1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48
49 #include <trace/events/ext4.h>
50 #include <trace/events/android_fs.h>
51
52 #define MPAGE_DA_EXTENT_TAIL 0x01
53
ext4_inode_csum(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)54 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
55 struct ext4_inode_info *ei)
56 {
57 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
58 __u32 csum;
59 __u16 dummy_csum = 0;
60 int offset = offsetof(struct ext4_inode, i_checksum_lo);
61 unsigned int csum_size = sizeof(dummy_csum);
62
63 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
64 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
65 offset += csum_size;
66 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
67 EXT4_GOOD_OLD_INODE_SIZE - offset);
68
69 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
70 offset = offsetof(struct ext4_inode, i_checksum_hi);
71 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
72 EXT4_GOOD_OLD_INODE_SIZE,
73 offset - EXT4_GOOD_OLD_INODE_SIZE);
74 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
75 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
76 csum_size);
77 offset += csum_size;
78 }
79 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
80 EXT4_INODE_SIZE(inode->i_sb) - offset);
81 }
82
83 return csum;
84 }
85
ext4_inode_csum_verify(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)86 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
87 struct ext4_inode_info *ei)
88 {
89 __u32 provided, calculated;
90
91 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
92 cpu_to_le32(EXT4_OS_LINUX) ||
93 !ext4_has_metadata_csum(inode->i_sb))
94 return 1;
95
96 provided = le16_to_cpu(raw->i_checksum_lo);
97 calculated = ext4_inode_csum(inode, raw, ei);
98 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
99 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
100 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
101 else
102 calculated &= 0xFFFF;
103
104 return provided == calculated;
105 }
106
ext4_inode_csum_set(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)107 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
108 struct ext4_inode_info *ei)
109 {
110 __u32 csum;
111
112 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
113 cpu_to_le32(EXT4_OS_LINUX) ||
114 !ext4_has_metadata_csum(inode->i_sb))
115 return;
116
117 csum = ext4_inode_csum(inode, raw, ei);
118 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
119 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
120 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
121 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
122 }
123
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)124 static inline int ext4_begin_ordered_truncate(struct inode *inode,
125 loff_t new_size)
126 {
127 trace_ext4_begin_ordered_truncate(inode, new_size);
128 /*
129 * If jinode is zero, then we never opened the file for
130 * writing, so there's no need to call
131 * jbd2_journal_begin_ordered_truncate() since there's no
132 * outstanding writes we need to flush.
133 */
134 if (!EXT4_I(inode)->jinode)
135 return 0;
136 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
137 EXT4_I(inode)->jinode,
138 new_size);
139 }
140
141 static void ext4_invalidatepage(struct page *page, unsigned int offset,
142 unsigned int length);
143 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
144 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
145 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
146 int pextents);
147
148 /*
149 * Test whether an inode is a fast symlink.
150 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
151 */
ext4_inode_is_fast_symlink(struct inode * inode)152 int ext4_inode_is_fast_symlink(struct inode *inode)
153 {
154 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
155 int ea_blocks = EXT4_I(inode)->i_file_acl ?
156 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
157
158 if (ext4_has_inline_data(inode))
159 return 0;
160
161 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
162 }
163 return S_ISLNK(inode->i_mode) && inode->i_size &&
164 (inode->i_size < EXT4_N_BLOCKS * 4);
165 }
166
167 /*
168 * Restart the transaction associated with *handle. This does a commit,
169 * so before we call here everything must be consistently dirtied against
170 * this transaction.
171 */
ext4_truncate_restart_trans(handle_t * handle,struct inode * inode,int nblocks)172 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
173 int nblocks)
174 {
175 int ret;
176
177 /*
178 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
179 * moment, get_block can be called only for blocks inside i_size since
180 * page cache has been already dropped and writes are blocked by
181 * i_mutex. So we can safely drop the i_data_sem here.
182 */
183 BUG_ON(EXT4_JOURNAL(inode) == NULL);
184 jbd_debug(2, "restarting handle %p\n", handle);
185 up_write(&EXT4_I(inode)->i_data_sem);
186 ret = ext4_journal_restart(handle, nblocks);
187 down_write(&EXT4_I(inode)->i_data_sem);
188 ext4_discard_preallocations(inode);
189
190 return ret;
191 }
192
193 /*
194 * Called at the last iput() if i_nlink is zero.
195 */
ext4_evict_inode(struct inode * inode)196 void ext4_evict_inode(struct inode *inode)
197 {
198 handle_t *handle;
199 int err;
200 /*
201 * Credits for final inode cleanup and freeing:
202 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
203 * (xattr block freeing), bitmap, group descriptor (inode freeing)
204 */
205 int extra_credits = 6;
206 struct ext4_xattr_inode_array *ea_inode_array = NULL;
207
208 trace_ext4_evict_inode(inode);
209
210 if (inode->i_nlink) {
211 /*
212 * When journalling data dirty buffers are tracked only in the
213 * journal. So although mm thinks everything is clean and
214 * ready for reaping the inode might still have some pages to
215 * write in the running transaction or waiting to be
216 * checkpointed. Thus calling jbd2_journal_invalidatepage()
217 * (via truncate_inode_pages()) to discard these buffers can
218 * cause data loss. Also even if we did not discard these
219 * buffers, we would have no way to find them after the inode
220 * is reaped and thus user could see stale data if he tries to
221 * read them before the transaction is checkpointed. So be
222 * careful and force everything to disk here... We use
223 * ei->i_datasync_tid to store the newest transaction
224 * containing inode's data.
225 *
226 * Note that directories do not have this problem because they
227 * don't use page cache.
228 */
229 if (inode->i_ino != EXT4_JOURNAL_INO &&
230 ext4_should_journal_data(inode) &&
231 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
232 inode->i_data.nrpages) {
233 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
234 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
235
236 jbd2_complete_transaction(journal, commit_tid);
237 filemap_write_and_wait(&inode->i_data);
238 }
239 truncate_inode_pages_final(&inode->i_data);
240
241 goto no_delete;
242 }
243
244 if (is_bad_inode(inode))
245 goto no_delete;
246 dquot_initialize(inode);
247
248 if (ext4_should_order_data(inode))
249 ext4_begin_ordered_truncate(inode, 0);
250 truncate_inode_pages_final(&inode->i_data);
251
252 /*
253 * Protect us against freezing - iput() caller didn't have to have any
254 * protection against it
255 */
256 sb_start_intwrite(inode->i_sb);
257
258 if (!IS_NOQUOTA(inode))
259 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
260
261 /*
262 * Block bitmap, group descriptor, and inode are accounted in both
263 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
264 */
265 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
266 ext4_blocks_for_truncate(inode) + extra_credits - 3);
267 if (IS_ERR(handle)) {
268 ext4_std_error(inode->i_sb, PTR_ERR(handle));
269 /*
270 * If we're going to skip the normal cleanup, we still need to
271 * make sure that the in-core orphan linked list is properly
272 * cleaned up.
273 */
274 ext4_orphan_del(NULL, inode);
275 sb_end_intwrite(inode->i_sb);
276 goto no_delete;
277 }
278
279 if (IS_SYNC(inode))
280 ext4_handle_sync(handle);
281
282 /*
283 * Set inode->i_size to 0 before calling ext4_truncate(). We need
284 * special handling of symlinks here because i_size is used to
285 * determine whether ext4_inode_info->i_data contains symlink data or
286 * block mappings. Setting i_size to 0 will remove its fast symlink
287 * status. Erase i_data so that it becomes a valid empty block map.
288 */
289 if (ext4_inode_is_fast_symlink(inode))
290 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
291 inode->i_size = 0;
292 err = ext4_mark_inode_dirty(handle, inode);
293 if (err) {
294 ext4_warning(inode->i_sb,
295 "couldn't mark inode dirty (err %d)", err);
296 goto stop_handle;
297 }
298 if (inode->i_blocks) {
299 err = ext4_truncate(inode);
300 if (err) {
301 ext4_error(inode->i_sb,
302 "couldn't truncate inode %lu (err %d)",
303 inode->i_ino, err);
304 goto stop_handle;
305 }
306 }
307
308 /* Remove xattr references. */
309 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
310 extra_credits);
311 if (err) {
312 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
313 stop_handle:
314 ext4_journal_stop(handle);
315 ext4_orphan_del(NULL, inode);
316 sb_end_intwrite(inode->i_sb);
317 ext4_xattr_inode_array_free(ea_inode_array);
318 goto no_delete;
319 }
320
321 /*
322 * Kill off the orphan record which ext4_truncate created.
323 * AKPM: I think this can be inside the above `if'.
324 * Note that ext4_orphan_del() has to be able to cope with the
325 * deletion of a non-existent orphan - this is because we don't
326 * know if ext4_truncate() actually created an orphan record.
327 * (Well, we could do this if we need to, but heck - it works)
328 */
329 ext4_orphan_del(handle, inode);
330 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
331
332 /*
333 * One subtle ordering requirement: if anything has gone wrong
334 * (transaction abort, IO errors, whatever), then we can still
335 * do these next steps (the fs will already have been marked as
336 * having errors), but we can't free the inode if the mark_dirty
337 * fails.
338 */
339 if (ext4_mark_inode_dirty(handle, inode))
340 /* If that failed, just do the required in-core inode clear. */
341 ext4_clear_inode(inode);
342 else
343 ext4_free_inode(handle, inode);
344 ext4_journal_stop(handle);
345 sb_end_intwrite(inode->i_sb);
346 ext4_xattr_inode_array_free(ea_inode_array);
347 return;
348 no_delete:
349 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
350 }
351
352 #ifdef CONFIG_QUOTA
ext4_get_reserved_space(struct inode * inode)353 qsize_t *ext4_get_reserved_space(struct inode *inode)
354 {
355 return &EXT4_I(inode)->i_reserved_quota;
356 }
357 #endif
358
359 /*
360 * Called with i_data_sem down, which is important since we can call
361 * ext4_discard_preallocations() from here.
362 */
ext4_da_update_reserve_space(struct inode * inode,int used,int quota_claim)363 void ext4_da_update_reserve_space(struct inode *inode,
364 int used, int quota_claim)
365 {
366 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
367 struct ext4_inode_info *ei = EXT4_I(inode);
368
369 spin_lock(&ei->i_block_reservation_lock);
370 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
371 if (unlikely(used > ei->i_reserved_data_blocks)) {
372 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
373 "with only %d reserved data blocks",
374 __func__, inode->i_ino, used,
375 ei->i_reserved_data_blocks);
376 WARN_ON(1);
377 used = ei->i_reserved_data_blocks;
378 }
379
380 /* Update per-inode reservations */
381 ei->i_reserved_data_blocks -= used;
382 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
383
384 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385
386 /* Update quota subsystem for data blocks */
387 if (quota_claim)
388 dquot_claim_block(inode, EXT4_C2B(sbi, used));
389 else {
390 /*
391 * We did fallocate with an offset that is already delayed
392 * allocated. So on delayed allocated writeback we should
393 * not re-claim the quota for fallocated blocks.
394 */
395 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396 }
397
398 /*
399 * If we have done all the pending block allocations and if
400 * there aren't any writers on the inode, we can discard the
401 * inode's preallocations.
402 */
403 if ((ei->i_reserved_data_blocks == 0) &&
404 !inode_is_open_for_write(inode))
405 ext4_discard_preallocations(inode);
406 }
407
__check_block_validity(struct inode * inode,const char * func,unsigned int line,struct ext4_map_blocks * map)408 static int __check_block_validity(struct inode *inode, const char *func,
409 unsigned int line,
410 struct ext4_map_blocks *map)
411 {
412 if (ext4_has_feature_journal(inode->i_sb) &&
413 (inode->i_ino ==
414 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
415 return 0;
416 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
417 map->m_len)) {
418 ext4_error_inode(inode, func, line, map->m_pblk,
419 "lblock %lu mapped to illegal pblock %llu "
420 "(length %d)", (unsigned long) map->m_lblk,
421 map->m_pblk, map->m_len);
422 return -EFSCORRUPTED;
423 }
424 return 0;
425 }
426
ext4_issue_zeroout(struct inode * inode,ext4_lblk_t lblk,ext4_fsblk_t pblk,ext4_lblk_t len)427 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
428 ext4_lblk_t len)
429 {
430 int ret;
431
432 if (IS_ENCRYPTED(inode))
433 return fscrypt_zeroout_range(inode, lblk, pblk, len);
434
435 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
436 if (ret > 0)
437 ret = 0;
438
439 return ret;
440 }
441
442 #define check_block_validity(inode, map) \
443 __check_block_validity((inode), __func__, __LINE__, (map))
444
445 #ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(handle_t * handle,struct inode * inode,struct ext4_map_blocks * es_map,struct ext4_map_blocks * map,int flags)446 static void ext4_map_blocks_es_recheck(handle_t *handle,
447 struct inode *inode,
448 struct ext4_map_blocks *es_map,
449 struct ext4_map_blocks *map,
450 int flags)
451 {
452 int retval;
453
454 map->m_flags = 0;
455 /*
456 * There is a race window that the result is not the same.
457 * e.g. xfstests #223 when dioread_nolock enables. The reason
458 * is that we lookup a block mapping in extent status tree with
459 * out taking i_data_sem. So at the time the unwritten extent
460 * could be converted.
461 */
462 down_read(&EXT4_I(inode)->i_data_sem);
463 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
464 retval = ext4_ext_map_blocks(handle, inode, map, flags &
465 EXT4_GET_BLOCKS_KEEP_SIZE);
466 } else {
467 retval = ext4_ind_map_blocks(handle, inode, map, flags &
468 EXT4_GET_BLOCKS_KEEP_SIZE);
469 }
470 up_read((&EXT4_I(inode)->i_data_sem));
471
472 /*
473 * We don't check m_len because extent will be collpased in status
474 * tree. So the m_len might not equal.
475 */
476 if (es_map->m_lblk != map->m_lblk ||
477 es_map->m_flags != map->m_flags ||
478 es_map->m_pblk != map->m_pblk) {
479 printk("ES cache assertion failed for inode: %lu "
480 "es_cached ex [%d/%d/%llu/%x] != "
481 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
482 inode->i_ino, es_map->m_lblk, es_map->m_len,
483 es_map->m_pblk, es_map->m_flags, map->m_lblk,
484 map->m_len, map->m_pblk, map->m_flags,
485 retval, flags);
486 }
487 }
488 #endif /* ES_AGGRESSIVE_TEST */
489
490 /*
491 * The ext4_map_blocks() function tries to look up the requested blocks,
492 * and returns if the blocks are already mapped.
493 *
494 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
495 * and store the allocated blocks in the result buffer head and mark it
496 * mapped.
497 *
498 * If file type is extents based, it will call ext4_ext_map_blocks(),
499 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
500 * based files
501 *
502 * On success, it returns the number of blocks being mapped or allocated. if
503 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
504 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
505 *
506 * It returns 0 if plain look up failed (blocks have not been allocated), in
507 * that case, @map is returned as unmapped but we still do fill map->m_len to
508 * indicate the length of a hole starting at map->m_lblk.
509 *
510 * It returns the error in case of allocation failure.
511 */
ext4_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)512 int ext4_map_blocks(handle_t *handle, struct inode *inode,
513 struct ext4_map_blocks *map, int flags)
514 {
515 struct extent_status es;
516 int retval;
517 int ret = 0;
518 #ifdef ES_AGGRESSIVE_TEST
519 struct ext4_map_blocks orig_map;
520
521 memcpy(&orig_map, map, sizeof(*map));
522 #endif
523
524 map->m_flags = 0;
525 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
526 "logical block %lu\n", inode->i_ino, flags, map->m_len,
527 (unsigned long) map->m_lblk);
528
529 /*
530 * ext4_map_blocks returns an int, and m_len is an unsigned int
531 */
532 if (unlikely(map->m_len > INT_MAX))
533 map->m_len = INT_MAX;
534
535 /* We can handle the block number less than EXT_MAX_BLOCKS */
536 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
537 return -EFSCORRUPTED;
538
539 /* Lookup extent status tree firstly */
540 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
541 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
542 map->m_pblk = ext4_es_pblock(&es) +
543 map->m_lblk - es.es_lblk;
544 map->m_flags |= ext4_es_is_written(&es) ?
545 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
546 retval = es.es_len - (map->m_lblk - es.es_lblk);
547 if (retval > map->m_len)
548 retval = map->m_len;
549 map->m_len = retval;
550 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
551 map->m_pblk = 0;
552 retval = es.es_len - (map->m_lblk - es.es_lblk);
553 if (retval > map->m_len)
554 retval = map->m_len;
555 map->m_len = retval;
556 retval = 0;
557 } else {
558 BUG();
559 }
560 #ifdef ES_AGGRESSIVE_TEST
561 ext4_map_blocks_es_recheck(handle, inode, map,
562 &orig_map, flags);
563 #endif
564 goto found;
565 }
566
567 /*
568 * Try to see if we can get the block without requesting a new
569 * file system block.
570 */
571 down_read(&EXT4_I(inode)->i_data_sem);
572 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
573 retval = ext4_ext_map_blocks(handle, inode, map, flags &
574 EXT4_GET_BLOCKS_KEEP_SIZE);
575 } else {
576 retval = ext4_ind_map_blocks(handle, inode, map, flags &
577 EXT4_GET_BLOCKS_KEEP_SIZE);
578 }
579 if (retval > 0) {
580 unsigned int status;
581
582 if (unlikely(retval != map->m_len)) {
583 ext4_warning(inode->i_sb,
584 "ES len assertion failed for inode "
585 "%lu: retval %d != map->m_len %d",
586 inode->i_ino, retval, map->m_len);
587 WARN_ON(1);
588 }
589
590 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
591 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
592 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
593 !(status & EXTENT_STATUS_WRITTEN) &&
594 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
595 map->m_lblk + map->m_len - 1))
596 status |= EXTENT_STATUS_DELAYED;
597 ret = ext4_es_insert_extent(inode, map->m_lblk,
598 map->m_len, map->m_pblk, status);
599 if (ret < 0)
600 retval = ret;
601 }
602 up_read((&EXT4_I(inode)->i_data_sem));
603
604 found:
605 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
606 ret = check_block_validity(inode, map);
607 if (ret != 0)
608 return ret;
609 }
610
611 /* If it is only a block(s) look up */
612 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
613 return retval;
614
615 /*
616 * Returns if the blocks have already allocated
617 *
618 * Note that if blocks have been preallocated
619 * ext4_ext_get_block() returns the create = 0
620 * with buffer head unmapped.
621 */
622 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
623 /*
624 * If we need to convert extent to unwritten
625 * we continue and do the actual work in
626 * ext4_ext_map_blocks()
627 */
628 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
629 return retval;
630
631 /*
632 * Here we clear m_flags because after allocating an new extent,
633 * it will be set again.
634 */
635 map->m_flags &= ~EXT4_MAP_FLAGS;
636
637 /*
638 * New blocks allocate and/or writing to unwritten extent
639 * will possibly result in updating i_data, so we take
640 * the write lock of i_data_sem, and call get_block()
641 * with create == 1 flag.
642 */
643 down_write(&EXT4_I(inode)->i_data_sem);
644
645 /*
646 * We need to check for EXT4 here because migrate
647 * could have changed the inode type in between
648 */
649 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
650 retval = ext4_ext_map_blocks(handle, inode, map, flags);
651 } else {
652 retval = ext4_ind_map_blocks(handle, inode, map, flags);
653
654 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
655 /*
656 * We allocated new blocks which will result in
657 * i_data's format changing. Force the migrate
658 * to fail by clearing migrate flags
659 */
660 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
661 }
662
663 /*
664 * Update reserved blocks/metadata blocks after successful
665 * block allocation which had been deferred till now. We don't
666 * support fallocate for non extent files. So we can update
667 * reserve space here.
668 */
669 if ((retval > 0) &&
670 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
671 ext4_da_update_reserve_space(inode, retval, 1);
672 }
673
674 if (retval > 0) {
675 unsigned int status;
676
677 if (unlikely(retval != map->m_len)) {
678 ext4_warning(inode->i_sb,
679 "ES len assertion failed for inode "
680 "%lu: retval %d != map->m_len %d",
681 inode->i_ino, retval, map->m_len);
682 WARN_ON(1);
683 }
684
685 /*
686 * We have to zeroout blocks before inserting them into extent
687 * status tree. Otherwise someone could look them up there and
688 * use them before they are really zeroed. We also have to
689 * unmap metadata before zeroing as otherwise writeback can
690 * overwrite zeros with stale data from block device.
691 */
692 if (flags & EXT4_GET_BLOCKS_ZERO &&
693 map->m_flags & EXT4_MAP_MAPPED &&
694 map->m_flags & EXT4_MAP_NEW) {
695 ret = ext4_issue_zeroout(inode, map->m_lblk,
696 map->m_pblk, map->m_len);
697 if (ret) {
698 retval = ret;
699 goto out_sem;
700 }
701 }
702
703 /*
704 * If the extent has been zeroed out, we don't need to update
705 * extent status tree.
706 */
707 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
708 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
709 if (ext4_es_is_written(&es))
710 goto out_sem;
711 }
712 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
713 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
714 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
715 !(status & EXTENT_STATUS_WRITTEN) &&
716 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
717 map->m_lblk + map->m_len - 1))
718 status |= EXTENT_STATUS_DELAYED;
719 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
720 map->m_pblk, status);
721 if (ret < 0) {
722 retval = ret;
723 goto out_sem;
724 }
725 }
726
727 out_sem:
728 up_write((&EXT4_I(inode)->i_data_sem));
729 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
730 ret = check_block_validity(inode, map);
731 if (ret != 0)
732 return ret;
733
734 /*
735 * Inodes with freshly allocated blocks where contents will be
736 * visible after transaction commit must be on transaction's
737 * ordered data list.
738 */
739 if (map->m_flags & EXT4_MAP_NEW &&
740 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
741 !(flags & EXT4_GET_BLOCKS_ZERO) &&
742 !ext4_is_quota_file(inode) &&
743 ext4_should_order_data(inode)) {
744 loff_t start_byte =
745 (loff_t)map->m_lblk << inode->i_blkbits;
746 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
747
748 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
749 ret = ext4_jbd2_inode_add_wait(handle, inode,
750 start_byte, length);
751 else
752 ret = ext4_jbd2_inode_add_write(handle, inode,
753 start_byte, length);
754 if (ret)
755 return ret;
756 }
757 }
758 return retval;
759 }
760
761 /*
762 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
763 * we have to be careful as someone else may be manipulating b_state as well.
764 */
ext4_update_bh_state(struct buffer_head * bh,unsigned long flags)765 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
766 {
767 unsigned long old_state;
768 unsigned long new_state;
769
770 flags &= EXT4_MAP_FLAGS;
771
772 /* Dummy buffer_head? Set non-atomically. */
773 if (!bh->b_page) {
774 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
775 return;
776 }
777 /*
778 * Someone else may be modifying b_state. Be careful! This is ugly but
779 * once we get rid of using bh as a container for mapping information
780 * to pass to / from get_block functions, this can go away.
781 */
782 do {
783 old_state = READ_ONCE(bh->b_state);
784 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
785 } while (unlikely(
786 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
787 }
788
_ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int flags)789 static int _ext4_get_block(struct inode *inode, sector_t iblock,
790 struct buffer_head *bh, int flags)
791 {
792 struct ext4_map_blocks map;
793 int ret = 0;
794
795 if (ext4_has_inline_data(inode))
796 return -ERANGE;
797
798 map.m_lblk = iblock;
799 map.m_len = bh->b_size >> inode->i_blkbits;
800
801 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
802 flags);
803 if (ret > 0) {
804 map_bh(bh, inode->i_sb, map.m_pblk);
805 ext4_update_bh_state(bh, map.m_flags);
806 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
807 ret = 0;
808 } else if (ret == 0) {
809 /* hole case, need to fill in bh->b_size */
810 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
811 }
812 return ret;
813 }
814
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)815 int ext4_get_block(struct inode *inode, sector_t iblock,
816 struct buffer_head *bh, int create)
817 {
818 return _ext4_get_block(inode, iblock, bh,
819 create ? EXT4_GET_BLOCKS_CREATE : 0);
820 }
821
822 /*
823 * Get block function used when preparing for buffered write if we require
824 * creating an unwritten extent if blocks haven't been allocated. The extent
825 * will be converted to written after the IO is complete.
826 */
ext4_get_block_unwritten(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)827 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
828 struct buffer_head *bh_result, int create)
829 {
830 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
831 inode->i_ino, create);
832 return _ext4_get_block(inode, iblock, bh_result,
833 EXT4_GET_BLOCKS_IO_CREATE_EXT);
834 }
835
836 /* Maximum number of blocks we map for direct IO at once. */
837 #define DIO_MAX_BLOCKS 4096
838
839 /*
840 * Get blocks function for the cases that need to start a transaction -
841 * generally difference cases of direct IO and DAX IO. It also handles retries
842 * in case of ENOSPC.
843 */
ext4_get_block_trans(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int flags)844 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
845 struct buffer_head *bh_result, int flags)
846 {
847 int dio_credits;
848 handle_t *handle;
849 int retries = 0;
850 int ret;
851
852 /* Trim mapping request to maximum we can map at once for DIO */
853 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
854 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
855 dio_credits = ext4_chunk_trans_blocks(inode,
856 bh_result->b_size >> inode->i_blkbits);
857 retry:
858 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
859 if (IS_ERR(handle))
860 return PTR_ERR(handle);
861
862 ret = _ext4_get_block(inode, iblock, bh_result, flags);
863 ext4_journal_stop(handle);
864
865 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
866 goto retry;
867 return ret;
868 }
869
870 /* Get block function for DIO reads and writes to inodes without extents */
ext4_dio_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)871 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
872 struct buffer_head *bh, int create)
873 {
874 /* We don't expect handle for direct IO */
875 WARN_ON_ONCE(ext4_journal_current_handle());
876
877 if (!create)
878 return _ext4_get_block(inode, iblock, bh, 0);
879 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
880 }
881
882 /*
883 * Get block function for AIO DIO writes when we create unwritten extent if
884 * blocks are not allocated yet. The extent will be converted to written
885 * after IO is complete.
