73  * going to.
74  * It is necessary to acquire multiple "ep->mtx"es at once in the
75  * case when one epoll fd is added to another. In this case, we
76  * always acquire the locks in the order of nesting (i.e. after
77  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
78  * before e2->mtx). Since we disallow cycles of epoll file
79  * descriptors, this ensures that the mutexes are well-ordered. In
80  * order to communicate this nesting to lockdep, when walking a tree
81  * of epoll file descriptors, we use the current recursion depth as
82  * the lockdep subkey.
83  * It is possible to drop the "ep->mtx" and to use the global
84  * mutex "epmutex" (together with "ep->lock") to have it working,
85  * but having "ep->mtx" will make the interface more scalable.
86  * Events that require holding "epmutex" are very rare, while for
87  * normal operations the epoll private "ep->mtx" will guarantee
88  * a better scalability.
89  */
90 
91 /* Epoll private bits inside the event mask */
92 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
93 
94 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
95 
96 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
97 				EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
98 
99 /* Maximum number of nesting allowed inside epoll sets */
100 #define EP_MAX_NESTS 4
101 
102 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
103 
104 #define EP_UNACTIVE_PTR ((void *) -1L)
105 
106 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
107 
108 struct epoll_filefd {
109 	struct file *file;
110 	int fd;
111 } __packed;
112 
113 /*
114  * Structure used to track possible nested calls, for too deep recursions
115  * and loop cycles.
116  */
117 struct nested_call_node {
118 	struct list_head llink;
119 	void *cookie;
120 	void *ctx;
121 };
122 
123 /*
124  * This structure is used as collector for nested calls, to check for
125  * maximum recursion dept and loop cycles.
126  */
127 struct nested_calls {
128 	struct list_head tasks_call_list;
129 	spinlock_t lock;
130 };
131 
132 /*
133  * Each file descriptor added to the eventpoll interface will
134  * have an entry of this type linked to the "rbr" RB tree.
135  * Avoid increasing the size of this struct, there can be many thousands
136  * of these on a server and we do not want this to take another cache line.
137  */
138 struct epitem {
139 	union {
140 		/* RB tree node links this structure to the eventpoll RB tree */
141 		struct rb_node rbn;
142 		/* Used to free the struct epitem */
143 		struct rcu_head rcu;
144 	};
145 
146 	/* List header used to link this structure to the eventpoll ready list */
147 	struct list_head rdllink;
148 
149 	/*
150 	 * Works together "struct eventpoll"->ovflist in keeping the
151 	 * single linked chain of items.
152 	 */
153 	struct epitem *next;
154 
155 	/* The file descriptor information this item refers to */
156 	struct epoll_filefd ffd;
157 
158 	/* Number of active wait queue attached to poll operations */
159 	int nwait;
160 
161 	/* List containing poll wait queues */
162 	struct list_head pwqlist;
163 
164 	/* The "container" of this item */
165 	struct eventpoll *ep;
166 
167 	/* List header used to link this item to the "struct file" items list */
168 	struct list_head fllink;
169 
170 	/* wakeup_source used when EPOLLWAKEUP is set */
171 	struct wakeup_source __rcu *ws;
172 
173 	/* The structure that describe the interested events and the source fd */
174 	struct epoll_event event;
175 };
176 
177 /*
178  * This structure is stored inside the "private_data" member of the file
179  * structure and represents the main data structure for the eventpoll
180  * interface.
181  */
182 struct eventpoll {
183 	/*
184 	 * This mutex is used to ensure that files are not removed
185 	 * while epoll is using them. This is held during the event
186 	 * collection loop, the file cleanup path, the epoll file exit
187 	 * code and the ctl operations.
188 	 */
189 	struct mutex mtx;
190 
191 	/* Wait queue used by sys_epoll_wait() */
192 	wait_queue_head_t wq;
193 
194 	/* Wait queue used by file->poll() */
195 	wait_queue_head_t poll_wait;
196 
197 	/* List of ready file descriptors */
198 	struct list_head rdllist;
199 
200 	/* Lock which protects rdllist and ovflist */
201 	rwlock_t lock;
202 
203 	/* RB tree root used to store monitored fd structs */
204 	struct rb_root_cached rbr;
205 
206 	/*
207 	 * This is a single linked list that chains all the "struct epitem" that
208 	 * happened while transferring ready events to userspace w/out
209 	 * holding ->lock.
210 	 */
211 	struct epitem *ovflist;
212 
213 	/* wakeup_source used when ep_scan_ready_list is running */
214 	struct wakeup_source *ws;
215 
216 	/* The user that created the eventpoll descriptor */
217 	struct user_struct *user;
218 
219 	struct file *file;
220 
221 	/* used to optimize loop detection check */
222 	int visited;
223 	struct list_head visited_list_link;
224 
225 #ifdef CONFIG_NET_RX_BUSY_POLL
226 	/* used to track busy poll napi_id */
227 	unsigned int napi_id;
228 #endif
229 };
230 
231 /* Wait structure used by the poll hooks */
232 struct eppoll_entry {
233 	/* List header used to link this structure to the "struct epitem" */
234 	struct list_head llink;
235 
236 	/* The "base" pointer is set to the container "struct epitem" */
237 	struct epitem *base;
238 
239 	/*
240 	 * Wait queue item that will be linked to the target file wait
241 	 * queue head.
242 	 */
243 	wait_queue_entry_t wait;
244 
245 	/* The wait queue head that linked the "wait" wait queue item */
246 	wait_queue_head_t *whead;
247 };
248 
249 /* Wrapper struct used by poll queueing */
250 struct ep_pqueue {
251 	poll_table pt;
252 	struct epitem *epi;
253 };
254 
255 /* Used by the ep_send_events() function as callback private data */
256 struct ep_send_events_data {
257 	int maxevents;
258 	struct epoll_event __user *events;
259 	int res;
260 };
261 
262 /*
263  * Configuration options available inside /proc/sys/fs/epoll/
264  */
265 /* Maximum number of epoll watched descriptors, per user */
266 static long max_user_watches __read_mostly;
267 
268 /*
269  * This mutex is used to serialize ep_free() and eventpoll_release_file().
270  */
271 static DEFINE_MUTEX(epmutex);
272 
273 /* Used to check for epoll file descriptor inclusion loops */
274 static struct nested_calls poll_loop_ncalls;
275 
276 /* Slab cache used to allocate "struct epitem" */
277 static struct kmem_cache *epi_cache __read_mostly;
278 
279 /* Slab cache used to allocate "struct eppoll_entry" */
280 static struct kmem_cache *pwq_cache __read_mostly;
281 
282 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
283 static LIST_HEAD(visited_list);
284 
285 /*
286  * List of files with newly added links, where we may need to limit the number
287  * of emanating paths. Protected by the epmutex.
288  */
289 static LIST_HEAD(tfile_check_list);
290 
291 #ifdef CONFIG_SYSCTL
292 
293 #include <linux/sysctl.h>
294 
295 static long long_zero;
296 static long long_max = LONG_MAX;
297 
298 struct ctl_table epoll_table[] = {
299 	{
300 		.procname	= "max_user_watches",
301 		.data		= &max_user_watches,
302 		.maxlen		= sizeof(max_user_watches),
303 		.mode		= 0644,
304 		.proc_handler	= proc_doulongvec_minmax,
305 		.extra1		= &long_zero,
306 		.extra2		= &long_max,
307 	},
308 	{ }
309 };
310 #endif /* CONFIG_SYSCTL */
311 
312 static const struct file_operations eventpoll_fops;
313 
is_file_epoll(struct file * f)314 static inline int is_file_epoll(struct file *f)
315 {
316 	return f->f_op == &eventpoll_fops;
317 }
318 
319 /* Setup the structure that is used as key for the RB tree */
ep_set_ffd(struct epoll_filefd * ffd,struct file * file,int fd)320 static inline void ep_set_ffd(struct epoll_filefd *ffd,
321 			      struct file *file, int fd)
322 {
323 	ffd->file = file;
324 	ffd->fd = fd;
325 }
326 
327 /* Compare RB tree keys */
ep_cmp_ffd(struct epoll_filefd * p1,struct epoll_filefd * p2)328 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
329 			     struct epoll_filefd *p2)
330 {
331 	return (p1->file > p2->file ? +1:
332 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
333 }
334 
335 /* Tells us if the item is currently linked */
ep_is_linked(struct epitem * epi)336 static inline int ep_is_linked(struct epitem *epi)
337 {
338 	return !list_empty(&epi->rdllink);
339 }
340 
ep_pwq_from_wait(wait_queue_entry_t * p)341 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
342 {
343 	return container_of(p, struct eppoll_entry, wait);
344 }
345 
346 /* Get the "struct epitem" from a wait queue pointer */
ep_item_from_wait(wait_queue_entry_t * p)347 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
348 {
349 	return container_of(p, struct eppoll_entry, wait)->base;
350 }
351 
352 /* Get the "struct epitem" from an epoll queue wrapper */
ep_item_from_epqueue(poll_table * p)353 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
354 {
355 	return container_of(p, struct ep_pqueue, pt)->epi;
356 }
357 
358 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
ep_op_has_event(int op)359 static inline int ep_op_has_event(int op)
360 {
361 	return op != EPOLL_CTL_DEL;
362 }
363 
364 /* Initialize the poll safe wake up structure */
ep_nested_calls_init(struct nested_calls * ncalls)365 static void ep_nested_calls_init(struct nested_calls *ncalls)
366 {
367 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
368 	spin_lock_init(&ncalls->lock);
369 }
370 
371 /**
372  * ep_events_available - Checks if ready events might be available.
373  *
374  * @ep: Pointer to the eventpoll context.
375  *
376  * Returns: Returns a value different than zero if ready events are available,
377  *          or zero otherwise.
378  */
ep_events_available(struct eventpoll * ep)379 static inline int ep_events_available(struct eventpoll *ep)
380 {
381 	return !list_empty_careful(&ep->rdllist) ||
382 		READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
383 }
384 
385 #ifdef CONFIG_NET_RX_BUSY_POLL
ep_busy_loop_end(void * p,unsigned long start_time)386 static bool ep_busy_loop_end(void *p, unsigned long start_time)
387 {
388 	struct eventpoll *ep = p;
389 
390 	return ep_events_available(ep) || busy_loop_timeout(start_time);
391 }
392 
393 /*
394  * Busy poll if globally on and supporting sockets found && no events,
395  * busy loop will return if need_resched or ep_events_available.
