1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/file.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "xattr.h"
29 #include "acl.h"
30 #include "gc.h"
31 #include "trace.h"
32 #include <trace/events/f2fs.h>
33
f2fs_filemap_fault(struct vm_fault * vmf)34 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
35 {
36 struct inode *inode = file_inode(vmf->vma->vm_file);
37 vm_fault_t ret;
38
39 down_read(&F2FS_I(inode)->i_mmap_sem);
40 ret = filemap_fault(vmf);
41 up_read(&F2FS_I(inode)->i_mmap_sem);
42
43 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
44
45 return ret;
46 }
47
f2fs_vm_page_mkwrite(struct vm_fault * vmf)48 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
49 {
50 struct page *page = vmf->page;
51 struct inode *inode = file_inode(vmf->vma->vm_file);
52 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
53 struct dnode_of_data dn = { .node_changed = false };
54 int err;
55
56 if (unlikely(f2fs_cp_error(sbi))) {
57 err = -EIO;
58 goto err;
59 }
60
61 if (!f2fs_is_checkpoint_ready(sbi)) {
62 err = -ENOSPC;
63 goto err;
64 }
65
66 sb_start_pagefault(inode->i_sb);
67
68 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
69
70 file_update_time(vmf->vma->vm_file);
71 down_read(&F2FS_I(inode)->i_mmap_sem);
72 lock_page(page);
73 if (unlikely(page->mapping != inode->i_mapping ||
74 page_offset(page) > i_size_read(inode) ||
75 !PageUptodate(page))) {
76 unlock_page(page);
77 err = -EFAULT;
78 goto out_sem;
79 }
80
81 /* block allocation */
82 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
83 set_new_dnode(&dn, inode, NULL, NULL, 0);
84 err = f2fs_get_block(&dn, page->index);
85 f2fs_put_dnode(&dn);
86 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
87 if (err) {
88 unlock_page(page);
89 goto out_sem;
90 }
91
92 /* fill the page */
93 f2fs_wait_on_page_writeback(page, DATA, false, true);
94
95 /* wait for GCed page writeback via META_MAPPING */
96 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
97
98 /*
99 * check to see if the page is mapped already (no holes)
100 */
101 if (PageMappedToDisk(page))
102 goto out_sem;
103
104 /* page is wholly or partially inside EOF */
105 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
106 i_size_read(inode)) {
107 loff_t offset;
108
109 offset = i_size_read(inode) & ~PAGE_MASK;
110 zero_user_segment(page, offset, PAGE_SIZE);
111 }
112 set_page_dirty(page);
113 if (!PageUptodate(page))
114 SetPageUptodate(page);
115
116 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
117 f2fs_update_time(sbi, REQ_TIME);
118
119 trace_f2fs_vm_page_mkwrite(page, DATA);
120 out_sem:
121 up_read(&F2FS_I(inode)->i_mmap_sem);
122
123 f2fs_balance_fs(sbi, dn.node_changed);
124
125 sb_end_pagefault(inode->i_sb);
126 err:
127 return block_page_mkwrite_return(err);
128 }
129
130 static const struct vm_operations_struct f2fs_file_vm_ops = {
131 .fault = f2fs_filemap_fault,
132 .map_pages = filemap_map_pages,
133 .page_mkwrite = f2fs_vm_page_mkwrite,
134 };
135
get_parent_ino(struct inode * inode,nid_t * pino)136 static int get_parent_ino(struct inode *inode, nid_t *pino)
137 {
138 struct dentry *dentry;
139
140 inode = igrab(inode);
141 dentry = d_find_any_alias(inode);
142 iput(inode);
143 if (!dentry)
144 return 0;
145
146 *pino = parent_ino(dentry);
147 dput(dentry);
148 return 1;
149 }
150
need_do_checkpoint(struct inode * inode)151 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
152 {
153 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
154 enum cp_reason_type cp_reason = CP_NO_NEEDED;
155
156 if (!S_ISREG(inode->i_mode))
157 cp_reason = CP_NON_REGULAR;
158 else if (inode->i_nlink != 1)
159 cp_reason = CP_HARDLINK;
160 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
161 cp_reason = CP_SB_NEED_CP;
162 else if (file_wrong_pino(inode))
163 cp_reason = CP_WRONG_PINO;
164 else if (!f2fs_space_for_roll_forward(sbi))
165 cp_reason = CP_NO_SPC_ROLL;
166 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
167 cp_reason = CP_NODE_NEED_CP;
168 else if (test_opt(sbi, FASTBOOT))
169 cp_reason = CP_FASTBOOT_MODE;
170 else if (F2FS_OPTION(sbi).active_logs == 2)
171 cp_reason = CP_SPEC_LOG_NUM;
172 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
173 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
174 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
175 TRANS_DIR_INO))
176 cp_reason = CP_RECOVER_DIR;
177
178 return cp_reason;
179 }
180
need_inode_page_update(struct f2fs_sb_info * sbi,nid_t ino)181 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
182 {
183 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
184 bool ret = false;
185 /* But we need to avoid that there are some inode updates */
186 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
187 ret = true;
188 f2fs_put_page(i, 0);
189 return ret;
190 }
191
try_to_fix_pino(struct inode * inode)192 static void try_to_fix_pino(struct inode *inode)
193 {
194 struct f2fs_inode_info *fi = F2FS_I(inode);
195 nid_t pino;
196
197 down_write(&fi->i_sem);
198 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
199 get_parent_ino(inode, &pino)) {
200 f2fs_i_pino_write(inode, pino);
201 file_got_pino(inode);
202 }
203 up_write(&fi->i_sem);
204 }
205
f2fs_do_sync_file(struct file * file,loff_t start,loff_t end,int datasync,bool atomic)206 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
207 int datasync, bool atomic)
208 {
209 struct inode *inode = file->f_mapping->host;
210 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
211 nid_t ino = inode->i_ino;
212 int ret = 0;
213 enum cp_reason_type cp_reason = 0;
214 struct writeback_control wbc = {
215 .sync_mode = WB_SYNC_ALL,
216 .nr_to_write = LONG_MAX,
217 .for_reclaim = 0,
218 };
219 unsigned int seq_id = 0;
220
221 if (unlikely(f2fs_readonly(inode->i_sb) ||
222 is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
223 return 0;
224
225 trace_f2fs_sync_file_enter(inode);
226
227 if (S_ISDIR(inode->i_mode))
228 goto go_write;
229
230 /* if fdatasync is triggered, let's do in-place-update */
231 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
232 set_inode_flag(inode, FI_NEED_IPU);
233 ret = file_write_and_wait_range(file, start, end);
234 clear_inode_flag(inode, FI_NEED_IPU);
235
236 if (ret) {
237 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
238 return ret;
239 }
240
241 /* if the inode is dirty, let's recover all the time */
242 if (!f2fs_skip_inode_update(inode, datasync)) {
243 f2fs_write_inode(inode, NULL);
244 goto go_write;
245 }
246
247 /*
248 * if there is no written data, don't waste time to write recovery info.
249 */
250 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
251 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
252
253 /* it may call write_inode just prior to fsync */
254 if (need_inode_page_update(sbi, ino))
255 goto go_write;
256
257 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
258 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
259 goto flush_out;
260 goto out;
261 }
262 go_write:
263 /*
264 * Both of fdatasync() and fsync() are able to be recovered from
265 * sudden-power-off.
266 */
267 down_read(&F2FS_I(inode)->i_sem);
268 cp_reason = need_do_checkpoint(inode);
269 up_read(&F2FS_I(inode)->i_sem);
270
271 if (cp_reason) {
272 /* all the dirty node pages should be flushed for POR */
273 ret = f2fs_sync_fs(inode->i_sb, 1);
274
275 /*
276 * We've secured consistency through sync_fs. Following pino
277 * will be used only for fsynced inodes after checkpoint.
278 */
279 try_to_fix_pino(inode);
280 clear_inode_flag(inode, FI_APPEND_WRITE);
281 clear_inode_flag(inode, FI_UPDATE_WRITE);
282 goto out;
283 }
284 sync_nodes:
285 atomic_inc(&sbi->wb_sync_req[NODE]);
286 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
287 atomic_dec(&sbi->wb_sync_req[NODE]);
288 if (ret)
289 goto out;
290
291 /* if cp_error was enabled, we should avoid infinite loop */
292 if (unlikely(f2fs_cp_error(sbi))) {
293 ret = -EIO;
294 goto out;
295 }
296
297 if (f2fs_need_inode_block_update(sbi, ino)) {
298 f2fs_mark_inode_dirty_sync(inode, true);
299 f2fs_write_inode(inode, NULL);
300 goto sync_nodes;
301 }
302
303 /*
304 * If it's atomic_write, it's just fine to keep write ordering. So
305 * here we don't need to wait for node write completion, since we use
306 * node chain which serializes node blocks. If one of node writes are
307 * reordered, we can see simply broken chain, resulting in stopping
308 * roll-forward recovery. It means we'll recover all or none node blocks
309 * given fsync mark.