886 */
ext4_dio_get_block_unwritten_async(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)887 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
888 sector_t iblock, struct buffer_head *bh_result, int create)
889 {
890 int ret;
891
892 /* We don't expect handle for direct IO */
893 WARN_ON_ONCE(ext4_journal_current_handle());
894
895 ret = ext4_get_block_trans(inode, iblock, bh_result,
896 EXT4_GET_BLOCKS_IO_CREATE_EXT);
897
898 /*
899 * When doing DIO using unwritten extents, we need io_end to convert
900 * unwritten extents to written on IO completion. We allocate io_end
901 * once we spot unwritten extent and store it in b_private. Generic
902 * DIO code keeps b_private set and furthermore passes the value to
903 * our completion callback in 'private' argument.
904 */
905 if (!ret && buffer_unwritten(bh_result)) {
906 if (!bh_result->b_private) {
907 ext4_io_end_t *io_end;
908
909 io_end = ext4_init_io_end(inode, GFP_KERNEL);
910 if (!io_end)
911 return -ENOMEM;
912 bh_result->b_private = io_end;
913 ext4_set_io_unwritten_flag(inode, io_end);
914 }
915 set_buffer_defer_completion(bh_result);
916 }
917
918 return ret;
919 }
920
921 /*
922 * Get block function for non-AIO DIO writes when we create unwritten extent if
923 * blocks are not allocated yet. The extent will be converted to written
924 * after IO is complete by ext4_direct_IO_write().
925 */
ext4_dio_get_block_unwritten_sync(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)926 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
927 sector_t iblock, struct buffer_head *bh_result, int create)
928 {
929 int ret;
930
931 /* We don't expect handle for direct IO */
932 WARN_ON_ONCE(ext4_journal_current_handle());
933
934 ret = ext4_get_block_trans(inode, iblock, bh_result,
935 EXT4_GET_BLOCKS_IO_CREATE_EXT);
936
937 /*
938 * Mark inode as having pending DIO writes to unwritten extents.
939 * ext4_direct_IO_write() checks this flag and converts extents to
940 * written.
941 */
942 if (!ret && buffer_unwritten(bh_result))
943 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
944
945 return ret;
946 }
947
ext4_dio_get_block_overwrite(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)948 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
949 struct buffer_head *bh_result, int create)
950 {
951 int ret;
952
953 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
954 inode->i_ino, create);
955 /* We don't expect handle for direct IO */
956 WARN_ON_ONCE(ext4_journal_current_handle());
957
958 ret = _ext4_get_block(inode, iblock, bh_result, 0);
959 /*
960 * Blocks should have been preallocated! ext4_file_write_iter() checks
961 * that.
962 */
963 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
964
965 return ret;
966 }
967
968
969 /*
970 * `handle' can be NULL if create is zero
971 */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)972 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
973 ext4_lblk_t block, int map_flags)
974 {
975 struct ext4_map_blocks map;
976 struct buffer_head *bh;
977 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
978 int err;
979
980 J_ASSERT(handle != NULL || create == 0);
981
982 map.m_lblk = block;
983 map.m_len = 1;
984 err = ext4_map_blocks(handle, inode, &map, map_flags);
985
986 if (err == 0)
987 return create ? ERR_PTR(-ENOSPC) : NULL;
988 if (err < 0)
989 return ERR_PTR(err);
990
991 bh = sb_getblk(inode->i_sb, map.m_pblk);
992 if (unlikely(!bh))
993 return ERR_PTR(-ENOMEM);
994 if (map.m_flags & EXT4_MAP_NEW) {
995 J_ASSERT(create != 0);
996 J_ASSERT(handle != NULL);
997
998 /*
999 * Now that we do not always journal data, we should
1000 * keep in mind whether this should always journal the
1001 * new buffer as metadata. For now, regular file
1002 * writes use ext4_get_block instead, so it's not a
1003 * problem.
1004 */
1005 lock_buffer(bh);
1006 BUFFER_TRACE(bh, "call get_create_access");
1007 err = ext4_journal_get_create_access(handle, bh);
1008 if (unlikely(err)) {
1009 unlock_buffer(bh);
1010 goto errout;
1011 }
1012 if (!buffer_uptodate(bh)) {
1013 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1014 set_buffer_uptodate(bh);
1015 }
1016 unlock_buffer(bh);
1017 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1018 err = ext4_handle_dirty_metadata(handle, inode, bh);
1019 if (unlikely(err))
1020 goto errout;
1021 } else
1022 BUFFER_TRACE(bh, "not a new buffer");
1023 return bh;
1024 errout:
1025 brelse(bh);
1026 return ERR_PTR(err);
1027 }
1028
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)1029 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1030 ext4_lblk_t block, int map_flags)
1031 {
1032 struct buffer_head *bh;
1033
1034 bh = ext4_getblk(handle, inode, block, map_flags);
1035 if (IS_ERR(bh))
1036 return bh;
1037 if (!bh || ext4_buffer_uptodate(bh))
1038 return bh;
1039 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1040 wait_on_buffer(bh);
1041 if (buffer_uptodate(bh))
1042 return bh;
1043 put_bh(bh);
1044 return ERR_PTR(-EIO);
1045 }
1046
1047 /* Read a contiguous batch of blocks. */
ext4_bread_batch(struct inode * inode,ext4_lblk_t block,int bh_count,bool wait,struct buffer_head ** bhs)1048 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1049 bool wait, struct buffer_head **bhs)
1050 {
1051 int i, err;
1052
1053 for (i = 0; i < bh_count; i++) {
1054 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1055 if (IS_ERR(bhs[i])) {
1056 err = PTR_ERR(bhs[i]);
1057 bh_count = i;
1058 goto out_brelse;
1059 }
1060 }
1061
1062 for (i = 0; i < bh_count; i++)
1063 /* Note that NULL bhs[i] is valid because of holes. */
1064 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
1065 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1066 &bhs[i]);
1067
1068 if (!wait)
1069 return 0;
1070
1071 for (i = 0; i < bh_count; i++)
1072 if (bhs[i])
1073 wait_on_buffer(bhs[i]);
1074
1075 for (i = 0; i < bh_count; i++) {
1076 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1077 err = -EIO;
1078 goto out_brelse;
1079 }
1080 }
1081 return 0;
1082
1083 out_brelse:
1084 for (i = 0; i < bh_count; i++) {
1085 brelse(bhs[i]);
1086 bhs[i] = NULL;
1087 }
1088 return err;
1089 }
1090
ext4_walk_page_buffers(handle_t * handle,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct buffer_head * bh))1091 int ext4_walk_page_buffers(handle_t *handle,
1092 struct buffer_head *head,
1093 unsigned from,
1094 unsigned to,
1095 int *partial,
1096 int (*fn)(handle_t *handle,
1097 struct buffer_head *bh))
1098 {
1099 struct buffer_head *bh;
1100 unsigned block_start, block_end;
1101 unsigned blocksize = head->b_size;
1102 int err, ret = 0;
1103 struct buffer_head *next;
1104
1105 for (bh = head, block_start = 0;
1106 ret == 0 && (bh != head || !block_start);
1107 block_start = block_end, bh = next) {
1108 next = bh->b_this_page;
1109 block_end = block_start + blocksize;
1110 if (block_end <= from || block_start >= to) {
1111 if (partial && !buffer_uptodate(bh))
1112 *partial = 1;
1113 continue;
1114 }
1115 err = (*fn)(handle, bh);
1116 if (!ret)
1117 ret = err;
1118 }
1119 return ret;
1120 }
1121
1122 /*
1123 * To preserve ordering, it is essential that the hole instantiation and
1124 * the data write be encapsulated in a single transaction. We cannot
1125 * close off a transaction and start a new one between the ext4_get_block()
1126 * and the commit_write(). So doing the jbd2_journal_start at the start of
1127 * prepare_write() is the right place.
1128 *
1129 * Also, this function can nest inside ext4_writepage(). In that case, we
1130 * *know* that ext4_writepage() has generated enough buffer credits to do the
1131 * whole page. So we won't block on the journal in that case, which is good,
1132 * because the caller may be PF_MEMALLOC.
1133 *
1134 * By accident, ext4 can be reentered when a transaction is open via
1135 * quota file writes. If we were to commit the transaction while thus
1136 * reentered, there can be a deadlock - we would be holding a quota
1137 * lock, and the commit would never complete if another thread had a
1138 * transaction open and was blocking on the quota lock - a ranking
1139 * violation.
1140 *
1141 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1142 * will _not_ run commit under these circumstances because handle->h_ref
1143 * is elevated. We'll still have enough credits for the tiny quotafile
1144 * write.
1145 */
do_journal_get_write_access(handle_t * handle,struct buffer_head * bh)1146 int do_journal_get_write_access(handle_t *handle,
1147 struct buffer_head *bh)
1148 {
1149 int dirty = buffer_dirty(bh);
1150 int ret;
1151
1152 if (!buffer_mapped(bh) || buffer_freed(bh))
1153 return 0;
1154 /*
1155 * __block_write_begin() could have dirtied some buffers. Clean
1156 * the dirty bit as jbd2_journal_get_write_access() could complain
1157 * otherwise about fs integrity issues. Setting of the dirty bit
1158 * by __block_write_begin() isn't a real problem here as we clear
1159 * the bit before releasing a page lock and thus writeback cannot
1160 * ever write the buffer.
1161 */
1162 if (dirty)
1163 clear_buffer_dirty(bh);
1164 BUFFER_TRACE(bh, "get write access");
1165 ret = ext4_journal_get_write_access(handle, bh);
1166 if (!ret && dirty)
1167 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1168 return ret;
1169 }
1170
1171 #ifdef CONFIG_FS_ENCRYPTION
ext4_block_write_begin(struct page * page,loff_t pos,unsigned len,get_block_t * get_block)1172 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1173 get_block_t *get_block)
1174 {
1175 unsigned from = pos & (PAGE_SIZE - 1);
1176 unsigned to = from + len;
1177 struct inode *inode = page->mapping->host;
1178 unsigned block_start, block_end;
1179 sector_t block;
1180 int err = 0;
1181 unsigned blocksize = inode->i_sb->s_blocksize;
1182 unsigned bbits;
1183 struct buffer_head *bh, *head, *wait[2];
1184 int nr_wait = 0;
1185 int i;
1186
1187 BUG_ON(!PageLocked(page));
1188 BUG_ON(from > PAGE_SIZE);
1189 BUG_ON(to > PAGE_SIZE);
1190 BUG_ON(from > to);
1191
1192 if (!page_has_buffers(page))
1193 create_empty_buffers(page, blocksize, 0);
1194 head = page_buffers(page);
1195 bbits = ilog2(blocksize);
1196 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1197
1198 for (bh = head, block_start = 0; bh != head || !block_start;
1199 block++, block_start = block_end, bh = bh->b_this_page) {
1200 block_end = block_start + blocksize;
1201 if (block_end <= from || block_start >= to) {
1202 if (PageUptodate(page)) {
1203 if (!buffer_uptodate(bh))
1204 set_buffer_uptodate(bh);
1205 }
1206 continue;
1207 }
1208 if (buffer_new(bh))
1209 clear_buffer_new(bh);
1210 if (!buffer_mapped(bh)) {
1211 WARN_ON(bh->b_size != blocksize);
1212 err = get_block(inode, block, bh, 1);
1213 if (err)
1214 break;
1215 if (buffer_new(bh)) {
1216 if (PageUptodate(page)) {
1217 clear_buffer_new(bh);
1218 set_buffer_uptodate(bh);
1219 mark_buffer_dirty(bh);
1220 continue;
1221 }
1222 if (block_end > to || block_start < from)
1223 zero_user_segments(page, to, block_end,
1224 block_start, from);
1225 continue;
1226 }
1227 }
1228 if (PageUptodate(page)) {
1229 if (!buffer_uptodate(bh))
1230 set_buffer_uptodate(bh);
1231 continue;
1232 }
1233 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1234 !buffer_unwritten(bh) &&
1235 (block_start < from || block_end > to)) {
1236 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1237 wait[nr_wait++] = bh;
1238 }
1239 }
1240 /*
1241 * If we issued read requests, let them complete.
1242 */
1243 for (i = 0; i < nr_wait; i++) {
1244 wait_on_buffer(wait[i]);
1245 if (!buffer_uptodate(wait[i]))
1246 err = -EIO;
1247 }
1248 if (unlikely(err)) {
1249 page_zero_new_buffers(page, from, to);
1250 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1251 for (i = 0; i < nr_wait; i++) {
1252 int err2;
1253
1254 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1255 bh_offset(wait[i]));
1256 if (err2) {
1257 clear_buffer_uptodate(wait[i]);
1258 err = err2;
1259 }
1260 }
1261 }
1262
1263 return err;
1264 }
1265 #endif
1266
ext4_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)1267 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1268 loff_t pos, unsigned len, unsigned flags,
1269 struct page **pagep, void **fsdata)
1270 {
1271 struct inode *inode = mapping->host;
1272 int ret, needed_blocks;
1273 handle_t *handle;
1274 int retries = 0;
1275 struct page *page;
1276 pgoff_t index;
1277 unsigned from, to;
1278
1279 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1280 return -EIO;
1281
1282 if (trace_android_fs_datawrite_start_enabled()) {
1283 char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
1284
1285 path = android_fstrace_get_pathname(pathbuf,
1286 MAX_TRACE_PATHBUF_LEN,
1287 inode);
1288 trace_android_fs_datawrite_start(inode, pos, len,
1289 current->pid, path,
1290 current->comm);
1291 }
1292 trace_ext4_write_begin(inode, pos, len, flags);
1293 /*
1294 * Reserve one block more for addition to orphan list in case
1295 * we allocate blocks but write fails for some reason
1296 */
1297 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1298 index = pos >> PAGE_SHIFT;
1299 from = pos & (PAGE_SIZE - 1);
1300 to = from + len;
1301
1302 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1303 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1304 flags, pagep);
1305 if (ret < 0)
1306 return ret;
1307 if (ret == 1)
1308 return 0;
1309 }
1310
1311 /*
1312 * grab_cache_page_write_begin() can take a long time if the
1313 * system is thrashing due to memory pressure, or if the page
1314 * is being written back. So grab it first before we start
1315 * the transaction handle. This also allows us to allocate
1316 * the page (if needed) without using GFP_NOFS.
1317 */
1318 retry_grab:
1319 page = grab_cache_page_write_begin(mapping, index, flags);
1320 if (!page)
1321 return -ENOMEM;
1322 unlock_page(page);
1323
1324 retry_journal:
1325 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1326 if (IS_ERR(handle)) {
1327 put_page(page);
1328 return PTR_ERR(handle);
1329 }
1330
1331 lock_page(page);
1332 if (page->mapping != mapping) {
1333 /* The page got truncated from under us */
1334 unlock_page(page);
1335 put_page(page);
1336 ext4_journal_stop(handle);
1337 goto retry_grab;
1338 }
1339 /* In case writeback began while the page was unlocked */
1340 wait_for_stable_page(page);
1341
1342 #ifdef CONFIG_FS_ENCRYPTION
1343 if (ext4_should_dioread_nolock(inode))
1344 ret = ext4_block_write_begin(page, pos, len,
1345 ext4_get_block_unwritten);
1346 else
1347 ret = ext4_block_write_begin(page, pos, len,
1348 ext4_get_block);
1349 #else
1350 if (ext4_should_dioread_nolock(inode))
1351 ret = __block_write_begin(page, pos, len,
1352 ext4_get_block_unwritten);
1353 else
1354 ret = __block_write_begin(page, pos, len, ext4_get_block);
1355 #endif
1356 if (!ret && ext4_should_journal_data(inode)) {
1357 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1358 from, to, NULL,
1359 do_journal_get_write_access);
1360 }
1361
1362 if (ret) {
1363 bool extended = (pos + len > inode->i_size) &&
1364 !ext4_verity_in_progress(inode);
1365
1366 unlock_page(page);
1367 /*
1368 * __block_write_begin may have instantiated a few blocks
1369 * outside i_size. Trim these off again. Don't need
1370 * i_size_read because we hold i_mutex.
1371 *
1372 * Add inode to orphan list in case we crash before
1373 * truncate finishes
1374 */
1375 if (extended && ext4_can_truncate(inode))
1376 ext4_orphan_add(handle, inode);
1377
1378 ext4_journal_stop(handle);
1379 if (extended) {
1380 ext4_truncate_failed_write(inode);
1381 /*
1382 * If truncate failed early the inode might
1383 * still be on the orphan list; we need to
1384 * make sure the inode is removed from the
1385 * orphan list in that case.
1386 */
1387 if (inode->i_nlink)
1388 ext4_orphan_del(NULL, inode);
1389 }
1390
1391 if (ret == -ENOSPC &&
1392 ext4_should_retry_alloc(inode->i_sb, &retries))
1393 goto retry_journal;
1394 put_page(page);
1395 return ret;
1396 }
1397 *pagep = page;
1398 return ret;
1399 }
1400
1401 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct buffer_head * bh)1402 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1403 {
1404 int ret;
1405 if (!buffer_mapped(bh) || buffer_freed(bh))
1406 return 0;
1407 set_buffer_uptodate(bh);
1408 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1409 clear_buffer_meta(bh);
1410 clear_buffer_prio(bh);
1411 return ret;
1412 }
1413
1414 /*
1415 * We need to pick up the new inode size which generic_commit_write gave us
1416 * `file' can be NULL - eg, when called from page_symlink().
1417 *
1418 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1419 * buffers are managed internally.
1420 */
ext4_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1421 static int ext4_write_end(struct file *file,
1422 struct address_space *mapping,
1423 loff_t pos, unsigned len, unsigned copied,
1424 struct page *page, void *fsdata)
1425 {
1426 handle_t *handle = ext4_journal_current_handle();
1427 struct inode *inode = mapping->host;
1428 loff_t old_size = inode->i_size;
1429 int ret = 0, ret2;
1430 int i_size_changed = 0;
1431 int inline_data = ext4_has_inline_data(inode);
1432 bool verity = ext4_verity_in_progress(inode);
1433
1434 trace_android_fs_datawrite_end(inode, pos, len);
1435 trace_ext4_write_end(inode, pos, len, copied);
1436 if (inline_data) {
1437 ret = ext4_write_inline_data_end(inode, pos, len,
1438 copied, page);
1439 if (ret < 0) {
1440 unlock_page(page);
1441 put_page(page);
1442 goto errout;
1443 }
1444 copied = ret;
1445 } else
1446 copied = block_write_end(file, mapping, pos,
1447 len, copied, page, fsdata);
1448 /*
1449 * it's important to update i_size while still holding page lock:
1450 * page writeout could otherwise come in and zero beyond i_size.
1451 *
1452 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1453 * blocks are being written past EOF, so skip the i_size update.
1454 */
1455 if (!verity)
1456 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1457 unlock_page(page);
1458 put_page(page);
1459
1460 if (old_size < pos && !verity)
1461 pagecache_isize_extended(inode, old_size, pos);
1462 /*
1463 * Don't mark the inode dirty under page lock. First, it unnecessarily
1464 * makes the holding time of page lock longer. Second, it forces lock
1465 * ordering of page lock and transaction start for journaling
1466 * filesystems.
1467 */
1468 if (i_size_changed || inline_data)
1469 ext4_mark_inode_dirty(handle, inode);
1470
1471 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1472 /* if we have allocated more blocks and copied
1473 * less. We will have blocks allocated outside
1474 * inode->i_size. So truncate them
1475 */
1476 ext4_orphan_add(handle, inode);
1477 errout:
1478 ret2 = ext4_journal_stop(handle);
1479 if (!ret)
1480 ret = ret2;
1481
1482 if (pos + len > inode->i_size && !verity) {
1483 ext4_truncate_failed_write(inode);
1484 /*
1485 * If truncate failed early the inode might still be
1486 * on the orphan list; we need to make sure the inode
1487 * is removed from the orphan list in that case.
1488 */
1489 if (inode->i_nlink)
1490 ext4_orphan_del(NULL, inode);
1491 }
1492
1493 return ret ? ret : copied;
1494 }
1495
1496 /*
1497 * This is a private version of page_zero_new_buffers() which doesn't
1498 * set the buffer to be dirty, since in data=journalled mode we need
1499 * to call ext4_handle_dirty_metadata() instead.
1500 */
ext4_journalled_zero_new_buffers(handle_t * handle,struct page * page,unsigned from,unsigned to)1501 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1502 struct page *page,
1503 unsigned from, unsigned to)
1504 {
1505 unsigned int block_start = 0, block_end;
1506 struct buffer_head *head, *bh;
1507
1508 bh = head = page_buffers(page);
1509 do {
1510 block_end = block_start + bh->b_size;
1511 if (buffer_new(bh)) {
1512 if (block_end > from && block_start < to) {
1513 if (!PageUptodate(page)) {
1514 unsigned start, size;
1515
1516 start = max(from, block_start);
1517 size = min(to, block_end) - start;
1518
1519 zero_user(page, start, size);
1520 write_end_fn(handle, bh);
1521 }
1522 clear_buffer_new(bh);
1523 }
1524 }
1525 block_start = block_end;
1526 bh = bh->b_this_page;
1527 } while (bh != head);
1528 }
1529
ext4_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1530 static int ext4_journalled_write_end(struct file *file,
1531 struct address_space *mapping,
1532 loff_t pos, unsigned len, unsigned copied,
1533 struct page *page, void *fsdata)
1534 {
1535 handle_t *handle = ext4_journal_current_handle();
1536 struct inode *inode = mapping->host;
1537 loff_t old_size = inode->i_size;
1538 int ret = 0, ret2;
1539 int partial = 0;
1540 unsigned from, to;
1541 int size_changed = 0;
1542 int inline_data = ext4_has_inline_data(inode);
1543 bool verity = ext4_verity_in_progress(inode);
1544
1545 trace_android_fs_datawrite_end(inode, pos, len);
1546 trace_ext4_journalled_write_end(inode, pos, len, copied);
1547 from = pos & (PAGE_SIZE - 1);
1548 to = from + len;
1549
1550 BUG_ON(!ext4_handle_valid(handle));
1551
1552 if (inline_data) {
1553 ret = ext4_write_inline_data_end(inode, pos, len,
1554 copied, page);
1555 if (ret < 0) {
1556 unlock_page(page);
1557 put_page(page);
1558 goto errout;
1559 }
1560 copied = ret;
1561 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1562 copied = 0;
1563 ext4_journalled_zero_new_buffers(handle, page, from, to);
1564 } else {
1565 if (unlikely(copied < len))
1566 ext4_journalled_zero_new_buffers(handle, page,
1567 from + copied, to);
1568 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1569 from + copied, &partial,
1570 write_end_fn);
1571 if (!partial)
1572 SetPageUptodate(page);
1573 }
1574 if (!verity)
1575 size_changed = ext4_update_inode_size(inode, pos + copied);
1576 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1577 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1578 unlock_page(page);
1579 put_page(page);
1580
1581 if (old_size < pos && !verity)
1582 pagecache_isize_extended(inode, old_size, pos);
1583
1584 if (size_changed || inline_data) {
1585 ret2 = ext4_mark_inode_dirty(handle, inode);
1586 if (!ret)
1587 ret = ret2;
1588 }
1589
1590 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1591 /* if we have allocated more blocks and copied
1592 * less. We will have blocks allocated outside
1593 * inode->i_size. So truncate them
1594 */
1595 ext4_orphan_add(handle, inode);
1596
1597 errout:
1598 ret2 = ext4_journal_stop(handle);
1599 if (!ret)
1600 ret = ret2;
1601 if (pos + len > inode->i_size && !verity) {
1602 ext4_truncate_failed_write(inode);
1603 /*
1604 * If truncate failed early the inode might still be
1605 * on the orphan list; we need to make sure the inode
1606 * is removed from the orphan list in that case.
1607 */
1608 if (inode->i_nlink)
1609 ext4_orphan_del(NULL, inode);
1610 }
1611
1612 return ret ? ret : copied;
1613 }
1614
1615 /*
1616 * Reserve space for a single cluster
1617 */
ext4_da_reserve_space(struct inode * inode)1618 static int ext4_da_reserve_space(struct inode *inode)
1619 {
1620 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1621 struct ext4_inode_info *ei = EXT4_I(inode);
1622 int ret;
1623
1624 /*
1625 * We will charge metadata quota at writeout time; this saves
1626 * us from metadata over-estimation, though we may go over by
1627 * a small amount in the end. Here we just reserve for data.
1628 */
1629 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1630 if (ret)
1631 return ret;
1632
1633 spin_lock(&ei->i_block_reservation_lock);
1634 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1635 spin_unlock(&ei->i_block_reservation_lock);
1636 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1637 return -ENOSPC;
1638 }
1639 ei->i_reserved_data_blocks++;
1640 trace_ext4_da_reserve_space(inode);
1641 spin_unlock(&ei->i_block_reservation_lock);
1642
1643 return 0; /* success */
1644 }
1645
ext4_da_release_space(struct inode * inode,int to_free)1646 void ext4_da_release_space(struct inode *inode, int to_free)
1647 {
1648 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1649 struct ext4_inode_info *ei = EXT4_I(inode);
1650
1651 if (!to_free)
1652 return; /* Nothing to release, exit */
1653
1654 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1655
1656 trace_ext4_da_release_space(inode, to_free);
1657 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1658 /*
1659 * if there aren't enough reserved blocks, then the
1660 * counter is messed up somewhere. Since this
1661 * function is called from invalidate page, it's
1662 * harmless to return without any action.
1663 */
1664 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1665 "ino %lu, to_free %d with only %d reserved "
1666 "data blocks", inode->i_ino, to_free,
1667 ei->i_reserved_data_blocks);
1668 WARN_ON(1);
1669 to_free = ei->i_reserved_data_blocks;
1670 }
1671 ei->i_reserved_data_blocks -= to_free;
1672
1673 /* update fs dirty data blocks counter */
1674 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1675
1676 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1677
1678 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1679 }
1680
1681 /*
1682 * Delayed allocation stuff
1683 */
1684
1685 struct mpage_da_data {
1686 struct inode *inode;
1687 struct writeback_control *wbc;
1688
1689 pgoff_t first_page; /* The first page to write */
1690 pgoff_t next_page; /* Current page to examine */
1691 pgoff_t last_page; /* Last page to examine */
1692 /*
1693 * Extent to map - this can be after first_page because that can be
1694 * fully mapped. We somewhat abuse m_flags to store whether the extent
1695 * is delalloc or unwritten.