396  *
397  * we must do our busy polling with irqs enabled
398  */
ep_busy_loop(struct eventpoll * ep,int nonblock)399 static void ep_busy_loop(struct eventpoll *ep, int nonblock)
400 {
401 	unsigned int napi_id = READ_ONCE(ep->napi_id);
402 
403 	if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
404 		napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
405 }
406 
ep_reset_busy_poll_napi_id(struct eventpoll * ep)407 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
408 {
409 	if (ep->napi_id)
410 		ep->napi_id = 0;
411 }
412 
413 /*
414  * Set epoll busy poll NAPI ID from sk.
415  */
ep_set_busy_poll_napi_id(struct epitem * epi)416 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
417 {
418 	struct eventpoll *ep;
419 	unsigned int napi_id;
420 	struct socket *sock;
421 	struct sock *sk;
422 	int err;
423 
424 	if (!net_busy_loop_on())
425 		return;
426 
427 	sock = sock_from_file(epi->ffd.file, &err);
428 	if (!sock)
429 		return;
430 
431 	sk = sock->sk;
432 	if (!sk)
433 		return;
434 
435 	napi_id = READ_ONCE(sk->sk_napi_id);
436 	ep = epi->ep;
437 
438 	/* Non-NAPI IDs can be rejected
439 	 *	or
440 	 * Nothing to do if we already have this ID
441 	 */
442 	if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
443 		return;
444 
445 	/* record NAPI ID for use in next busy poll */
446 	ep->napi_id = napi_id;
447 }
448 
449 #else
450 
ep_busy_loop(struct eventpoll * ep,int nonblock)451 static inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
452 {
453 }
454 
ep_reset_busy_poll_napi_id(struct eventpoll * ep)455 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
456 {
457 }
458 
ep_set_busy_poll_napi_id(struct epitem * epi)459 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
460 {
461 }
462 
463 #endif /* CONFIG_NET_RX_BUSY_POLL */
464 
465 /**
466  * ep_call_nested - Perform a bound (possibly) nested call, by checking
467  *                  that the recursion limit is not exceeded, and that
468  *                  the same nested call (by the meaning of same cookie) is
469  *                  no re-entered.
470  *
471  * @ncalls: Pointer to the nested_calls structure to be used for this call.
472  * @nproc: Nested call core function pointer.
473  * @priv: Opaque data to be passed to the @nproc callback.
474  * @cookie: Cookie to be used to identify this nested call.
475  * @ctx: This instance context.
476  *
477  * Returns: Returns the code returned by the @nproc callback, or -1 if
478  *          the maximum recursion limit has been exceeded.
479  */
ep_call_nested(struct nested_calls * ncalls,int (* nproc)(void *,void *,int),void * priv,void * cookie,void * ctx)480 static int ep_call_nested(struct nested_calls *ncalls,
481 			  int (*nproc)(void *, void *, int), void *priv,
482 			  void *cookie, void *ctx)
483 {
484 	int error, call_nests = 0;
485 	unsigned long flags;
486 	struct list_head *lsthead = &ncalls->tasks_call_list;
487 	struct nested_call_node *tncur;
488 	struct nested_call_node tnode;
489 
490 	spin_lock_irqsave(&ncalls->lock, flags);
491 
492 	/*
493 	 * Try to see if the current task is already inside this wakeup call.
494 	 * We use a list here, since the population inside this set is always
495 	 * very much limited.
496 	 */
497 	list_for_each_entry(tncur, lsthead, llink) {
498 		if (tncur->ctx == ctx &&
499 		    (tncur->cookie == cookie || ++call_nests > EP_MAX_NESTS)) {
500 			/*
501 			 * Ops ... loop detected or maximum nest level reached.
502 			 * We abort this wake by breaking the cycle itself.
503 			 */
504 			error = -1;
505 			goto out_unlock;
506 		}
507 	}
508 
509 	/* Add the current task and cookie to the list */
510 	tnode.ctx = ctx;
511 	tnode.cookie = cookie;
512 	list_add(&tnode.llink, lsthead);
513 
514 	spin_unlock_irqrestore(&ncalls->lock, flags);
515 
516 	/* Call the nested function */
517 	error = (*nproc)(priv, cookie, call_nests);
518 
519 	/* Remove the current task from the list */
520 	spin_lock_irqsave(&ncalls->lock, flags);
521 	list_del(&tnode.llink);
522 out_unlock:
523 	spin_unlock_irqrestore(&ncalls->lock, flags);
524 
525 	return error;
526 }
527 
528 /*
529  * As described in commit 0ccf831cb lockdep: annotate epoll
530  * the use of wait queues used by epoll is done in a very controlled
531  * manner. Wake ups can nest inside each other, but are never done
532  * with the same locking. For example:
533  *
534  *   dfd = socket(...);
535  *   efd1 = epoll_create();
536  *   efd2 = epoll_create();
537  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
538  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
539  *
540  * When a packet arrives to the device underneath "dfd", the net code will
541  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
542  * callback wakeup entry on that queue, and the wake_up() performed by the
543  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
544  * (efd1) notices that it may have some event ready, so it needs to wake up
545  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
546  * that ends up in another wake_up(), after having checked about the
547  * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
548  * avoid stack blasting.
549  *
550  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
551  * this special case of epoll.
552  */
553 #ifdef CONFIG_DEBUG_LOCK_ALLOC
554 
555 static struct nested_calls poll_safewake_ncalls;
556 
ep_poll_wakeup_proc(void * priv,void * cookie,int call_nests)557 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
558 {
559 	unsigned long flags;
560 	wait_queue_head_t *wqueue = (wait_queue_head_t *)cookie;
561 
562 	spin_lock_irqsave_nested(&wqueue->lock, flags, call_nests + 1);
563 	wake_up_locked_poll(wqueue, EPOLLIN);
564 	spin_unlock_irqrestore(&wqueue->lock, flags);
565 
566 	return 0;
567 }
568 
ep_poll_safewake(wait_queue_head_t * wq)569 static void ep_poll_safewake(wait_queue_head_t *wq)
570 {
571 	int this_cpu = get_cpu();
572 
573 	ep_call_nested(&poll_safewake_ncalls,
574 		       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
575 
576 	put_cpu();
577 }
578 
579 #else
580 
ep_poll_safewake(wait_queue_head_t * wq)581 static void ep_poll_safewake(wait_queue_head_t *wq)
582 {
583 	wake_up_poll(wq, EPOLLIN);
584 }
585 
586 #endif
587 
ep_remove_wait_queue(struct eppoll_entry * pwq)588 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
589 {
590 	wait_queue_head_t *whead;
591 
592 	rcu_read_lock();
593 	/*
594 	 * If it is cleared by POLLFREE, it should be rcu-safe.
595 	 * If we read NULL we need a barrier paired with
596 	 * smp_store_release() in ep_poll_callback(), otherwise
597 	 * we rely on whead->lock.
598 	 */
599 	whead = smp_load_acquire(&pwq->whead);
600 	if (whead)
601 		remove_wait_queue(whead, &pwq->wait);
602 	rcu_read_unlock();
603 }
604 
605 /*
606  * This function unregisters poll callbacks from the associated file
607  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
608  * ep_free).
609  */
ep_unregister_pollwait(struct eventpoll * ep,struct epitem * epi)610 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
611 {
612 	struct list_head *lsthead = &epi->pwqlist;
613 	struct eppoll_entry *pwq;
614 
615 	while (!list_empty(lsthead)) {
616 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
617 
618 		list_del(&pwq->llink);
619 		ep_remove_wait_queue(pwq);
620 		kmem_cache_free(pwq_cache, pwq);
621 	}
622 }
623 
624 /* call only when ep->mtx is held */
ep_wakeup_source(struct epitem * epi)625 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
626 {
627 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
628 }
629 
630 /* call only when ep->mtx is held */
ep_pm_stay_awake(struct epitem * epi)631 static inline void ep_pm_stay_awake(struct epitem *epi)
632 {
633 	struct wakeup_source *ws = ep_wakeup_source(epi);
634 
635 	if (ws)
636 		__pm_stay_awake(ws);
637 }
638 
ep_has_wakeup_source(struct epitem * epi)639 static inline bool ep_has_wakeup_source(struct epitem *epi)
640 {
641 	return rcu_access_pointer(epi->ws) ? true : false;
642 }
643 
644 /* call when ep->mtx cannot be held (ep_poll_callback) */
ep_pm_stay_awake_rcu(struct epitem * epi)645 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
646 {
647 	struct wakeup_source *ws;
648 
649 	rcu_read_lock();
650 	ws = rcu_dereference(epi->ws);
651 	if (ws)
652 		__pm_stay_awake(ws);
653 	rcu_read_unlock();
654 }
655 
656 /**
657  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
658  *                      the scan code, to call f_op->poll(). Also allows for
659  *                      O(NumReady) performance.
660  *
661  * @ep: Pointer to the epoll private data structure.
662  * @sproc: Pointer to the scan callback.
663  * @priv: Private opaque data passed to the @sproc callback.
664  * @depth: The current depth of recursive f_op->poll calls.
665  * @ep_locked: caller already holds ep->mtx
666  *
667  * Returns: The same integer error code returned by the @sproc callback.
668  */
ep_scan_ready_list(struct eventpoll * ep,__poll_t (* sproc)(struct eventpoll *,struct list_head *,void *),void * priv,int depth,bool ep_locked)669 static __poll_t ep_scan_ready_list(struct eventpoll *ep,
670 			      __poll_t (*sproc)(struct eventpoll *,
671 					   struct list_head *, void *),
672 			      void *priv, int depth, bool ep_locked)
673 {
674 	__poll_t res;
675 	int pwake = 0;
676 	struct epitem *epi, *nepi;
677 	LIST_HEAD(txlist);
678 
679 	lockdep_assert_irqs_enabled();
680 
681 	/*
682 	 * We need to lock this because we could be hit by
683 	 * eventpoll_release_file() and epoll_ctl().