310 */
311 if (!atomic) {
312 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
313 if (ret)
314 goto out;
315 }
316
317 /* once recovery info is written, don't need to tack this */
318 f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
319 clear_inode_flag(inode, FI_APPEND_WRITE);
320 flush_out:
321 if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
322 ret = f2fs_issue_flush(sbi, inode->i_ino);
323 if (!ret) {
324 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
325 clear_inode_flag(inode, FI_UPDATE_WRITE);
326 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
327 }
328 f2fs_update_time(sbi, REQ_TIME);
329 out:
330 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
331 f2fs_trace_ios(NULL, 1);
332 return ret;
333 }
334
f2fs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)335 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
336 {
337 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
338 return -EIO;
339 return f2fs_do_sync_file(file, start, end, datasync, false);
340 }
341
__get_first_dirty_index(struct address_space * mapping,pgoff_t pgofs,int whence)342 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
343 pgoff_t pgofs, int whence)
344 {
345 struct page *page;
346 int nr_pages;
347
348 if (whence != SEEK_DATA)
349 return 0;
350
351 /* find first dirty page index */
352 nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY,
353 1, &page);
354 if (!nr_pages)
355 return ULONG_MAX;
356 pgofs = page->index;
357 put_page(page);
358 return pgofs;
359 }
360
__found_offset(struct f2fs_sb_info * sbi,block_t blkaddr,pgoff_t dirty,pgoff_t pgofs,int whence)361 static bool __found_offset(struct f2fs_sb_info *sbi, block_t blkaddr,
362 pgoff_t dirty, pgoff_t pgofs, int whence)
363 {
364 switch (whence) {
365 case SEEK_DATA:
366 if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
367 __is_valid_data_blkaddr(blkaddr))
368 return true;
369 break;
370 case SEEK_HOLE:
371 if (blkaddr == NULL_ADDR)
372 return true;
373 break;
374 }
375 return false;
376 }
377
f2fs_seek_block(struct file * file,loff_t offset,int whence)378 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
379 {
380 struct inode *inode = file->f_mapping->host;
381 loff_t maxbytes = inode->i_sb->s_maxbytes;
382 struct dnode_of_data dn;
383 pgoff_t pgofs, end_offset, dirty;
384 loff_t data_ofs = offset;
385 loff_t isize;
386 int err = 0;
387
388 inode_lock(inode);
389
390 isize = i_size_read(inode);
391 if (offset >= isize)
392 goto fail;
393
394 /* handle inline data case */
395 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
396 if (whence == SEEK_HOLE)
397 data_ofs = isize;
398 goto found;
399 }
400
401 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
402
403 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
404
405 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
406 set_new_dnode(&dn, inode, NULL, NULL, 0);
407 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
408 if (err && err != -ENOENT) {
409 goto fail;
410 } else if (err == -ENOENT) {
411 /* direct node does not exists */
412 if (whence == SEEK_DATA) {
413 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
414 continue;
415 } else {
416 goto found;
417 }
418 }
419
420 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
421
422 /* find data/hole in dnode block */
423 for (; dn.ofs_in_node < end_offset;
424 dn.ofs_in_node++, pgofs++,
425 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
426 block_t blkaddr;
427
428 blkaddr = datablock_addr(dn.inode,
429 dn.node_page, dn.ofs_in_node);
430
431 if (__is_valid_data_blkaddr(blkaddr) &&
432 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
433 blkaddr, DATA_GENERIC_ENHANCE)) {
434 f2fs_put_dnode(&dn);
435 goto fail;
436 }
437
438 if (__found_offset(F2FS_I_SB(inode), blkaddr, dirty,
439 pgofs, whence)) {
440 f2fs_put_dnode(&dn);
441 goto found;
442 }
443 }
444 f2fs_put_dnode(&dn);
445 }
446
447 if (whence == SEEK_DATA)
448 goto fail;
449 found:
450 if (whence == SEEK_HOLE && data_ofs > isize)
451 data_ofs = isize;
452 inode_unlock(inode);
453 return vfs_setpos(file, data_ofs, maxbytes);
454 fail:
455 inode_unlock(inode);
456 return -ENXIO;
457 }
458
f2fs_llseek(struct file * file,loff_t offset,int whence)459 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
460 {
461 struct inode *inode = file->f_mapping->host;
462 loff_t maxbytes = inode->i_sb->s_maxbytes;
463
464 switch (whence) {
465 case SEEK_SET:
466 case SEEK_CUR:
467 case SEEK_END:
468 return generic_file_llseek_size(file, offset, whence,
469 maxbytes, i_size_read(inode));
470 case SEEK_DATA:
471 case SEEK_HOLE:
472 if (offset < 0)
473 return -ENXIO;
474 return f2fs_seek_block(file, offset, whence);
475 }
476
477 return -EINVAL;
478 }
479
f2fs_file_mmap(struct file * file,struct vm_area_struct * vma)480 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
481 {
482 struct inode *inode = file_inode(file);
483 int err;
484
485 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
486 return -EIO;
487
488 /* we don't need to use inline_data strictly */
489 err = f2fs_convert_inline_inode(inode);
490 if (err)
491 return err;
492
493 file_accessed(file);
494 vma->vm_ops = &f2fs_file_vm_ops;
495 return 0;
496 }
497
f2fs_file_open(struct inode * inode,struct file * filp)498 static int f2fs_file_open(struct inode *inode, struct file *filp)
499 {
500 int err = fscrypt_file_open(inode, filp);
501
502 if (err)
503 return err;
504
505 err = fsverity_file_open(inode, filp);
506 if (err)
507 return err;
508
509 filp->f_mode |= FMODE_NOWAIT;
510
511 return dquot_file_open(inode, filp);
512 }
513
f2fs_truncate_data_blocks_range(struct dnode_of_data * dn,int count)514 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
515 {
516 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
517 struct f2fs_node *raw_node;
518 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
519 __le32 *addr;
520 int base = 0;
521
522 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
523 base = get_extra_isize(dn->inode);
524
525 raw_node = F2FS_NODE(dn->node_page);
526 addr = blkaddr_in_node(raw_node) + base + ofs;
527
528 for (; count > 0; count--, addr++, dn->ofs_in_node++) {
529 block_t blkaddr = le32_to_cpu(*addr);
530
531 if (blkaddr == NULL_ADDR)
532 continue;
533
534 dn->data_blkaddr = NULL_ADDR;
535 f2fs_set_data_blkaddr(dn);
536
537 if (__is_valid_data_blkaddr(blkaddr) &&
538 !f2fs_is_valid_blkaddr(sbi, blkaddr,
539 DATA_GENERIC_ENHANCE))
540 continue;
541
542 f2fs_invalidate_blocks(sbi, blkaddr);
543 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
544 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
545 nr_free++;
546 }
547
548 if (nr_free) {
549 pgoff_t fofs;
550 /*
551 * once we invalidate valid blkaddr in range [ofs, ofs + count],
552 * we will invalidate all blkaddr in the whole range.