1696 */
1697 struct ext4_map_blocks map;
1698 struct ext4_io_submit io_submit; /* IO submission data */
1699 unsigned int do_map:1;
1700 };
1701
mpage_release_unused_pages(struct mpage_da_data * mpd,bool invalidate)1702 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1703 bool invalidate)
1704 {
1705 int nr_pages, i;
1706 pgoff_t index, end;
1707 struct pagevec pvec;
1708 struct inode *inode = mpd->inode;
1709 struct address_space *mapping = inode->i_mapping;
1710
1711 /* This is necessary when next_page == 0. */
1712 if (mpd->first_page >= mpd->next_page)
1713 return;
1714
1715 index = mpd->first_page;
1716 end = mpd->next_page - 1;
1717 if (invalidate) {
1718 ext4_lblk_t start, last;
1719 start = index << (PAGE_SHIFT - inode->i_blkbits);
1720 last = end << (PAGE_SHIFT - inode->i_blkbits);
1721 ext4_es_remove_extent(inode, start, last - start + 1);
1722 }
1723
1724 pagevec_init(&pvec);
1725 while (index <= end) {
1726 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1727 if (nr_pages == 0)
1728 break;
1729 for (i = 0; i < nr_pages; i++) {
1730 struct page *page = pvec.pages[i];
1731
1732 BUG_ON(!PageLocked(page));
1733 BUG_ON(PageWriteback(page));
1734 if (invalidate) {
1735 if (page_mapped(page))
1736 clear_page_dirty_for_io(page);
1737 block_invalidatepage(page, 0, PAGE_SIZE);
1738 ClearPageUptodate(page);
1739 }
1740 unlock_page(page);
1741 }
1742 pagevec_release(&pvec);
1743 }
1744 }
1745
ext4_print_free_blocks(struct inode * inode)1746 static void ext4_print_free_blocks(struct inode *inode)
1747 {
1748 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1749 struct super_block *sb = inode->i_sb;
1750 struct ext4_inode_info *ei = EXT4_I(inode);
1751
1752 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1753 EXT4_C2B(EXT4_SB(inode->i_sb),
1754 ext4_count_free_clusters(sb)));
1755 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1756 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1757 (long long) EXT4_C2B(EXT4_SB(sb),
1758 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1759 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1760 (long long) EXT4_C2B(EXT4_SB(sb),
1761 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1762 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1763 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1764 ei->i_reserved_data_blocks);
1765 return;
1766 }
1767
ext4_bh_delay_or_unwritten(handle_t * handle,struct buffer_head * bh)1768 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1769 {
1770 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1771 }
1772
1773 /*
1774 * ext4_insert_delayed_block - adds a delayed block to the extents status
1775 * tree, incrementing the reserved cluster/block
1776 * count or making a pending reservation
1777 * where needed
1778 *
1779 * @inode - file containing the newly added block
1780 * @lblk - logical block to be added
1781 *
1782 * Returns 0 on success, negative error code on failure.
1783 */
ext4_insert_delayed_block(struct inode * inode,ext4_lblk_t lblk)1784 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1785 {
1786 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1787 int ret;
1788 bool allocated = false;
1789
1790 /*
1791 * If the cluster containing lblk is shared with a delayed,
1792 * written, or unwritten extent in a bigalloc file system, it's
1793 * already been accounted for and does not need to be reserved.
1794 * A pending reservation must be made for the cluster if it's
1795 * shared with a written or unwritten extent and doesn't already
1796 * have one. Written and unwritten extents can be purged from the
1797 * extents status tree if the system is under memory pressure, so
1798 * it's necessary to examine the extent tree if a search of the
1799 * extents status tree doesn't get a match.
1800 */
1801 if (sbi->s_cluster_ratio == 1) {
1802 ret = ext4_da_reserve_space(inode);
1803 if (ret != 0) /* ENOSPC */
1804 goto errout;
1805 } else { /* bigalloc */
1806 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1807 if (!ext4_es_scan_clu(inode,
1808 &ext4_es_is_mapped, lblk)) {
1809 ret = ext4_clu_mapped(inode,
1810 EXT4_B2C(sbi, lblk));
1811 if (ret < 0)
1812 goto errout;
1813 if (ret == 0) {
1814 ret = ext4_da_reserve_space(inode);
1815 if (ret != 0) /* ENOSPC */
1816 goto errout;
1817 } else {
1818 allocated = true;
1819 }
1820 } else {
1821 allocated = true;
1822 }
1823 }
1824 }
1825
1826 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1827
1828 errout:
1829 return ret;
1830 }
1831
1832 /*
1833 * This function is grabs code from the very beginning of
1834 * ext4_map_blocks, but assumes that the caller is from delayed write
1835 * time. This function looks up the requested blocks and sets the
1836 * buffer delay bit under the protection of i_data_sem.
1837 */
ext4_da_map_blocks(struct inode * inode,sector_t iblock,struct ext4_map_blocks * map,struct buffer_head * bh)1838 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1839 struct ext4_map_blocks *map,
1840 struct buffer_head *bh)
1841 {
1842 struct extent_status es;
1843 int retval;
1844 sector_t invalid_block = ~((sector_t) 0xffff);
1845 #ifdef ES_AGGRESSIVE_TEST
1846 struct ext4_map_blocks orig_map;
1847
1848 memcpy(&orig_map, map, sizeof(*map));
1849 #endif
1850
1851 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1852 invalid_block = ~0;
1853
1854 map->m_flags = 0;
1855 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1856 "logical block %lu\n", inode->i_ino, map->m_len,
1857 (unsigned long) map->m_lblk);
1858
1859 /* Lookup extent status tree firstly */
1860 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1861 if (ext4_es_is_hole(&es)) {
1862 retval = 0;
1863 down_read(&EXT4_I(inode)->i_data_sem);
1864 goto add_delayed;
1865 }
1866
1867 /*
1868 * Delayed extent could be allocated by fallocate.
1869 * So we need to check it.
1870 */
1871 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1872 map_bh(bh, inode->i_sb, invalid_block);
1873 set_buffer_new(bh);
1874 set_buffer_delay(bh);
1875 return 0;
1876 }
1877
1878 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1879 retval = es.es_len - (iblock - es.es_lblk);
1880 if (retval > map->m_len)
1881 retval = map->m_len;
1882 map->m_len = retval;
1883 if (ext4_es_is_written(&es))
1884 map->m_flags |= EXT4_MAP_MAPPED;
1885 else if (ext4_es_is_unwritten(&es))
1886 map->m_flags |= EXT4_MAP_UNWRITTEN;
1887 else
1888 BUG();
1889
1890 #ifdef ES_AGGRESSIVE_TEST
1891 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1892 #endif
1893 return retval;
1894 }
1895
1896 /*
1897 * Try to see if we can get the block without requesting a new
1898 * file system block.
1899 */
1900 down_read(&EXT4_I(inode)->i_data_sem);
1901 if (ext4_has_inline_data(inode))
1902 retval = 0;
1903 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1904 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1905 else
1906 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1907
1908 add_delayed:
1909 if (retval == 0) {
1910 int ret;
1911
1912 /*
1913 * XXX: __block_prepare_write() unmaps passed block,
1914 * is it OK?
1915 */
1916
1917 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1918 if (ret != 0) {
1919 retval = ret;
1920 goto out_unlock;
1921 }
1922
1923 map_bh(bh, inode->i_sb, invalid_block);
1924 set_buffer_new(bh);
1925 set_buffer_delay(bh);
1926 } else if (retval > 0) {
1927 int ret;
1928 unsigned int status;
1929
1930 if (unlikely(retval != map->m_len)) {
1931 ext4_warning(inode->i_sb,
1932 "ES len assertion failed for inode "
1933 "%lu: retval %d != map->m_len %d",
1934 inode->i_ino, retval, map->m_len);
1935 WARN_ON(1);
1936 }
1937
1938 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1939 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1940 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1941 map->m_pblk, status);
1942 if (ret != 0)
1943 retval = ret;
1944 }
1945
1946 out_unlock:
1947 up_read((&EXT4_I(inode)->i_data_sem));
1948
1949 return retval;
1950 }
1951
1952 /*
1953 * This is a special get_block_t callback which is used by
1954 * ext4_da_write_begin(). It will either return mapped block or
1955 * reserve space for a single block.
1956 *
1957 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1958 * We also have b_blocknr = -1 and b_bdev initialized properly
1959 *
1960 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1961 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1962 * initialized properly.
1963 */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)1964 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1965 struct buffer_head *bh, int create)
1966 {
1967 struct ext4_map_blocks map;
1968 int ret = 0;
1969
1970 BUG_ON(create == 0);
1971 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1972
1973 map.m_lblk = iblock;
1974 map.m_len = 1;
1975
1976 /*
1977 * first, we need to know whether the block is allocated already
1978 * preallocated blocks are unmapped but should treated
1979 * the same as allocated blocks.
1980 */
1981 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1982 if (ret <= 0)
1983 return ret;
1984
1985 map_bh(bh, inode->i_sb, map.m_pblk);
1986 ext4_update_bh_state(bh, map.m_flags);
1987
1988 if (buffer_unwritten(bh)) {
1989 /* A delayed write to unwritten bh should be marked
1990 * new and mapped. Mapped ensures that we don't do
1991 * get_block multiple times when we write to the same
1992 * offset and new ensures that we do proper zero out
1993 * for partial write.
1994 */
1995 set_buffer_new(bh);
1996 set_buffer_mapped(bh);
1997 }
1998 return 0;
1999 }
2000
bget_one(handle_t * handle,struct buffer_head * bh)2001 static int bget_one(handle_t *handle, struct buffer_head *bh)
2002 {
2003 get_bh(bh);
2004 return 0;
2005 }
2006
bput_one(handle_t * handle,struct buffer_head * bh)2007 static int bput_one(handle_t *handle, struct buffer_head *bh)
2008 {
2009 put_bh(bh);
2010 return 0;
2011 }
2012
__ext4_journalled_writepage(struct page * page,unsigned int len)2013 static int __ext4_journalled_writepage(struct page *page,
2014 unsigned int len)
2015 {
2016 struct address_space *mapping = page->mapping;
2017 struct inode *inode = mapping->host;
2018 struct buffer_head *page_bufs = NULL;
2019 handle_t *handle = NULL;
2020 int ret = 0, err = 0;
2021 int inline_data = ext4_has_inline_data(inode);
2022 struct buffer_head *inode_bh = NULL;
2023
2024 ClearPageChecked(page);
2025
2026 if (inline_data) {
2027 BUG_ON(page->index != 0);
2028 BUG_ON(len > ext4_get_max_inline_size(inode));
2029 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2030 if (inode_bh == NULL)
2031 goto out;
2032 } else {
2033 page_bufs = page_buffers(page);
2034 if (!page_bufs) {
2035 BUG();
2036 goto out;
2037 }
2038 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2039 NULL, bget_one);
2040 }
2041 /*
2042 * We need to release the page lock before we start the
2043 * journal, so grab a reference so the page won't disappear
2044 * out from under us.
2045 */
2046 get_page(page);
2047 unlock_page(page);
2048
2049 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2050 ext4_writepage_trans_blocks(inode));
2051 if (IS_ERR(handle)) {
2052 ret = PTR_ERR(handle);
2053 put_page(page);
2054 goto out_no_pagelock;
2055 }
2056 BUG_ON(!ext4_handle_valid(handle));
2057
2058 lock_page(page);
2059 put_page(page);
2060 if (page->mapping != mapping) {
2061 /* The page got truncated from under us */
2062 ext4_journal_stop(handle);
2063 ret = 0;
2064 goto out;
2065 }
2066
2067 if (inline_data) {
2068 ret = ext4_mark_inode_dirty(handle, inode);
2069 } else {
2070 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2071 do_journal_get_write_access);
2072
2073 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2074 write_end_fn);
2075 }
2076 if (ret == 0)
2077 ret = err;
2078 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2079 err = ext4_journal_stop(handle);
2080 if (!ret)
2081 ret = err;
2082
2083 if (!ext4_has_inline_data(inode))
2084 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2085 NULL, bput_one);
2086 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2087 out:
2088 unlock_page(page);
2089 out_no_pagelock:
2090 brelse(inode_bh);
2091 return ret;
2092 }
2093
2094 /*
2095 * Note that we don't need to start a transaction unless we're journaling data
2096 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2097 * need to file the inode to the transaction's list in ordered mode because if
2098 * we are writing back data added by write(), the inode is already there and if
2099 * we are writing back data modified via mmap(), no one guarantees in which
2100 * transaction the data will hit the disk. In case we are journaling data, we
2101 * cannot start transaction directly because transaction start ranks above page
2102 * lock so we have to do some magic.
2103 *
2104 * This function can get called via...
2105 * - ext4_writepages after taking page lock (have journal handle)
2106 * - journal_submit_inode_data_buffers (no journal handle)
2107 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2108 * - grab_page_cache when doing write_begin (have journal handle)
2109 *
2110 * We don't do any block allocation in this function. If we have page with
2111 * multiple blocks we need to write those buffer_heads that are mapped. This
2112 * is important for mmaped based write. So if we do with blocksize 1K
2113 * truncate(f, 1024);
2114 * a = mmap(f, 0, 4096);
2115 * a[0] = 'a';
2116 * truncate(f, 4096);
2117 * we have in the page first buffer_head mapped via page_mkwrite call back
2118 * but other buffer_heads would be unmapped but dirty (dirty done via the
2119 * do_wp_page). So writepage should write the first block. If we modify
2120 * the mmap area beyond 1024 we will again get a page_fault and the
2121 * page_mkwrite callback will do the block allocation and mark the
2122 * buffer_heads mapped.
2123 *
2124 * We redirty the page if we have any buffer_heads that is either delay or
2125 * unwritten in the page.
2126 *
2127 * We can get recursively called as show below.
2128 *
2129 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2130 * ext4_writepage()
2131 *
2132 * But since we don't do any block allocation we should not deadlock.
2133 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2134 */
ext4_writepage(struct page * page,struct writeback_control * wbc)2135 static int ext4_writepage(struct page *page,
2136 struct writeback_control *wbc)
2137 {
2138 int ret = 0;
2139 loff_t size;
2140 unsigned int len;
2141 struct buffer_head *page_bufs = NULL;
2142 struct inode *inode = page->mapping->host;
2143 struct ext4_io_submit io_submit;
2144 bool keep_towrite = false;
2145
2146 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2147 ext4_invalidatepage(page, 0, PAGE_SIZE);
2148 unlock_page(page);
2149 return -EIO;
2150 }
2151
2152 trace_ext4_writepage(page);
2153 size = i_size_read(inode);
2154 if (page->index == size >> PAGE_SHIFT &&
2155 !ext4_verity_in_progress(inode))
2156 len = size & ~PAGE_MASK;
2157 else
2158 len = PAGE_SIZE;
2159
2160 page_bufs = page_buffers(page);
2161 /*
2162 * We cannot do block allocation or other extent handling in this
2163 * function. If there are buffers needing that, we have to redirty
2164 * the page. But we may reach here when we do a journal commit via
2165 * journal_submit_inode_data_buffers() and in that case we must write
2166 * allocated buffers to achieve data=ordered mode guarantees.
2167 *
2168 * Also, if there is only one buffer per page (the fs block
2169 * size == the page size), if one buffer needs block
2170 * allocation or needs to modify the extent tree to clear the
2171 * unwritten flag, we know that the page can't be written at
2172 * all, so we might as well refuse the write immediately.
2173 * Unfortunately if the block size != page size, we can't as
2174 * easily detect this case using ext4_walk_page_buffers(), but
2175 * for the extremely common case, this is an optimization that
2176 * skips a useless round trip through ext4_bio_write_page().
2177 */
2178 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2179 ext4_bh_delay_or_unwritten)) {
2180 redirty_page_for_writepage(wbc, page);
2181 if ((current->flags & PF_MEMALLOC) ||
2182 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2183 /*
2184 * For memory cleaning there's no point in writing only
2185 * some buffers. So just bail out. Warn if we came here
2186 * from direct reclaim.
2187 */
2188 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2189 == PF_MEMALLOC);
2190 unlock_page(page);
2191 return 0;
2192 }
2193 keep_towrite = true;
2194 }
2195
2196 if (PageChecked(page) && ext4_should_journal_data(inode))
2197 /*
2198 * It's mmapped pagecache. Add buffers and journal it. There
2199 * doesn't seem much point in redirtying the page here.
2200 */
2201 return __ext4_journalled_writepage(page, len);
2202
2203 ext4_io_submit_init(&io_submit, wbc);
2204 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2205 if (!io_submit.io_end) {
2206 redirty_page_for_writepage(wbc, page);
2207 unlock_page(page);
2208 return -ENOMEM;
2209 }
2210 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2211 ext4_io_submit(&io_submit);
2212 /* Drop io_end reference we got from init */
2213 ext4_put_io_end_defer(io_submit.io_end);
2214 return ret;
2215 }
2216
mpage_submit_page(struct mpage_da_data * mpd,struct page * page)2217 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2218 {
2219 int len;
2220 loff_t size;
2221 int err;
2222
2223 BUG_ON(page->index != mpd->first_page);
2224 clear_page_dirty_for_io(page);
2225 /*
2226 * We have to be very careful here! Nothing protects writeback path
2227 * against i_size changes and the page can be writeably mapped into
2228 * page tables. So an application can be growing i_size and writing
2229 * data through mmap while writeback runs. clear_page_dirty_for_io()
2230 * write-protects our page in page tables and the page cannot get
2231 * written to again until we release page lock. So only after
2232 * clear_page_dirty_for_io() we are safe to sample i_size for
2233 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2234 * on the barrier provided by TestClearPageDirty in
2235 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2236 * after page tables are updated.
2237 */
2238 size = i_size_read(mpd->inode);
2239 if (page->index == size >> PAGE_SHIFT &&
2240 !ext4_verity_in_progress(mpd->inode))
2241 len = size & ~PAGE_MASK;
2242 else
2243 len = PAGE_SIZE;
2244 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2245 if (!err)
2246 mpd->wbc->nr_to_write--;
2247 mpd->first_page++;
2248
2249 return err;
2250 }
2251
2252 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2253
2254 /*
2255 * mballoc gives us at most this number of blocks...
2256 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2257 * The rest of mballoc seems to handle chunks up to full group size.
2258 */
2259 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2260
2261 /*
2262 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2263 *
2264 * @mpd - extent of blocks
2265 * @lblk - logical number of the block in the file
2266 * @bh - buffer head we want to add to the extent
2267 *
2268 * The function is used to collect contig. blocks in the same state. If the
2269 * buffer doesn't require mapping for writeback and we haven't started the
2270 * extent of buffers to map yet, the function returns 'true' immediately - the
2271 * caller can write the buffer right away. Otherwise the function returns true
2272 * if the block has been added to the extent, false if the block couldn't be
2273 * added.
2274 */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,ext4_lblk_t lblk,struct buffer_head * bh)2275 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2276 struct buffer_head *bh)
2277 {
2278 struct ext4_map_blocks *map = &mpd->map;
2279
2280 /* Buffer that doesn't need mapping for writeback? */
2281 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2282 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2283 /* So far no extent to map => we write the buffer right away */
2284 if (map->m_len == 0)
2285 return true;
2286 return false;
2287 }
2288
2289 /* First block in the extent? */
2290 if (map->m_len == 0) {
2291 /* We cannot map unless handle is started... */
2292 if (!mpd->do_map)
2293 return false;
2294 map->m_lblk = lblk;
2295 map->m_len = 1;
2296 map->m_flags = bh->b_state & BH_FLAGS;
2297 return true;
2298 }
2299
2300 /* Don't go larger than mballoc is willing to allocate */
2301 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2302 return false;
2303
2304 /* Can we merge the block to our big extent? */
2305 if (lblk == map->m_lblk + map->m_len &&
2306 (bh->b_state & BH_FLAGS) == map->m_flags) {
2307 map->m_len++;
2308 return true;
2309 }
2310 return false;
2311 }
2312
2313 /*
2314 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2315 *
2316 * @mpd - extent of blocks for mapping
2317 * @head - the first buffer in the page
2318 * @bh - buffer we should start processing from
2319 * @lblk - logical number of the block in the file corresponding to @bh
2320 *
2321 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2322 * the page for IO if all buffers in this page were mapped and there's no
2323 * accumulated extent of buffers to map or add buffers in the page to the
2324 * extent of buffers to map. The function returns 1 if the caller can continue
2325 * by processing the next page, 0 if it should stop adding buffers to the
2326 * extent to map because we cannot extend it anymore. It can also return value
2327 * < 0 in case of error during IO submission.
2328 */
mpage_process_page_bufs(struct mpage_da_data * mpd,struct buffer_head * head,struct buffer_head * bh,ext4_lblk_t lblk)2329 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2330 struct buffer_head *head,
2331 struct buffer_head *bh,
2332 ext4_lblk_t lblk)
2333 {
2334 struct inode *inode = mpd->inode;
2335 int err;
2336 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2337 >> inode->i_blkbits;
2338
2339 if (ext4_verity_in_progress(inode))
2340 blocks = EXT_MAX_BLOCKS;
2341
2342 do {
2343 BUG_ON(buffer_locked(bh));
2344
2345 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2346 /* Found extent to map? */
2347 if (mpd->map.m_len)
2348 return 0;
2349 /* Buffer needs mapping and handle is not started? */
2350 if (!mpd->do_map)
2351 return 0;
2352 /* Everything mapped so far and we hit EOF */
2353 break;
2354 }
2355 } while (lblk++, (bh = bh->b_this_page) != head);
2356 /* So far everything mapped? Submit the page for IO. */
2357 if (mpd->map.m_len == 0) {
2358 err = mpage_submit_page(mpd, head->b_page);
2359 if (err < 0)
2360 return err;
2361 }
2362 return lblk < blocks;
2363 }
2364
2365 /*
2366 * mpage_map_buffers - update buffers corresponding to changed extent and
2367 * submit fully mapped pages for IO
2368 *
2369 * @mpd - description of extent to map, on return next extent to map
2370 *
2371 * Scan buffers corresponding to changed extent (we expect corresponding pages
2372 * to be already locked) and update buffer state according to new extent state.
2373 * We map delalloc buffers to their physical location, clear unwritten bits,
2374 * and mark buffers as uninit when we perform writes to unwritten extents
2375 * and do extent conversion after IO is finished. If the last page is not fully
2376 * mapped, we update @map to the next extent in the last page that needs
2377 * mapping. Otherwise we submit the page for IO.
2378 */
mpage_map_and_submit_buffers(struct mpage_da_data * mpd)2379 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2380 {
2381 struct pagevec pvec;
2382 int nr_pages, i;
2383 struct inode *inode = mpd->inode;
2384 struct buffer_head *head, *bh;
2385 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2386 pgoff_t start, end;
2387 ext4_lblk_t lblk;
2388 sector_t pblock;
2389 int err;
2390
2391 start = mpd->map.m_lblk >> bpp_bits;
2392 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2393 lblk = start << bpp_bits;
2394 pblock = mpd->map.m_pblk;
2395
2396 pagevec_init(&pvec);
2397 while (start <= end) {
2398 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2399 &start, end);
2400 if (nr_pages == 0)
2401 break;
2402 for (i = 0; i < nr_pages; i++) {
2403 struct page *page = pvec.pages[i];
2404
2405 bh = head = page_buffers(page);
2406 do {
2407 if (lblk < mpd->map.m_lblk)
2408 continue;
2409 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2410 /*
2411 * Buffer after end of mapped extent.
2412 * Find next buffer in the page to map.
2413 */
2414 mpd->map.m_len = 0;
2415 mpd->map.m_flags = 0;
2416 /*
2417 * FIXME: If dioread_nolock supports
2418 * blocksize < pagesize, we need to make
2419 * sure we add size mapped so far to
2420 * io_end->size as the following call
2421 * can submit the page for IO.
2422 */
2423 err = mpage_process_page_bufs(mpd, head,
2424 bh, lblk);
2425 pagevec_release(&pvec);
2426 if (err > 0)
2427 err = 0;
2428 return err;
2429 }
2430 if (buffer_delay(bh)) {
2431 clear_buffer_delay(bh);
2432 bh->b_blocknr = pblock++;
2433 }
2434 clear_buffer_unwritten(bh);
2435 } while (lblk++, (bh = bh->b_this_page) != head);
2436
2437 /*
2438 * FIXME: This is going to break if dioread_nolock
2439 * supports blocksize < pagesize as we will try to
2440 * convert potentially unmapped parts of inode.
2441 */
2442 mpd->io_submit.io_end->size += PAGE_SIZE;
2443 /* Page fully mapped - let IO run! */
2444 err = mpage_submit_page(mpd, page);
2445 if (err < 0) {
2446 pagevec_release(&pvec);
2447 return err;
2448 }
2449 }
2450 pagevec_release(&pvec);
2451 }
2452 /* Extent fully mapped and matches with page boundary. We are done. */
2453 mpd->map.m_len = 0;
2454 mpd->map.m_flags = 0;
2455 return 0;
2456 }
2457
mpage_map_one_extent(handle_t * handle,struct mpage_da_data * mpd)2458 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2459 {
2460 struct inode *inode = mpd->inode;
2461 struct ext4_map_blocks *map = &mpd->map;
2462 int get_blocks_flags;
2463 int err, dioread_nolock;
2464
2465 trace_ext4_da_write_pages_extent(inode, map);
2466 /*
2467 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2468 * to convert an unwritten extent to be initialized (in the case
2469 * where we have written into one or more preallocated blocks). It is
2470 * possible that we're going to need more metadata blocks than
2471 * previously reserved. However we must not fail because we're in
2472 * writeback and there is nothing we can do about it so it might result
2473 * in data loss. So use reserved blocks to allocate metadata if
2474 * possible.
2475 *
2476 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2477 * the blocks in question are delalloc blocks. This indicates
2478 * that the blocks and quotas has already been checked when
2479 * the data was copied into the page cache.