684 	 */
685 
686 	if (!ep_locked)
687 		mutex_lock_nested(&ep->mtx, depth);
688 
689 	/*
690 	 * Steal the ready list, and re-init the original one to the
691 	 * empty list. Also, set ep->ovflist to NULL so that events
692 	 * happening while looping w/out locks, are not lost. We cannot
693 	 * have the poll callback to queue directly on ep->rdllist,
694 	 * because we want the "sproc" callback to be able to do it
695 	 * in a lockless way.
696 	 */
697 	write_lock_irq(&ep->lock);
698 	list_splice_init(&ep->rdllist, &txlist);
699 	WRITE_ONCE(ep->ovflist, NULL);
700 	write_unlock_irq(&ep->lock);
701 
702 	/*
703 	 * Now call the callback function.
704 	 */
705 	res = (*sproc)(ep, &txlist, priv);
706 
707 	write_lock_irq(&ep->lock);
708 	/*
709 	 * During the time we spent inside the "sproc" callback, some
710 	 * other events might have been queued by the poll callback.
711 	 * We re-insert them inside the main ready-list here.
712 	 */
713 	for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
714 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
715 		/*
716 		 * We need to check if the item is already in the list.
717 		 * During the "sproc" callback execution time, items are
718 		 * queued into ->ovflist but the "txlist" might already
719 		 * contain them, and the list_splice() below takes care of them.
720 		 */
721 		if (!ep_is_linked(epi)) {
722 			/*
723 			 * ->ovflist is LIFO, so we have to reverse it in order
724 			 * to keep in FIFO.
725 			 */
726 			list_add(&epi->rdllink, &ep->rdllist);
727 			ep_pm_stay_awake(epi);
728 		}
729 	}
730 	/*
731 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
732 	 * releasing the lock, events will be queued in the normal way inside
733 	 * ep->rdllist.
734 	 */
735 	WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
736 
737 	/*
738 	 * Quickly re-inject items left on "txlist".
739 	 */
740 	list_splice(&txlist, &ep->rdllist);
741 	__pm_relax(ep->ws);
742 
743 	if (!list_empty(&ep->rdllist)) {
744 		/*
745 		 * Wake up (if active) both the eventpoll wait list and
746 		 * the ->poll() wait list (delayed after we release the lock).
747 		 */
748 		if (waitqueue_active(&ep->wq))
749 			wake_up(&ep->wq);
750 		if (waitqueue_active(&ep->poll_wait))
751 			pwake++;
752 	}
753 	write_unlock_irq(&ep->lock);
754 
755 	if (!ep_locked)
756 		mutex_unlock(&ep->mtx);
757 
758 	/* We have to call this outside the lock */
759 	if (pwake)
760 		ep_poll_safewake(&ep->poll_wait);
761 
762 	return res;
763 }
764 
epi_rcu_free(struct rcu_head * head)765 static void epi_rcu_free(struct rcu_head *head)
766 {
767 	struct epitem *epi = container_of(head, struct epitem, rcu);
768 	kmem_cache_free(epi_cache, epi);
769 }
770 
771 /*
772  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
773  * all the associated resources. Must be called with "mtx" held.
774  */
ep_remove(struct eventpoll * ep,struct epitem * epi)775 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
776 {
777 	struct file *file = epi->ffd.file;
778 
779 	lockdep_assert_irqs_enabled();
780 
781 	/*
782 	 * Removes poll wait queue hooks.
783 	 */
784 	ep_unregister_pollwait(ep, epi);
785 
786 	/* Remove the current item from the list of epoll hooks */
787 	spin_lock(&file->f_lock);
788 	list_del_rcu(&epi->fllink);
789 	spin_unlock(&file->f_lock);
790 
791 	rb_erase_cached(&epi->rbn, &ep->rbr);
792 
793 	write_lock_irq(&ep->lock);
794 	if (ep_is_linked(epi))
795 		list_del_init(&epi->rdllink);
796 	write_unlock_irq(&ep->lock);
797 
798 	wakeup_source_unregister(ep_wakeup_source(epi));
799 	/*
800 	 * At this point it is safe to free the eventpoll item. Use the union
801 	 * field epi->rcu, since we are trying to minimize the size of
802 	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
803 	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
804 	 * use of the rbn field.
805 	 */
806 	call_rcu(&epi->rcu, epi_rcu_free);
807 
808 	atomic_long_dec(&ep->user->epoll_watches);
809 
810 	return 0;
811 }
812 
ep_free(struct eventpoll * ep)813 static void ep_free(struct eventpoll *ep)
814 {
815 	struct rb_node *rbp;
816 	struct epitem *epi;
817 
818 	/* We need to release all tasks waiting for these file */
819 	if (waitqueue_active(&ep->poll_wait))
820 		ep_poll_safewake(&ep->poll_wait);
821 
822 	/*
823 	 * We need to lock this because we could be hit by
824 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
825 	 * We do not need to hold "ep->mtx" here because the epoll file
826 	 * is on the way to be removed and no one has references to it
827 	 * anymore. The only hit might come from eventpoll_release_file() but
828 	 * holding "epmutex" is sufficient here.
829 	 */
830 	mutex_lock(&epmutex);
831 
832 	/*
833 	 * Walks through the whole tree by unregistering poll callbacks.
834 	 */
835 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
836 		epi = rb_entry(rbp, struct epitem, rbn);
837 
838 		ep_unregister_pollwait(ep, epi);
839 		cond_resched();
840 	}
841 
842 	/*
843 	 * Walks through the whole tree by freeing each "struct epitem". At this
844 	 * point we are sure no poll callbacks will be lingering around, and also by
845 	 * holding "epmutex" we can be sure that no file cleanup code will hit
846 	 * us during this operation. So we can avoid the lock on "ep->lock".
847 	 * We do not need to lock ep->mtx, either, we only do it to prevent
848 	 * a lockdep warning.
849 	 */
850 	mutex_lock(&ep->mtx);
851 	while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
852 		epi = rb_entry(rbp, struct epitem, rbn);
853 		ep_remove(ep, epi);
854 		cond_resched();
855 	}
856 	mutex_unlock(&ep->mtx);
857 
858 	mutex_unlock(&epmutex);
859 	mutex_destroy(&ep->mtx);
860 	free_uid(ep->user);
861 	wakeup_source_unregister(ep->ws);
862 	kfree(ep);
863 }
864 
ep_eventpoll_release(struct inode * inode,struct file * file)865 static int ep_eventpoll_release(struct inode *inode, struct file *file)
866 {
867 	struct eventpoll *ep = file->private_data;
868 
869 	if (ep)
870 		ep_free(ep);
871 
872 	return 0;
873 }
874 
875 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
876 			       void *priv);
877 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
878 				 poll_table *pt);
879 
880 /*
881  * Differs from ep_eventpoll_poll() in that internal callers already have
882  * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
883  * is correctly annotated.
884  */
ep_item_poll(const struct epitem * epi,poll_table * pt,int depth)885 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
886 				 int depth)
887 {
888 	struct eventpoll *ep;
889 	bool locked;
890 
891 	pt->_key = epi->event.events;
892 	if (!is_file_epoll(epi->ffd.file))
893 		return vfs_poll(epi->ffd.file, pt) & epi->event.events;
894 
895 	ep = epi->ffd.file->private_data;
896 	poll_wait(epi->ffd.file, &ep->poll_wait, pt);
897 	locked = pt && (pt->_qproc == ep_ptable_queue_proc);
898 
899 	return ep_scan_ready_list(epi->ffd.file->private_data,
900 				  ep_read_events_proc, &depth, depth,
901 				  locked) & epi->event.events;
902 }
903 
ep_read_events_proc(struct eventpoll * ep,struct list_head * head,void * priv)904 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
905 			       void *priv)
906 {
907 	struct epitem *epi, *tmp;
908 	poll_table pt;
909 	int depth = *(int *)priv;
910 
911 	init_poll_funcptr(&pt, NULL);
912 	depth++;
913 
914 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
915 		if (ep_item_poll(epi, &pt, depth)) {
916 			return EPOLLIN | EPOLLRDNORM;
917 		} else {
918 			/*
919 			 * Item has been dropped into the ready list by the poll
920 			 * callback, but it's not actually ready, as far as
921 			 * caller requested events goes. We can remove it here.
922 			 */
923 			__pm_relax(ep_wakeup_source(epi));
924 			list_del_init(&epi->rdllink);
925 		}
926 	}
927 
928 	return 0;
929 }
930 
ep_eventpoll_poll(struct file * file,poll_table * wait)931 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
932 {
933 	struct eventpoll *ep = file->private_data;
934 	int depth = 0;
935 
936 	/* Insert inside our poll wait queue */
937 	poll_wait(file, &ep->poll_wait, wait);
938 
939 	/*
940 	 * Proceed to find out if wanted events are really available inside
941 	 * the ready list.
942 	 */
943 	return ep_scan_ready_list(ep, ep_read_events_proc,
944 				  &depth, depth, false);
945 }
946 
947 #ifdef CONFIG_PROC_FS
ep_show_fdinfo(struct seq_file * m,struct file * f)948 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
949 {
950 	struct eventpoll *ep = f->private_data;
951 	struct rb_node *rbp;
952 
953 	mutex_lock(&ep->mtx);
954 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
955 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
956 		struct inode *inode = file_inode(epi->ffd.file);
957 
958 		seq_printf(m, "tfd: %8d events: %8x data: %16llx "
959 			   " pos:%lli ino:%lx sdev:%x\n",
960 			   epi->ffd.fd, epi->event.events,
961 			   (long long)epi->event.data,
962 			   (long long)epi->ffd.file->f_pos,
963 			   inode->i_ino, inode->i_sb->s_dev);
964 		if (seq_has_overflowed(m))
965 			break;
966 	}
967 	mutex_unlock(&ep->mtx);
968 }
969 #endif
970 
971 /* File callbacks that implement the eventpoll file behaviour */
972 static const struct file_operations eventpoll_fops = {
973 #ifdef CONFIG_PROC_FS
974 	.show_fdinfo	= ep_show_fdinfo,
975 #endif
976 	.release	= ep_eventpoll_release,
977 	.poll		= ep_eventpoll_poll,
978 	.llseek		= noop_llseek,
979 };
980 
981 /*
982  * This is called from eventpoll_release() to unlink files from the eventpoll
983  * interface. We need to have this facility to cleanup correctly files that are
984  * closed without being removed from the eventpoll interface.