553 */
554 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
555 dn->inode) + ofs;
556 f2fs_update_extent_cache_range(dn, fofs, 0, len);
557 dec_valid_block_count(sbi, dn->inode, nr_free);
558 }
559 dn->ofs_in_node = ofs;
560
561 f2fs_update_time(sbi, REQ_TIME);
562 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
563 dn->ofs_in_node, nr_free);
564 }
565
f2fs_truncate_data_blocks(struct dnode_of_data * dn)566 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
567 {
568 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
569 }
570
truncate_partial_data_page(struct inode * inode,u64 from,bool cache_only)571 static int truncate_partial_data_page(struct inode *inode, u64 from,
572 bool cache_only)
573 {
574 loff_t offset = from & (PAGE_SIZE - 1);
575 pgoff_t index = from >> PAGE_SHIFT;
576 struct address_space *mapping = inode->i_mapping;
577 struct page *page;
578
579 if (!offset && !cache_only)
580 return 0;
581
582 if (cache_only) {
583 page = find_lock_page(mapping, index);
584 if (page && PageUptodate(page))
585 goto truncate_out;
586 f2fs_put_page(page, 1);
587 return 0;
588 }
589
590 page = f2fs_get_lock_data_page(inode, index, true);
591 if (IS_ERR(page))
592 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
593 truncate_out:
594 f2fs_wait_on_page_writeback(page, DATA, true, true);
595 zero_user(page, offset, PAGE_SIZE - offset);
596
597 /* An encrypted inode should have a key and truncate the last page. */
598 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
599 if (!cache_only)
600 set_page_dirty(page);
601 f2fs_put_page(page, 1);
602 return 0;
603 }
604
f2fs_truncate_blocks(struct inode * inode,u64 from,bool lock)605 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
606 {
607 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
608 struct dnode_of_data dn;
609 pgoff_t free_from;
610 int count = 0, err = 0;
611 struct page *ipage;
612 bool truncate_page = false;
613
614 trace_f2fs_truncate_blocks_enter(inode, from);
615
616 free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
617
618 if (free_from >= sbi->max_file_blocks)
619 goto free_partial;
620
621 if (lock)
622 f2fs_lock_op(sbi);
623
624 ipage = f2fs_get_node_page(sbi, inode->i_ino);
625 if (IS_ERR(ipage)) {
626 err = PTR_ERR(ipage);
627 goto out;
628 }
629
630 if (f2fs_has_inline_data(inode)) {
631 f2fs_truncate_inline_inode(inode, ipage, from);
632 f2fs_put_page(ipage, 1);
633 truncate_page = true;
634 goto out;
635 }
636
637 set_new_dnode(&dn, inode, ipage, NULL, 0);
638 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
639 if (err) {
640 if (err == -ENOENT)
641 goto free_next;
642 goto out;
643 }
644
645 count = ADDRS_PER_PAGE(dn.node_page, inode);
646
647 count -= dn.ofs_in_node;
648 f2fs_bug_on(sbi, count < 0);
649
650 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
651 f2fs_truncate_data_blocks_range(&dn, count);
652 free_from += count;
653 }
654
655 f2fs_put_dnode(&dn);
656 free_next:
657 err = f2fs_truncate_inode_blocks(inode, free_from);
658 out:
659 if (lock)
660 f2fs_unlock_op(sbi);
661 free_partial:
662 /* lastly zero out the first data page */
663 if (!err)
664 err = truncate_partial_data_page(inode, from, truncate_page);
665
666 trace_f2fs_truncate_blocks_exit(inode, err);
667 return err;
668 }
669
f2fs_truncate(struct inode * inode)670 int f2fs_truncate(struct inode *inode)
671 {
672 int err;
673
674 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
675 return -EIO;
676
677 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
678 S_ISLNK(inode->i_mode)))
679 return 0;
680
681 trace_f2fs_truncate(inode);
682
683 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
684 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE);
685 return -EIO;
686 }
687
688 /* we should check inline_data size */
689 if (!f2fs_may_inline_data(inode)) {
690 err = f2fs_convert_inline_inode(inode);
691 if (err)
692 return err;
693 }
694
695 err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
696 if (err)
697 return err;
698
699 inode->i_mtime = inode->i_ctime = current_time(inode);
700 f2fs_mark_inode_dirty_sync(inode, false);
701 return 0;
702 }
703
f2fs_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)704 int f2fs_getattr(const struct path *path, struct kstat *stat,
705 u32 request_mask, unsigned int query_flags)
706 {
707 struct inode *inode = d_inode(path->dentry);
708 struct f2fs_inode_info *fi = F2FS_I(inode);
709 struct f2fs_inode *ri;
710 unsigned int flags;
711
712 if (f2fs_has_extra_attr(inode) &&
713 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
714 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
715 stat->result_mask |= STATX_BTIME;
716 stat->btime.tv_sec = fi->i_crtime.tv_sec;
717 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
718 }
719
720 flags = fi->i_flags;
721 if (flags & F2FS_APPEND_FL)
722 stat->attributes |= STATX_ATTR_APPEND;
723 if (IS_ENCRYPTED(inode))
724 stat->attributes |= STATX_ATTR_ENCRYPTED;
725 if (flags & F2FS_IMMUTABLE_FL)
726 stat->attributes |= STATX_ATTR_IMMUTABLE;
727 if (flags & F2FS_NODUMP_FL)
728 stat->attributes |= STATX_ATTR_NODUMP;
729 if (IS_VERITY(inode))
730 stat->attributes |= STATX_ATTR_VERITY;
731
732 stat->attributes_mask |= (STATX_ATTR_APPEND |
733 STATX_ATTR_ENCRYPTED |
734 STATX_ATTR_IMMUTABLE |
735 STATX_ATTR_NODUMP |
736 STATX_ATTR_VERITY);
737
738 generic_fillattr(inode, stat);
739
740 /* we need to show initial sectors used for inline_data/dentries */
741 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
742 f2fs_has_inline_dentry(inode))
743 stat->blocks += (stat->size + 511) >> 9;
744
745 return 0;
746 }
747
748 #ifdef CONFIG_F2FS_FS_POSIX_ACL
__setattr_copy(struct inode * inode,const struct iattr * attr)749 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
750 {
751 unsigned int ia_valid = attr->ia_valid;
752
753 if (ia_valid & ATTR_UID)
754 inode->i_uid = attr->ia_uid;
755 if (ia_valid & ATTR_GID)
756 inode->i_gid = attr->ia_gid;
757 if (ia_valid & ATTR_ATIME) {
758 inode->i_atime = timestamp_truncate(attr->ia_atime,
759 inode);
760 }
761 if (ia_valid & ATTR_MTIME) {
762 inode->i_mtime = timestamp_truncate(attr->ia_mtime,
763 inode);
764 }
765 if (ia_valid & ATTR_CTIME) {
766 inode->i_ctime = timestamp_truncate(attr->ia_ctime,
767 inode);
768 }
769 if (ia_valid & ATTR_MODE) {
770 umode_t mode = attr->ia_mode;
771
772 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
773 mode &= ~S_ISGID;
774 set_acl_inode(inode, mode);
775 }
776 }
777 #else
778 #define __setattr_copy setattr_copy
779 #endif
780
f2fs_setattr(struct dentry * dentry,struct iattr * attr)781 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
782 {
783 struct inode *inode = d_inode(dentry);
784 int err;
785
786 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
787 return -EIO;
788
789 err = setattr_prepare(dentry, attr);
790 if (err)
791 return err;
792
793 err = fscrypt_prepare_setattr(dentry, attr);
794 if (err)
795 return err;
796
797 err = fsverity_prepare_setattr(dentry, attr);
798 if (err)
799 return err;
800
801 if (is_quota_modification(inode, attr)) {
802 err = dquot_initialize(inode);
803 if (err)
804 return err;
805 }
806 if ((attr->ia_valid & ATTR_UID &&
807 !uid_eq(attr->ia_uid, inode->i_uid)) ||
808 (attr->ia_valid & ATTR_GID &&
809 !gid_eq(attr->ia_gid, inode->i_gid))) {
810 f2fs_lock_op(F2FS_I_SB(inode));
811 err = dquot_transfer(inode, attr);
812 if (err) {
813 set_sbi_flag(F2FS_I_SB(inode),
814 SBI_QUOTA_NEED_REPAIR);
815 f2fs_unlock_op(F2FS_I_SB(inode));
816 return err;
817 }
818 /*
819 * update uid/gid under lock_op(), so that dquot and inode can
820 * be updated atomically.
821 */
822 if (attr->ia_valid & ATTR_UID)
823 inode->i_uid = attr->ia_uid;
824 if (attr->ia_valid & ATTR_GID)
825 inode->i_gid = attr->ia_gid;
826 f2fs_mark_inode_dirty_sync(inode, true);
827 f2fs_unlock_op(F2FS_I_SB(inode));
828 }
829
830 if (attr->ia_valid & ATTR_SIZE) {
831 loff_t old_size = i_size_read(inode);
832
833 if (attr->ia_size > MAX_INLINE_DATA(inode)) {
834 /*
835 * should convert inline inode before i_size_write to
836 * keep smaller than inline_data size with inline flag.