2480 */
2481 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2482 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2483 EXT4_GET_BLOCKS_IO_SUBMIT;
2484 dioread_nolock = ext4_should_dioread_nolock(inode);
2485 if (dioread_nolock)
2486 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2487 if (map->m_flags & (1 << BH_Delay))
2488 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2489
2490 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2491 if (err < 0)
2492 return err;
2493 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2494 if (!mpd->io_submit.io_end->handle &&
2495 ext4_handle_valid(handle)) {
2496 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2497 handle->h_rsv_handle = NULL;
2498 }
2499 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2500 }
2501
2502 BUG_ON(map->m_len == 0);
2503 return 0;
2504 }
2505
2506 /*
2507 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2508 * mpd->len and submit pages underlying it for IO
2509 *
2510 * @handle - handle for journal operations
2511 * @mpd - extent to map
2512 * @give_up_on_write - we set this to true iff there is a fatal error and there
2513 * is no hope of writing the data. The caller should discard
2514 * dirty pages to avoid infinite loops.
2515 *
2516 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2517 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2518 * them to initialized or split the described range from larger unwritten
2519 * extent. Note that we need not map all the described range since allocation
2520 * can return less blocks or the range is covered by more unwritten extents. We
2521 * cannot map more because we are limited by reserved transaction credits. On
2522 * the other hand we always make sure that the last touched page is fully
2523 * mapped so that it can be written out (and thus forward progress is
2524 * guaranteed). After mapping we submit all mapped pages for IO.
2525 */
mpage_map_and_submit_extent(handle_t * handle,struct mpage_da_data * mpd,bool * give_up_on_write)2526 static int mpage_map_and_submit_extent(handle_t *handle,
2527 struct mpage_da_data *mpd,
2528 bool *give_up_on_write)
2529 {
2530 struct inode *inode = mpd->inode;
2531 struct ext4_map_blocks *map = &mpd->map;
2532 int err;
2533 loff_t disksize;
2534 int progress = 0;
2535
2536 mpd->io_submit.io_end->offset =
2537 ((loff_t)map->m_lblk) << inode->i_blkbits;
2538 do {
2539 err = mpage_map_one_extent(handle, mpd);
2540 if (err < 0) {
2541 struct super_block *sb = inode->i_sb;
2542
2543 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2544 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2545 goto invalidate_dirty_pages;
2546 /*
2547 * Let the uper layers retry transient errors.
2548 * In the case of ENOSPC, if ext4_count_free_blocks()
2549 * is non-zero, a commit should free up blocks.
2550 */
2551 if ((err == -ENOMEM) ||
2552 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2553 if (progress)
2554 goto update_disksize;
2555 return err;
2556 }
2557 ext4_msg(sb, KERN_CRIT,
2558 "Delayed block allocation failed for "
2559 "inode %lu at logical offset %llu with"
2560 " max blocks %u with error %d",
2561 inode->i_ino,
2562 (unsigned long long)map->m_lblk,
2563 (unsigned)map->m_len, -err);
2564 ext4_msg(sb, KERN_CRIT,
2565 "This should not happen!! Data will "
2566 "be lost\n");
2567 if (err == -ENOSPC)
2568 ext4_print_free_blocks(inode);
2569 invalidate_dirty_pages:
2570 *give_up_on_write = true;
2571 return err;
2572 }
2573 progress = 1;
2574 /*
2575 * Update buffer state, submit mapped pages, and get us new
2576 * extent to map
2577 */
2578 err = mpage_map_and_submit_buffers(mpd);
2579 if (err < 0)
2580 goto update_disksize;
2581 } while (map->m_len);
2582
2583 update_disksize:
2584 /*
2585 * Update on-disk size after IO is submitted. Races with
2586 * truncate are avoided by checking i_size under i_data_sem.
2587 */
2588 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2589 if (disksize > EXT4_I(inode)->i_disksize) {
2590 int err2;
2591 loff_t i_size;
2592
2593 down_write(&EXT4_I(inode)->i_data_sem);
2594 i_size = i_size_read(inode);
2595 if (disksize > i_size)
2596 disksize = i_size;
2597 if (disksize > EXT4_I(inode)->i_disksize)
2598 EXT4_I(inode)->i_disksize = disksize;
2599 up_write(&EXT4_I(inode)->i_data_sem);
2600 err2 = ext4_mark_inode_dirty(handle, inode);
2601 if (err2)
2602 ext4_error(inode->i_sb,
2603 "Failed to mark inode %lu dirty",
2604 inode->i_ino);
2605 if (!err)
2606 err = err2;
2607 }
2608 return err;
2609 }
2610
2611 /*
2612 * Calculate the total number of credits to reserve for one writepages
2613 * iteration. This is called from ext4_writepages(). We map an extent of
2614 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2615 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2616 * bpp - 1 blocks in bpp different extents.
2617 */
ext4_da_writepages_trans_blocks(struct inode * inode)2618 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2619 {
2620 int bpp = ext4_journal_blocks_per_page(inode);
2621
2622 return ext4_meta_trans_blocks(inode,
2623 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2624 }
2625
2626 /*
2627 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2628 * and underlying extent to map
2629 *
2630 * @mpd - where to look for pages
2631 *
2632 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2633 * IO immediately. When we find a page which isn't mapped we start accumulating
2634 * extent of buffers underlying these pages that needs mapping (formed by
2635 * either delayed or unwritten buffers). We also lock the pages containing
2636 * these buffers. The extent found is returned in @mpd structure (starting at
2637 * mpd->lblk with length mpd->len blocks).
2638 *
2639 * Note that this function can attach bios to one io_end structure which are
2640 * neither logically nor physically contiguous. Although it may seem as an
2641 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2642 * case as we need to track IO to all buffers underlying a page in one io_end.
2643 */
mpage_prepare_extent_to_map(struct mpage_da_data * mpd)2644 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2645 {
2646 struct address_space *mapping = mpd->inode->i_mapping;
2647 struct pagevec pvec;
2648 unsigned int nr_pages;
2649 long left = mpd->wbc->nr_to_write;
2650 pgoff_t index = mpd->first_page;
2651 pgoff_t end = mpd->last_page;
2652 xa_mark_t tag;
2653 int i, err = 0;
2654 int blkbits = mpd->inode->i_blkbits;
2655 ext4_lblk_t lblk;
2656 struct buffer_head *head;
2657
2658 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2659 tag = PAGECACHE_TAG_TOWRITE;
2660 else
2661 tag = PAGECACHE_TAG_DIRTY;
2662
2663 pagevec_init(&pvec);
2664 mpd->map.m_len = 0;
2665 mpd->next_page = index;
2666 while (index <= end) {
2667 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2668 tag);
2669 if (nr_pages == 0)
2670 goto out;
2671
2672 for (i = 0; i < nr_pages; i++) {
2673 struct page *page = pvec.pages[i];
2674
2675 /*
2676 * Accumulated enough dirty pages? This doesn't apply
2677 * to WB_SYNC_ALL mode. For integrity sync we have to
2678 * keep going because someone may be concurrently
2679 * dirtying pages, and we might have synced a lot of
2680 * newly appeared dirty pages, but have not synced all
2681 * of the old dirty pages.
2682 */
2683 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2684 goto out;
2685
2686 /* If we can't merge this page, we are done. */
2687 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2688 goto out;
2689
2690 lock_page(page);
2691 /*
2692 * If the page is no longer dirty, or its mapping no
2693 * longer corresponds to inode we are writing (which
2694 * means it has been truncated or invalidated), or the
2695 * page is already under writeback and we are not doing
2696 * a data integrity writeback, skip the page
2697 */
2698 if (!PageDirty(page) ||
2699 (PageWriteback(page) &&
2700 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2701 unlikely(page->mapping != mapping)) {
2702 unlock_page(page);
2703 continue;
2704 }
2705
2706 wait_on_page_writeback(page);
2707 BUG_ON(PageWriteback(page));
2708
2709 if (mpd->map.m_len == 0)
2710 mpd->first_page = page->index;
2711 mpd->next_page = page->index + 1;
2712 /* Add all dirty buffers to mpd */
2713 lblk = ((ext4_lblk_t)page->index) <<
2714 (PAGE_SHIFT - blkbits);
2715 head = page_buffers(page);
2716 err = mpage_process_page_bufs(mpd, head, head, lblk);
2717 if (err <= 0)
2718 goto out;
2719 err = 0;
2720 left--;
2721 }
2722 pagevec_release(&pvec);
2723 cond_resched();
2724 }
2725 return 0;
2726 out:
2727 pagevec_release(&pvec);
2728 return err;
2729 }
2730
ext4_writepages(struct address_space * mapping,struct writeback_control * wbc)2731 static int ext4_writepages(struct address_space *mapping,
2732 struct writeback_control *wbc)
2733 {
2734 pgoff_t writeback_index = 0;
2735 long nr_to_write = wbc->nr_to_write;
2736 int range_whole = 0;
2737 int cycled = 1;
2738 handle_t *handle = NULL;
2739 struct mpage_da_data mpd;
2740 struct inode *inode = mapping->host;
2741 int needed_blocks, rsv_blocks = 0, ret = 0;
2742 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2743 bool done;
2744 struct blk_plug plug;
2745 bool give_up_on_write = false;
2746
2747 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2748 return -EIO;
2749
2750 percpu_down_read(&sbi->s_journal_flag_rwsem);
2751 trace_ext4_writepages(inode, wbc);
2752
2753 /*
2754 * No pages to write? This is mainly a kludge to avoid starting
2755 * a transaction for special inodes like journal inode on last iput()
2756 * because that could violate lock ordering on umount
2757 */
2758 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2759 goto out_writepages;
2760
2761 if (ext4_should_journal_data(inode)) {
2762 ret = generic_writepages(mapping, wbc);
2763 goto out_writepages;
2764 }
2765
2766 /*
2767 * If the filesystem has aborted, it is read-only, so return
2768 * right away instead of dumping stack traces later on that
2769 * will obscure the real source of the problem. We test
2770 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2771 * the latter could be true if the filesystem is mounted
2772 * read-only, and in that case, ext4_writepages should
2773 * *never* be called, so if that ever happens, we would want
2774 * the stack trace.
2775 */
2776 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2777 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2778 ret = -EROFS;
2779 goto out_writepages;
2780 }
2781
2782 /*
2783 * If we have inline data and arrive here, it means that
2784 * we will soon create the block for the 1st page, so
2785 * we'd better clear the inline data here.
2786 */
2787 if (ext4_has_inline_data(inode)) {
2788 /* Just inode will be modified... */
2789 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2790 if (IS_ERR(handle)) {
2791 ret = PTR_ERR(handle);
2792 goto out_writepages;
2793 }
2794 BUG_ON(ext4_test_inode_state(inode,
2795 EXT4_STATE_MAY_INLINE_DATA));
2796 ext4_destroy_inline_data(handle, inode);
2797 ext4_journal_stop(handle);
2798 }
2799
2800 if (ext4_should_dioread_nolock(inode)) {
2801 /*
2802 * We may need to convert up to one extent per block in
2803 * the page and we may dirty the inode.
2804 */
2805 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2806 PAGE_SIZE >> inode->i_blkbits);
2807 }
2808
2809 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2810 range_whole = 1;
2811
2812 if (wbc->range_cyclic) {
2813 writeback_index = mapping->writeback_index;
2814 if (writeback_index)
2815 cycled = 0;
2816 mpd.first_page = writeback_index;
2817 mpd.last_page = -1;
2818 } else {
2819 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2820 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2821 }
2822
2823 mpd.inode = inode;
2824 mpd.wbc = wbc;
2825 ext4_io_submit_init(&mpd.io_submit, wbc);
2826 retry:
2827 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2828 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2829 done = false;
2830 blk_start_plug(&plug);
2831
2832 /*
2833 * First writeback pages that don't need mapping - we can avoid
2834 * starting a transaction unnecessarily and also avoid being blocked
2835 * in the block layer on device congestion while having transaction
2836 * started.
2837 */
2838 mpd.do_map = 0;
2839 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2840 if (!mpd.io_submit.io_end) {
2841 ret = -ENOMEM;
2842 goto unplug;
2843 }
2844 ret = mpage_prepare_extent_to_map(&mpd);
2845 /* Unlock pages we didn't use */
2846 mpage_release_unused_pages(&mpd, false);
2847 /* Submit prepared bio */
2848 ext4_io_submit(&mpd.io_submit);
2849 ext4_put_io_end_defer(mpd.io_submit.io_end);
2850 mpd.io_submit.io_end = NULL;
2851 if (ret < 0)
2852 goto unplug;
2853
2854 while (!done && mpd.first_page <= mpd.last_page) {
2855 /* For each extent of pages we use new io_end */
2856 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2857 if (!mpd.io_submit.io_end) {
2858 ret = -ENOMEM;
2859 break;
2860 }
2861
2862 /*
2863 * We have two constraints: We find one extent to map and we
2864 * must always write out whole page (makes a difference when
2865 * blocksize < pagesize) so that we don't block on IO when we
2866 * try to write out the rest of the page. Journalled mode is
2867 * not supported by delalloc.
2868 */
2869 BUG_ON(ext4_should_journal_data(inode));
2870 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2871
2872 /* start a new transaction */
2873 handle = ext4_journal_start_with_reserve(inode,
2874 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2875 if (IS_ERR(handle)) {
2876 ret = PTR_ERR(handle);
2877 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2878 "%ld pages, ino %lu; err %d", __func__,
2879 wbc->nr_to_write, inode->i_ino, ret);
2880 /* Release allocated io_end */
2881 ext4_put_io_end(mpd.io_submit.io_end);
2882 mpd.io_submit.io_end = NULL;
2883 break;
2884 }
2885 mpd.do_map = 1;
2886
2887 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2888 ret = mpage_prepare_extent_to_map(&mpd);
2889 if (!ret) {
2890 if (mpd.map.m_len)
2891 ret = mpage_map_and_submit_extent(handle, &mpd,
2892 &give_up_on_write);
2893 else {
2894 /*
2895 * We scanned the whole range (or exhausted
2896 * nr_to_write), submitted what was mapped and
2897 * didn't find anything needing mapping. We are
2898 * done.
2899 */
2900 done = true;
2901 }
2902 }
2903 /*
2904 * Caution: If the handle is synchronous,
2905 * ext4_journal_stop() can wait for transaction commit
2906 * to finish which may depend on writeback of pages to
2907 * complete or on page lock to be released. In that
2908 * case, we have to wait until after after we have
2909 * submitted all the IO, released page locks we hold,
2910 * and dropped io_end reference (for extent conversion
2911 * to be able to complete) before stopping the handle.
2912 */
2913 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2914 ext4_journal_stop(handle);
2915 handle = NULL;
2916 mpd.do_map = 0;
2917 }
2918 /* Unlock pages we didn't use */
2919 mpage_release_unused_pages(&mpd, give_up_on_write);
2920 /* Submit prepared bio */
2921 ext4_io_submit(&mpd.io_submit);
2922
2923 /*
2924 * Drop our io_end reference we got from init. We have
2925 * to be careful and use deferred io_end finishing if
2926 * we are still holding the transaction as we can
2927 * release the last reference to io_end which may end
2928 * up doing unwritten extent conversion.
2929 */
2930 if (handle) {
2931 ext4_put_io_end_defer(mpd.io_submit.io_end);
2932 ext4_journal_stop(handle);
2933 } else
2934 ext4_put_io_end(mpd.io_submit.io_end);
2935 mpd.io_submit.io_end = NULL;
2936
2937 if (ret == -ENOSPC && sbi->s_journal) {
2938 /*
2939 * Commit the transaction which would
2940 * free blocks released in the transaction
2941 * and try again
2942 */
2943 jbd2_journal_force_commit_nested(sbi->s_journal);
2944 ret = 0;
2945 continue;
2946 }
2947 /* Fatal error - ENOMEM, EIO... */
2948 if (ret)
2949 break;
2950 }
2951 unplug:
2952 blk_finish_plug(&plug);
2953 if (!ret && !cycled && wbc->nr_to_write > 0) {
2954 cycled = 1;
2955 mpd.last_page = writeback_index - 1;
2956 mpd.first_page = 0;
2957 goto retry;
2958 }
2959
2960 /* Update index */
2961 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2962 /*
2963 * Set the writeback_index so that range_cyclic
2964 * mode will write it back later
2965 */
2966 mapping->writeback_index = mpd.first_page;
2967
2968 out_writepages:
2969 trace_ext4_writepages_result(inode, wbc, ret,
2970 nr_to_write - wbc->nr_to_write);
2971 percpu_up_read(&sbi->s_journal_flag_rwsem);
2972 return ret;
2973 }
2974
ext4_dax_writepages(struct address_space * mapping,struct writeback_control * wbc)2975 static int ext4_dax_writepages(struct address_space *mapping,
2976 struct writeback_control *wbc)
2977 {
2978 int ret;
2979 long nr_to_write = wbc->nr_to_write;
2980 struct inode *inode = mapping->host;
2981 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2982
2983 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2984 return -EIO;
2985
2986 percpu_down_read(&sbi->s_journal_flag_rwsem);
2987 trace_ext4_writepages(inode, wbc);
2988
2989 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2990 trace_ext4_writepages_result(inode, wbc, ret,
2991 nr_to_write - wbc->nr_to_write);
2992 percpu_up_read(&sbi->s_journal_flag_rwsem);
2993 return ret;
2994 }
2995
ext4_nonda_switch(struct super_block * sb)2996 static int ext4_nonda_switch(struct super_block *sb)
2997 {
2998 s64 free_clusters, dirty_clusters;
2999 struct ext4_sb_info *sbi = EXT4_SB(sb);
3000
3001 /*
3002 * switch to non delalloc mode if we are running low
3003 * on free block. The free block accounting via percpu
3004 * counters can get slightly wrong with percpu_counter_batch getting
3005 * accumulated on each CPU without updating global counters
3006 * Delalloc need an accurate free block accounting. So switch
3007 * to non delalloc when we are near to error range.
3008 */
3009 free_clusters =
3010 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
3011 dirty_clusters =
3012 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3013 /*
3014 * Start pushing delalloc when 1/2 of free blocks are dirty.
3015 */
3016 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3017 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3018
3019 if (2 * free_clusters < 3 * dirty_clusters ||
3020 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3021 /*
3022 * free block count is less than 150% of dirty blocks
3023 * or free blocks is less than watermark
3024 */
3025 return 1;
3026 }
3027 return 0;
3028 }
3029
3030 /* We always reserve for an inode update; the superblock could be there too */
ext4_da_write_credits(struct inode * inode,loff_t pos,unsigned len)3031 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3032 {
3033 if (likely(ext4_has_feature_large_file(inode->i_sb)))
3034 return 1;
3035
3036 if (pos + len <= 0x7fffffffULL)
3037 return 1;
3038
3039 /* We might need to update the superblock to set LARGE_FILE */
3040 return 2;
3041 }
3042
ext4_da_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)3043 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3044 loff_t pos, unsigned len, unsigned flags,
3045 struct page **pagep, void **fsdata)
3046 {
3047 int ret, retries = 0;
3048 struct page *page;
3049 pgoff_t index;
3050 struct inode *inode = mapping->host;
3051 handle_t *handle;
3052
3053 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3054 return -EIO;
3055
3056 index = pos >> PAGE_SHIFT;
3057
3058 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
3059 ext4_verity_in_progress(inode)) {
3060 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3061 return ext4_write_begin(file, mapping, pos,
3062 len, flags, pagep, fsdata);
3063 }
3064 *fsdata = (void *)0;
3065 if (trace_android_fs_datawrite_start_enabled()) {
3066 char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
3067
3068 path = android_fstrace_get_pathname(pathbuf,
3069 MAX_TRACE_PATHBUF_LEN,
3070 inode);
3071 trace_android_fs_datawrite_start(inode, pos, len,
3072 current->pid,
3073 path, current->comm);
3074 }
3075 trace_ext4_da_write_begin(inode, pos, len, flags);
3076
3077 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3078 ret = ext4_da_write_inline_data_begin(mapping, inode,
3079 pos, len, flags,
3080 pagep, fsdata);
3081 if (ret < 0)
3082 return ret;
3083 if (ret == 1)
3084 return 0;
3085 }
3086
3087 /*
3088 * grab_cache_page_write_begin() can take a long time if the
3089 * system is thrashing due to memory pressure, or if the page
3090 * is being written back. So grab it first before we start
3091 * the transaction handle. This also allows us to allocate
3092 * the page (if needed) without using GFP_NOFS.
3093 */
3094 retry_grab:
3095 page = grab_cache_page_write_begin(mapping, index, flags);
3096 if (!page)
3097 return -ENOMEM;
3098 unlock_page(page);
3099
3100 /*
3101 * With delayed allocation, we don't log the i_disksize update
3102 * if there is delayed block allocation. But we still need
3103 * to journalling the i_disksize update if writes to the end
3104 * of file which has an already mapped buffer.
3105 */
3106 retry_journal:
3107 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3108 ext4_da_write_credits(inode, pos, len));
3109 if (IS_ERR(handle)) {
3110 put_page(page);
3111 return PTR_ERR(handle);
3112 }
3113
3114 lock_page(page);
3115 if (page->mapping != mapping) {
3116 /* The page got truncated from under us */
3117 unlock_page(page);
3118 put_page(page);
3119 ext4_journal_stop(handle);
3120 goto retry_grab;
3121 }
3122 /* In case writeback began while the page was unlocked */
3123 wait_for_stable_page(page);
3124
3125 #ifdef CONFIG_FS_ENCRYPTION
3126 ret = ext4_block_write_begin(page, pos, len,
3127 ext4_da_get_block_prep);
3128 #else
3129 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3130 #endif
3131 if (ret < 0) {
3132 unlock_page(page);
3133 ext4_journal_stop(handle);
3134 /*
3135 * block_write_begin may have instantiated a few blocks
3136 * outside i_size. Trim these off again. Don't need
3137 * i_size_read because we hold i_mutex.
3138 */
3139 if (pos + len > inode->i_size)
3140 ext4_truncate_failed_write(inode);
3141
3142 if (ret == -ENOSPC &&
3143 ext4_should_retry_alloc(inode->i_sb, &retries))
3144 goto retry_journal;
3145
3146 put_page(page);
3147 return ret;
3148 }
3149
3150 *pagep = page;
3151 return ret;
3152 }
3153
3154 /*
3155 * Check if we should update i_disksize
3156 * when write to the end of file but not require block allocation
3157 */
ext4_da_should_update_i_disksize(struct page * page,unsigned long offset)3158 static int ext4_da_should_update_i_disksize(struct page *page,
3159 unsigned long offset)
3160 {
3161 struct buffer_head *bh;
3162 struct inode *inode = page->mapping->host;
3163 unsigned int idx;
3164 int i;
3165
3166 bh = page_buffers(page);
3167 idx = offset >> inode->i_blkbits;
3168
3169 for (i = 0; i < idx; i++)
3170 bh = bh->b_this_page;
3171
3172 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3173 return 0;
3174 return 1;
3175 }
3176
ext4_da_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3177 static int ext4_da_write_end(struct file *file,
3178 struct address_space *mapping,
3179 loff_t pos, unsigned len, unsigned copied,
3180 struct page *page, void *fsdata)
3181 {
3182 struct inode *inode = mapping->host;
3183 int ret = 0, ret2;
3184 handle_t *handle = ext4_journal_current_handle();
3185 loff_t new_i_size;
3186 unsigned long start, end;
3187 int write_mode = (int)(unsigned long)fsdata;
3188
3189 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3190 return ext4_write_end(file, mapping, pos,
3191 len, copied, page, fsdata);
3192
3193 trace_android_fs_datawrite_end(inode, pos, len);
3194 trace_ext4_da_write_end(inode, pos, len, copied);
3195 start = pos & (PAGE_SIZE - 1);
3196 end = start + copied - 1;
3197
3198 /*
3199 * generic_write_end() will run mark_inode_dirty() if i_size
3200 * changes. So let's piggyback the i_disksize mark_inode_dirty
3201 * into that.
3202 */
3203 new_i_size = pos + copied;
3204 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3205 if (ext4_has_inline_data(inode) ||
3206 ext4_da_should_update_i_disksize(page, end)) {
3207 ext4_update_i_disksize(inode, new_i_size);
3208 /* We need to mark inode dirty even if
3209 * new_i_size is less that inode->i_size
3210 * bu greater than i_disksize.(hint delalloc)
3211 */
3212 ext4_mark_inode_dirty(handle, inode);
3213 }
3214 }
3215
3216 if (write_mode != CONVERT_INLINE_DATA &&
3217 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3218 ext4_has_inline_data(inode))
3219 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3220 page);
3221 else
3222 ret2 = generic_write_end(file, mapping, pos, len, copied,
3223 page, fsdata);
3224
3225 copied = ret2;
3226 if (ret2 < 0)
3227 ret = ret2;
3228 ret2 = ext4_journal_stop(handle);
3229 if (!ret)
3230 ret = ret2;
3231
3232 return ret ? ret : copied;
3233 }
3234
3235 /*
3236 * Force all delayed allocation blocks to be allocated for a given inode.
3237 */
ext4_alloc_da_blocks(struct inode * inode)3238 int ext4_alloc_da_blocks(struct inode *inode)
3239 {
3240 trace_ext4_alloc_da_blocks(inode);
3241
3242 if (!EXT4_I(inode)->i_reserved_data_blocks)
3243 return 0;
3244
3245 /*
3246 * We do something simple for now. The filemap_flush() will
3247 * also start triggering a write of the data blocks, which is
3248 * not strictly speaking necessary (and for users of
3249 * laptop_mode, not even desirable). However, to do otherwise
3250 * would require replicating code paths in:
3251 *
3252 * ext4_writepages() ->
3253 * write_cache_pages() ---> (via passed in callback function)
3254 * __mpage_da_writepage() -->
3255 * mpage_add_bh_to_extent()
3256 * mpage_da_map_blocks()
3257 *
3258 * The problem is that write_cache_pages(), located in
3259 * mm/page-writeback.c, marks pages clean in preparation for
3260 * doing I/O, which is not desirable if we're not planning on
3261 * doing I/O at all.