985  */
eventpoll_release_file(struct file * file)986 void eventpoll_release_file(struct file *file)
987 {
988 	struct eventpoll *ep;
989 	struct epitem *epi, *next;
990 
991 	/*
992 	 * We don't want to get "file->f_lock" because it is not
993 	 * necessary. It is not necessary because we're in the "struct file"
994 	 * cleanup path, and this means that no one is using this file anymore.
995 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
996 	 * point, the file counter already went to zero and fget() would fail.
997 	 * The only hit might come from ep_free() but by holding the mutex
998 	 * will correctly serialize the operation. We do need to acquire
999 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
1000 	 * from anywhere but ep_free().
1001 	 *
1002 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
1003 	 */
1004 	mutex_lock(&epmutex);
1005 	list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
1006 		ep = epi->ep;
1007 		mutex_lock_nested(&ep->mtx, 0);
1008 		ep_remove(ep, epi);
1009 		mutex_unlock(&ep->mtx);
1010 	}
1011 	mutex_unlock(&epmutex);
1012 }
1013 
ep_alloc(struct eventpoll ** pep)1014 static int ep_alloc(struct eventpoll **pep)
1015 {
1016 	int error;
1017 	struct user_struct *user;
1018 	struct eventpoll *ep;
1019 
1020 	user = get_current_user();
1021 	error = -ENOMEM;
1022 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1023 	if (unlikely(!ep))
1024 		goto free_uid;
1025 
1026 	mutex_init(&ep->mtx);
1027 	rwlock_init(&ep->lock);
1028 	init_waitqueue_head(&ep->wq);
1029 	init_waitqueue_head(&ep->poll_wait);
1030 	INIT_LIST_HEAD(&ep->rdllist);
1031 	ep->rbr = RB_ROOT_CACHED;
1032 	ep->ovflist = EP_UNACTIVE_PTR;
1033 	ep->user = user;
1034 
1035 	*pep = ep;
1036 
1037 	return 0;
1038 
1039 free_uid:
1040 	free_uid(user);
1041 	return error;
1042 }
1043 
1044 /*
1045  * Search the file inside the eventpoll tree. The RB tree operations
1046  * are protected by the "mtx" mutex, and ep_find() must be called with
1047  * "mtx" held.
1048  */
ep_find(struct eventpoll * ep,struct file * file,int fd)1049 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1050 {
1051 	int kcmp;
1052 	struct rb_node *rbp;
1053 	struct epitem *epi, *epir = NULL;
1054 	struct epoll_filefd ffd;
1055 
1056 	ep_set_ffd(&ffd, file, fd);
1057 	for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1058 		epi = rb_entry(rbp, struct epitem, rbn);
1059 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1060 		if (kcmp > 0)
1061 			rbp = rbp->rb_right;
1062 		else if (kcmp < 0)
1063 			rbp = rbp->rb_left;
1064 		else {
1065 			epir = epi;
1066 			break;
1067 		}
1068 	}
1069 
1070 	return epir;
1071 }
1072 
1073 #ifdef CONFIG_CHECKPOINT_RESTORE
ep_find_tfd(struct eventpoll * ep,int tfd,unsigned long toff)1074 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1075 {
1076 	struct rb_node *rbp;
1077 	struct epitem *epi;
1078 
1079 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1080 		epi = rb_entry(rbp, struct epitem, rbn);
1081 		if (epi->ffd.fd == tfd) {
1082 			if (toff == 0)
1083 				return epi;
1084 			else
1085 				toff--;
1086 		}
1087 		cond_resched();
1088 	}
1089 
1090 	return NULL;
1091 }
1092 
get_epoll_tfile_raw_ptr(struct file * file,int tfd,unsigned long toff)1093 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1094 				     unsigned long toff)
1095 {
1096 	struct file *file_raw;
1097 	struct eventpoll *ep;
1098 	struct epitem *epi;
1099 
1100 	if (!is_file_epoll(file))
1101 		return ERR_PTR(-EINVAL);
1102 
1103 	ep = file->private_data;
1104 
1105 	mutex_lock(&ep->mtx);
1106 	epi = ep_find_tfd(ep, tfd, toff);
1107 	if (epi)
1108 		file_raw = epi->ffd.file;
1109 	else
1110 		file_raw = ERR_PTR(-ENOENT);
1111 	mutex_unlock(&ep->mtx);
1112 
1113 	return file_raw;
1114 }
1115 #endif /* CONFIG_CHECKPOINT_RESTORE */
1116 
1117 /**
1118  * Adds a new entry to the tail of the list in a lockless way, i.e.
1119  * multiple CPUs are allowed to call this function concurrently.
1120  *
1121  * Beware: it is necessary to prevent any other modifications of the
1122  *         existing list until all changes are completed, in other words
1123  *         concurrent list_add_tail_lockless() calls should be protected
1124  *         with a read lock, where write lock acts as a barrier which
1125  *         makes sure all list_add_tail_lockless() calls are fully
1126  *         completed.
1127  *
1128  *        Also an element can be locklessly added to the list only in one
1129  *        direction i.e. either to the tail either to the head, otherwise
1130  *        concurrent access will corrupt the list.
1131  *
1132  * Returns %false if element has been already added to the list, %true
1133  * otherwise.
1134  */
list_add_tail_lockless(struct list_head * new,struct list_head * head)1135 static inline bool list_add_tail_lockless(struct list_head *new,
1136 					  struct list_head *head)
1137 {
1138 	struct list_head *prev;
1139 
1140 	/*
1141 	 * This is simple 'new->next = head' operation, but cmpxchg()
1142 	 * is used in order to detect that same element has been just
1143 	 * added to the list from another CPU: the winner observes
1144 	 * new->next == new.
1145 	 */
1146 	if (cmpxchg(&new->next, new, head) != new)
1147 		return false;
1148 
1149 	/*
1150 	 * Initially ->next of a new element must be updated with the head
1151 	 * (we are inserting to the tail) and only then pointers are atomically
1152 	 * exchanged.  XCHG guarantees memory ordering, thus ->next should be
1153 	 * updated before pointers are actually swapped and pointers are
1154 	 * swapped before prev->next is updated.
1155 	 */
1156 
1157 	prev = xchg(&head->prev, new);
1158 
1159 	/*
1160 	 * It is safe to modify prev->next and new->prev, because a new element
1161 	 * is added only to the tail and new->next is updated before XCHG.
1162 	 */
1163 
1164 	prev->next = new;
1165 	new->prev = prev;
1166 
1167 	return true;
1168 }
1169 
1170 /**
1171  * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1172  * i.e. multiple CPUs are allowed to call this function concurrently.
1173  *
1174  * Returns %false if epi element has been already chained, %true otherwise.
1175  */
chain_epi_lockless(struct epitem * epi)1176 static inline bool chain_epi_lockless(struct epitem *epi)
1177 {
1178 	struct eventpoll *ep = epi->ep;
1179 
1180 	/* Check that the same epi has not been just chained from another CPU */
1181 	if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1182 		return false;
1183 
1184 	/* Atomically exchange tail */
1185 	epi->next = xchg(&ep->ovflist, epi);
1186 
1187 	return true;
1188 }
1189 
1190 /*
1191  * This is the callback that is passed to the wait queue wakeup
1192  * mechanism. It is called by the stored file descriptors when they
1193  * have events to report.
1194  *
1195  * This callback takes a read lock in order not to content with concurrent
1196  * events from another file descriptors, thus all modifications to ->rdllist
1197  * or ->ovflist are lockless.  Read lock is paired with the write lock from
1198  * ep_scan_ready_list(), which stops all list modifications and guarantees
1199  * that lists state is seen correctly.
1200  *
1201  * Another thing worth to mention is that ep_poll_callback() can be called
1202  * concurrently for the same @epi from different CPUs if poll table was inited
1203  * with several wait queues entries.  Plural wakeup from different CPUs of a
1204  * single wait queue is serialized by wq.lock, but the case when multiple wait
1205  * queues are used should be detected accordingly.  This is detected using
1206  * cmpxchg() operation.
1207  */
ep_poll_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1208 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1209 {
1210 	int pwake = 0;
1211 	struct epitem *epi = ep_item_from_wait(wait);
1212 	struct eventpoll *ep = epi->ep;
1213 	__poll_t pollflags = key_to_poll(key);
1214 	unsigned long flags;
1215 	int ewake = 0;
1216 
1217 	read_lock_irqsave(&ep->lock, flags);
1218 
1219 	ep_set_busy_poll_napi_id(epi);
1220 
1221 	/*
1222 	 * If the event mask does not contain any poll(2) event, we consider the
1223 	 * descriptor to be disabled. This condition is likely the effect of the
1224 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1225 	 * until the next EPOLL_CTL_MOD will be issued.
1226 	 */
1227 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1228 		goto out_unlock;
1229 
1230 	/*
1231 	 * Check the events coming with the callback. At this stage, not
1232 	 * every device reports the events in the "key" parameter of the
1233 	 * callback. We need to be able to handle both cases here, hence the
1234 	 * test for "key" != NULL before the event match test.
1235 	 */
1236 	if (pollflags && !(pollflags & epi->event.events))
1237 		goto out_unlock;
1238 
1239 	/*
1240 	 * If we are transferring events to userspace, we can hold no locks
1241 	 * (because we're accessing user memory, and because of linux f_op->poll()
1242 	 * semantics). All the events that happen during that period of time are
1243 	 * chained in ep->ovflist and requeued later on.
1244 	 */
1245 	if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1246 		if (epi->next == EP_UNACTIVE_PTR &&
1247 		    chain_epi_lockless(epi))
1248 			ep_pm_stay_awake_rcu(epi);
1249 		goto out_unlock;
1250 	}
1251 
1252 	/* If this file is already in the ready list we exit soon */
1253 	if (!ep_is_linked(epi) &&
1254 	    list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) {
1255 		ep_pm_stay_awake_rcu(epi);
1256 	}
1257 
1258 	/*
1259 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1260 	 * wait list.