837 */
838 err = f2fs_convert_inline_inode(inode);
839 if (err)
840 return err;
841 }
842
843 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
844 down_write(&F2FS_I(inode)->i_mmap_sem);
845
846 truncate_setsize(inode, attr->ia_size);
847
848 if (attr->ia_size <= old_size)
849 err = f2fs_truncate(inode);
850 /*
851 * do not trim all blocks after i_size if target size is
852 * larger than i_size.
853 */
854 up_write(&F2FS_I(inode)->i_mmap_sem);
855 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
856 if (err)
857 return err;
858
859 down_write(&F2FS_I(inode)->i_sem);
860 inode->i_mtime = inode->i_ctime = current_time(inode);
861 F2FS_I(inode)->last_disk_size = i_size_read(inode);
862 up_write(&F2FS_I(inode)->i_sem);
863 }
864
865 __setattr_copy(inode, attr);
866
867 if (attr->ia_valid & ATTR_MODE) {
868 err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode));
869 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
870 inode->i_mode = F2FS_I(inode)->i_acl_mode;
871 clear_inode_flag(inode, FI_ACL_MODE);
872 }
873 }
874
875 /* file size may changed here */
876 f2fs_mark_inode_dirty_sync(inode, true);
877
878 /* inode change will produce dirty node pages flushed by checkpoint */
879 f2fs_balance_fs(F2FS_I_SB(inode), true);
880
881 return err;
882 }
883
884 const struct inode_operations f2fs_file_inode_operations = {
885 .getattr = f2fs_getattr,
886 .setattr = f2fs_setattr,
887 .get_acl = f2fs_get_acl,
888 .set_acl = f2fs_set_acl,
889 #ifdef CONFIG_F2FS_FS_XATTR
890 .listxattr = f2fs_listxattr,
891 #endif
892 .fiemap = f2fs_fiemap,
893 };
894
fill_zero(struct inode * inode,pgoff_t index,loff_t start,loff_t len)895 static int fill_zero(struct inode *inode, pgoff_t index,
896 loff_t start, loff_t len)
897 {
898 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
899 struct page *page;
900
901 if (!len)
902 return 0;
903
904 f2fs_balance_fs(sbi, true);
905
906 f2fs_lock_op(sbi);
907 page = f2fs_get_new_data_page(inode, NULL, index, false);
908 f2fs_unlock_op(sbi);
909
910 if (IS_ERR(page))
911 return PTR_ERR(page);
912
913 f2fs_wait_on_page_writeback(page, DATA, true, true);
914 zero_user(page, start, len);
915 set_page_dirty(page);
916 f2fs_put_page(page, 1);
917 return 0;
918 }
919
f2fs_truncate_hole(struct inode * inode,pgoff_t pg_start,pgoff_t pg_end)920 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
921 {
922 int err;
923
924 while (pg_start < pg_end) {
925 struct dnode_of_data dn;
926 pgoff_t end_offset, count;
927
928 set_new_dnode(&dn, inode, NULL, NULL, 0);
929 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
930 if (err) {
931 if (err == -ENOENT) {
932 pg_start = f2fs_get_next_page_offset(&dn,
933 pg_start);
934 continue;
935 }
936 return err;
937 }
938
939 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
940 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
941
942 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
943
944 f2fs_truncate_data_blocks_range(&dn, count);
945 f2fs_put_dnode(&dn);
946
947 pg_start += count;
948 }
949 return 0;
950 }
951
punch_hole(struct inode * inode,loff_t offset,loff_t len)952 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
953 {
954 pgoff_t pg_start, pg_end;
955 loff_t off_start, off_end;
956 int ret;
957
958 ret = f2fs_convert_inline_inode(inode);
959 if (ret)
960 return ret;
961
962 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
963 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
964
965 off_start = offset & (PAGE_SIZE - 1);
966 off_end = (offset + len) & (PAGE_SIZE - 1);
967
968 if (pg_start == pg_end) {
969 ret = fill_zero(inode, pg_start, off_start,
970 off_end - off_start);
971 if (ret)
972 return ret;
973 } else {
974 if (off_start) {
975 ret = fill_zero(inode, pg_start++, off_start,
976 PAGE_SIZE - off_start);
977 if (ret)
978 return ret;
979 }
980 if (off_end) {
981 ret = fill_zero(inode, pg_end, 0, off_end);
982 if (ret)
983 return ret;
984 }
985
986 if (pg_start < pg_end) {
987 struct address_space *mapping = inode->i_mapping;
988 loff_t blk_start, blk_end;
989 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
990
991 f2fs_balance_fs(sbi, true);
992
993 blk_start = (loff_t)pg_start << PAGE_SHIFT;
994 blk_end = (loff_t)pg_end << PAGE_SHIFT;
995
996 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
997 down_write(&F2FS_I(inode)->i_mmap_sem);
998
999 truncate_inode_pages_range(mapping, blk_start,
1000 blk_end - 1);
1001
1002 f2fs_lock_op(sbi);
1003 ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1004 f2fs_unlock_op(sbi);
1005
1006 up_write(&F2FS_I(inode)->i_mmap_sem);
1007 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1008 }
1009 }
1010
1011 return ret;
1012 }
1013
__read_out_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,pgoff_t len)1014 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1015 int *do_replace, pgoff_t off, pgoff_t len)
1016 {
1017 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1018 struct dnode_of_data dn;
1019 int ret, done, i;
1020
1021 next_dnode:
1022 set_new_dnode(&dn, inode, NULL, NULL, 0);
1023 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1024 if (ret && ret != -ENOENT) {
1025 return ret;
1026 } else if (ret == -ENOENT) {
1027 if (dn.max_level == 0)
1028 return -ENOENT;
1029 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) - dn.ofs_in_node,
1030 len);
1031 blkaddr += done;
1032 do_replace += done;
1033 goto next;
1034 }
1035
1036 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1037 dn.ofs_in_node, len);
1038 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1039 *blkaddr = datablock_addr(dn.inode,
1040 dn.node_page, dn.ofs_in_node);
1041
1042 if (__is_valid_data_blkaddr(*blkaddr) &&
1043 !f2fs_is_valid_blkaddr(sbi, *blkaddr,
1044 DATA_GENERIC_ENHANCE)) {
1045 f2fs_put_dnode(&dn);
1046 return -EFSCORRUPTED;
1047 }
1048
1049 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1050
1051 if (test_opt(sbi, LFS)) {
1052 f2fs_put_dnode(&dn);
1053 return -EOPNOTSUPP;
1054 }
1055
1056 /* do not invalidate this block address */
1057 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1058 *do_replace = 1;
1059 }
1060 }
1061 f2fs_put_dnode(&dn);
1062 next:
1063 len -= done;
1064 off += done;
1065 if (len)
1066 goto next_dnode;
1067 return 0;
1068 }
1069
__roll_back_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,int len)1070 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1071 int *do_replace, pgoff_t off, int len)
1072 {
1073 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1074 struct dnode_of_data dn;
1075 int ret, i;
1076
1077 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1078 if (*do_replace == 0)
1079 continue;
1080
1081 set_new_dnode(&dn, inode, NULL, NULL, 0);
1082 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1083 if (ret) {
1084 dec_valid_block_count(sbi, inode, 1);
1085 f2fs_invalidate_blocks(sbi, *blkaddr);
1086 } else {
1087 f2fs_update_data_blkaddr(&dn, *blkaddr);
1088 }
1089 f2fs_put_dnode(&dn);
1090 }
1091 return 0;
1092 }
1093
__clone_blkaddrs(struct inode * src_inode,struct inode * dst_inode,block_t * blkaddr,int * do_replace,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1094 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1095 block_t *blkaddr, int *do_replace,
1096 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1097 {
1098 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1099 pgoff_t i = 0;
1100 int ret;
1101
1102 while (i < len) {
1103 if (blkaddr[i] == NULL_ADDR && !full) {
1104 i++;
1105 continue;
1106 }
1107
1108 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1109 struct dnode_of_data dn;
1110 struct node_info ni;
1111 size_t new_size;
1112 pgoff_t ilen;
1113
1114 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1115 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1116 if (ret)
1117 return ret;
1118
1119 ret = f2fs_get_node_info(sbi, dn.nid, &ni);
1120 if (ret) {
1121 f2fs_put_dnode(&dn);