3262 *
3263 * We could call write_cache_pages(), and then redirty all of
3264 * the pages by calling redirty_page_for_writepage() but that
3265 * would be ugly in the extreme. So instead we would need to
3266 * replicate parts of the code in the above functions,
3267 * simplifying them because we wouldn't actually intend to
3268 * write out the pages, but rather only collect contiguous
3269 * logical block extents, call the multi-block allocator, and
3270 * then update the buffer heads with the block allocations.
3271 *
3272 * For now, though, we'll cheat by calling filemap_flush(),
3273 * which will map the blocks, and start the I/O, but not
3274 * actually wait for the I/O to complete.
3275 */
3276 return filemap_flush(inode->i_mapping);
3277 }
3278
3279 /*
3280 * bmap() is special. It gets used by applications such as lilo and by
3281 * the swapper to find the on-disk block of a specific piece of data.
3282 *
3283 * Naturally, this is dangerous if the block concerned is still in the
3284 * journal. If somebody makes a swapfile on an ext4 data-journaling
3285 * filesystem and enables swap, then they may get a nasty shock when the
3286 * data getting swapped to that swapfile suddenly gets overwritten by
3287 * the original zero's written out previously to the journal and
3288 * awaiting writeback in the kernel's buffer cache.
3289 *
3290 * So, if we see any bmap calls here on a modified, data-journaled file,
3291 * take extra steps to flush any blocks which might be in the cache.
3292 */
ext4_bmap(struct address_space * mapping,sector_t block)3293 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3294 {
3295 struct inode *inode = mapping->host;
3296 journal_t *journal;
3297 int err;
3298
3299 /*
3300 * We can get here for an inline file via the FIBMAP ioctl
3301 */
3302 if (ext4_has_inline_data(inode))
3303 return 0;
3304
3305 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3306 test_opt(inode->i_sb, DELALLOC)) {
3307 /*
3308 * With delalloc we want to sync the file
3309 * so that we can make sure we allocate
3310 * blocks for file
3311 */
3312 filemap_write_and_wait(mapping);
3313 }
3314
3315 if (EXT4_JOURNAL(inode) &&
3316 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3317 /*
3318 * This is a REALLY heavyweight approach, but the use of
3319 * bmap on dirty files is expected to be extremely rare:
3320 * only if we run lilo or swapon on a freshly made file
3321 * do we expect this to happen.
3322 *
3323 * (bmap requires CAP_SYS_RAWIO so this does not
3324 * represent an unprivileged user DOS attack --- we'd be
3325 * in trouble if mortal users could trigger this path at
3326 * will.)
3327 *
3328 * NB. EXT4_STATE_JDATA is not set on files other than
3329 * regular files. If somebody wants to bmap a directory
3330 * or symlink and gets confused because the buffer
3331 * hasn't yet been flushed to disk, they deserve
3332 * everything they get.
3333 */
3334
3335 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3336 journal = EXT4_JOURNAL(inode);
3337 jbd2_journal_lock_updates(journal);
3338 err = jbd2_journal_flush(journal);
3339 jbd2_journal_unlock_updates(journal);
3340
3341 if (err)
3342 return 0;
3343 }
3344
3345 return generic_block_bmap(mapping, block, ext4_get_block);
3346 }
3347
ext4_readpage(struct file * file,struct page * page)3348 static int ext4_readpage(struct file *file, struct page *page)
3349 {
3350 int ret = -EAGAIN;
3351 struct inode *inode = page->mapping->host;
3352
3353 trace_ext4_readpage(page);
3354
3355 if (ext4_has_inline_data(inode))
3356 ret = ext4_readpage_inline(inode, page);
3357
3358 if (ret == -EAGAIN)
3359 return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3360 false);
3361
3362 return ret;
3363 }
3364
3365 static int
ext4_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)3366 ext4_readpages(struct file *file, struct address_space *mapping,
3367 struct list_head *pages, unsigned nr_pages)
3368 {
3369 struct inode *inode = mapping->host;
3370
3371 /* If the file has inline data, no need to do readpages. */
3372 if (ext4_has_inline_data(inode))
3373 return 0;
3374
3375 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3376 }
3377
ext4_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3378 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3379 unsigned int length)
3380 {
3381 trace_ext4_invalidatepage(page, offset, length);
3382
3383 /* No journalling happens on data buffers when this function is used */
3384 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3385
3386 block_invalidatepage(page, offset, length);
3387 }
3388
__ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3389 static int __ext4_journalled_invalidatepage(struct page *page,
3390 unsigned int offset,
3391 unsigned int length)
3392 {
3393 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3394
3395 trace_ext4_journalled_invalidatepage(page, offset, length);
3396
3397 /*
3398 * If it's a full truncate we just forget about the pending dirtying
3399 */
3400 if (offset == 0 && length == PAGE_SIZE)
3401 ClearPageChecked(page);
3402
3403 return jbd2_journal_invalidatepage(journal, page, offset, length);
3404 }
3405
3406 /* Wrapper for aops... */
ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3407 static void ext4_journalled_invalidatepage(struct page *page,
3408 unsigned int offset,
3409 unsigned int length)
3410 {
3411 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3412 }
3413
ext4_releasepage(struct page * page,gfp_t wait)3414 static int ext4_releasepage(struct page *page, gfp_t wait)
3415 {
3416 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3417
3418 trace_ext4_releasepage(page);
3419
3420 /* Page has dirty journalled data -> cannot release */
3421 if (PageChecked(page))
3422 return 0;
3423 if (journal)
3424 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3425 else
3426 return try_to_free_buffers(page);
3427 }
3428
ext4_inode_datasync_dirty(struct inode * inode)3429 static bool ext4_inode_datasync_dirty(struct inode *inode)
3430 {
3431 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3432
3433 if (journal)
3434 return !jbd2_transaction_committed(journal,
3435 EXT4_I(inode)->i_datasync_tid);
3436 /* Any metadata buffers to write? */
3437 if (!list_empty(&inode->i_mapping->private_list))
3438 return true;
3439 return inode->i_state & I_DIRTY_DATASYNC;
3440 }
3441
ext4_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap)3442 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3443 unsigned flags, struct iomap *iomap)
3444 {
3445 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3446 unsigned int blkbits = inode->i_blkbits;
3447 unsigned long first_block, last_block;
3448 struct ext4_map_blocks map;
3449 bool delalloc = false;
3450 int ret;
3451
3452 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3453 return -EINVAL;
3454 first_block = offset >> blkbits;
3455 last_block = min_t(loff_t, (offset + length - 1) >> blkbits,
3456 EXT4_MAX_LOGICAL_BLOCK);
3457
3458 if (flags & IOMAP_REPORT) {
3459 if (ext4_has_inline_data(inode)) {
3460 ret = ext4_inline_data_iomap(inode, iomap);
3461 if (ret != -EAGAIN) {
3462 if (ret == 0 && offset >= iomap->length)
3463 ret = -ENOENT;
3464 return ret;
3465 }
3466 }
3467 } else {
3468 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3469 return -ERANGE;
3470 }
3471
3472 map.m_lblk = first_block;
3473 map.m_len = last_block - first_block + 1;
3474
3475 if (flags & IOMAP_REPORT) {
3476 ret = ext4_map_blocks(NULL, inode, &map, 0);
3477 if (ret < 0)
3478 return ret;
3479
3480 if (ret == 0) {
3481 ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3482 struct extent_status es;
3483
3484 ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3485 map.m_lblk, end, &es);
3486
3487 if (!es.es_len || es.es_lblk > end) {
3488 /* entire range is a hole */
3489 } else if (es.es_lblk > map.m_lblk) {
3490 /* range starts with a hole */
3491 map.m_len = es.es_lblk - map.m_lblk;
3492 } else {
3493 ext4_lblk_t offs = 0;
3494
3495 if (es.es_lblk < map.m_lblk)
3496 offs = map.m_lblk - es.es_lblk;
3497 map.m_lblk = es.es_lblk + offs;
3498 map.m_len = es.es_len - offs;
3499 delalloc = true;
3500 }
3501 }
3502 } else if (flags & IOMAP_WRITE) {
3503 int dio_credits;
3504 handle_t *handle;
3505 int retries = 0;
3506
3507 /* Trim mapping request to maximum we can map at once for DIO */
3508 if (map.m_len > DIO_MAX_BLOCKS)
3509 map.m_len = DIO_MAX_BLOCKS;
3510 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3511 retry:
3512 /*
3513 * Either we allocate blocks and then we don't get unwritten
3514 * extent so we have reserved enough credits, or the blocks
3515 * are already allocated and unwritten and in that case
3516 * extent conversion fits in the credits as well.
3517 */
3518 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3519 dio_credits);
3520 if (IS_ERR(handle))
3521 return PTR_ERR(handle);
3522
3523 ret = ext4_map_blocks(handle, inode, &map,
3524 EXT4_GET_BLOCKS_CREATE_ZERO);
3525 if (ret < 0) {
3526 ext4_journal_stop(handle);
3527 if (ret == -ENOSPC &&
3528 ext4_should_retry_alloc(inode->i_sb, &retries))
3529 goto retry;
3530 return ret;
3531 }
3532
3533 /*
3534 * If we added blocks beyond i_size, we need to make sure they
3535 * will get truncated if we crash before updating i_size in
3536 * ext4_iomap_end(). For faults we don't need to do that (and
3537 * even cannot because for orphan list operations inode_lock is
3538 * required) - if we happen to instantiate block beyond i_size,
3539 * it is because we race with truncate which has already added
3540 * the inode to the orphan list.
3541 */
3542 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3543 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3544 int err;
3545
3546 err = ext4_orphan_add(handle, inode);
3547 if (err < 0) {
3548 ext4_journal_stop(handle);
3549 return err;
3550 }
3551 }
3552 ext4_journal_stop(handle);
3553 } else {
3554 ret = ext4_map_blocks(NULL, inode, &map, 0);
3555 if (ret < 0)
3556 return ret;
3557 }
3558
3559 /*
3560 * Writes that span EOF might trigger an I/O size update on completion,
3561 * so consider them to be dirty for the purposes of O_DSYNC, even if
3562 * there is no other metadata changes being made or are pending here.
3563 */
3564 iomap->flags = 0;
3565 if (ext4_inode_datasync_dirty(inode) ||
3566 offset + length > i_size_read(inode))
3567 iomap->flags |= IOMAP_F_DIRTY;
3568 iomap->bdev = inode->i_sb->s_bdev;
3569 iomap->dax_dev = sbi->s_daxdev;
3570 iomap->offset = (u64)first_block << blkbits;
3571 iomap->length = (u64)map.m_len << blkbits;
3572
3573 if (ret == 0) {
3574 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3575 iomap->addr = IOMAP_NULL_ADDR;
3576 } else {
3577 if (map.m_flags & EXT4_MAP_MAPPED) {
3578 iomap->type = IOMAP_MAPPED;
3579 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3580 iomap->type = IOMAP_UNWRITTEN;
3581 } else {
3582 WARN_ON_ONCE(1);
3583 return -EIO;
3584 }
3585 iomap->addr = (u64)map.m_pblk << blkbits;
3586 }
3587
3588 if (map.m_flags & EXT4_MAP_NEW)
3589 iomap->flags |= IOMAP_F_NEW;
3590
3591 return 0;
3592 }
3593
ext4_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)3594 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3595 ssize_t written, unsigned flags, struct iomap *iomap)
3596 {
3597 int ret = 0;
3598 handle_t *handle;
3599 int blkbits = inode->i_blkbits;
3600 bool truncate = false;
3601
3602 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3603 return 0;
3604
3605 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3606 if (IS_ERR(handle)) {
3607 ret = PTR_ERR(handle);
3608 goto orphan_del;
3609 }
3610 if (ext4_update_inode_size(inode, offset + written))
3611 ext4_mark_inode_dirty(handle, inode);
3612 /*
3613 * We may need to truncate allocated but not written blocks beyond EOF.
3614 */
3615 if (iomap->offset + iomap->length >
3616 ALIGN(inode->i_size, 1 << blkbits)) {
3617 ext4_lblk_t written_blk, end_blk;
3618
3619 written_blk = (offset + written) >> blkbits;
3620 end_blk = (offset + length) >> blkbits;
3621 if (written_blk < end_blk && ext4_can_truncate(inode))
3622 truncate = true;
3623 }
3624 /*
3625 * Remove inode from orphan list if we were extending a inode and
3626 * everything went fine.
3627 */
3628 if (!truncate && inode->i_nlink &&
3629 !list_empty(&EXT4_I(inode)->i_orphan))
3630 ext4_orphan_del(handle, inode);
3631 ext4_journal_stop(handle);
3632 if (truncate) {
3633 ext4_truncate_failed_write(inode);
3634 orphan_del:
3635 /*
3636 * If truncate failed early the inode might still be on the
3637 * orphan list; we need to make sure the inode is removed from
3638 * the orphan list in that case.
3639 */
3640 if (inode->i_nlink)
3641 ext4_orphan_del(NULL, inode);
3642 }
3643 return ret;
3644 }
3645
3646 const struct iomap_ops ext4_iomap_ops = {
3647 .iomap_begin = ext4_iomap_begin,
3648 .iomap_end = ext4_iomap_end,
3649 };
3650
ext4_end_io_dio(struct kiocb * iocb,loff_t offset,ssize_t size,void * private)3651 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3652 ssize_t size, void *private)
3653 {
3654 ext4_io_end_t *io_end = private;
3655
3656 /* if not async direct IO just return */
3657 if (!io_end)
3658 return 0;
3659
3660 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3661 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3662 io_end, io_end->inode->i_ino, iocb, offset, size);
3663
3664 /*
3665 * Error during AIO DIO. We cannot convert unwritten extents as the
3666 * data was not written. Just clear the unwritten flag and drop io_end.
3667 */
3668 if (size <= 0) {
3669 ext4_clear_io_unwritten_flag(io_end);
3670 size = 0;
3671 }
3672 io_end->offset = offset;
3673 io_end->size = size;
3674 ext4_put_io_end(io_end);
3675
3676 return 0;
3677 }
3678
3679 /*
3680 * Handling of direct IO writes.
3681 *
3682 * For ext4 extent files, ext4 will do direct-io write even to holes,
3683 * preallocated extents, and those write extend the file, no need to
3684 * fall back to buffered IO.
3685 *
3686 * For holes, we fallocate those blocks, mark them as unwritten
3687 * If those blocks were preallocated, we mark sure they are split, but
3688 * still keep the range to write as unwritten.
3689 *
3690 * The unwritten extents will be converted to written when DIO is completed.
3691 * For async direct IO, since the IO may still pending when return, we
3692 * set up an end_io call back function, which will do the conversion
3693 * when async direct IO completed.
3694 *
3695 * If the O_DIRECT write will extend the file then add this inode to the
3696 * orphan list. So recovery will truncate it back to the original size
3697 * if the machine crashes during the write.
3698 *
3699 */
ext4_direct_IO_write(struct kiocb * iocb,struct iov_iter * iter)3700 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3701 {
3702 struct file *file = iocb->ki_filp;
3703 struct inode *inode = file->f_mapping->host;
3704 struct ext4_inode_info *ei = EXT4_I(inode);
3705 ssize_t ret;
3706 loff_t offset = iocb->ki_pos;
3707 size_t count = iov_iter_count(iter);
3708 int overwrite = 0;
3709 get_block_t *get_block_func = NULL;
3710 int dio_flags = 0;
3711 loff_t final_size = offset + count;
3712 int orphan = 0;
3713 handle_t *handle;
3714
3715 if (final_size > inode->i_size || final_size > ei->i_disksize) {
3716 /* Credits for sb + inode write */
3717 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3718 if (IS_ERR(handle)) {
3719 ret = PTR_ERR(handle);
3720 goto out;
3721 }
3722 ret = ext4_orphan_add(handle, inode);
3723 if (ret) {
3724 ext4_journal_stop(handle);
3725 goto out;
3726 }
3727 orphan = 1;
3728 ext4_update_i_disksize(inode, inode->i_size);
3729 ext4_journal_stop(handle);
3730 }
3731
3732 BUG_ON(iocb->private == NULL);
3733
3734 /*
3735 * Make all waiters for direct IO properly wait also for extent
3736 * conversion. This also disallows race between truncate() and
3737 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3738 */
3739 inode_dio_begin(inode);
3740
3741 /* If we do a overwrite dio, i_mutex locking can be released */
3742 overwrite = *((int *)iocb->private);
3743
3744 if (overwrite)
3745 inode_unlock(inode);
3746
3747 /*
3748 * For extent mapped files we could direct write to holes and fallocate.
3749 *
3750 * Allocated blocks to fill the hole are marked as unwritten to prevent
3751 * parallel buffered read to expose the stale data before DIO complete
3752 * the data IO.
3753 *
3754 * As to previously fallocated extents, ext4 get_block will just simply
3755 * mark the buffer mapped but still keep the extents unwritten.
3756 *
3757 * For non AIO case, we will convert those unwritten extents to written
3758 * after return back from blockdev_direct_IO. That way we save us from
3759 * allocating io_end structure and also the overhead of offloading
3760 * the extent convertion to a workqueue.
3761 *
3762 * For async DIO, the conversion needs to be deferred when the
3763 * IO is completed. The ext4 end_io callback function will be
3764 * called to take care of the conversion work. Here for async
3765 * case, we allocate an io_end structure to hook to the iocb.
3766 */
3767 iocb->private = NULL;
3768 if (overwrite)
3769 get_block_func = ext4_dio_get_block_overwrite;
3770 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3771 round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3772 get_block_func = ext4_dio_get_block;
3773 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3774 } else if (is_sync_kiocb(iocb)) {
3775 get_block_func = ext4_dio_get_block_unwritten_sync;
3776 dio_flags = DIO_LOCKING;
3777 } else {
3778 get_block_func = ext4_dio_get_block_unwritten_async;
3779 dio_flags = DIO_LOCKING;
3780 }
3781 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3782 get_block_func, ext4_end_io_dio, NULL,
3783 dio_flags);
3784
3785 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3786 EXT4_STATE_DIO_UNWRITTEN)) {
3787 int err;
3788 /*
3789 * for non AIO case, since the IO is already
3790 * completed, we could do the conversion right here
3791 */
3792 err = ext4_convert_unwritten_extents(NULL, inode,
3793 offset, ret);
3794 if (err < 0)
3795 ret = err;
3796 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3797 }
3798
3799 inode_dio_end(inode);
3800 /* take i_mutex locking again if we do a ovewrite dio */
3801 if (overwrite)
3802 inode_lock(inode);
3803
3804 if (ret < 0 && final_size > inode->i_size)
3805 ext4_truncate_failed_write(inode);
3806
3807 /* Handle extending of i_size after direct IO write */
3808 if (orphan) {
3809 int err;
3810
3811 /* Credits for sb + inode write */
3812 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3813 if (IS_ERR(handle)) {
3814 /*
3815 * We wrote the data but cannot extend
3816 * i_size. Bail out. In async io case, we do
3817 * not return error here because we have
3818 * already submmitted the corresponding
3819 * bio. Returning error here makes the caller
3820 * think that this IO is done and failed
3821 * resulting in race with bio's completion
3822 * handler.
3823 */
3824 if (!ret)
3825 ret = PTR_ERR(handle);
3826 if (inode->i_nlink)
3827 ext4_orphan_del(NULL, inode);
3828
3829 goto out;
3830 }
3831 if (inode->i_nlink)
3832 ext4_orphan_del(handle, inode);
3833 if (ret > 0) {
3834 loff_t end = offset + ret;
3835 if (end > inode->i_size || end > ei->i_disksize) {
3836 ext4_update_i_disksize(inode, end);
3837 if (end > inode->i_size)
3838 i_size_write(inode, end);
3839 /*
3840 * We're going to return a positive `ret'
3841 * here due to non-zero-length I/O, so there's
3842 * no way of reporting error returns from
3843 * ext4_mark_inode_dirty() to userspace. So
3844 * ignore it.
3845 */
3846 ext4_mark_inode_dirty(handle, inode);
3847 }
3848 }
3849 err = ext4_journal_stop(handle);
3850 if (ret == 0)
3851 ret = err;
3852 }
3853 out:
3854 return ret;
3855 }
3856
ext4_direct_IO_read(struct kiocb * iocb,struct iov_iter * iter)3857 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3858 {
3859 struct address_space *mapping = iocb->ki_filp->f_mapping;
3860 struct inode *inode = mapping->host;
3861 size_t count = iov_iter_count(iter);
3862 ssize_t ret;
3863
3864 /*
3865 * Shared inode_lock is enough for us - it protects against concurrent
3866 * writes & truncates and since we take care of writing back page cache,
3867 * we are protected against page writeback as well.
3868 */
3869 if (iocb->ki_flags & IOCB_NOWAIT) {
3870 if (!inode_trylock_shared(inode))
3871 return -EAGAIN;
3872 } else {
3873 inode_lock_shared(inode);
3874 }
3875
3876 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3877 iocb->ki_pos + count - 1);
3878 if (ret)
3879 goto out_unlock;
3880 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3881 iter, ext4_dio_get_block, NULL, NULL, 0);
3882 out_unlock:
3883 inode_unlock_shared(inode);
3884 return ret;
3885 }
3886
ext4_direct_IO(struct kiocb * iocb,struct iov_iter * iter)3887 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3888 {
3889 struct file *file = iocb->ki_filp;
3890 struct inode *inode = file->f_mapping->host;
3891 size_t count = iov_iter_count(iter);
3892 loff_t offset = iocb->ki_pos;
3893 ssize_t ret;
3894 int rw = iov_iter_rw(iter);
3895
3896 if (IS_ENABLED(CONFIG_FS_ENCRYPTION) && IS_ENCRYPTED(inode)) {
3897 if (!fscrypt_inode_uses_inline_crypto(inode) ||
3898 !IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter),
3899 i_blocksize(inode)))
3900 return 0;
3901 }
3902 if (fsverity_active(inode))
3903 return 0;
3904
3905 /*
3906 * If we are doing data journalling we don't support O_DIRECT
3907 */
3908 if (ext4_should_journal_data(inode))
3909 return 0;
3910
3911 /* Let buffer I/O handle the inline data case. */
3912 if (ext4_has_inline_data(inode))
3913 return 0;
3914
3915 if (trace_android_fs_dataread_start_enabled() &&
3916 (rw == READ)) {
3917 char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
3918
3919 path = android_fstrace_get_pathname(pathbuf,
3920 MAX_TRACE_PATHBUF_LEN,
3921 inode);
3922 trace_android_fs_dataread_start(inode, offset, count,
3923 current->pid, path,
3924 current->comm);
3925 }
3926 if (trace_android_fs_datawrite_start_enabled() &&
3927 (rw == WRITE)) {
3928 char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
3929
3930 path = android_fstrace_get_pathname(pathbuf,
3931 MAX_TRACE_PATHBUF_LEN,
3932 inode);
3933 trace_android_fs_datawrite_start(inode, offset, count,
3934 current->pid, path,
3935 current->comm);
3936 }
3937 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3938 if (iov_iter_rw(iter) == READ)
3939 ret = ext4_direct_IO_read(iocb, iter);
3940 else
3941 ret = ext4_direct_IO_write(iocb, iter);
3942 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3943
3944 if (trace_android_fs_dataread_start_enabled() &&
3945 (rw == READ))
3946 trace_android_fs_dataread_end(inode, offset, count);
3947 if (trace_android_fs_datawrite_start_enabled() &&
3948 (rw == WRITE))
3949 trace_android_fs_datawrite_end(inode, offset, count);
3950
3951 return ret;
3952 }
3953
3954 /*
3955 * Pages can be marked dirty completely asynchronously from ext4's journalling
3956 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3957 * much here because ->set_page_dirty is called under VFS locks. The page is
3958 * not necessarily locked.
3959 *
3960 * We cannot just dirty the page and leave attached buffers clean, because the
3961 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3962 * or jbddirty because all the journalling code will explode.
3963 *
3964 * So what we do is to mark the page "pending dirty" and next time writepage
3965 * is called, propagate that into the buffers appropriately.