1261 	 */
1262 	if (waitqueue_active(&ep->wq)) {
1263 		if ((epi->event.events & EPOLLEXCLUSIVE) &&
1264 					!(pollflags & POLLFREE)) {
1265 			switch (pollflags & EPOLLINOUT_BITS) {
1266 			case EPOLLIN:
1267 				if (epi->event.events & EPOLLIN)
1268 					ewake = 1;
1269 				break;
1270 			case EPOLLOUT:
1271 				if (epi->event.events & EPOLLOUT)
1272 					ewake = 1;
1273 				break;
1274 			case 0:
1275 				ewake = 1;
1276 				break;
1277 			}
1278 		}
1279 		wake_up(&ep->wq);
1280 	}
1281 	if (waitqueue_active(&ep->poll_wait))
1282 		pwake++;
1283 
1284 out_unlock:
1285 	read_unlock_irqrestore(&ep->lock, flags);
1286 
1287 	/* We have to call this outside the lock */
1288 	if (pwake)
1289 		ep_poll_safewake(&ep->poll_wait);
1290 
1291 	if (!(epi->event.events & EPOLLEXCLUSIVE))
1292 		ewake = 1;
1293 
1294 	if (pollflags & POLLFREE) {
1295 		/*
1296 		 * If we race with ep_remove_wait_queue() it can miss
1297 		 * ->whead = NULL and do another remove_wait_queue() after
1298 		 * us, so we can't use __remove_wait_queue().
1299 		 */
1300 		list_del_init(&wait->entry);
1301 		/*
1302 		 * ->whead != NULL protects us from the race with ep_free()
1303 		 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1304 		 * held by the caller. Once we nullify it, nothing protects
1305 		 * ep/epi or even wait.
1306 		 */
1307 		smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1308 	}
1309 
1310 	return ewake;
1311 }
1312 
1313 /*
1314  * This is the callback that is used to add our wait queue to the
1315  * target file wakeup lists.
1316  */
ep_ptable_queue_proc(struct file * file,wait_queue_head_t * whead,poll_table * pt)1317 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1318 				 poll_table *pt)
1319 {
1320 	struct epitem *epi = ep_item_from_epqueue(pt);
1321 	struct eppoll_entry *pwq;
1322 
1323 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1324 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1325 		pwq->whead = whead;
1326 		pwq->base = epi;
1327 		if (epi->event.events & EPOLLEXCLUSIVE)
1328 			add_wait_queue_exclusive(whead, &pwq->wait);
1329 		else
1330 			add_wait_queue(whead, &pwq->wait);
1331 		list_add_tail(&pwq->llink, &epi->pwqlist);
1332 		epi->nwait++;
1333 	} else {
1334 		/* We have to signal that an error occurred */
1335 		epi->nwait = -1;
1336 	}
1337 }
1338 
ep_rbtree_insert(struct eventpoll * ep,struct epitem * epi)1339 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1340 {
1341 	int kcmp;
1342 	struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1343 	struct epitem *epic;
1344 	bool leftmost = true;
1345 
1346 	while (*p) {
1347 		parent = *p;
1348 		epic = rb_entry(parent, struct epitem, rbn);
1349 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1350 		if (kcmp > 0) {
1351 			p = &parent->rb_right;
1352 			leftmost = false;
1353 		} else
1354 			p = &parent->rb_left;
1355 	}
1356 	rb_link_node(&epi->rbn, parent, p);
1357 	rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1358 }
1359 
1360 
1361 
1362 #define PATH_ARR_SIZE 5
1363 /*
1364  * These are the number paths of length 1 to 5, that we are allowing to emanate
1365  * from a single file of interest. For example, we allow 1000 paths of length
1366  * 1, to emanate from each file of interest. This essentially represents the
1367  * potential wakeup paths, which need to be limited in order to avoid massive
1368  * uncontrolled wakeup storms. The common use case should be a single ep which
1369  * is connected to n file sources. In this case each file source has 1 path
1370  * of length 1. Thus, the numbers below should be more than sufficient. These
1371  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1372  * and delete can't add additional paths. Protected by the epmutex.
1373  */
1374 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1375 static int path_count[PATH_ARR_SIZE];
1376 
path_count_inc(int nests)1377 static int path_count_inc(int nests)
1378 {
1379 	/* Allow an arbitrary number of depth 1 paths */
1380 	if (nests == 0)
1381 		return 0;
1382 
1383 	if (++path_count[nests] > path_limits[nests])
1384 		return -1;
1385 	return 0;
1386 }
1387 
path_count_init(void)1388 static void path_count_init(void)
1389 {
1390 	int i;
1391 
1392 	for (i = 0; i < PATH_ARR_SIZE; i++)
1393 		path_count[i] = 0;
1394 }
1395 
reverse_path_check_proc(void * priv,void * cookie,int call_nests)1396 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1397 {
1398 	int error = 0;
1399 	struct file *file = priv;
1400 	struct file *child_file;
1401 	struct epitem *epi;
1402 
1403 	/* CTL_DEL can remove links here, but that can't increase our count */
1404 	rcu_read_lock();
1405 	list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1406 		child_file = epi->ep->file;
1407 		if (is_file_epoll(child_file)) {
1408 			if (list_empty(&child_file->f_ep_links)) {
1409 				if (path_count_inc(call_nests)) {
1410 					error = -1;
1411 					break;
1412 				}
1413 			} else {
1414 				error = ep_call_nested(&poll_loop_ncalls,
1415 							reverse_path_check_proc,
1416 							child_file, child_file,
1417 							current);
1418 			}
1419 			if (error != 0)
1420 				break;
1421 		} else {
1422 			printk(KERN_ERR "reverse_path_check_proc: "
1423 				"file is not an ep!\n");
1424 		}
1425 	}
1426 	rcu_read_unlock();
1427 	return error;
1428 }
1429 
1430 /**
1431  * reverse_path_check - The tfile_check_list is list of file *, which have
1432  *                      links that are proposed to be newly added. We need to
1433  *                      make sure that those added links don't add too many
1434  *                      paths such that we will spend all our time waking up
1435  *                      eventpoll objects.
1436  *
1437  * Returns: Returns zero if the proposed links don't create too many paths,
1438  *	    -1 otherwise.
1439  */
reverse_path_check(void)1440 static int reverse_path_check(void)
1441 {
1442 	int error = 0;
1443 	struct file *current_file;
1444 
1445 	/* let's call this for all tfiles */
1446 	list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1447 		path_count_init();
1448 		error = ep_call_nested(&poll_loop_ncalls,
1449 					reverse_path_check_proc, current_file,
1450 					current_file, current);
1451 		if (error)
1452 			break;
1453 	}
1454 	return error;
1455 }
1456 
ep_create_wakeup_source(struct epitem * epi)1457 static int ep_create_wakeup_source(struct epitem *epi)
1458 {
1459 	const char *name;
1460 	struct wakeup_source *ws;
1461 
1462 	if (!epi->ep->ws) {
1463 		epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1464 		if (!epi->ep->ws)
1465 			return -ENOMEM;
1466 	}
1467 
1468 	name = epi->ffd.file->f_path.dentry->d_name.name;
1469 	ws = wakeup_source_register(NULL, name);
1470 
1471 	if (!ws)
1472 		return -ENOMEM;
1473 	rcu_assign_pointer(epi->ws, ws);
1474 
1475 	return 0;
1476 }
1477 
1478 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
ep_destroy_wakeup_source(struct epitem * epi)1479 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1480 {
1481 	struct wakeup_source *ws = ep_wakeup_source(epi);
1482 
1483 	RCU_INIT_POINTER(epi->ws, NULL);
1484 
1485 	/*
1486 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1487 	 * used internally by wakeup_source_remove, too (called by
1488 	 * wakeup_source_unregister), so we cannot use call_rcu
1489 	 */
1490 	synchronize_rcu();
1491 	wakeup_source_unregister(ws);
1492 }
1493 
1494 /*
1495  * Must be called with "mtx" held.
1496  */
ep_insert(struct eventpoll * ep,const struct epoll_event * event,struct file * tfile,int fd,int full_check)1497 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1498 		     struct file *tfile, int fd, int full_check)
1499 {
1500 	int error, pwake = 0;
1501 	__poll_t revents;
1502 	long user_watches;
1503 	struct epitem *epi;
1504 	struct ep_pqueue epq;
1505 
1506 	lockdep_assert_irqs_enabled();
1507 
1508 	user_watches = atomic_long_read(&ep->user->epoll_watches);
1509 	if (unlikely(user_watches >= max_user_watches))
1510 		return -ENOSPC;
1511 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1512 		return -ENOMEM;
1513 
1514 	/* Item initialization follow here ... */
1515 	INIT_LIST_HEAD(&epi->rdllink);
1516 	INIT_LIST_HEAD(&epi->fllink);
1517 	INIT_LIST_HEAD(&epi->pwqlist);
1518 	epi->ep = ep;
1519 	ep_set_ffd(&epi->ffd, tfile, fd);
1520 	epi->event = *event;
1521 	epi->nwait = 0;
1522 	epi->next = EP_UNACTIVE_PTR;
1523 	if (epi->event.events & EPOLLWAKEUP) {
1524 		error = ep_create_wakeup_source(epi);
1525 		if (error)
1526 			goto error_create_wakeup_source;
1527 	} else {
1528 		RCU_INIT_POINTER(epi->ws, NULL);
1529 	}
1530 
1531 	/* Initialize the poll table using the queue callback */
1532 	epq.epi = epi;
1533 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1534 
1535 	/*
1536 	 * Attach the item to the poll hooks and get current event bits.
1537 	 * We can safely use the file* here because its usage count has
1538 	 * been increased by the caller of this function. Note that after
1539 	 * this operation completes, the poll callback can start hitting
1540 	 * the new item.
1541 	 */
1542 	revents = ep_item_poll(epi, &epq.pt, 1);
1543 
1544 	/*
1545 	 * We have to check if something went wrong during the poll wait queue
1546 	 * install process. Namely an allocation for a wait queue failed due
1547 	 * high memory pressure.