1122 return ret;
1123 }
1124
1125 ilen = min((pgoff_t)
1126 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1127 dn.ofs_in_node, len - i);
1128 do {
1129 dn.data_blkaddr = datablock_addr(dn.inode,
1130 dn.node_page, dn.ofs_in_node);
1131 f2fs_truncate_data_blocks_range(&dn, 1);
1132
1133 if (do_replace[i]) {
1134 f2fs_i_blocks_write(src_inode,
1135 1, false, false);
1136 f2fs_i_blocks_write(dst_inode,
1137 1, true, false);
1138 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1139 blkaddr[i], ni.version, true, false);
1140
1141 do_replace[i] = 0;
1142 }
1143 dn.ofs_in_node++;
1144 i++;
1145 new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1146 if (dst_inode->i_size < new_size)
1147 f2fs_i_size_write(dst_inode, new_size);
1148 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1149
1150 f2fs_put_dnode(&dn);
1151 } else {
1152 struct page *psrc, *pdst;
1153
1154 psrc = f2fs_get_lock_data_page(src_inode,
1155 src + i, true);
1156 if (IS_ERR(psrc))
1157 return PTR_ERR(psrc);
1158 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1159 true);
1160 if (IS_ERR(pdst)) {
1161 f2fs_put_page(psrc, 1);
1162 return PTR_ERR(pdst);
1163 }
1164 f2fs_copy_page(psrc, pdst);
1165 set_page_dirty(pdst);
1166 f2fs_put_page(pdst, 1);
1167 f2fs_put_page(psrc, 1);
1168
1169 ret = f2fs_truncate_hole(src_inode,
1170 src + i, src + i + 1);
1171 if (ret)
1172 return ret;
1173 i++;
1174 }
1175 }
1176 return 0;
1177 }
1178
__exchange_data_block(struct inode * src_inode,struct inode * dst_inode,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1179 static int __exchange_data_block(struct inode *src_inode,
1180 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1181 pgoff_t len, bool full)
1182 {
1183 block_t *src_blkaddr;
1184 int *do_replace;
1185 pgoff_t olen;
1186 int ret;
1187
1188 while (len) {
1189 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1190
1191 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1192 array_size(olen, sizeof(block_t)),
1193 GFP_KERNEL);
1194 if (!src_blkaddr)
1195 return -ENOMEM;
1196
1197 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1198 array_size(olen, sizeof(int)),
1199 GFP_KERNEL);
1200 if (!do_replace) {
1201 kvfree(src_blkaddr);
1202 return -ENOMEM;
1203 }
1204
1205 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1206 do_replace, src, olen);
1207 if (ret)
1208 goto roll_back;
1209
1210 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1211 do_replace, src, dst, olen, full);
1212 if (ret)
1213 goto roll_back;
1214
1215 src += olen;
1216 dst += olen;
1217 len -= olen;
1218
1219 kvfree(src_blkaddr);
1220 kvfree(do_replace);
1221 }
1222 return 0;
1223
1224 roll_back:
1225 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1226 kvfree(src_blkaddr);
1227 kvfree(do_replace);
1228 return ret;
1229 }
1230
f2fs_do_collapse(struct inode * inode,loff_t offset,loff_t len)1231 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1232 {
1233 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1234 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1235 pgoff_t start = offset >> PAGE_SHIFT;
1236 pgoff_t end = (offset + len) >> PAGE_SHIFT;
1237 int ret;
1238
1239 f2fs_balance_fs(sbi, true);
1240
1241 /* avoid gc operation during block exchange */
1242 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1243 down_write(&F2FS_I(inode)->i_mmap_sem);
1244
1245 f2fs_lock_op(sbi);
1246 f2fs_drop_extent_tree(inode);
1247 truncate_pagecache(inode, offset);
1248 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1249 f2fs_unlock_op(sbi);
1250
1251 up_write(&F2FS_I(inode)->i_mmap_sem);
1252 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1253 return ret;
1254 }
1255
f2fs_collapse_range(struct inode * inode,loff_t offset,loff_t len)1256 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1257 {
1258 loff_t new_size;
1259 int ret;
1260
1261 if (offset + len >= i_size_read(inode))
1262 return -EINVAL;
1263
1264 /* collapse range should be aligned to block size of f2fs. */
1265 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1266 return -EINVAL;
1267
1268 ret = f2fs_convert_inline_inode(inode);
1269 if (ret)
1270 return ret;
1271
1272 /* write out all dirty pages from offset */
1273 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1274 if (ret)
1275 return ret;
1276
1277 ret = f2fs_do_collapse(inode, offset, len);
1278 if (ret)
1279 return ret;
1280
1281 /* write out all moved pages, if possible */
1282 down_write(&F2FS_I(inode)->i_mmap_sem);
1283 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1284 truncate_pagecache(inode, offset);
1285
1286 new_size = i_size_read(inode) - len;
1287 truncate_pagecache(inode, new_size);
1288
1289 ret = f2fs_truncate_blocks(inode, new_size, true);
1290 up_write(&F2FS_I(inode)->i_mmap_sem);
1291 if (!ret)
1292 f2fs_i_size_write(inode, new_size);
1293 return ret;
1294 }
1295
f2fs_do_zero_range(struct dnode_of_data * dn,pgoff_t start,pgoff_t end)1296 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1297 pgoff_t end)
1298 {
1299 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1300 pgoff_t index = start;
1301 unsigned int ofs_in_node = dn->ofs_in_node;
1302 blkcnt_t count = 0;
1303 int ret;
1304
1305 for (; index < end; index++, dn->ofs_in_node++) {
1306 if (datablock_addr(dn->inode, dn->node_page,
1307 dn->ofs_in_node) == NULL_ADDR)
1308 count++;
1309 }
1310
1311 dn->ofs_in_node = ofs_in_node;
1312 ret = f2fs_reserve_new_blocks(dn, count);
1313 if (ret)
1314 return ret;
1315
1316 dn->ofs_in_node = ofs_in_node;
1317 for (index = start; index < end; index++, dn->ofs_in_node++) {
1318 dn->data_blkaddr = datablock_addr(dn->inode,
1319 dn->node_page, dn->ofs_in_node);
1320 /*
1321 * f2fs_reserve_new_blocks will not guarantee entire block
1322 * allocation.
1323 */
1324 if (dn->data_blkaddr == NULL_ADDR) {
1325 ret = -ENOSPC;
1326 break;
1327 }
1328 if (dn->data_blkaddr != NEW_ADDR) {
1329 f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1330 dn->data_blkaddr = NEW_ADDR;
1331 f2fs_set_data_blkaddr(dn);
1332 }
1333 }
1334
1335 f2fs_update_extent_cache_range(dn, start, 0, index - start);
1336
1337 return ret;
1338 }
1339
f2fs_zero_range(struct inode * inode,loff_t offset,loff_t len,int mode)1340 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1341 int mode)
1342 {
1343 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1344 struct address_space *mapping = inode->i_mapping;
1345 pgoff_t index, pg_start, pg_end;
1346 loff_t new_size = i_size_read(inode);
1347 loff_t off_start, off_end;
1348 int ret = 0;
1349
1350 ret = inode_newsize_ok(inode, (len + offset));
1351 if (ret)
1352 return ret;
1353
1354 ret = f2fs_convert_inline_inode(inode);
1355 if (ret)
1356 return ret;
1357
1358 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1359 if (ret)
1360 return ret;
1361
1362 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1363 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1364
1365 off_start = offset & (PAGE_SIZE - 1);
1366 off_end = (offset + len) & (PAGE_SIZE - 1);
1367
1368 if (pg_start == pg_end) {
1369 ret = fill_zero(inode, pg_start, off_start,
1370 off_end - off_start);
1371 if (ret)
1372 return ret;
1373
1374 new_size = max_t(loff_t, new_size, offset + len);
1375 } else {
1376 if (off_start) {
1377 ret = fill_zero(inode, pg_start++, off_start,
1378 PAGE_SIZE - off_start);
1379 if (ret)
1380 return ret;
1381
1382 new_size = max_t(loff_t, new_size,
1383 (loff_t)pg_start << PAGE_SHIFT);
1384 }
1385
1386 for (index = pg_start; index < pg_end;) {
1387 struct dnode_of_data dn;
1388 unsigned int end_offset;
1389 pgoff_t end;
1390
1391 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1392 down_write(&F2FS_I(inode)->i_mmap_sem);
1393
1394 truncate_pagecache_range(inode,
1395 (loff_t)index << PAGE_SHIFT,
1396 ((loff_t)pg_end << PAGE_SHIFT) - 1);
1397
1398 f2fs_lock_op(sbi);
1399
1400 set_new_dnode(&dn, inode, NULL, NULL, 0);