3966 */
ext4_journalled_set_page_dirty(struct page * page)3967 static int ext4_journalled_set_page_dirty(struct page *page)
3968 {
3969 SetPageChecked(page);
3970 return __set_page_dirty_nobuffers(page);
3971 }
3972
ext4_set_page_dirty(struct page * page)3973 static int ext4_set_page_dirty(struct page *page)
3974 {
3975 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3976 WARN_ON_ONCE(!page_has_buffers(page));
3977 return __set_page_dirty_buffers(page);
3978 }
3979
3980 static const struct address_space_operations ext4_aops = {
3981 .readpage = ext4_readpage,
3982 .readpages = ext4_readpages,
3983 .writepage = ext4_writepage,
3984 .writepages = ext4_writepages,
3985 .write_begin = ext4_write_begin,
3986 .write_end = ext4_write_end,
3987 .set_page_dirty = ext4_set_page_dirty,
3988 .bmap = ext4_bmap,
3989 .invalidatepage = ext4_invalidatepage,
3990 .releasepage = ext4_releasepage,
3991 .direct_IO = ext4_direct_IO,
3992 .migratepage = buffer_migrate_page,
3993 .is_partially_uptodate = block_is_partially_uptodate,
3994 .error_remove_page = generic_error_remove_page,
3995 };
3996
3997 static const struct address_space_operations ext4_journalled_aops = {
3998 .readpage = ext4_readpage,
3999 .readpages = ext4_readpages,
4000 .writepage = ext4_writepage,
4001 .writepages = ext4_writepages,
4002 .write_begin = ext4_write_begin,
4003 .write_end = ext4_journalled_write_end,
4004 .set_page_dirty = ext4_journalled_set_page_dirty,
4005 .bmap = ext4_bmap,
4006 .invalidatepage = ext4_journalled_invalidatepage,
4007 .releasepage = ext4_releasepage,
4008 .direct_IO = ext4_direct_IO,
4009 .is_partially_uptodate = block_is_partially_uptodate,
4010 .error_remove_page = generic_error_remove_page,
4011 };
4012
4013 static const struct address_space_operations ext4_da_aops = {
4014 .readpage = ext4_readpage,
4015 .readpages = ext4_readpages,
4016 .writepage = ext4_writepage,
4017 .writepages = ext4_writepages,
4018 .write_begin = ext4_da_write_begin,
4019 .write_end = ext4_da_write_end,
4020 .set_page_dirty = ext4_set_page_dirty,
4021 .bmap = ext4_bmap,
4022 .invalidatepage = ext4_invalidatepage,
4023 .releasepage = ext4_releasepage,
4024 .direct_IO = ext4_direct_IO,
4025 .migratepage = buffer_migrate_page,
4026 .is_partially_uptodate = block_is_partially_uptodate,
4027 .error_remove_page = generic_error_remove_page,
4028 };
4029
4030 static const struct address_space_operations ext4_dax_aops = {
4031 .writepages = ext4_dax_writepages,
4032 .direct_IO = noop_direct_IO,
4033 .set_page_dirty = noop_set_page_dirty,
4034 .bmap = ext4_bmap,
4035 .invalidatepage = noop_invalidatepage,
4036 };
4037
ext4_set_aops(struct inode * inode)4038 void ext4_set_aops(struct inode *inode)
4039 {
4040 switch (ext4_inode_journal_mode(inode)) {
4041 case EXT4_INODE_ORDERED_DATA_MODE:
4042 case EXT4_INODE_WRITEBACK_DATA_MODE:
4043 break;
4044 case EXT4_INODE_JOURNAL_DATA_MODE:
4045 inode->i_mapping->a_ops = &ext4_journalled_aops;
4046 return;
4047 default:
4048 BUG();
4049 }
4050 if (IS_DAX(inode))
4051 inode->i_mapping->a_ops = &ext4_dax_aops;
4052 else if (test_opt(inode->i_sb, DELALLOC))
4053 inode->i_mapping->a_ops = &ext4_da_aops;
4054 else
4055 inode->i_mapping->a_ops = &ext4_aops;
4056 }
4057
__ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)4058 static int __ext4_block_zero_page_range(handle_t *handle,
4059 struct address_space *mapping, loff_t from, loff_t length)
4060 {
4061 ext4_fsblk_t index = from >> PAGE_SHIFT;
4062 unsigned offset = from & (PAGE_SIZE-1);
4063 unsigned blocksize, pos;
4064 ext4_lblk_t iblock;
4065 struct inode *inode = mapping->host;
4066 struct buffer_head *bh;
4067 struct page *page;
4068 int err = 0;
4069
4070 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
4071 mapping_gfp_constraint(mapping, ~__GFP_FS));
4072 if (!page)
4073 return -ENOMEM;
4074
4075 blocksize = inode->i_sb->s_blocksize;
4076
4077 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
4078
4079 if (!page_has_buffers(page))
4080 create_empty_buffers(page, blocksize, 0);
4081
4082 /* Find the buffer that contains "offset" */
4083 bh = page_buffers(page);
4084 pos = blocksize;
4085 while (offset >= pos) {
4086 bh = bh->b_this_page;
4087 iblock++;
4088 pos += blocksize;
4089 }
4090 if (buffer_freed(bh)) {
4091 BUFFER_TRACE(bh, "freed: skip");
4092 goto unlock;
4093 }
4094 if (!buffer_mapped(bh)) {
4095 BUFFER_TRACE(bh, "unmapped");
4096 ext4_get_block(inode, iblock, bh, 0);
4097 /* unmapped? It's a hole - nothing to do */
4098 if (!buffer_mapped(bh)) {
4099 BUFFER_TRACE(bh, "still unmapped");
4100 goto unlock;
4101 }
4102 }
4103
4104 /* Ok, it's mapped. Make sure it's up-to-date */
4105 if (PageUptodate(page))
4106 set_buffer_uptodate(bh);
4107
4108 if (!buffer_uptodate(bh)) {
4109 err = -EIO;
4110 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4111 wait_on_buffer(bh);
4112 /* Uhhuh. Read error. Complain and punt. */
4113 if (!buffer_uptodate(bh))
4114 goto unlock;
4115 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
4116 /* We expect the key to be set. */
4117 BUG_ON(!fscrypt_has_encryption_key(inode));
4118 WARN_ON_ONCE(fscrypt_decrypt_pagecache_blocks(
4119 page, blocksize, bh_offset(bh)));
4120 }
4121 }
4122 if (ext4_should_journal_data(inode)) {
4123 BUFFER_TRACE(bh, "get write access");
4124 err = ext4_journal_get_write_access(handle, bh);
4125 if (err)
4126 goto unlock;
4127 }
4128 zero_user(page, offset, length);
4129 BUFFER_TRACE(bh, "zeroed end of block");
4130
4131 if (ext4_should_journal_data(inode)) {
4132 err = ext4_handle_dirty_metadata(handle, inode, bh);
4133 } else {
4134 err = 0;
4135 mark_buffer_dirty(bh);
4136 if (ext4_should_order_data(inode))
4137 err = ext4_jbd2_inode_add_write(handle, inode, from,
4138 length);
4139 }
4140
4141 unlock:
4142 unlock_page(page);
4143 put_page(page);
4144 return err;
4145 }
4146
4147 /*
4148 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4149 * starting from file offset 'from'. The range to be zero'd must
4150 * be contained with in one block. If the specified range exceeds
4151 * the end of the block it will be shortened to end of the block
4152 * that cooresponds to 'from'
4153 */
ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)4154 static int ext4_block_zero_page_range(handle_t *handle,
4155 struct address_space *mapping, loff_t from, loff_t length)
4156 {
4157 struct inode *inode = mapping->host;
4158 unsigned offset = from & (PAGE_SIZE-1);
4159 unsigned blocksize = inode->i_sb->s_blocksize;
4160 unsigned max = blocksize - (offset & (blocksize - 1));
4161
4162 /*
4163 * correct length if it does not fall between
4164 * 'from' and the end of the block
4165 */
4166 if (length > max || length < 0)
4167 length = max;
4168
4169 if (IS_DAX(inode)) {
4170 return iomap_zero_range(inode, from, length, NULL,
4171 &ext4_iomap_ops);
4172 }
4173 return __ext4_block_zero_page_range(handle, mapping, from, length);
4174 }
4175
4176 /*
4177 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4178 * up to the end of the block which corresponds to `from'.
4179 * This required during truncate. We need to physically zero the tail end
4180 * of that block so it doesn't yield old data if the file is later grown.
4181 */
ext4_block_truncate_page(handle_t * handle,struct address_space * mapping,loff_t from)4182 static int ext4_block_truncate_page(handle_t *handle,
4183 struct address_space *mapping, loff_t from)
4184 {
4185 unsigned offset = from & (PAGE_SIZE-1);
4186 unsigned length;
4187 unsigned blocksize;
4188 struct inode *inode = mapping->host;
4189
4190 /* If we are processing an encrypted inode during orphan list handling */
4191 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
4192 return 0;
4193
4194 blocksize = inode->i_sb->s_blocksize;
4195 length = blocksize - (offset & (blocksize - 1));
4196
4197 return ext4_block_zero_page_range(handle, mapping, from, length);
4198 }
4199
ext4_zero_partial_blocks(handle_t * handle,struct inode * inode,loff_t lstart,loff_t length)4200 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4201 loff_t lstart, loff_t length)
4202 {
4203 struct super_block *sb = inode->i_sb;
4204 struct address_space *mapping = inode->i_mapping;
4205 unsigned partial_start, partial_end;
4206 ext4_fsblk_t start, end;
4207 loff_t byte_end = (lstart + length - 1);
4208 int err = 0;
4209
4210 partial_start = lstart & (sb->s_blocksize - 1);
4211 partial_end = byte_end & (sb->s_blocksize - 1);
4212
4213 start = lstart >> sb->s_blocksize_bits;
4214 end = byte_end >> sb->s_blocksize_bits;
4215
4216 /* Handle partial zero within the single block */
4217 if (start == end &&
4218 (partial_start || (partial_end != sb->s_blocksize - 1))) {
4219 err = ext4_block_zero_page_range(handle, mapping,
4220 lstart, length);
4221 return err;
4222 }
4223 /* Handle partial zero out on the start of the range */
4224 if (partial_start) {
4225 err = ext4_block_zero_page_range(handle, mapping,
4226 lstart, sb->s_blocksize);
4227 if (err)
4228 return err;
4229 }
4230 /* Handle partial zero out on the end of the range */
4231 if (partial_end != sb->s_blocksize - 1)
4232 err = ext4_block_zero_page_range(handle, mapping,
4233 byte_end - partial_end,
4234 partial_end + 1);
4235 return err;
4236 }
4237
ext4_can_truncate(struct inode * inode)4238 int ext4_can_truncate(struct inode *inode)
4239 {
4240 if (S_ISREG(inode->i_mode))
4241 return 1;
4242 if (S_ISDIR(inode->i_mode))
4243 return 1;
4244 if (S_ISLNK(inode->i_mode))
4245 return !ext4_inode_is_fast_symlink(inode);
4246 return 0;
4247 }
4248
4249 /*
4250 * We have to make sure i_disksize gets properly updated before we truncate
4251 * page cache due to hole punching or zero range. Otherwise i_disksize update
4252 * can get lost as it may have been postponed to submission of writeback but
4253 * that will never happen after we truncate page cache.
4254 */
ext4_update_disksize_before_punch(struct inode * inode,loff_t offset,loff_t len)4255 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4256 loff_t len)
4257 {
4258 handle_t *handle;
4259 loff_t size = i_size_read(inode);
4260
4261 WARN_ON(!inode_is_locked(inode));
4262 if (offset > size || offset + len < size)
4263 return 0;
4264
4265 if (EXT4_I(inode)->i_disksize >= size)
4266 return 0;
4267
4268 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4269 if (IS_ERR(handle))
4270 return PTR_ERR(handle);
4271 ext4_update_i_disksize(inode, size);
4272 ext4_mark_inode_dirty(handle, inode);
4273 ext4_journal_stop(handle);
4274
4275 return 0;
4276 }
4277
ext4_wait_dax_page(struct ext4_inode_info * ei)4278 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
4279 {
4280 up_write(&ei->i_mmap_sem);
4281 schedule();
4282 down_write(&ei->i_mmap_sem);
4283 }
4284
ext4_break_layouts(struct inode * inode)4285 int ext4_break_layouts(struct inode *inode)
4286 {
4287 struct ext4_inode_info *ei = EXT4_I(inode);
4288 struct page *page;
4289 int error;
4290
4291 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
4292 return -EINVAL;
4293
4294 do {
4295 page = dax_layout_busy_page(inode->i_mapping);
4296 if (!page)
4297 return 0;
4298
4299 error = ___wait_var_event(&page->_refcount,
4300 atomic_read(&page->_refcount) == 1,
4301 TASK_INTERRUPTIBLE, 0, 0,
4302 ext4_wait_dax_page(ei));
4303 } while (error == 0);
4304
4305 return error;
4306 }
4307
4308 /*
4309 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4310 * associated with the given offset and length
4311 *
4312 * @inode: File inode
4313 * @offset: The offset where the hole will begin
4314 * @len: The length of the hole
4315 *
4316 * Returns: 0 on success or negative on failure
4317 */
4318
ext4_punch_hole(struct inode * inode,loff_t offset,loff_t length)4319 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4320 {
4321 struct super_block *sb = inode->i_sb;
4322 ext4_lblk_t first_block, stop_block;
4323 struct address_space *mapping = inode->i_mapping;
4324 loff_t first_block_offset, last_block_offset;
4325 handle_t *handle;
4326 unsigned int credits;
4327 int ret = 0;
4328
4329 if (!S_ISREG(inode->i_mode))
4330 return -EOPNOTSUPP;
4331
4332 trace_ext4_punch_hole(inode, offset, length, 0);
4333
4334 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4335 if (ext4_has_inline_data(inode)) {
4336 down_write(&EXT4_I(inode)->i_mmap_sem);
4337 ret = ext4_convert_inline_data(inode);
4338 up_write(&EXT4_I(inode)->i_mmap_sem);
4339 if (ret)
4340 return ret;
4341 }
4342
4343 /*
4344 * Write out all dirty pages to avoid race conditions
4345 * Then release them.
4346 */
4347 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4348 ret = filemap_write_and_wait_range(mapping, offset,
4349 offset + length - 1);
4350 if (ret)
4351 return ret;
4352 }
4353
4354 inode_lock(inode);
4355
4356 /* No need to punch hole beyond i_size */
4357 if (offset >= inode->i_size)
4358 goto out_mutex;
4359
4360 /*
4361 * If the hole extends beyond i_size, set the hole
4362 * to end after the page that contains i_size
4363 */
4364 if (offset + length > inode->i_size) {
4365 length = inode->i_size +
4366 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4367 offset;
4368 }
4369
4370 if (offset & (sb->s_blocksize - 1) ||
4371 (offset + length) & (sb->s_blocksize - 1)) {
4372 /*
4373 * Attach jinode to inode for jbd2 if we do any zeroing of
4374 * partial block
4375 */
4376 ret = ext4_inode_attach_jinode(inode);
4377 if (ret < 0)
4378 goto out_mutex;
4379
4380 }
4381
4382 /* Wait all existing dio workers, newcomers will block on i_mutex */
4383 inode_dio_wait(inode);
4384
4385 /*
4386 * Prevent page faults from reinstantiating pages we have released from
4387 * page cache.
4388 */
4389 down_write(&EXT4_I(inode)->i_mmap_sem);
4390
4391 ret = ext4_break_layouts(inode);
4392 if (ret)
4393 goto out_dio;
4394
4395 first_block_offset = round_up(offset, sb->s_blocksize);
4396 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4397
4398 /* Now release the pages and zero block aligned part of pages*/
4399 if (last_block_offset > first_block_offset) {
4400 ret = ext4_update_disksize_before_punch(inode, offset, length);
4401 if (ret)
4402 goto out_dio;
4403 truncate_pagecache_range(inode, first_block_offset,
4404 last_block_offset);
4405 }
4406
4407 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4408 credits = ext4_writepage_trans_blocks(inode);
4409 else
4410 credits = ext4_blocks_for_truncate(inode);
4411 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4412 if (IS_ERR(handle)) {
4413 ret = PTR_ERR(handle);
4414 ext4_std_error(sb, ret);
4415 goto out_dio;
4416 }
4417
4418 ret = ext4_zero_partial_blocks(handle, inode, offset,
4419 length);
4420 if (ret)
4421 goto out_stop;
4422
4423 first_block = (offset + sb->s_blocksize - 1) >>
4424 EXT4_BLOCK_SIZE_BITS(sb);
4425 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4426
4427 /* If there are blocks to remove, do it */
4428 if (stop_block > first_block) {
4429
4430 down_write(&EXT4_I(inode)->i_data_sem);
4431 ext4_discard_preallocations(inode);
4432
4433 ret = ext4_es_remove_extent(inode, first_block,
4434 stop_block - first_block);
4435 if (ret) {
4436 up_write(&EXT4_I(inode)->i_data_sem);
4437 goto out_stop;
4438 }
4439
4440 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4441 ret = ext4_ext_remove_space(inode, first_block,
4442 stop_block - 1);
4443 else
4444 ret = ext4_ind_remove_space(handle, inode, first_block,
4445 stop_block);
4446
4447 up_write(&EXT4_I(inode)->i_data_sem);
4448 }
4449 if (IS_SYNC(inode))
4450 ext4_handle_sync(handle);
4451
4452 inode->i_mtime = inode->i_ctime = current_time(inode);
4453 ext4_mark_inode_dirty(handle, inode);
4454 if (ret >= 0)
4455 ext4_update_inode_fsync_trans(handle, inode, 1);
4456 out_stop:
4457 ext4_journal_stop(handle);
4458 out_dio:
4459 up_write(&EXT4_I(inode)->i_mmap_sem);
4460 out_mutex:
4461 inode_unlock(inode);
4462 return ret;
4463 }
4464
ext4_inode_attach_jinode(struct inode * inode)4465 int ext4_inode_attach_jinode(struct inode *inode)
4466 {
4467 struct ext4_inode_info *ei = EXT4_I(inode);
4468 struct jbd2_inode *jinode;
4469
4470 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4471 return 0;
4472
4473 jinode = jbd2_alloc_inode(GFP_KERNEL);
4474 spin_lock(&inode->i_lock);
4475 if (!ei->jinode) {
4476 if (!jinode) {
4477 spin_unlock(&inode->i_lock);
4478 return -ENOMEM;
4479 }
4480 ei->jinode = jinode;
4481 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4482 jinode = NULL;
4483 }
4484 spin_unlock(&inode->i_lock);
4485 if (unlikely(jinode != NULL))
4486 jbd2_free_inode(jinode);
4487 return 0;
4488 }
4489
4490 /*
4491 * ext4_truncate()
4492 *
4493 * We block out ext4_get_block() block instantiations across the entire
4494 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4495 * simultaneously on behalf of the same inode.
4496 *
4497 * As we work through the truncate and commit bits of it to the journal there
4498 * is one core, guiding principle: the file's tree must always be consistent on
4499 * disk. We must be able to restart the truncate after a crash.
4500 *
4501 * The file's tree may be transiently inconsistent in memory (although it
4502 * probably isn't), but whenever we close off and commit a journal transaction,
4503 * the contents of (the filesystem + the journal) must be consistent and
4504 * restartable. It's pretty simple, really: bottom up, right to left (although
4505 * left-to-right works OK too).
4506 *
4507 * Note that at recovery time, journal replay occurs *before* the restart of
4508 * truncate against the orphan inode list.
4509 *
4510 * The committed inode has the new, desired i_size (which is the same as
4511 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4512 * that this inode's truncate did not complete and it will again call
4513 * ext4_truncate() to have another go. So there will be instantiated blocks
4514 * to the right of the truncation point in a crashed ext4 filesystem. But
4515 * that's fine - as long as they are linked from the inode, the post-crash
4516 * ext4_truncate() run will find them and release them.
4517 */
ext4_truncate(struct inode * inode)4518 int ext4_truncate(struct inode *inode)
4519 {
4520 struct ext4_inode_info *ei = EXT4_I(inode);
4521 unsigned int credits;
4522 int err = 0;
4523 handle_t *handle;
4524 struct address_space *mapping = inode->i_mapping;
4525
4526 /*
4527 * There is a possibility that we're either freeing the inode
4528 * or it's a completely new inode. In those cases we might not
4529 * have i_mutex locked because it's not necessary.
4530 */
4531 if (!(inode->i_state & (I_NEW|I_FREEING)))
4532 WARN_ON(!inode_is_locked(inode));
4533 trace_ext4_truncate_enter(inode);
4534
4535 if (!ext4_can_truncate(inode))
4536 return 0;
4537
4538 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4539
4540 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4541 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4542
4543 if (ext4_has_inline_data(inode)) {
4544 int has_inline = 1;
4545
4546 err = ext4_inline_data_truncate(inode, &has_inline);
4547 if (err)
4548 return err;
4549 if (has_inline)
4550 return 0;
4551 }
4552
4553 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4554 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4555 if (ext4_inode_attach_jinode(inode) < 0)
4556 return 0;
4557 }
4558
4559 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4560 credits = ext4_writepage_trans_blocks(inode);
4561 else
4562 credits = ext4_blocks_for_truncate(inode);
4563
4564 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4565 if (IS_ERR(handle))
4566 return PTR_ERR(handle);
4567
4568 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4569 ext4_block_truncate_page(handle, mapping, inode->i_size);
4570
4571 /*
4572 * We add the inode to the orphan list, so that if this
4573 * truncate spans multiple transactions, and we crash, we will
4574 * resume the truncate when the filesystem recovers. It also
4575 * marks the inode dirty, to catch the new size.
4576 *
4577 * Implication: the file must always be in a sane, consistent
4578 * truncatable state while each transaction commits.
4579 */
4580 err = ext4_orphan_add(handle, inode);
4581 if (err)
4582 goto out_stop;
4583
4584 down_write(&EXT4_I(inode)->i_data_sem);
4585
4586 ext4_discard_preallocations(inode);
4587
4588 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4589 err = ext4_ext_truncate(handle, inode);
4590 else
4591 ext4_ind_truncate(handle, inode);
4592
4593 up_write(&ei->i_data_sem);
4594 if (err)
4595 goto out_stop;
4596
4597 if (IS_SYNC(inode))
4598 ext4_handle_sync(handle);
4599
4600 out_stop:
4601 /*
4602 * If this was a simple ftruncate() and the file will remain alive,
4603 * then we need to clear up the orphan record which we created above.
4604 * However, if this was a real unlink then we were called by
4605 * ext4_evict_inode(), and we allow that function to clean up the
4606 * orphan info for us.
4607 */
4608 if (inode->i_nlink)
4609 ext4_orphan_del(handle, inode);
4610
4611 inode->i_mtime = inode->i_ctime = current_time(inode);
4612 ext4_mark_inode_dirty(handle, inode);
4613 ext4_journal_stop(handle);
4614
4615 trace_ext4_truncate_exit(inode);
4616 return err;
4617 }
4618
4619 /*
4620 * ext4_get_inode_loc returns with an extra refcount against the inode's
4621 * underlying buffer_head on success. If 'in_mem' is true, we have all
4622 * data in memory that is needed to recreate the on-disk version of this
4623 * inode.
4624 */
__ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc,int in_mem)4625 static int __ext4_get_inode_loc(struct inode *inode,
4626 struct ext4_iloc *iloc, int in_mem)
4627 {
4628 struct ext4_group_desc *gdp;
4629 struct buffer_head *bh;
4630 struct super_block *sb = inode->i_sb;
4631 ext4_fsblk_t block;
4632 struct blk_plug plug;
4633 int inodes_per_block, inode_offset;
4634
4635 iloc->bh = NULL;
4636 if (inode->i_ino < EXT4_ROOT_INO ||
4637 inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4638 return -EFSCORRUPTED;
4639
4640 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4641 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4642 if (!gdp)
4643 return -EIO;
4644
4645 /*
4646 * Figure out the offset within the block group inode table
4647 */
4648 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4649 inode_offset = ((inode->i_ino - 1) %
4650 EXT4_INODES_PER_GROUP(sb));
4651 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4652 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4653
4654 bh = sb_getblk(sb, block);
4655 if (unlikely(!bh))
4656 return -ENOMEM;
4657 if (!buffer_uptodate(bh)) {
4658 lock_buffer(bh);
4659
4660 /*
4661 * If the buffer has the write error flag, we have failed
4662 * to write out another inode in the same block. In this
4663 * case, we don't have to read the block because we may
4664 * read the old inode data successfully.
4665 */
4666 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4667 set_buffer_uptodate(bh);
4668
4669 if (buffer_uptodate(bh)) {
4670 /* someone brought it uptodate while we waited */
4671 unlock_buffer(bh);
4672 goto has_buffer;
4673 }
4674
4675 /*
4676 * If we have all information of the inode in memory and this
4677 * is the only valid inode in the block, we need not read the
4678 * block.
4679 */
4680 if (in_mem) {
4681 struct buffer_head *bitmap_bh;
4682 int i, start;
4683
4684 start = inode_offset & ~(inodes_per_block - 1);
4685
4686 /* Is the inode bitmap in cache? */
4687 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4688 if (unlikely(!bitmap_bh))
4689 goto make_io;
4690
4691 /*
4692 * If the inode bitmap isn't in cache then the
4693 * optimisation may end up performing two reads instead
4694 * of one, so skip it.
4695 */
4696 if (!buffer_uptodate(bitmap_bh)) {
4697 brelse(bitmap_bh);
4698 goto make_io;
4699 }
4700 for (i = start; i < start + inodes_per_block; i++) {
4701 if (i == inode_offset)
4702 continue;
4703 if (ext4_test_bit(i, bitmap_bh->b_data))
4704 break;
4705 }
4706 brelse(bitmap_bh);
4707 if (i == start + inodes_per_block) {
4708 /* all other inodes are free, so skip I/O */
4709 memset(bh->b_data, 0, bh->b_size);
4710 set_buffer_uptodate(bh);
4711 unlock_buffer(bh);
4712 goto has_buffer;
4713 }
4714 }
4715
4716 make_io:
4717 /*
4718 * If we need to do any I/O, try to pre-readahead extra
4719 * blocks from the inode table.
4720 */
4721 blk_start_plug(&plug);
4722 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4723 ext4_fsblk_t b, end, table;
4724 unsigned num;
4725 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4726
4727 table = ext4_inode_table(sb, gdp);
4728 /* s_inode_readahead_blks is always a power of 2 */
4729 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4730 if (table > b)
4731 b = table;
4732 end = b + ra_blks;
4733 num = EXT4_INODES_PER_GROUP(sb);
4734 if (ext4_has_group_desc_csum(sb))
4735 num -= ext4_itable_unused_count(sb, gdp);
4736 table += num / inodes_per_block;
4737 if (end > table)
4738 end = table;
4739 while (b <= end)
4740 sb_breadahead(sb, b++);
4741 }
4742
4743 /*
4744 * There are other valid inodes in the buffer, this inode
4745 * has in-inode xattrs, or we don't have this inode in memory.
4746 * Read the block from disk.