1548 	 */
1549 	error = -ENOMEM;
1550 	if (epi->nwait < 0)
1551 		goto error_unregister;
1552 
1553 	/* Add the current item to the list of active epoll hook for this file */
1554 	spin_lock(&tfile->f_lock);
1555 	list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1556 	spin_unlock(&tfile->f_lock);
1557 
1558 	/*
1559 	 * Add the current item to the RB tree. All RB tree operations are
1560 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1561 	 */
1562 	ep_rbtree_insert(ep, epi);
1563 
1564 	/* now check if we've created too many backpaths */
1565 	error = -EINVAL;
1566 	if (full_check && reverse_path_check())
1567 		goto error_remove_epi;
1568 
1569 	/* We have to drop the new item inside our item list to keep track of it */
1570 	write_lock_irq(&ep->lock);
1571 
1572 	/* record NAPI ID of new item if present */
1573 	ep_set_busy_poll_napi_id(epi);
1574 
1575 	/* If the file is already "ready" we drop it inside the ready list */
1576 	if (revents && !ep_is_linked(epi)) {
1577 		list_add_tail(&epi->rdllink, &ep->rdllist);
1578 		ep_pm_stay_awake(epi);
1579 
1580 		/* Notify waiting tasks that events are available */
1581 		if (waitqueue_active(&ep->wq))
1582 			wake_up(&ep->wq);
1583 		if (waitqueue_active(&ep->poll_wait))
1584 			pwake++;
1585 	}
1586 
1587 	write_unlock_irq(&ep->lock);
1588 
1589 	atomic_long_inc(&ep->user->epoll_watches);
1590 
1591 	/* We have to call this outside the lock */
1592 	if (pwake)
1593 		ep_poll_safewake(&ep->poll_wait);
1594 
1595 	return 0;
1596 
1597 error_remove_epi:
1598 	spin_lock(&tfile->f_lock);
1599 	list_del_rcu(&epi->fllink);
1600 	spin_unlock(&tfile->f_lock);
1601 
1602 	rb_erase_cached(&epi->rbn, &ep->rbr);
1603 
1604 error_unregister:
1605 	ep_unregister_pollwait(ep, epi);
1606 
1607 	/*
1608 	 * We need to do this because an event could have been arrived on some
1609 	 * allocated wait queue. Note that we don't care about the ep->ovflist
1610 	 * list, since that is used/cleaned only inside a section bound by "mtx".
1611 	 * And ep_insert() is called with "mtx" held.
1612 	 */
1613 	write_lock_irq(&ep->lock);
1614 	if (ep_is_linked(epi))
1615 		list_del_init(&epi->rdllink);
1616 	write_unlock_irq(&ep->lock);
1617 
1618 	wakeup_source_unregister(ep_wakeup_source(epi));
1619 
1620 error_create_wakeup_source:
1621 	kmem_cache_free(epi_cache, epi);
1622 
1623 	return error;
1624 }
1625 
1626 /*
1627  * Modify the interest event mask by dropping an event if the new mask
1628  * has a match in the current file status. Must be called with "mtx" held.
1629  */
ep_modify(struct eventpoll * ep,struct epitem * epi,const struct epoll_event * event)1630 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1631 		     const struct epoll_event *event)
1632 {
1633 	int pwake = 0;
1634 	poll_table pt;
1635 
1636 	lockdep_assert_irqs_enabled();
1637 
1638 	init_poll_funcptr(&pt, NULL);
1639 
1640 	/*
1641 	 * Set the new event interest mask before calling f_op->poll();
1642 	 * otherwise we might miss an event that happens between the
1643 	 * f_op->poll() call and the new event set registering.
1644 	 */
1645 	epi->event.events = event->events; /* need barrier below */
1646 	epi->event.data = event->data; /* protected by mtx */
1647 	if (epi->event.events & EPOLLWAKEUP) {
1648 		if (!ep_has_wakeup_source(epi))
1649 			ep_create_wakeup_source(epi);
1650 	} else if (ep_has_wakeup_source(epi)) {
1651 		ep_destroy_wakeup_source(epi);
1652 	}
1653 
1654 	/*
1655 	 * The following barrier has two effects:
1656 	 *
1657 	 * 1) Flush epi changes above to other CPUs.  This ensures
1658 	 *    we do not miss events from ep_poll_callback if an
1659 	 *    event occurs immediately after we call f_op->poll().
1660 	 *    We need this because we did not take ep->lock while
1661 	 *    changing epi above (but ep_poll_callback does take
1662 	 *    ep->lock).
1663 	 *
1664 	 * 2) We also need to ensure we do not miss _past_ events
1665 	 *    when calling f_op->poll().  This barrier also
1666 	 *    pairs with the barrier in wq_has_sleeper (see
1667 	 *    comments for wq_has_sleeper).
1668 	 *
1669 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1670 	 * (or both) will notice the readiness of an item.
1671 	 */
1672 	smp_mb();
1673 
1674 	/*
1675 	 * Get current event bits. We can safely use the file* here because
1676 	 * its usage count has been increased by the caller of this function.
1677 	 * If the item is "hot" and it is not registered inside the ready
1678 	 * list, push it inside.
1679 	 */
1680 	if (ep_item_poll(epi, &pt, 1)) {
1681 		write_lock_irq(&ep->lock);
1682 		if (!ep_is_linked(epi)) {
1683 			list_add_tail(&epi->rdllink, &ep->rdllist);
1684 			ep_pm_stay_awake(epi);
1685 
1686 			/* Notify waiting tasks that events are available */
1687 			if (waitqueue_active(&ep->wq))
1688 				wake_up(&ep->wq);
1689 			if (waitqueue_active(&ep->poll_wait))
1690 				pwake++;
1691 		}
1692 		write_unlock_irq(&ep->lock);
1693 	}
1694 
1695 	/* We have to call this outside the lock */
1696 	if (pwake)
1697 		ep_poll_safewake(&ep->poll_wait);
1698 
1699 	return 0;
1700 }
1701 
ep_send_events_proc(struct eventpoll * ep,struct list_head * head,void * priv)1702 static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1703 			       void *priv)
1704 {
1705 	struct ep_send_events_data *esed = priv;
1706 	__poll_t revents;
1707 	struct epitem *epi, *tmp;
1708 	struct epoll_event __user *uevent = esed->events;
1709 	struct wakeup_source *ws;
1710 	poll_table pt;
1711 
1712 	init_poll_funcptr(&pt, NULL);
1713 	esed->res = 0;
1714 
1715 	/*
1716 	 * We can loop without lock because we are passed a task private list.
1717 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1718 	 * holding "mtx" during this call.
1719 	 */
1720 	lockdep_assert_held(&ep->mtx);
1721 
1722 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
1723 		if (esed->res >= esed->maxevents)
1724 			break;
1725 
1726 		/*
1727 		 * Activate ep->ws before deactivating epi->ws to prevent
1728 		 * triggering auto-suspend here (in case we reactive epi->ws
1729 		 * below).
1730 		 *
1731 		 * This could be rearranged to delay the deactivation of epi->ws
1732 		 * instead, but then epi->ws would temporarily be out of sync
1733 		 * with ep_is_linked().
1734 		 */
1735 		ws = ep_wakeup_source(epi);
1736 		if (ws) {
1737 			if (ws->active)
1738 				__pm_stay_awake(ep->ws);
1739 			__pm_relax(ws);
1740 		}
1741 
1742 		list_del_init(&epi->rdllink);
1743 
1744 		/*
1745 		 * If the event mask intersect the caller-requested one,
1746 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1747 		 * is holding ep->mtx, so no operations coming from userspace
1748 		 * can change the item.
1749 		 */
1750 		revents = ep_item_poll(epi, &pt, 1);
1751 		if (!revents)
1752 			continue;
1753 
1754 		if (__put_user(revents, &uevent->events) ||
1755 		    __put_user(epi->event.data, &uevent->data)) {
1756 			list_add(&epi->rdllink, head);
1757 			ep_pm_stay_awake(epi);
1758 			if (!esed->res)
1759 				esed->res = -EFAULT;
1760 			return 0;
1761 		}
1762 		esed->res++;
1763 		uevent++;
1764 		if (epi->event.events & EPOLLONESHOT)
1765 			epi->event.events &= EP_PRIVATE_BITS;
1766 		else if (!(epi->event.events & EPOLLET)) {
1767 			/*
1768 			 * If this file has been added with Level
1769 			 * Trigger mode, we need to insert back inside
1770 			 * the ready list, so that the next call to
1771 			 * epoll_wait() will check again the events
1772 			 * availability. At this point, no one can insert
1773 			 * into ep->rdllist besides us. The epoll_ctl()
1774 			 * callers are locked out by
1775 			 * ep_scan_ready_list() holding "mtx" and the
1776 			 * poll callback will queue them in ep->ovflist.
1777 			 */
1778 			list_add_tail(&epi->rdllink, &ep->rdllist);
1779 			ep_pm_stay_awake(epi);
1780 		}
1781 	}
1782 
1783 	return 0;
1784 }
1785 
ep_send_events(struct eventpoll * ep,struct epoll_event __user * events,int maxevents)1786 static int ep_send_events(struct eventpoll *ep,
1787 			  struct epoll_event __user *events, int maxevents)
1788 {
1789 	struct ep_send_events_data esed;
1790 
1791 	esed.maxevents = maxevents;
1792 	esed.events = events;
1793 
1794 	ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1795 	return esed.res;
1796 }
1797 
ep_set_mstimeout(long ms)1798 static inline struct timespec64 ep_set_mstimeout(long ms)
1799 {
1800 	struct timespec64 now, ts = {
1801 		.tv_sec = ms / MSEC_PER_SEC,
1802 		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1803 	};
1804 
1805 	ktime_get_ts64(&now);
1806 	return timespec64_add_safe(now, ts);
1807 }
1808 
1809 /**
1810  * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1811  *           event buffer.
1812  *
1813  * @ep: Pointer to the eventpoll context.
1814  * @events: Pointer to the userspace buffer where the ready events should be
1815  *          stored.