1401 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1402 if (ret) {
1403 f2fs_unlock_op(sbi);
1404 up_write(&F2FS_I(inode)->i_mmap_sem);
1405 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1406 goto out;
1407 }
1408
1409 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1410 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1411
1412 ret = f2fs_do_zero_range(&dn, index, end);
1413 f2fs_put_dnode(&dn);
1414
1415 f2fs_unlock_op(sbi);
1416 up_write(&F2FS_I(inode)->i_mmap_sem);
1417 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1418
1419 f2fs_balance_fs(sbi, dn.node_changed);
1420
1421 if (ret)
1422 goto out;
1423
1424 index = end;
1425 new_size = max_t(loff_t, new_size,
1426 (loff_t)index << PAGE_SHIFT);
1427 }
1428
1429 if (off_end) {
1430 ret = fill_zero(inode, pg_end, 0, off_end);
1431 if (ret)
1432 goto out;
1433
1434 new_size = max_t(loff_t, new_size, offset + len);
1435 }
1436 }
1437
1438 out:
1439 if (new_size > i_size_read(inode)) {
1440 if (mode & FALLOC_FL_KEEP_SIZE)
1441 file_set_keep_isize(inode);
1442 else
1443 f2fs_i_size_write(inode, new_size);
1444 }
1445 return ret;
1446 }
1447
f2fs_insert_range(struct inode * inode,loff_t offset,loff_t len)1448 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1449 {
1450 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1451 pgoff_t nr, pg_start, pg_end, delta, idx;
1452 loff_t new_size;
1453 int ret = 0;
1454
1455 new_size = i_size_read(inode) + len;
1456 ret = inode_newsize_ok(inode, new_size);
1457 if (ret)
1458 return ret;
1459
1460 if (offset >= i_size_read(inode))
1461 return -EINVAL;
1462
1463 /* insert range should be aligned to block size of f2fs. */
1464 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1465 return -EINVAL;
1466
1467 ret = f2fs_convert_inline_inode(inode);
1468 if (ret)
1469 return ret;
1470
1471 f2fs_balance_fs(sbi, true);
1472
1473 down_write(&F2FS_I(inode)->i_mmap_sem);
1474 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1475 up_write(&F2FS_I(inode)->i_mmap_sem);
1476 if (ret)
1477 return ret;
1478
1479 /* write out all dirty pages from offset */
1480 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1481 if (ret)
1482 return ret;
1483
1484 pg_start = offset >> PAGE_SHIFT;
1485 pg_end = (offset + len) >> PAGE_SHIFT;
1486 delta = pg_end - pg_start;
1487 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1488
1489 /* avoid gc operation during block exchange */
1490 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1491 down_write(&F2FS_I(inode)->i_mmap_sem);
1492 truncate_pagecache(inode, offset);
1493
1494 while (!ret && idx > pg_start) {
1495 nr = idx - pg_start;
1496 if (nr > delta)
1497 nr = delta;
1498 idx -= nr;
1499
1500 f2fs_lock_op(sbi);
1501 f2fs_drop_extent_tree(inode);
1502
1503 ret = __exchange_data_block(inode, inode, idx,
1504 idx + delta, nr, false);
1505 f2fs_unlock_op(sbi);
1506 }
1507 up_write(&F2FS_I(inode)->i_mmap_sem);
1508 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1509
1510 /* write out all moved pages, if possible */
1511 down_write(&F2FS_I(inode)->i_mmap_sem);
1512 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1513 truncate_pagecache(inode, offset);
1514 up_write(&F2FS_I(inode)->i_mmap_sem);
1515
1516 if (!ret)
1517 f2fs_i_size_write(inode, new_size);
1518 return ret;
1519 }
1520
expand_inode_data(struct inode * inode,loff_t offset,loff_t len,int mode)1521 static int expand_inode_data(struct inode *inode, loff_t offset,
1522 loff_t len, int mode)
1523 {
1524 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1525 struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1526 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1527 .m_may_create = true };
1528 pgoff_t pg_end;
1529 loff_t new_size = i_size_read(inode);
1530 loff_t off_end;
1531 int err;
1532
1533 err = inode_newsize_ok(inode, (len + offset));
1534 if (err)
1535 return err;
1536
1537 err = f2fs_convert_inline_inode(inode);
1538 if (err)
1539 return err;
1540
1541 f2fs_balance_fs(sbi, true);
1542
1543 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1544 off_end = (offset + len) & (PAGE_SIZE - 1);
1545
1546 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1547 map.m_len = pg_end - map.m_lblk;
1548 if (off_end)
1549 map.m_len++;
1550
1551 if (!map.m_len)
1552 return 0;
1553
1554 if (f2fs_is_pinned_file(inode)) {
1555 block_t len = (map.m_len >> sbi->log_blocks_per_seg) <<
1556 sbi->log_blocks_per_seg;
1557 block_t done = 0;
1558
1559 if (map.m_len % sbi->blocks_per_seg)
1560 len += sbi->blocks_per_seg;
1561
1562 map.m_len = sbi->blocks_per_seg;
1563 next_alloc:
1564 if (has_not_enough_free_secs(sbi, 0,
1565 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1566 mutex_lock(&sbi->gc_mutex);
1567 err = f2fs_gc(sbi, true, false, NULL_SEGNO);
1568 if (err && err != -ENODATA && err != -EAGAIN)
1569 goto out_err;
1570 }
1571
1572 down_write(&sbi->pin_sem);
1573 map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1574 f2fs_allocate_new_segments(sbi, CURSEG_COLD_DATA);
1575 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
1576 up_write(&sbi->pin_sem);
1577
1578 done += map.m_len;
1579 len -= map.m_len;
1580 map.m_lblk += map.m_len;
1581 if (!err && len)
1582 goto next_alloc;
1583
1584 map.m_len = done;
1585 } else {
1586 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1587 }
1588 out_err:
1589 if (err) {
1590 pgoff_t last_off;
1591
1592 if (!map.m_len)
1593 return err;
1594
1595 last_off = map.m_lblk + map.m_len - 1;
1596
1597 /* update new size to the failed position */
1598 new_size = (last_off == pg_end) ? offset + len :
1599 (loff_t)(last_off + 1) << PAGE_SHIFT;
1600 } else {
1601 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1602 }
1603
1604 if (new_size > i_size_read(inode)) {
1605 if (mode & FALLOC_FL_KEEP_SIZE)
1606 file_set_keep_isize(inode);
1607 else
1608 f2fs_i_size_write(inode, new_size);
1609 }
1610
1611 return err;
1612 }
1613
f2fs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1614 static long f2fs_fallocate(struct file *file, int mode,
1615 loff_t offset, loff_t len)
1616 {
1617 struct inode *inode = file_inode(file);
1618 long ret = 0;
1619
1620 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1621 return -EIO;
1622 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1623 return -ENOSPC;
1624
1625 /* f2fs only support ->fallocate for regular file */
1626 if (!S_ISREG(inode->i_mode))
1627 return -EINVAL;
1628
1629 if (IS_ENCRYPTED(inode) &&
1630 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1631 return -EOPNOTSUPP;
1632
1633 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1634 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1635 FALLOC_FL_INSERT_RANGE))
1636 return -EOPNOTSUPP;
1637
1638 inode_lock(inode);
1639
1640 if (mode & FALLOC_FL_PUNCH_HOLE) {
1641 if (offset >= inode->i_size)
1642 goto out;
1643
1644 ret = punch_hole(inode, offset, len);
1645 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1646 ret = f2fs_collapse_range(inode, offset, len);
1647 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1648 ret = f2fs_zero_range(inode, offset, len, mode);
1649 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1650 ret = f2fs_insert_range(inode, offset, len);
1651 } else {
1652 ret = expand_inode_data(inode, offset, len, mode);
1653 }
1654
1655 if (!ret) {
1656 inode->i_mtime = inode->i_ctime = current_time(inode);
1657 f2fs_mark_inode_dirty_sync(inode, false);
1658 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1659 }
1660
1661 out:
1662 inode_unlock(inode);
1663
1664 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1665 return ret;
1666 }
1667
f2fs_release_file(struct inode * inode,struct file * filp)1668 static int f2fs_release_file(struct inode *inode, struct file *filp)
1669 {
1670 /*
1671 * f2fs_relase_file is called at every close calls. So we should
1672 * not drop any inmemory pages by close called by other process.