4747 */
4748 trace_ext4_load_inode(inode);
4749 get_bh(bh);
4750 bh->b_end_io = end_buffer_read_sync;
4751 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4752 blk_finish_plug(&plug);
4753 wait_on_buffer(bh);
4754 if (!buffer_uptodate(bh)) {
4755 EXT4_ERROR_INODE_BLOCK(inode, block,
4756 "unable to read itable block");
4757 brelse(bh);
4758 return -EIO;
4759 }
4760 }
4761 has_buffer:
4762 iloc->bh = bh;
4763 return 0;
4764 }
4765
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)4766 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4767 {
4768 /* We have all inode data except xattrs in memory here. */
4769 return __ext4_get_inode_loc(inode, iloc,
4770 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4771 }
4772
ext4_should_use_dax(struct inode * inode)4773 static bool ext4_should_use_dax(struct inode *inode)
4774 {
4775 if (!test_opt(inode->i_sb, DAX))
4776 return false;
4777 if (!S_ISREG(inode->i_mode))
4778 return false;
4779 if (ext4_should_journal_data(inode))
4780 return false;
4781 if (ext4_has_inline_data(inode))
4782 return false;
4783 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4784 return false;
4785 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4786 return false;
4787 return true;
4788 }
4789
ext4_set_inode_flags(struct inode * inode)4790 void ext4_set_inode_flags(struct inode *inode)
4791 {
4792 unsigned int flags = EXT4_I(inode)->i_flags;
4793 unsigned int new_fl = 0;
4794
4795 if (flags & EXT4_SYNC_FL)
4796 new_fl |= S_SYNC;
4797 if (flags & EXT4_APPEND_FL)
4798 new_fl |= S_APPEND;
4799 if (flags & EXT4_IMMUTABLE_FL)
4800 new_fl |= S_IMMUTABLE;
4801 if (flags & EXT4_NOATIME_FL)
4802 new_fl |= S_NOATIME;
4803 if (flags & EXT4_DIRSYNC_FL)
4804 new_fl |= S_DIRSYNC;
4805 if (ext4_should_use_dax(inode))
4806 new_fl |= S_DAX;
4807 if (flags & EXT4_ENCRYPT_FL)
4808 new_fl |= S_ENCRYPTED;
4809 if (flags & EXT4_CASEFOLD_FL)
4810 new_fl |= S_CASEFOLD;
4811 if (flags & EXT4_VERITY_FL)
4812 new_fl |= S_VERITY;
4813 inode_set_flags(inode, new_fl,
4814 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4815 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4816 }
4817
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4818 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4819 struct ext4_inode_info *ei)
4820 {
4821 blkcnt_t i_blocks ;
4822 struct inode *inode = &(ei->vfs_inode);
4823 struct super_block *sb = inode->i_sb;
4824
4825 if (ext4_has_feature_huge_file(sb)) {
4826 /* we are using combined 48 bit field */
4827 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4828 le32_to_cpu(raw_inode->i_blocks_lo);
4829 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4830 /* i_blocks represent file system block size */
4831 return i_blocks << (inode->i_blkbits - 9);
4832 } else {
4833 return i_blocks;
4834 }
4835 } else {
4836 return le32_to_cpu(raw_inode->i_blocks_lo);
4837 }
4838 }
4839
ext4_iget_extra_inode(struct inode * inode,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4840 static inline int ext4_iget_extra_inode(struct inode *inode,
4841 struct ext4_inode *raw_inode,
4842 struct ext4_inode_info *ei)
4843 {
4844 __le32 *magic = (void *)raw_inode +
4845 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4846
4847 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4848 EXT4_INODE_SIZE(inode->i_sb) &&
4849 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4850 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4851 return ext4_find_inline_data_nolock(inode);
4852 } else
4853 EXT4_I(inode)->i_inline_off = 0;
4854 return 0;
4855 }
4856
ext4_get_projid(struct inode * inode,kprojid_t * projid)4857 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4858 {
4859 if (!ext4_has_feature_project(inode->i_sb))
4860 return -EOPNOTSUPP;
4861 *projid = EXT4_I(inode)->i_projid;
4862 return 0;
4863 }
4864
4865 /*
4866 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4867 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4868 * set.
4869 */
ext4_inode_set_iversion_queried(struct inode * inode,u64 val)4870 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4871 {
4872 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4873 inode_set_iversion_raw(inode, val);
4874 else
4875 inode_set_iversion_queried(inode, val);
4876 }
ext4_inode_peek_iversion(const struct inode * inode)4877 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4878 {
4879 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4880 return inode_peek_iversion_raw(inode);
4881 else
4882 return inode_peek_iversion(inode);
4883 }
4884
__ext4_iget(struct super_block * sb,unsigned long ino,ext4_iget_flags flags,const char * function,unsigned int line)4885 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4886 ext4_iget_flags flags, const char *function,
4887 unsigned int line)
4888 {
4889 struct ext4_iloc iloc;
4890 struct ext4_inode *raw_inode;
4891 struct ext4_inode_info *ei;
4892 struct inode *inode;
4893 journal_t *journal = EXT4_SB(sb)->s_journal;
4894 long ret;
4895 loff_t size;
4896 int block;
4897 uid_t i_uid;
4898 gid_t i_gid;
4899 projid_t i_projid;
4900
4901 if ((!(flags & EXT4_IGET_SPECIAL) &&
4902 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4903 (ino < EXT4_ROOT_INO) ||
4904 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4905 if (flags & EXT4_IGET_HANDLE)
4906 return ERR_PTR(-ESTALE);
4907 __ext4_error(sb, function, line,
4908 "inode #%lu: comm %s: iget: illegal inode #",
4909 ino, current->comm);
4910 return ERR_PTR(-EFSCORRUPTED);
4911 }
4912
4913 inode = iget_locked(sb, ino);
4914 if (!inode)
4915 return ERR_PTR(-ENOMEM);
4916 if (!(inode->i_state & I_NEW))
4917 return inode;
4918
4919 ei = EXT4_I(inode);
4920 iloc.bh = NULL;
4921
4922 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4923 if (ret < 0)
4924 goto bad_inode;
4925 raw_inode = ext4_raw_inode(&iloc);
4926
4927 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4928 ext4_error_inode(inode, function, line, 0,
4929 "iget: root inode unallocated");
4930 ret = -EFSCORRUPTED;
4931 goto bad_inode;
4932 }
4933
4934 if ((flags & EXT4_IGET_HANDLE) &&
4935 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4936 ret = -ESTALE;
4937 goto bad_inode;
4938 }
4939
4940 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4941 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4942 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4943 EXT4_INODE_SIZE(inode->i_sb) ||
4944 (ei->i_extra_isize & 3)) {
4945 ext4_error_inode(inode, function, line, 0,
4946 "iget: bad extra_isize %u "
4947 "(inode size %u)",
4948 ei->i_extra_isize,
4949 EXT4_INODE_SIZE(inode->i_sb));
4950 ret = -EFSCORRUPTED;
4951 goto bad_inode;
4952 }
4953 } else
4954 ei->i_extra_isize = 0;
4955
4956 /* Precompute checksum seed for inode metadata */
4957 if (ext4_has_metadata_csum(sb)) {
4958 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4959 __u32 csum;
4960 __le32 inum = cpu_to_le32(inode->i_ino);
4961 __le32 gen = raw_inode->i_generation;
4962 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4963 sizeof(inum));
4964 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4965 sizeof(gen));
4966 }
4967
4968 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4969 ext4_error_inode(inode, function, line, 0,
4970 "iget: checksum invalid");
4971 ret = -EFSBADCRC;
4972 goto bad_inode;
4973 }
4974
4975 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4976 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4977 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4978 if (ext4_has_feature_project(sb) &&
4979 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4980 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4981 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4982 else
4983 i_projid = EXT4_DEF_PROJID;
4984
4985 if (!(test_opt(inode->i_sb, NO_UID32))) {
4986 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4987 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4988 }
4989 i_uid_write(inode, i_uid);
4990 i_gid_write(inode, i_gid);
4991 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4992 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4993
4994 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4995 ei->i_inline_off = 0;
4996 ei->i_dir_start_lookup = 0;
4997 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4998 /* We now have enough fields to check if the inode was active or not.
4999 * This is needed because nfsd might try to access dead inodes
5000 * the test is that same one that e2fsck uses
5001 * NeilBrown 1999oct15
5002 */
5003 if (inode->i_nlink == 0) {
5004 if ((inode->i_mode == 0 ||
5005 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
5006 ino != EXT4_BOOT_LOADER_INO) {
5007 /* this inode is deleted */
5008 ret = -ESTALE;
5009 goto bad_inode;
5010 }
5011 /* The only unlinked inodes we let through here have
5012 * valid i_mode and are being read by the orphan
5013 * recovery code: that's fine, we're about to complete
5014 * the process of deleting those.
5015 * OR it is the EXT4_BOOT_LOADER_INO which is
5016 * not initialized on a new filesystem. */
5017 }
5018 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5019 ext4_set_inode_flags(inode);
5020 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5021 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5022 if (ext4_has_feature_64bit(sb))
5023 ei->i_file_acl |=
5024 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5025 inode->i_size = ext4_isize(sb, raw_inode);
5026 if ((size = i_size_read(inode)) < 0) {
5027 ext4_error_inode(inode, function, line, 0,
5028 "iget: bad i_size value: %lld", size);
5029 ret = -EFSCORRUPTED;
5030 goto bad_inode;
5031 }
5032 ei->i_disksize = inode->i_size;
5033 #ifdef CONFIG_QUOTA
5034 ei->i_reserved_quota = 0;
5035 #endif
5036 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5037 ei->i_block_group = iloc.block_group;
5038 ei->i_last_alloc_group = ~0;
5039 /*
5040 * NOTE! The in-memory inode i_data array is in little-endian order
5041 * even on big-endian machines: we do NOT byteswap the block numbers!
5042 */
5043 for (block = 0; block < EXT4_N_BLOCKS; block++)
5044 ei->i_data[block] = raw_inode->i_block[block];
5045 INIT_LIST_HEAD(&ei->i_orphan);
5046
5047 /*
5048 * Set transaction id's of transactions that have to be committed
5049 * to finish f[data]sync. We set them to currently running transaction
5050 * as we cannot be sure that the inode or some of its metadata isn't
5051 * part of the transaction - the inode could have been reclaimed and
5052 * now it is reread from disk.
5053 */
5054 if (journal) {
5055 transaction_t *transaction;
5056 tid_t tid;
5057
5058 read_lock(&journal->j_state_lock);
5059 if (journal->j_running_transaction)
5060 transaction = journal->j_running_transaction;
5061 else
5062 transaction = journal->j_committing_transaction;
5063 if (transaction)
5064 tid = transaction->t_tid;
5065 else
5066 tid = journal->j_commit_sequence;
5067 read_unlock(&journal->j_state_lock);
5068 ei->i_sync_tid = tid;
5069 ei->i_datasync_tid = tid;
5070 }
5071
5072 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5073 if (ei->i_extra_isize == 0) {
5074 /* The extra space is currently unused. Use it. */
5075 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5076 ei->i_extra_isize = sizeof(struct ext4_inode) -
5077 EXT4_GOOD_OLD_INODE_SIZE;
5078 } else {
5079 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5080 if (ret)
5081 goto bad_inode;
5082 }
5083 }
5084
5085 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5086 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5087 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5088 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5089
5090 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5091 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5092
5093 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5094 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5095 ivers |=
5096 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5097 }
5098 ext4_inode_set_iversion_queried(inode, ivers);
5099 }
5100
5101 ret = 0;
5102 if (ei->i_file_acl &&
5103 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5104 ext4_error_inode(inode, function, line, 0,
5105 "iget: bad extended attribute block %llu",
5106 ei->i_file_acl);
5107 ret = -EFSCORRUPTED;
5108 goto bad_inode;
5109 } else if (!ext4_has_inline_data(inode)) {
5110 /* validate the block references in the inode */
5111 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5112 (S_ISLNK(inode->i_mode) &&
5113 !ext4_inode_is_fast_symlink(inode))) {
5114 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5115 ret = ext4_ext_check_inode(inode);
5116 else
5117 ret = ext4_ind_check_inode(inode);
5118 }
5119 }
5120 if (ret)
5121 goto bad_inode;
5122
5123 if (S_ISREG(inode->i_mode)) {
5124 inode->i_op = &ext4_file_inode_operations;
5125 inode->i_fop = &ext4_file_operations;
5126 ext4_set_aops(inode);
5127 } else if (S_ISDIR(inode->i_mode)) {
5128 inode->i_op = &ext4_dir_inode_operations;
5129 inode->i_fop = &ext4_dir_operations;
5130 } else if (S_ISLNK(inode->i_mode)) {
5131 /* VFS does not allow setting these so must be corruption */
5132 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5133 ext4_error_inode(inode, function, line, 0,
5134 "iget: immutable or append flags "
5135 "not allowed on symlinks");
5136 ret = -EFSCORRUPTED;
5137 goto bad_inode;
5138 }
5139 if (IS_ENCRYPTED(inode)) {
5140 inode->i_op = &ext4_encrypted_symlink_inode_operations;
5141 ext4_set_aops(inode);
5142 } else if (ext4_inode_is_fast_symlink(inode)) {
5143 inode->i_link = (char *)ei->i_data;
5144 inode->i_op = &ext4_fast_symlink_inode_operations;
5145 nd_terminate_link(ei->i_data, inode->i_size,
5146 sizeof(ei->i_data) - 1);
5147 } else {
5148 inode->i_op = &ext4_symlink_inode_operations;
5149 ext4_set_aops(inode);
5150 }
5151 inode_nohighmem(inode);
5152 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5153 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5154 inode->i_op = &ext4_special_inode_operations;
5155 if (raw_inode->i_block[0])
5156 init_special_inode(inode, inode->i_mode,
5157 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5158 else
5159 init_special_inode(inode, inode->i_mode,
5160 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5161 } else if (ino == EXT4_BOOT_LOADER_INO) {
5162 make_bad_inode(inode);
5163 } else {
5164 ret = -EFSCORRUPTED;
5165 ext4_error_inode(inode, function, line, 0,
5166 "iget: bogus i_mode (%o)", inode->i_mode);
5167 goto bad_inode;
5168 }
5169 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5170 ext4_error_inode(inode, function, line, 0,
5171 "casefold flag without casefold feature");
5172 brelse(iloc.bh);
5173
5174 unlock_new_inode(inode);
5175 return inode;
5176
5177 bad_inode:
5178 brelse(iloc.bh);
5179 iget_failed(inode);
5180 return ERR_PTR(ret);
5181 }
5182
ext4_inode_blocks_set(handle_t * handle,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)5183 static int ext4_inode_blocks_set(handle_t *handle,
5184 struct ext4_inode *raw_inode,
5185 struct ext4_inode_info *ei)
5186 {
5187 struct inode *inode = &(ei->vfs_inode);
5188 u64 i_blocks = inode->i_blocks;
5189 struct super_block *sb = inode->i_sb;
5190
5191 if (i_blocks <= ~0U) {
5192 /*
5193 * i_blocks can be represented in a 32 bit variable
5194 * as multiple of 512 bytes
5195 */
5196 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5197 raw_inode->i_blocks_high = 0;
5198 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5199 return 0;
5200 }
5201 if (!ext4_has_feature_huge_file(sb))
5202 return -EFBIG;
5203
5204 if (i_blocks <= 0xffffffffffffULL) {
5205 /*
5206 * i_blocks can be represented in a 48 bit variable
5207 * as multiple of 512 bytes
5208 */
5209 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5210 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5211 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5212 } else {
5213 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5214 /* i_block is stored in file system block size */
5215 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5216 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5217 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5218 }
5219 return 0;
5220 }
5221
5222 struct other_inode {
5223 unsigned long orig_ino;
5224 struct ext4_inode *raw_inode;
5225 };
5226
other_inode_match(struct inode * inode,unsigned long ino,void * data)5227 static int other_inode_match(struct inode * inode, unsigned long ino,
5228 void *data)
5229 {
5230 struct other_inode *oi = (struct other_inode *) data;
5231
5232 if ((inode->i_ino != ino) ||
5233 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5234 I_DIRTY_INODE)) ||
5235 ((inode->i_state & I_DIRTY_TIME) == 0))
5236 return 0;
5237 spin_lock(&inode->i_lock);
5238 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5239 I_DIRTY_INODE)) == 0) &&
5240 (inode->i_state & I_DIRTY_TIME)) {
5241 struct ext4_inode_info *ei = EXT4_I(inode);
5242
5243 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5244 spin_unlock(&inode->i_lock);
5245
5246 spin_lock(&ei->i_raw_lock);
5247 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5248 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5249 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5250 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5251 spin_unlock(&ei->i_raw_lock);
5252 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5253 return -1;
5254 }
5255 spin_unlock(&inode->i_lock);
5256 return -1;
5257 }
5258
5259 /*
5260 * Opportunistically update the other time fields for other inodes in
5261 * the same inode table block.
5262 */
ext4_update_other_inodes_time(struct super_block * sb,unsigned long orig_ino,char * buf)5263 static void ext4_update_other_inodes_time(struct super_block *sb,
5264 unsigned long orig_ino, char *buf)
5265 {
5266 struct other_inode oi;
5267 unsigned long ino;
5268 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5269 int inode_size = EXT4_INODE_SIZE(sb);
5270
5271 oi.orig_ino = orig_ino;
5272 /*
5273 * Calculate the first inode in the inode table block. Inode
5274 * numbers are one-based. That is, the first inode in a block
5275 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5276 */
5277 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5278 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5279 if (ino == orig_ino)
5280 continue;
5281 oi.raw_inode = (struct ext4_inode *) buf;
5282 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5283 }
5284 }
5285
5286 /*
5287 * Post the struct inode info into an on-disk inode location in the
5288 * buffer-cache. This gobbles the caller's reference to the
5289 * buffer_head in the inode location struct.
5290 *
5291 * The caller must have write access to iloc->bh.
5292 */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5293 static int ext4_do_update_inode(handle_t *handle,
5294 struct inode *inode,
5295 struct ext4_iloc *iloc)
5296 {
5297 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5298 struct ext4_inode_info *ei = EXT4_I(inode);
5299 struct buffer_head *bh = iloc->bh;
5300 struct super_block *sb = inode->i_sb;
5301 int err = 0, rc, block;
5302 int need_datasync = 0, set_large_file = 0;
5303 uid_t i_uid;
5304 gid_t i_gid;
5305 projid_t i_projid;
5306
5307 spin_lock(&ei->i_raw_lock);
5308
5309 /* For fields not tracked in the in-memory inode,
5310 * initialise them to zero for new inodes. */
5311 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5312 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5313
5314 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5315 i_uid = i_uid_read(inode);
5316 i_gid = i_gid_read(inode);
5317 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5318 if (!(test_opt(inode->i_sb, NO_UID32))) {
5319 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5320 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5321 /*
5322 * Fix up interoperability with old kernels. Otherwise, old inodes get
5323 * re-used with the upper 16 bits of the uid/gid intact
5324 */
5325 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5326 raw_inode->i_uid_high = 0;
5327 raw_inode->i_gid_high = 0;
5328 } else {
5329 raw_inode->i_uid_high =
5330 cpu_to_le16(high_16_bits(i_uid));
5331 raw_inode->i_gid_high =
5332 cpu_to_le16(high_16_bits(i_gid));
5333 }
5334 } else {
5335 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5336 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5337 raw_inode->i_uid_high = 0;
5338 raw_inode->i_gid_high = 0;
5339 }
5340 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5341
5342 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5343 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5344 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5345 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5346
5347 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5348 if (err) {
5349 spin_unlock(&ei->i_raw_lock);
5350 goto out_brelse;
5351 }
5352 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5353 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5354 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5355 raw_inode->i_file_acl_high =
5356 cpu_to_le16(ei->i_file_acl >> 32);
5357 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5358 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5359 ext4_isize_set(raw_inode, ei->i_disksize);
5360 need_datasync = 1;
5361 }
5362 if (ei->i_disksize > 0x7fffffffULL) {
5363 if (!ext4_has_feature_large_file(sb) ||
5364 EXT4_SB(sb)->s_es->s_rev_level ==
5365 cpu_to_le32(EXT4_GOOD_OLD_REV))
5366 set_large_file = 1;
5367 }
5368 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5369 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5370 if (old_valid_dev(inode->i_rdev)) {
5371 raw_inode->i_block[0] =
5372 cpu_to_le32(old_encode_dev(inode->i_rdev));
5373 raw_inode->i_block[1] = 0;
5374 } else {
5375 raw_inode->i_block[0] = 0;
5376 raw_inode->i_block[1] =
5377 cpu_to_le32(new_encode_dev(inode->i_rdev));
5378 raw_inode->i_block[2] = 0;
5379 }
5380 } else if (!ext4_has_inline_data(inode)) {
5381 for (block = 0; block < EXT4_N_BLOCKS; block++)
5382 raw_inode->i_block[block] = ei->i_data[block];
5383 }
5384
5385 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5386 u64 ivers = ext4_inode_peek_iversion(inode);
5387
5388 raw_inode->i_disk_version = cpu_to_le32(ivers);
5389 if (ei->i_extra_isize) {
5390 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5391 raw_inode->i_version_hi =
5392 cpu_to_le32(ivers >> 32);
5393 raw_inode->i_extra_isize =
5394 cpu_to_le16(ei->i_extra_isize);
5395 }
5396 }
5397
5398 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5399 i_projid != EXT4_DEF_PROJID);
5400
5401 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5402 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5403 raw_inode->i_projid = cpu_to_le32(i_projid);
5404
5405 ext4_inode_csum_set(inode, raw_inode, ei);
5406 spin_unlock(&ei->i_raw_lock);
5407 if (inode->i_sb->s_flags & SB_LAZYTIME)
5408 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5409 bh->b_data);
5410
5411 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5412 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5413 if (!err)
5414 err = rc;
5415 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5416 if (set_large_file) {
5417 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5418 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5419 if (err)
5420 goto out_brelse;
5421 ext4_set_feature_large_file(sb);
5422 ext4_handle_sync(handle);
5423 err = ext4_handle_dirty_super(handle, sb);
5424 }
5425 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5426 out_brelse:
5427 brelse(bh);
5428 ext4_std_error(inode->i_sb, err);
5429 return err;
5430 }
5431
5432 /*
5433 * ext4_write_inode()
5434 *
5435 * We are called from a few places:
5436 *
5437 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5438 * Here, there will be no transaction running. We wait for any running
5439 * transaction to commit.
5440 *
5441 * - Within flush work (sys_sync(), kupdate and such).
5442 * We wait on commit, if told to.
5443 *
5444 * - Within iput_final() -> write_inode_now()
5445 * We wait on commit, if told to.
5446 *
5447 * In all cases it is actually safe for us to return without doing anything,
5448 * because the inode has been copied into a raw inode buffer in
5449 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5450 * writeback.
5451 *
5452 * Note that we are absolutely dependent upon all inode dirtiers doing the
5453 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5454 * which we are interested.
5455 *
5456 * It would be a bug for them to not do this. The code:
5457 *
5458 * mark_inode_dirty(inode)
5459 * stuff();
5460 * inode->i_size = expr;
5461 *
5462 * is in error because write_inode() could occur while `stuff()' is running,
5463 * and the new i_size will be lost. Plus the inode will no longer be on the
5464 * superblock's dirty inode list.
5465 */
ext4_write_inode(struct inode * inode,struct writeback_control * wbc)5466 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5467 {
5468 int err;
5469
5470 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5471 sb_rdonly(inode->i_sb))
5472 return 0;
5473
5474 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5475 return -EIO;
5476
5477 if (EXT4_SB(inode->i_sb)->s_journal) {
5478 if (ext4_journal_current_handle()) {
5479 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5480 dump_stack();
5481 return -EIO;
5482 }
5483
5484 /*
5485 * No need to force transaction in WB_SYNC_NONE mode. Also
5486 * ext4_sync_fs() will force the commit after everything is
5487 * written.
5488 */
5489 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5490 return 0;
5491
5492 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5493 EXT4_I(inode)->i_sync_tid);
5494 } else {
5495 struct ext4_iloc iloc;
5496
5497 err = __ext4_get_inode_loc(inode, &iloc, 0);
5498 if (err)
5499 return err;
5500 /*
5501 * sync(2) will flush the whole buffer cache. No need to do
5502 * it here separately for each inode.
5503 */
5504 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5505 sync_dirty_buffer(iloc.bh);
5506 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5507 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5508 "IO error syncing inode");
5509 err = -EIO;
5510 }
5511 brelse(iloc.bh);
5512 }
5513 return err;
5514 }
5515
5516 /*
5517 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5518 * buffers that are attached to a page stradding i_size and are undergoing
5519 * commit. In that case we have to wait for commit to finish and try again.
5520 */
ext4_wait_for_tail_page_commit(struct inode * inode)5521 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5522 {
5523 struct page *page;
5524 unsigned offset;
5525 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5526 tid_t commit_tid = 0;
5527 int ret;
5528
5529 offset = inode->i_size & (PAGE_SIZE - 1);
5530 /*
5531 * If the page is fully truncated, we don't need to wait for any commit
5532 * (and we even should not as __ext4_journalled_invalidatepage() may
5533 * strip all buffers from the page but keep the page dirty which can then
5534 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5535 * buffers). Also we don't need to wait for any commit if all buffers in
5536 * the page remain valid. This is most beneficial for the common case of
5537 * blocksize == PAGESIZE.
5538 */
5539 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5540 return;
5541 while (1) {
5542 page = find_lock_page(inode->i_mapping,
5543 inode->i_size >> PAGE_SHIFT);
5544 if (!page)
5545 return;
5546 ret = __ext4_journalled_invalidatepage(page, offset,
5547 PAGE_SIZE - offset);
5548 unlock_page(page);
5549 put_page(page);
5550 if (ret != -EBUSY)
5551 return;
5552 commit_tid = 0;
5553 read_lock(&journal->j_state_lock);
5554 if (journal->j_committing_transaction)
5555 commit_tid = journal->j_committing_transaction->t_tid;
5556 read_unlock(&journal->j_state_lock);
5557 if (commit_tid)
5558 jbd2_log_wait_commit(journal, commit_tid);
5559 }
5560 }
5561
5562 /*
5563 * ext4_setattr()
5564 *
5565 * Called from notify_change.
5566 *
5567 * We want to trap VFS attempts to truncate the file as soon as
5568 * possible. In particular, we want to make sure that when the VFS
5569 * shrinks i_size, we put the inode on the orphan list and modify
5570 * i_disksize immediately, so that during the subsequent flushing of
5571 * dirty pages and freeing of disk blocks, we can guarantee that any
5572 * commit will leave the blocks being flushed in an unused state on
5573 * disk. (On recovery, the inode will get truncated and the blocks will
5574 * be freed, so we have a strong guarantee that no future commit will
5575 * leave these blocks visible to the user.)
5576 *
5577 * Another thing we have to assure is that if we are in ordered mode
5578 * and inode is still attached to the committing transaction, we must
5579 * we start writeout of all the dirty pages which are being truncated.
5580 * This way we are sure that all the data written in the previous
5581 * transaction are already on disk (truncate waits for pages under
5582 * writeback).
5583 *
5584 * Called with inode->i_mutex down.