1816  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1817  * @timeout: Maximum timeout for the ready events fetch operation, in
1818  *           milliseconds. If the @timeout is zero, the function will not block,
1819  *           while if the @timeout is less than zero, the function will block
1820  *           until at least one event has been retrieved (or an error
1821  *           occurred).
1822  *
1823  * Returns: Returns the number of ready events which have been fetched, or an
1824  *          error code, in case of error.
1825  */
ep_poll(struct eventpoll * ep,struct epoll_event __user * events,int maxevents,long timeout)1826 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1827 		   int maxevents, long timeout)
1828 {
1829 	int res = 0, eavail, timed_out = 0;
1830 	u64 slack = 0;
1831 	bool waiter = false;
1832 	wait_queue_entry_t wait;
1833 	ktime_t expires, *to = NULL;
1834 
1835 	lockdep_assert_irqs_enabled();
1836 
1837 	if (timeout > 0) {
1838 		struct timespec64 end_time = ep_set_mstimeout(timeout);
1839 
1840 		slack = select_estimate_accuracy(&end_time);
1841 		to = &expires;
1842 		*to = timespec64_to_ktime(end_time);
1843 	} else if (timeout == 0) {
1844 		/*
1845 		 * Avoid the unnecessary trip to the wait queue loop, if the
1846 		 * caller specified a non blocking operation. We still need
1847 		 * lock because we could race and not see an epi being added
1848 		 * to the ready list while in irq callback. Thus incorrectly
1849 		 * returning 0 back to userspace.
1850 		 */
1851 		timed_out = 1;
1852 
1853 		write_lock_irq(&ep->lock);
1854 		eavail = ep_events_available(ep);
1855 		write_unlock_irq(&ep->lock);
1856 
1857 		goto send_events;
1858 	}
1859 
1860 fetch_events:
1861 
1862 	if (!ep_events_available(ep))
1863 		ep_busy_loop(ep, timed_out);
1864 
1865 	eavail = ep_events_available(ep);
1866 	if (eavail)
1867 		goto send_events;
1868 
1869 	/*
1870 	 * Busy poll timed out.  Drop NAPI ID for now, we can add
1871 	 * it back in when we have moved a socket with a valid NAPI
1872 	 * ID onto the ready list.
1873 	 */
1874 	ep_reset_busy_poll_napi_id(ep);
1875 
1876 	/*
1877 	 * We don't have any available event to return to the caller.  We need
1878 	 * to sleep here, and we will be woken by ep_poll_callback() when events
1879 	 * become available.
1880 	 */
1881 	if (!waiter) {
1882 		waiter = true;
1883 		init_waitqueue_entry(&wait, current);
1884 
1885 		spin_lock_irq(&ep->wq.lock);
1886 		__add_wait_queue_exclusive(&ep->wq, &wait);
1887 		spin_unlock_irq(&ep->wq.lock);
1888 	}
1889 
1890 	for (;;) {
1891 		/*
1892 		 * We don't want to sleep if the ep_poll_callback() sends us
1893 		 * a wakeup in between. That's why we set the task state
1894 		 * to TASK_INTERRUPTIBLE before doing the checks.
1895 		 */
1896 		set_current_state(TASK_INTERRUPTIBLE);
1897 		/*
1898 		 * Always short-circuit for fatal signals to allow
1899 		 * threads to make a timely exit without the chance of
1900 		 * finding more events available and fetching
1901 		 * repeatedly.
1902 		 */
1903 		if (fatal_signal_pending(current)) {
1904 			res = -EINTR;
1905 			break;
1906 		}
1907 
1908 		eavail = ep_events_available(ep);
1909 		if (eavail)
1910 			break;
1911 		if (signal_pending(current)) {
1912 			res = -EINTR;
1913 			break;
1914 		}
1915 
1916 		if (!freezable_schedule_hrtimeout_range(to, slack,
1917 						        HRTIMER_MODE_ABS)) {
1918 			timed_out = 1;
1919 			break;
1920 		}
1921 	}
1922 
1923 	__set_current_state(TASK_RUNNING);
1924 
1925 send_events:
1926 	/*
1927 	 * Try to transfer events to user space. In case we get 0 events and
1928 	 * there's still timeout left over, we go trying again in search of
1929 	 * more luck.
1930 	 */
1931 	if (!res && eavail &&
1932 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1933 		goto fetch_events;
1934 
1935 	if (waiter) {
1936 		spin_lock_irq(&ep->wq.lock);
1937 		__remove_wait_queue(&ep->wq, &wait);
1938 		spin_unlock_irq(&ep->wq.lock);
1939 	}
1940 
1941 	return res;
1942 }
1943 
1944 /**
1945  * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1946  *                      API, to verify that adding an epoll file inside another
1947  *                      epoll structure, does not violate the constraints, in
1948  *                      terms of closed loops, or too deep chains (which can
1949  *                      result in excessive stack usage).
1950  *
1951  * @priv: Pointer to the epoll file to be currently checked.
1952  * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1953  *          data structure pointer.
1954  * @call_nests: Current dept of the @ep_call_nested() call stack.
1955  *
1956  * Returns: Returns zero if adding the epoll @file inside current epoll
1957  *          structure @ep does not violate the constraints, or -1 otherwise.
1958  */
ep_loop_check_proc(void * priv,void * cookie,int call_nests)1959 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1960 {
1961 	int error = 0;
1962 	struct file *file = priv;
1963 	struct eventpoll *ep = file->private_data;
1964 	struct eventpoll *ep_tovisit;
1965 	struct rb_node *rbp;
1966 	struct epitem *epi;
1967 
1968 	mutex_lock_nested(&ep->mtx, call_nests + 1);
1969 	ep->visited = 1;
1970 	list_add(&ep->visited_list_link, &visited_list);
1971 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1972 		epi = rb_entry(rbp, struct epitem, rbn);
1973 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1974 			ep_tovisit = epi->ffd.file->private_data;
1975 			if (ep_tovisit->visited)
1976 				continue;
1977 			error = ep_call_nested(&poll_loop_ncalls,
1978 					ep_loop_check_proc, epi->ffd.file,
1979 					ep_tovisit, current);
1980 			if (error != 0)
1981 				break;
1982 		} else {
1983 			/*
1984 			 * If we've reached a file that is not associated with
1985 			 * an ep, then we need to check if the newly added
1986 			 * links are going to add too many wakeup paths. We do
1987 			 * this by adding it to the tfile_check_list, if it's
1988 			 * not already there, and calling reverse_path_check()
1989 			 * during ep_insert().
1990 			 */
1991 			if (list_empty(&epi->ffd.file->f_tfile_llink))
1992 				list_add(&epi->ffd.file->f_tfile_llink,
1993 					 &tfile_check_list);
1994 		}
1995 	}
1996 	mutex_unlock(&ep->mtx);
1997 
1998 	return error;
1999 }
2000 
2001 /**
2002  * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
2003  *                 another epoll file (represented by @ep) does not create
2004  *                 closed loops or too deep chains.
2005  *
2006  * @ep: Pointer to the epoll private data structure.
2007  * @file: Pointer to the epoll file to be checked.
2008  *
2009  * Returns: Returns zero if adding the epoll @file inside current epoll
2010  *          structure @ep does not violate the constraints, or -1 otherwise.
2011  */
ep_loop_check(struct eventpoll * ep,struct file * file)2012 static int ep_loop_check(struct eventpoll *ep, struct file *file)
2013 {
2014 	int ret;
2015 	struct eventpoll *ep_cur, *ep_next;
2016 
2017 	ret = ep_call_nested(&poll_loop_ncalls,
2018 			      ep_loop_check_proc, file, ep, current);
2019 	/* clear visited list */
2020 	list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
2021 							visited_list_link) {
2022 		ep_cur->visited = 0;
2023 		list_del(&ep_cur->visited_list_link);
2024 	}
2025 	return ret;
2026 }
2027 
clear_tfile_check_list(void)2028 static void clear_tfile_check_list(void)
2029 {
2030 	struct file *file;
2031 
2032 	/* first clear the tfile_check_list */
2033 	while (!list_empty(&tfile_check_list)) {
2034 		file = list_first_entry(&tfile_check_list, struct file,
2035 					f_tfile_llink);
2036 		list_del_init(&file->f_tfile_llink);
2037 	}
2038 	INIT_LIST_HEAD(&tfile_check_list);
2039 }
2040 
2041 /*
2042  * Open an eventpoll file descriptor.
2043  */
do_epoll_create(int flags)2044 static int do_epoll_create(int flags)
2045 {
2046 	int error, fd;
2047 	struct eventpoll *ep = NULL;
2048 	struct file *file;
2049 
2050 	/* Check the EPOLL_* constant for consistency.  */
2051 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2052 
2053 	if (flags & ~EPOLL_CLOEXEC)
2054 		return -EINVAL;
2055 	/*
2056 	 * Create the internal data structure ("struct eventpoll").
2057 	 */
2058 	error = ep_alloc(&ep);
2059 	if (error < 0)
2060 		return error;
2061 	/*
2062 	 * Creates all the items needed to setup an eventpoll file. That is,
2063 	 * a file structure and a free file descriptor.
2064 	 */
2065 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2066 	if (fd < 0) {
2067 		error = fd;
2068 		goto out_free_ep;
2069 	}
2070 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2071 				 O_RDWR | (flags & O_CLOEXEC));
2072 	if (IS_ERR(file)) {
2073 		error = PTR_ERR(file);
2074 		goto out_free_fd;
2075 	}
2076 	ep->file = file;
2077 	fd_install(fd, file);
2078 	return fd;
2079 
2080 out_free_fd:
2081 	put_unused_fd(fd);
2082 out_free_ep:
2083 	ep_free(ep);
2084 	return error;
2085 }
2086 
SYSCALL_DEFINE1(epoll_create1,int,flags)2087 SYSCALL_DEFINE1(epoll_create1, int, flags)
2088 {
2089 	return do_epoll_create(flags);
2090 }
2091 
SYSCALL_DEFINE1(epoll_create,int,size)2092 SYSCALL_DEFINE1(epoll_create, int, size)
2093 {
2094 	if (size <= 0)
2095 		return -EINVAL;
2096 
2097 	return do_epoll_create(0);
2098 }
2099 
2100 /*
2101  * The following function implements the controller interface for
2102  * the eventpoll file that enables the insertion/removal/change of
2103  * file descriptors inside the interest set.