1673 */
1674 if (!(filp->f_mode & FMODE_WRITE) ||
1675 atomic_read(&inode->i_writecount) != 1)
1676 return 0;
1677
1678 /* some remained atomic pages should discarded */
1679 if (f2fs_is_atomic_file(inode))
1680 f2fs_drop_inmem_pages(inode);
1681 if (f2fs_is_volatile_file(inode)) {
1682 set_inode_flag(inode, FI_DROP_CACHE);
1683 filemap_fdatawrite(inode->i_mapping);
1684 clear_inode_flag(inode, FI_DROP_CACHE);
1685 clear_inode_flag(inode, FI_VOLATILE_FILE);
1686 stat_dec_volatile_write(inode);
1687 }
1688 return 0;
1689 }
1690
f2fs_file_flush(struct file * file,fl_owner_t id)1691 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1692 {
1693 struct inode *inode = file_inode(file);
1694
1695 /*
1696 * If the process doing a transaction is crashed, we should do
1697 * roll-back. Otherwise, other reader/write can see corrupted database
1698 * until all the writers close its file. Since this should be done
1699 * before dropping file lock, it needs to do in ->flush.
1700 */
1701 if (f2fs_is_atomic_file(inode) &&
1702 F2FS_I(inode)->inmem_task == current)
1703 f2fs_drop_inmem_pages(inode);
1704 return 0;
1705 }
1706
f2fs_setflags_common(struct inode * inode,u32 iflags,u32 mask)1707 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1708 {
1709 struct f2fs_inode_info *fi = F2FS_I(inode);
1710
1711 /* Is it quota file? Do not allow user to mess with it */
1712 if (IS_NOQUOTA(inode))
1713 return -EPERM;
1714
1715 if ((iflags ^ fi->i_flags) & F2FS_CASEFOLD_FL) {
1716 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1717 return -EOPNOTSUPP;
1718 if (!f2fs_empty_dir(inode))
1719 return -ENOTEMPTY;
1720 }
1721
1722 fi->i_flags = iflags | (fi->i_flags & ~mask);
1723
1724 if (fi->i_flags & F2FS_PROJINHERIT_FL)
1725 set_inode_flag(inode, FI_PROJ_INHERIT);
1726 else
1727 clear_inode_flag(inode, FI_PROJ_INHERIT);
1728
1729 inode->i_ctime = current_time(inode);
1730 f2fs_set_inode_flags(inode);
1731 f2fs_mark_inode_dirty_sync(inode, true);
1732 return 0;
1733 }
1734
1735 /* FS_IOC_GETFLAGS and FS_IOC_SETFLAGS support */
1736
1737 /*
1738 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1739 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1740 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add
1741 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1742 */
1743
1744 static const struct {
1745 u32 iflag;
1746 u32 fsflag;
1747 } f2fs_fsflags_map[] = {
1748 { F2FS_SYNC_FL, FS_SYNC_FL },
1749 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL },
1750 { F2FS_APPEND_FL, FS_APPEND_FL },
1751 { F2FS_NODUMP_FL, FS_NODUMP_FL },
1752 { F2FS_NOATIME_FL, FS_NOATIME_FL },
1753 { F2FS_INDEX_FL, FS_INDEX_FL },
1754 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL },
1755 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL },
1756 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL },
1757 };
1758
1759 #define F2FS_GETTABLE_FS_FL ( \
1760 FS_SYNC_FL | \
1761 FS_IMMUTABLE_FL | \
1762 FS_APPEND_FL | \
1763 FS_NODUMP_FL | \
1764 FS_NOATIME_FL | \
1765 FS_INDEX_FL | \
1766 FS_DIRSYNC_FL | \
1767 FS_PROJINHERIT_FL | \
1768 FS_ENCRYPT_FL | \
1769 FS_INLINE_DATA_FL | \
1770 FS_NOCOW_FL | \
1771 FS_VERITY_FL | \
1772 FS_CASEFOLD_FL)
1773
1774 #define F2FS_SETTABLE_FS_FL ( \
1775 FS_SYNC_FL | \
1776 FS_IMMUTABLE_FL | \
1777 FS_APPEND_FL | \
1778 FS_NODUMP_FL | \
1779 FS_NOATIME_FL | \
1780 FS_DIRSYNC_FL | \
1781 FS_PROJINHERIT_FL | \
1782 FS_CASEFOLD_FL)
1783
1784 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
f2fs_iflags_to_fsflags(u32 iflags)1785 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
1786 {
1787 u32 fsflags = 0;
1788 int i;
1789
1790 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1791 if (iflags & f2fs_fsflags_map[i].iflag)
1792 fsflags |= f2fs_fsflags_map[i].fsflag;
1793
1794 return fsflags;
1795 }
1796
1797 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
f2fs_fsflags_to_iflags(u32 fsflags)1798 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
1799 {
1800 u32 iflags = 0;
1801 int i;
1802
1803 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1804 if (fsflags & f2fs_fsflags_map[i].fsflag)
1805 iflags |= f2fs_fsflags_map[i].iflag;
1806
1807 return iflags;
1808 }
1809
f2fs_ioc_getflags(struct file * filp,unsigned long arg)1810 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1811 {
1812 struct inode *inode = file_inode(filp);
1813 struct f2fs_inode_info *fi = F2FS_I(inode);
1814 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
1815
1816 if (IS_ENCRYPTED(inode))
1817 fsflags |= FS_ENCRYPT_FL;
1818 if (IS_VERITY(inode))
1819 fsflags |= FS_VERITY_FL;
1820 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
1821 fsflags |= FS_INLINE_DATA_FL;
1822 if (is_inode_flag_set(inode, FI_PIN_FILE))
1823 fsflags |= FS_NOCOW_FL;
1824
1825 fsflags &= F2FS_GETTABLE_FS_FL;
1826
1827 return put_user(fsflags, (int __user *)arg);
1828 }
1829
f2fs_ioc_setflags(struct file * filp,unsigned long arg)1830 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1831 {
1832 struct inode *inode = file_inode(filp);
1833 struct f2fs_inode_info *fi = F2FS_I(inode);
1834 u32 fsflags, old_fsflags;
1835 u32 iflags;
1836 int ret;
1837
1838 if (!inode_owner_or_capable(inode))
1839 return -EACCES;
1840
1841 if (get_user(fsflags, (int __user *)arg))
1842 return -EFAULT;
1843
1844 if (fsflags & ~F2FS_GETTABLE_FS_FL)
1845 return -EOPNOTSUPP;
1846 fsflags &= F2FS_SETTABLE_FS_FL;
1847
1848 iflags = f2fs_fsflags_to_iflags(fsflags);
1849 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
1850 return -EOPNOTSUPP;
1851
1852 ret = mnt_want_write_file(filp);
1853 if (ret)
1854 return ret;
1855
1856 inode_lock(inode);
1857
1858 old_fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
1859 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
1860 if (ret)
1861 goto out;
1862
1863 ret = f2fs_setflags_common(inode, iflags,
1864 f2fs_fsflags_to_iflags(F2FS_SETTABLE_FS_FL));
1865 out:
1866 inode_unlock(inode);
1867 mnt_drop_write_file(filp);
1868 return ret;
1869 }
1870
f2fs_ioc_getversion(struct file * filp,unsigned long arg)1871 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1872 {
1873 struct inode *inode = file_inode(filp);
1874
1875 return put_user(inode->i_generation, (int __user *)arg);
1876 }
1877
f2fs_ioc_start_atomic_write(struct file * filp)1878 static int f2fs_ioc_start_atomic_write(struct file *filp)
1879 {
1880 struct inode *inode = file_inode(filp);
1881 struct f2fs_inode_info *fi = F2FS_I(inode);
1882 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1883 int ret;
1884
1885 if (!inode_owner_or_capable(inode))
1886 return -EACCES;
1887
1888 if (!S_ISREG(inode->i_mode))
1889 return -EINVAL;
1890
1891 if (filp->f_flags & O_DIRECT)
1892 return -EINVAL;
1893
1894 ret = mnt_want_write_file(filp);
1895 if (ret)
1896 return ret;
1897
1898 inode_lock(inode);
1899
1900 if (f2fs_is_atomic_file(inode)) {
1901 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST))
1902 ret = -EINVAL;
1903 goto out;
1904 }
1905
1906 ret = f2fs_convert_inline_inode(inode);
1907 if (ret)
1908 goto out;
1909
1910 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1911
1912 /*
1913 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
1914 * f2fs_is_atomic_file.