5585 */
ext4_setattr(struct dentry * dentry,struct iattr * attr)5586 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5587 {
5588 struct inode *inode = d_inode(dentry);
5589 int error, rc = 0;
5590 int orphan = 0;
5591 const unsigned int ia_valid = attr->ia_valid;
5592
5593 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5594 return -EIO;
5595
5596 if (unlikely(IS_IMMUTABLE(inode)))
5597 return -EPERM;
5598
5599 if (unlikely(IS_APPEND(inode) &&
5600 (ia_valid & (ATTR_MODE | ATTR_UID |
5601 ATTR_GID | ATTR_TIMES_SET))))
5602 return -EPERM;
5603
5604 error = setattr_prepare(dentry, attr);
5605 if (error)
5606 return error;
5607
5608 error = fscrypt_prepare_setattr(dentry, attr);
5609 if (error)
5610 return error;
5611
5612 error = fsverity_prepare_setattr(dentry, attr);
5613 if (error)
5614 return error;
5615
5616 if (is_quota_modification(inode, attr)) {
5617 error = dquot_initialize(inode);
5618 if (error)
5619 return error;
5620 }
5621 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5622 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5623 handle_t *handle;
5624
5625 /* (user+group)*(old+new) structure, inode write (sb,
5626 * inode block, ? - but truncate inode update has it) */
5627 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5628 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5629 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5630 if (IS_ERR(handle)) {
5631 error = PTR_ERR(handle);
5632 goto err_out;
5633 }
5634
5635 /* dquot_transfer() calls back ext4_get_inode_usage() which
5636 * counts xattr inode references.
5637 */
5638 down_read(&EXT4_I(inode)->xattr_sem);
5639 error = dquot_transfer(inode, attr);
5640 up_read(&EXT4_I(inode)->xattr_sem);
5641
5642 if (error) {
5643 ext4_journal_stop(handle);
5644 return error;
5645 }
5646 /* Update corresponding info in inode so that everything is in
5647 * one transaction */
5648 if (attr->ia_valid & ATTR_UID)
5649 inode->i_uid = attr->ia_uid;
5650 if (attr->ia_valid & ATTR_GID)
5651 inode->i_gid = attr->ia_gid;
5652 error = ext4_mark_inode_dirty(handle, inode);
5653 ext4_journal_stop(handle);
5654 }
5655
5656 if (attr->ia_valid & ATTR_SIZE) {
5657 handle_t *handle;
5658 loff_t oldsize = inode->i_size;
5659 int shrink = (attr->ia_size < inode->i_size);
5660
5661 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5662 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5663
5664 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5665 return -EFBIG;
5666 }
5667 if (!S_ISREG(inode->i_mode))
5668 return -EINVAL;
5669
5670 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5671 inode_inc_iversion(inode);
5672
5673 if (shrink) {
5674 if (ext4_should_order_data(inode)) {
5675 error = ext4_begin_ordered_truncate(inode,
5676 attr->ia_size);
5677 if (error)
5678 goto err_out;
5679 }
5680 /*
5681 * Blocks are going to be removed from the inode. Wait
5682 * for dio in flight.
5683 */
5684 inode_dio_wait(inode);
5685 }
5686
5687 down_write(&EXT4_I(inode)->i_mmap_sem);
5688
5689 rc = ext4_break_layouts(inode);
5690 if (rc) {
5691 up_write(&EXT4_I(inode)->i_mmap_sem);
5692 return rc;
5693 }
5694
5695 if (attr->ia_size != inode->i_size) {
5696 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5697 if (IS_ERR(handle)) {
5698 error = PTR_ERR(handle);
5699 goto out_mmap_sem;
5700 }
5701 if (ext4_handle_valid(handle) && shrink) {
5702 error = ext4_orphan_add(handle, inode);
5703 orphan = 1;
5704 }
5705 /*
5706 * Update c/mtime on truncate up, ext4_truncate() will
5707 * update c/mtime in shrink case below
5708 */
5709 if (!shrink) {
5710 inode->i_mtime = current_time(inode);
5711 inode->i_ctime = inode->i_mtime;
5712 }
5713 down_write(&EXT4_I(inode)->i_data_sem);
5714 EXT4_I(inode)->i_disksize = attr->ia_size;
5715 rc = ext4_mark_inode_dirty(handle, inode);
5716 if (!error)
5717 error = rc;
5718 /*
5719 * We have to update i_size under i_data_sem together
5720 * with i_disksize to avoid races with writeback code
5721 * running ext4_wb_update_i_disksize().
5722 */
5723 if (!error)
5724 i_size_write(inode, attr->ia_size);
5725 up_write(&EXT4_I(inode)->i_data_sem);
5726 ext4_journal_stop(handle);
5727 if (error)
5728 goto out_mmap_sem;
5729 if (!shrink) {
5730 pagecache_isize_extended(inode, oldsize,
5731 inode->i_size);
5732 } else if (ext4_should_journal_data(inode)) {
5733 ext4_wait_for_tail_page_commit(inode);
5734 }
5735 }
5736
5737 /*
5738 * Truncate pagecache after we've waited for commit
5739 * in data=journal mode to make pages freeable.
5740 */
5741 truncate_pagecache(inode, inode->i_size);
5742 /*
5743 * Call ext4_truncate() even if i_size didn't change to
5744 * truncate possible preallocated blocks.
5745 */
5746 if (attr->ia_size <= oldsize) {
5747 rc = ext4_truncate(inode);
5748 if (rc)
5749 error = rc;
5750 }
5751 out_mmap_sem:
5752 up_write(&EXT4_I(inode)->i_mmap_sem);
5753 }
5754
5755 if (!error) {
5756 setattr_copy(inode, attr);
5757 mark_inode_dirty(inode);
5758 }
5759
5760 /*
5761 * If the call to ext4_truncate failed to get a transaction handle at
5762 * all, we need to clean up the in-core orphan list manually.
5763 */
5764 if (orphan && inode->i_nlink)
5765 ext4_orphan_del(NULL, inode);
5766
5767 if (!error && (ia_valid & ATTR_MODE))
5768 rc = posix_acl_chmod(inode, inode->i_mode);
5769
5770 err_out:
5771 ext4_std_error(inode->i_sb, error);
5772 if (!error)
5773 error = rc;
5774 return error;
5775 }
5776
ext4_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5777 int ext4_getattr(const struct path *path, struct kstat *stat,
5778 u32 request_mask, unsigned int query_flags)
5779 {
5780 struct inode *inode = d_inode(path->dentry);
5781 struct ext4_inode *raw_inode;
5782 struct ext4_inode_info *ei = EXT4_I(inode);
5783 unsigned int flags;
5784
5785 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5786 stat->result_mask |= STATX_BTIME;
5787 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5788 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5789 }
5790
5791 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5792 if (flags & EXT4_APPEND_FL)
5793 stat->attributes |= STATX_ATTR_APPEND;
5794 if (flags & EXT4_COMPR_FL)
5795 stat->attributes |= STATX_ATTR_COMPRESSED;
5796 if (flags & EXT4_ENCRYPT_FL)
5797 stat->attributes |= STATX_ATTR_ENCRYPTED;
5798 if (flags & EXT4_IMMUTABLE_FL)
5799 stat->attributes |= STATX_ATTR_IMMUTABLE;
5800 if (flags & EXT4_NODUMP_FL)
5801 stat->attributes |= STATX_ATTR_NODUMP;
5802 if (flags & EXT4_VERITY_FL)
5803 stat->attributes |= STATX_ATTR_VERITY;
5804
5805 stat->attributes_mask |= (STATX_ATTR_APPEND |
5806 STATX_ATTR_COMPRESSED |
5807 STATX_ATTR_ENCRYPTED |
5808 STATX_ATTR_IMMUTABLE |
5809 STATX_ATTR_NODUMP |
5810 STATX_ATTR_VERITY);
5811
5812 generic_fillattr(inode, stat);
5813 return 0;
5814 }
5815
ext4_file_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5816 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5817 u32 request_mask, unsigned int query_flags)
5818 {
5819 struct inode *inode = d_inode(path->dentry);
5820 u64 delalloc_blocks;
5821
5822 ext4_getattr(path, stat, request_mask, query_flags);
5823
5824 /*
5825 * If there is inline data in the inode, the inode will normally not
5826 * have data blocks allocated (it may have an external xattr block).
5827 * Report at least one sector for such files, so tools like tar, rsync,
5828 * others don't incorrectly think the file is completely sparse.
5829 */
5830 if (unlikely(ext4_has_inline_data(inode)))
5831 stat->blocks += (stat->size + 511) >> 9;
5832
5833 /*
5834 * We can't update i_blocks if the block allocation is delayed
5835 * otherwise in the case of system crash before the real block
5836 * allocation is done, we will have i_blocks inconsistent with
5837 * on-disk file blocks.
5838 * We always keep i_blocks updated together with real
5839 * allocation. But to not confuse with user, stat
5840 * will return the blocks that include the delayed allocation
5841 * blocks for this file.
5842 */
5843 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5844 EXT4_I(inode)->i_reserved_data_blocks);
5845 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5846 return 0;
5847 }
5848
ext4_index_trans_blocks(struct inode * inode,int lblocks,int pextents)5849 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5850 int pextents)
5851 {
5852 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5853 return ext4_ind_trans_blocks(inode, lblocks);
5854 return ext4_ext_index_trans_blocks(inode, pextents);
5855 }
5856
5857 /*
5858 * Account for index blocks, block groups bitmaps and block group
5859 * descriptor blocks if modify datablocks and index blocks
5860 * worse case, the indexs blocks spread over different block groups
5861 *
5862 * If datablocks are discontiguous, they are possible to spread over
5863 * different block groups too. If they are contiguous, with flexbg,
5864 * they could still across block group boundary.
5865 *
5866 * Also account for superblock, inode, quota and xattr blocks
5867 */
ext4_meta_trans_blocks(struct inode * inode,int lblocks,int pextents)5868 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5869 int pextents)
5870 {
5871 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5872 int gdpblocks;
5873 int idxblocks;
5874 int ret = 0;
5875
5876 /*
5877 * How many index blocks need to touch to map @lblocks logical blocks
5878 * to @pextents physical extents?
5879 */
5880 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5881
5882 ret = idxblocks;
5883
5884 /*
5885 * Now let's see how many group bitmaps and group descriptors need
5886 * to account
5887 */
5888 groups = idxblocks + pextents;
5889 gdpblocks = groups;
5890 if (groups > ngroups)
5891 groups = ngroups;
5892 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5893 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5894
5895 /* bitmaps and block group descriptor blocks */
5896 ret += groups + gdpblocks;
5897
5898 /* Blocks for super block, inode, quota and xattr blocks */
5899 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5900
5901 return ret;
5902 }
5903
5904 /*
5905 * Calculate the total number of credits to reserve to fit
5906 * the modification of a single pages into a single transaction,
5907 * which may include multiple chunks of block allocations.
5908 *
5909 * This could be called via ext4_write_begin()
5910 *
5911 * We need to consider the worse case, when
5912 * one new block per extent.
5913 */
ext4_writepage_trans_blocks(struct inode * inode)5914 int ext4_writepage_trans_blocks(struct inode *inode)
5915 {
5916 int bpp = ext4_journal_blocks_per_page(inode);
5917 int ret;
5918
5919 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5920
5921 /* Account for data blocks for journalled mode */
5922 if (ext4_should_journal_data(inode))
5923 ret += bpp;
5924 return ret;
5925 }
5926
5927 /*
5928 * Calculate the journal credits for a chunk of data modification.
5929 *
5930 * This is called from DIO, fallocate or whoever calling
5931 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5932 *
5933 * journal buffers for data blocks are not included here, as DIO
5934 * and fallocate do no need to journal data buffers.
5935 */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)5936 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5937 {
5938 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5939 }
5940
5941 /*
5942 * The caller must have previously called ext4_reserve_inode_write().
5943 * Give this, we know that the caller already has write access to iloc->bh.
5944 */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5945 int ext4_mark_iloc_dirty(handle_t *handle,
5946 struct inode *inode, struct ext4_iloc *iloc)
5947 {
5948 int err = 0;
5949
5950 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5951 put_bh(iloc->bh);
5952 return -EIO;
5953 }
5954 if (IS_I_VERSION(inode))
5955 inode_inc_iversion(inode);
5956
5957 /* the do_update_inode consumes one bh->b_count */
5958 get_bh(iloc->bh);
5959
5960 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5961 err = ext4_do_update_inode(handle, inode, iloc);
5962 put_bh(iloc->bh);
5963 return err;
5964 }
5965
5966 /*
5967 * On success, We end up with an outstanding reference count against
5968 * iloc->bh. This _must_ be cleaned up later.
5969 */
5970
5971 int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5972 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5973 struct ext4_iloc *iloc)
5974 {
5975 int err;
5976
5977 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5978 return -EIO;
5979
5980 err = ext4_get_inode_loc(inode, iloc);
5981 if (!err) {
5982 BUFFER_TRACE(iloc->bh, "get_write_access");
5983 err = ext4_journal_get_write_access(handle, iloc->bh);
5984 if (err) {
5985 brelse(iloc->bh);
5986 iloc->bh = NULL;
5987 }
5988 }
5989 ext4_std_error(inode->i_sb, err);
5990 return err;
5991 }
5992
__ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc,handle_t * handle,int * no_expand)5993 static int __ext4_expand_extra_isize(struct inode *inode,
5994 unsigned int new_extra_isize,
5995 struct ext4_iloc *iloc,
5996 handle_t *handle, int *no_expand)
5997 {
5998 struct ext4_inode *raw_inode;
5999 struct ext4_xattr_ibody_header *header;
6000 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
6001 struct ext4_inode_info *ei = EXT4_I(inode);
6002 int error;
6003
6004 /* this was checked at iget time, but double check for good measure */
6005 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
6006 (ei->i_extra_isize & 3)) {
6007 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
6008 ei->i_extra_isize,
6009 EXT4_INODE_SIZE(inode->i_sb));
6010 return -EFSCORRUPTED;
6011 }
6012 if ((new_extra_isize < ei->i_extra_isize) ||
6013 (new_extra_isize < 4) ||
6014 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
6015 return -EINVAL; /* Should never happen */
6016
6017 raw_inode = ext4_raw_inode(iloc);
6018
6019 header = IHDR(inode, raw_inode);
6020
6021 /* No extended attributes present */
6022 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
6023 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6024 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
6025 EXT4_I(inode)->i_extra_isize, 0,
6026 new_extra_isize - EXT4_I(inode)->i_extra_isize);
6027 EXT4_I(inode)->i_extra_isize = new_extra_isize;
6028 return 0;
6029 }
6030
6031 /* try to expand with EAs present */
6032 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
6033 raw_inode, handle);
6034 if (error) {
6035 /*
6036 * Inode size expansion failed; don't try again
6037 */
6038 *no_expand = 1;
6039 }
6040
6041 return error;
6042 }
6043
6044 /*
6045 * Expand an inode by new_extra_isize bytes.
6046 * Returns 0 on success or negative error number on failure.
6047 */
ext4_try_to_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)6048 static int ext4_try_to_expand_extra_isize(struct inode *inode,
6049 unsigned int new_extra_isize,
6050 struct ext4_iloc iloc,
6051 handle_t *handle)
6052 {
6053 int no_expand;
6054 int error;
6055
6056 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
6057 return -EOVERFLOW;
6058
6059 /*
6060 * In nojournal mode, we can immediately attempt to expand
6061 * the inode. When journaled, we first need to obtain extra
6062 * buffer credits since we may write into the EA block
6063 * with this same handle. If journal_extend fails, then it will
6064 * only result in a minor loss of functionality for that inode.
6065 * If this is felt to be critical, then e2fsck should be run to
6066 * force a large enough s_min_extra_isize.
6067 */
6068 if (ext4_handle_valid(handle) &&
6069 jbd2_journal_extend(handle,
6070 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
6071 return -ENOSPC;
6072
6073 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
6074 return -EBUSY;
6075
6076 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
6077 handle, &no_expand);
6078 ext4_write_unlock_xattr(inode, &no_expand);
6079
6080 return error;
6081 }
6082
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc)6083 int ext4_expand_extra_isize(struct inode *inode,
6084 unsigned int new_extra_isize,
6085 struct ext4_iloc *iloc)
6086 {
6087 handle_t *handle;
6088 int no_expand;
6089 int error, rc;
6090
6091 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6092 brelse(iloc->bh);
6093 return -EOVERFLOW;
6094 }
6095
6096 handle = ext4_journal_start(inode, EXT4_HT_INODE,
6097 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
6098 if (IS_ERR(handle)) {
6099 error = PTR_ERR(handle);
6100 brelse(iloc->bh);
6101 return error;
6102 }
6103
6104 ext4_write_lock_xattr(inode, &no_expand);
6105
6106 BUFFER_TRACE(iloc->bh, "get_write_access");
6107 error = ext4_journal_get_write_access(handle, iloc->bh);
6108 if (error) {
6109 brelse(iloc->bh);
6110 goto out_unlock;
6111 }
6112
6113 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6114 handle, &no_expand);
6115
6116 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6117 if (!error)
6118 error = rc;
6119
6120 out_unlock:
6121 ext4_write_unlock_xattr(inode, &no_expand);
6122 ext4_journal_stop(handle);
6123 return error;
6124 }
6125
6126 /*
6127 * What we do here is to mark the in-core inode as clean with respect to inode
6128 * dirtiness (it may still be data-dirty).
6129 * This means that the in-core inode may be reaped by prune_icache
6130 * without having to perform any I/O. This is a very good thing,
6131 * because *any* task may call prune_icache - even ones which
6132 * have a transaction open against a different journal.
6133 *
6134 * Is this cheating? Not really. Sure, we haven't written the
6135 * inode out, but prune_icache isn't a user-visible syncing function.
6136 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6137 * we start and wait on commits.
6138 */
ext4_mark_inode_dirty(handle_t * handle,struct inode * inode)6139 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
6140 {
6141 struct ext4_iloc iloc;
6142 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6143 int err;
6144
6145 might_sleep();
6146 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6147 err = ext4_reserve_inode_write(handle, inode, &iloc);
6148 if (err)
6149 return err;
6150
6151 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6152 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6153 iloc, handle);
6154
6155 return ext4_mark_iloc_dirty(handle, inode, &iloc);
6156 }
6157
6158 /*
6159 * ext4_dirty_inode() is called from __mark_inode_dirty()
6160 *
6161 * We're really interested in the case where a file is being extended.
6162 * i_size has been changed by generic_commit_write() and we thus need
6163 * to include the updated inode in the current transaction.
6164 *
6165 * Also, dquot_alloc_block() will always dirty the inode when blocks
6166 * are allocated to the file.
6167 *
6168 * If the inode is marked synchronous, we don't honour that here - doing
6169 * so would cause a commit on atime updates, which we don't bother doing.
6170 * We handle synchronous inodes at the highest possible level.
6171 *
6172 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
6173 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6174 * to copy into the on-disk inode structure are the timestamp files.
6175 */
ext4_dirty_inode(struct inode * inode,int flags)6176 void ext4_dirty_inode(struct inode *inode, int flags)
6177 {
6178 handle_t *handle;
6179
6180 if (flags == I_DIRTY_TIME)
6181 return;
6182 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6183 if (IS_ERR(handle))
6184 goto out;
6185
6186 ext4_mark_inode_dirty(handle, inode);
6187
6188 ext4_journal_stop(handle);
6189 out:
6190 return;
6191 }
6192
ext4_change_inode_journal_flag(struct inode * inode,int val)6193 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6194 {
6195 journal_t *journal;
6196 handle_t *handle;
6197 int err;
6198 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6199
6200 /*
6201 * We have to be very careful here: changing a data block's
6202 * journaling status dynamically is dangerous. If we write a
6203 * data block to the journal, change the status and then delete
6204 * that block, we risk forgetting to revoke the old log record
6205 * from the journal and so a subsequent replay can corrupt data.
6206 * So, first we make sure that the journal is empty and that
6207 * nobody is changing anything.
6208 */
6209
6210 journal = EXT4_JOURNAL(inode);
6211 if (!journal)
6212 return 0;
6213 if (is_journal_aborted(journal))
6214 return -EROFS;
6215
6216 /* Wait for all existing dio workers */
6217 inode_dio_wait(inode);
6218
6219 /*
6220 * Before flushing the journal and switching inode's aops, we have
6221 * to flush all dirty data the inode has. There can be outstanding
6222 * delayed allocations, there can be unwritten extents created by
6223 * fallocate or buffered writes in dioread_nolock mode covered by
6224 * dirty data which can be converted only after flushing the dirty
6225 * data (and journalled aops don't know how to handle these cases).
6226 */
6227 if (val) {
6228 down_write(&EXT4_I(inode)->i_mmap_sem);
6229 err = filemap_write_and_wait(inode->i_mapping);
6230 if (err < 0) {
6231 up_write(&EXT4_I(inode)->i_mmap_sem);
6232 return err;
6233 }
6234 }
6235
6236 percpu_down_write(&sbi->s_journal_flag_rwsem);
6237 jbd2_journal_lock_updates(journal);
6238
6239 /*
6240 * OK, there are no updates running now, and all cached data is
6241 * synced to disk. We are now in a completely consistent state
6242 * which doesn't have anything in the journal, and we know that
6243 * no filesystem updates are running, so it is safe to modify
6244 * the inode's in-core data-journaling state flag now.
6245 */
6246
6247 if (val)
6248 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6249 else {
6250 err = jbd2_journal_flush(journal);
6251 if (err < 0) {
6252 jbd2_journal_unlock_updates(journal);
6253 percpu_up_write(&sbi->s_journal_flag_rwsem);
6254 return err;
6255 }
6256 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6257 }
6258 ext4_set_aops(inode);
6259
6260 jbd2_journal_unlock_updates(journal);
6261 percpu_up_write(&sbi->s_journal_flag_rwsem);
6262
6263 if (val)
6264 up_write(&EXT4_I(inode)->i_mmap_sem);
6265
6266 /* Finally we can mark the inode as dirty. */
6267
6268 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6269 if (IS_ERR(handle))
6270 return PTR_ERR(handle);
6271
6272 err = ext4_mark_inode_dirty(handle, inode);
6273 ext4_handle_sync(handle);
6274 ext4_journal_stop(handle);
6275 ext4_std_error(inode->i_sb, err);
6276
6277 return err;
6278 }
6279
ext4_bh_unmapped(handle_t * handle,struct buffer_head * bh)6280 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6281 {
6282 return !buffer_mapped(bh);
6283 }
6284
ext4_page_mkwrite(struct vm_fault * vmf)6285 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6286 {
6287 struct vm_area_struct *vma = vmf->vma;
6288 struct page *page = vmf->page;
6289 loff_t size;
6290 unsigned long len;
6291 int err;
6292 vm_fault_t ret;
6293 struct file *file = vma->vm_file;
6294 struct inode *inode = file_inode(file);
6295 struct address_space *mapping = inode->i_mapping;
6296 handle_t *handle;
6297 get_block_t *get_block;
6298 int retries = 0;
6299
6300 if (unlikely(IS_IMMUTABLE(inode)))
6301 return VM_FAULT_SIGBUS;
6302
6303 sb_start_pagefault(inode->i_sb);
6304 file_update_time(vma->vm_file);
6305
6306 down_read(&EXT4_I(inode)->i_mmap_sem);
6307
6308 err = ext4_convert_inline_data(inode);
6309 if (err)
6310 goto out_ret;
6311
6312 /* Delalloc case is easy... */
6313 if (test_opt(inode->i_sb, DELALLOC) &&
6314 !ext4_should_journal_data(inode) &&
6315 !ext4_nonda_switch(inode->i_sb)) {
6316 do {
6317 err = block_page_mkwrite(vma, vmf,
6318 ext4_da_get_block_prep);
6319 } while (err == -ENOSPC &&
6320 ext4_should_retry_alloc(inode->i_sb, &retries));
6321 goto out_ret;
6322 }
6323
6324 lock_page(page);
6325 size = i_size_read(inode);
6326 /* Page got truncated from under us? */
6327 if (page->mapping != mapping || page_offset(page) > size) {
6328 unlock_page(page);
6329 ret = VM_FAULT_NOPAGE;
6330 goto out;
6331 }
6332
6333 if (page->index == size >> PAGE_SHIFT)
6334 len = size & ~PAGE_MASK;
6335 else
6336 len = PAGE_SIZE;
6337 /*
6338 * Return if we have all the buffers mapped. This avoids the need to do
6339 * journal_start/journal_stop which can block and take a long time
6340 */
6341 if (page_has_buffers(page)) {
6342 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6343 0, len, NULL,
6344 ext4_bh_unmapped)) {
6345 /* Wait so that we don't change page under IO */
6346 wait_for_stable_page(page);
6347 ret = VM_FAULT_LOCKED;
6348 goto out;
6349 }
6350 }
6351 unlock_page(page);
6352 /* OK, we need to fill the hole... */
6353 if (ext4_should_dioread_nolock(inode))
6354 get_block = ext4_get_block_unwritten;
6355 else
6356 get_block = ext4_get_block;
6357 retry_alloc:
6358 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6359 ext4_writepage_trans_blocks(inode));
6360 if (IS_ERR(handle)) {
6361 ret = VM_FAULT_SIGBUS;
6362 goto out;
6363 }
6364 err = block_page_mkwrite(vma, vmf, get_block);
6365 if (!err && ext4_should_journal_data(inode)) {
6366 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6367 PAGE_SIZE, NULL, do_journal_get_write_access)) {
6368 unlock_page(page);
6369 ret = VM_FAULT_SIGBUS;
6370 ext4_journal_stop(handle);
6371 goto out;
6372 }
6373 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6374 }
6375 ext4_journal_stop(handle);
6376 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6377 goto retry_alloc;
6378 out_ret:
6379 ret = block_page_mkwrite_return(err);
6380 out:
6381 up_read(&EXT4_I(inode)->i_mmap_sem);
6382 sb_end_pagefault(inode->i_sb);
6383 return ret;
6384 }
6385
ext4_filemap_fault(struct vm_fault * vmf)6386 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6387 {
6388 struct inode *inode = file_inode(vmf->vma->vm_file);
6389 vm_fault_t ret;
6390
6391 down_read(&EXT4_I(inode)->i_mmap_sem);
6392 ret = filemap_fault(vmf);
6393 up_read(&EXT4_I(inode)->i_mmap_sem);
6394
6395 return ret;
6396 }
6397