2104  */
SYSCALL_DEFINE4(epoll_ctl,int,epfd,int,op,int,fd,struct epoll_event __user *,event)2105 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2106 		struct epoll_event __user *, event)
2107 {
2108 	int error;
2109 	int full_check = 0;
2110 	struct fd f, tf;
2111 	struct eventpoll *ep;
2112 	struct epitem *epi;
2113 	struct epoll_event epds;
2114 	struct eventpoll *tep = NULL;
2115 
2116 	error = -EFAULT;
2117 	if (ep_op_has_event(op) &&
2118 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
2119 		goto error_return;
2120 
2121 	error = -EBADF;
2122 	f = fdget(epfd);
2123 	if (!f.file)
2124 		goto error_return;
2125 
2126 	/* Get the "struct file *" for the target file */
2127 	tf = fdget(fd);
2128 	if (!tf.file)
2129 		goto error_fput;
2130 
2131 	/* The target file descriptor must support poll */
2132 	error = -EPERM;
2133 	if (!file_can_poll(tf.file))
2134 		goto error_tgt_fput;
2135 
2136 	/* Check if EPOLLWAKEUP is allowed */
2137 	if (ep_op_has_event(op))
2138 		ep_take_care_of_epollwakeup(&epds);
2139 
2140 	/*
2141 	 * We have to check that the file structure underneath the file descriptor
2142 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
2143 	 * adding an epoll file descriptor inside itself.
2144 	 */
2145 	error = -EINVAL;
2146 	if (f.file == tf.file || !is_file_epoll(f.file))
2147 		goto error_tgt_fput;
2148 
2149 	/*
2150 	 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2151 	 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2152 	 * Also, we do not currently supported nested exclusive wakeups.
2153 	 */
2154 	if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) {
2155 		if (op == EPOLL_CTL_MOD)
2156 			goto error_tgt_fput;
2157 		if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2158 				(epds.events & ~EPOLLEXCLUSIVE_OK_BITS)))
2159 			goto error_tgt_fput;
2160 	}
2161 
2162 	/*
2163 	 * At this point it is safe to assume that the "private_data" contains
2164 	 * our own data structure.
2165 	 */
2166 	ep = f.file->private_data;
2167 
2168 	/*
2169 	 * When we insert an epoll file descriptor, inside another epoll file
2170 	 * descriptor, there is the change of creating closed loops, which are
2171 	 * better be handled here, than in more critical paths. While we are
2172 	 * checking for loops we also determine the list of files reachable
2173 	 * and hang them on the tfile_check_list, so we can check that we
2174 	 * haven't created too many possible wakeup paths.
2175 	 *
2176 	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2177 	 * the epoll file descriptor is attaching directly to a wakeup source,
2178 	 * unless the epoll file descriptor is nested. The purpose of taking the
2179 	 * 'epmutex' on add is to prevent complex toplogies such as loops and
2180 	 * deep wakeup paths from forming in parallel through multiple
2181 	 * EPOLL_CTL_ADD operations.
2182 	 */
2183 	mutex_lock_nested(&ep->mtx, 0);
2184 	if (op == EPOLL_CTL_ADD) {
2185 		if (!list_empty(&f.file->f_ep_links) ||
2186 						is_file_epoll(tf.file)) {
2187 			full_check = 1;
2188 			mutex_unlock(&ep->mtx);
2189 			mutex_lock(&epmutex);
2190 			if (is_file_epoll(tf.file)) {
2191 				error = -ELOOP;
2192 				if (ep_loop_check(ep, tf.file) != 0) {
2193 					clear_tfile_check_list();
2194 					goto error_tgt_fput;
2195 				}
2196 			} else
2197 				list_add(&tf.file->f_tfile_llink,
2198 							&tfile_check_list);
2199 			mutex_lock_nested(&ep->mtx, 0);
2200 			if (is_file_epoll(tf.file)) {
2201 				tep = tf.file->private_data;
2202 				mutex_lock_nested(&tep->mtx, 1);
2203 			}
2204 		}
2205 	}
2206 
2207 	/*
2208 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2209 	 * above, we can be sure to be able to use the item looked up by
2210 	 * ep_find() till we release the mutex.
2211 	 */
2212 	epi = ep_find(ep, tf.file, fd);
2213 
2214 	error = -EINVAL;
2215 	switch (op) {
2216 	case EPOLL_CTL_ADD:
2217 		if (!epi) {
2218 			epds.events |= EPOLLERR | EPOLLHUP;
2219 			error = ep_insert(ep, &epds, tf.file, fd, full_check);
2220 		} else
2221 			error = -EEXIST;
2222 		if (full_check)
2223 			clear_tfile_check_list();
2224 		break;
2225 	case EPOLL_CTL_DEL:
2226 		if (epi)
2227 			error = ep_remove(ep, epi);
2228 		else
2229 			error = -ENOENT;
2230 		break;
2231 	case EPOLL_CTL_MOD:
2232 		if (epi) {
2233 			if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2234 				epds.events |= EPOLLERR | EPOLLHUP;
2235 				error = ep_modify(ep, epi, &epds);
2236 			}
2237 		} else
2238 			error = -ENOENT;
2239 		break;
2240 	}
2241 	if (tep != NULL)
2242 		mutex_unlock(&tep->mtx);
2243 	mutex_unlock(&ep->mtx);
2244 
2245 error_tgt_fput:
2246 	if (full_check)
2247 		mutex_unlock(&epmutex);
2248 
2249 	fdput(tf);
2250 error_fput:
2251 	fdput(f);
2252 error_return:
2253 
2254 	return error;
2255 }
2256 
2257 /*
2258  * Implement the event wait interface for the eventpoll file. It is the kernel
2259  * part of the user space epoll_wait(2).
2260  */
do_epoll_wait(int epfd,struct epoll_event __user * events,int maxevents,int timeout)2261 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2262 			 int maxevents, int timeout)
2263 {
2264 	int error;
2265 	struct fd f;
2266 	struct eventpoll *ep;
2267 
2268 	/* The maximum number of event must be greater than zero */
2269 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2270 		return -EINVAL;
2271 
2272 	/* Verify that the area passed by the user is writeable */
2273 	if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2274 		return -EFAULT;
2275 
2276 	/* Get the "struct file *" for the eventpoll file */
2277 	f = fdget(epfd);
2278 	if (!f.file)
2279 		return -EBADF;
2280 
2281 	/*
2282 	 * We have to check that the file structure underneath the fd
2283 	 * the user passed to us _is_ an eventpoll file.
2284 	 */
2285 	error = -EINVAL;
2286 	if (!is_file_epoll(f.file))
2287 		goto error_fput;
2288 
2289 	/*
2290 	 * At this point it is safe to assume that the "private_data" contains
2291 	 * our own data structure.
2292 	 */
2293 	ep = f.file->private_data;
2294 
2295 	/* Time to fish for events ... */
2296 	error = ep_poll(ep, events, maxevents, timeout);
2297 
2298 error_fput:
2299 	fdput(f);
2300 	return error;
2301 }
2302 
SYSCALL_DEFINE4(epoll_wait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout)2303 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2304 		int, maxevents, int, timeout)
2305 {
2306 	return do_epoll_wait(epfd, events, maxevents, timeout);
2307 }
2308 
2309 /*
2310  * Implement the event wait interface for the eventpoll file. It is the kernel
2311  * part of the user space epoll_pwait(2).
2312  */
SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const sigset_t __user *,sigmask,size_t,sigsetsize)2313 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2314 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2315 		size_t, sigsetsize)
2316 {
2317 	int error;
2318 
2319 	/*
2320 	 * If the caller wants a certain signal mask to be set during the wait,
2321 	 * we apply it here.
2322 	 */
2323 	error = set_user_sigmask(sigmask, sigsetsize);
2324 	if (error)
2325 		return error;
2326 
2327 	error = do_epoll_wait(epfd, events, maxevents, timeout);
2328 	restore_saved_sigmask_unless(error == -EINTR);
2329 
2330 	return error;
2331 }
2332 
2333 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const compat_sigset_t __user *,sigmask,compat_size_t,sigsetsize)2334 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2335 			struct epoll_event __user *, events,
2336 			int, maxevents, int, timeout,
2337 			const compat_sigset_t __user *, sigmask,
2338 			compat_size_t, sigsetsize)
2339 {
2340 	long err;
2341 
2342 	/*
2343 	 * If the caller wants a certain signal mask to be set during the wait,
2344 	 * we apply it here.
2345 	 */
2346 	err = set_compat_user_sigmask(sigmask, sigsetsize);
2347 	if (err)
2348 		return err;
2349 
2350 	err = do_epoll_wait(epfd, events, maxevents, timeout);
2351 	restore_saved_sigmask_unless(err == -EINTR);
2352 
2353 	return err;
2354 }
2355 #endif
2356 
eventpoll_init(void)2357 static int __init eventpoll_init(void)
2358 {
2359 	struct sysinfo si;
2360 
2361 	si_meminfo(&si);
2362 	/*
2363 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2364 	 */
2365 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2366 		EP_ITEM_COST;
2367 	BUG_ON(max_user_watches < 0);
2368 
2369 	/*
2370 	 * Initialize the structure used to perform epoll file descriptor
2371 	 * inclusion loops checks.
2372 	 */
2373 	ep_nested_calls_init(&poll_loop_ncalls);
2374 
2375 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2376 	/* Initialize the structure used to perform safe poll wait head wake ups */
2377 	ep_nested_calls_init(&poll_safewake_ncalls);
2378 #endif
2379 
2380 	/*
2381 	 * We can have many thousands of epitems, so prevent this from
2382 	 * using an extra cache line on 64-bit (and smaller) CPUs
2383 	 */
2384 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2385 
2386 	/* Allocates slab cache used to allocate "struct epitem" items */
2387 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2388 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2389 
2390 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2391 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2392 		sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2393 
2394 	return 0;
2395 }
2396 fs_initcall(eventpoll_init);
2397