1915 */
1916 if (get_dirty_pages(inode))
1917 f2fs_warn(F2FS_I_SB(inode), "Unexpected flush for atomic writes: ino=%lu, npages=%u",
1918 inode->i_ino, get_dirty_pages(inode));
1919 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1920 if (ret) {
1921 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1922 goto out;
1923 }
1924
1925 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
1926 if (list_empty(&fi->inmem_ilist))
1927 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
1928 sbi->atomic_files++;
1929 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
1930
1931 /* add inode in inmem_list first and set atomic_file */
1932 set_inode_flag(inode, FI_ATOMIC_FILE);
1933 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
1934 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1935
1936 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1937 F2FS_I(inode)->inmem_task = current;
1938 stat_inc_atomic_write(inode);
1939 stat_update_max_atomic_write(inode);
1940 out:
1941 inode_unlock(inode);
1942 mnt_drop_write_file(filp);
1943 return ret;
1944 }
1945
f2fs_ioc_commit_atomic_write(struct file * filp)1946 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1947 {
1948 struct inode *inode = file_inode(filp);
1949 int ret;
1950
1951 if (!inode_owner_or_capable(inode))
1952 return -EACCES;
1953
1954 ret = mnt_want_write_file(filp);
1955 if (ret)
1956 return ret;
1957
1958 f2fs_balance_fs(F2FS_I_SB(inode), true);
1959
1960 inode_lock(inode);
1961
1962 if (f2fs_is_volatile_file(inode)) {
1963 ret = -EINVAL;
1964 goto err_out;
1965 }
1966
1967 if (f2fs_is_atomic_file(inode)) {
1968 ret = f2fs_commit_inmem_pages(inode);
1969 if (ret)
1970 goto err_out;
1971
1972 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1973 if (!ret)
1974 f2fs_drop_inmem_pages(inode);
1975 } else {
1976 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
1977 }
1978 err_out:
1979 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
1980 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
1981 ret = -EINVAL;
1982 }
1983 inode_unlock(inode);
1984 mnt_drop_write_file(filp);
1985 return ret;
1986 }
1987
f2fs_ioc_start_volatile_write(struct file * filp)1988 static int f2fs_ioc_start_volatile_write(struct file *filp)
1989 {
1990 struct inode *inode = file_inode(filp);
1991 int ret;
1992
1993 if (!inode_owner_or_capable(inode))
1994 return -EACCES;
1995
1996 if (!S_ISREG(inode->i_mode))
1997 return -EINVAL;
1998
1999 ret = mnt_want_write_file(filp);
2000 if (ret)
2001 return ret;
2002
2003 inode_lock(inode);
2004
2005 if (f2fs_is_volatile_file(inode))
2006 goto out;
2007
2008 ret = f2fs_convert_inline_inode(inode);
2009 if (ret)
2010 goto out;
2011
2012 stat_inc_volatile_write(inode);
2013 stat_update_max_volatile_write(inode);
2014
2015 set_inode_flag(inode, FI_VOLATILE_FILE);
2016 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2017 out:
2018 inode_unlock(inode);
2019 mnt_drop_write_file(filp);
2020 return ret;
2021 }
2022
f2fs_ioc_release_volatile_write(struct file * filp)2023 static int f2fs_ioc_release_volatile_write(struct file *filp)
2024 {
2025 struct inode *inode = file_inode(filp);
2026 int ret;
2027
2028 if (!inode_owner_or_capable(inode))
2029 return -EACCES;
2030
2031 ret = mnt_want_write_file(filp);
2032 if (ret)
2033 return ret;
2034
2035 inode_lock(inode);
2036
2037 if (!f2fs_is_volatile_file(inode))
2038 goto out;
2039
2040 if (!f2fs_is_first_block_written(inode)) {
2041 ret = truncate_partial_data_page(inode, 0, true);
2042 goto out;
2043 }
2044
2045 ret = punch_hole(inode, 0, F2FS_BLKSIZE);
2046 out:
2047 inode_unlock(inode);
2048 mnt_drop_write_file(filp);
2049 return ret;
2050 }
2051
f2fs_ioc_abort_volatile_write(struct file * filp)2052 static int f2fs_ioc_abort_volatile_write(struct file *filp)
2053 {
2054 struct inode *inode = file_inode(filp);
2055 int ret;
2056
2057 if (!inode_owner_or_capable(inode))
2058 return -EACCES;
2059
2060 ret = mnt_want_write_file(filp);
2061 if (ret)
2062 return ret;
2063
2064 inode_lock(inode);
2065
2066 if (f2fs_is_atomic_file(inode))
2067 f2fs_drop_inmem_pages(inode);
2068 if (f2fs_is_volatile_file(inode)) {
2069 clear_inode_flag(inode, FI_VOLATILE_FILE);
2070 stat_dec_volatile_write(inode);
2071 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2072 }
2073
2074 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2075
2076 inode_unlock(inode);
2077
2078 mnt_drop_write_file(filp);
2079 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2080 return ret;
2081 }
2082
f2fs_ioc_shutdown(struct file * filp,unsigned long arg)2083 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2084 {
2085 struct inode *inode = file_inode(filp);
2086 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2087 struct super_block *sb = sbi->sb;
2088 __u32 in;
2089 int ret = 0;
2090
2091 if (!capable(CAP_SYS_ADMIN))
2092 return -EPERM;
2093
2094 if (get_user(in, (__u32 __user *)arg))
2095 return -EFAULT;
2096
2097 if (in != F2FS_GOING_DOWN_FULLSYNC) {
2098 ret = mnt_want_write_file(filp);
2099 if (ret)
2100 return ret;
2101 }
2102
2103 switch (in) {
2104 case F2FS_GOING_DOWN_FULLSYNC:
2105 sb = freeze_bdev(sb->s_bdev);
2106 if (IS_ERR(sb)) {
2107 ret = PTR_ERR(sb);
2108 goto out;
2109 }
2110 if (sb) {
2111 f2fs_stop_checkpoint(sbi, false);
2112 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2113 thaw_bdev(sb->s_bdev, sb);
2114 }
2115 break;
2116 case F2FS_GOING_DOWN_METASYNC:
2117 /* do checkpoint only */
2118 ret = f2fs_sync_fs(sb, 1);
2119 if (ret)
2120 goto out;
2121 f2fs_stop_checkpoint(sbi, false);
2122 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2123 break;
2124 case F2FS_GOING_DOWN_NOSYNC:
2125 f2fs_stop_checkpoint(sbi, false);
2126 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2127 break;
2128 case F2FS_GOING_DOWN_METAFLUSH:
2129 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2130 f2fs_stop_checkpoint(sbi, false);
2131 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2132 break;
2133 case F2FS_GOING_DOWN_NEED_FSCK:
2134 set_sbi_flag(sbi, SBI_NEED_FSCK);
2135 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2136 set_sbi_flag(sbi, SBI_IS_DIRTY);
2137 /* do checkpoint only */
2138 ret = f2fs_sync_fs(sb, 1);
2139 goto out;
2140 default:
2141 ret = -EINVAL;
2142 goto out;
2143 }
2144
2145 f2fs_stop_gc_thread(sbi);
2146 f2fs_stop_discard_thread(sbi);
2147
2148 f2fs_drop_discard_cmd(sbi);
2149 clear_opt(sbi, DISCARD);
2150
2151 f2fs_update_time(sbi, REQ_TIME);
2152 out:
2153 if (in != F2FS_GOING_DOWN_FULLSYNC)
2154 mnt_drop_write_file(filp);
2155
2156 trace_f2fs_shutdown(sbi, in, ret);
2157
2158 return ret;
2159 }
2160
f2fs_ioc_fitrim(struct file * filp,unsigned long arg)2161 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2162 {
2163 struct inode *inode = file_inode(filp);
2164 struct super_block *sb = inode->i_sb;
2165 struct request_queue *q = bdev_get_queue(sb->s_bdev);
2166 struct fstrim_range range;
2167 int ret;
2168
2169 if (!capable(CAP_SYS_ADMIN))
2170 return -EPERM;
2171
2172 if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2173 return -EOPNOTSUPP;
2174
2175 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2176 sizeof(range)))
2177 return -EFAULT;
2178
2179 ret = mnt_want_write_file(filp);
2180 if (ret)
2181 return ret;
2182
2183 range.minlen = max((unsigned int)range.minlen,
2184 q->limits.discard_granularity);
2185 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2186 mnt_drop_write_file(filp);
2187 if (ret < 0)
2188 return ret;
2189
2190 if (copy_to_user((struct fstrim_range __user *)arg, &range,
2191 sizeof(range)))
2192 return -EFAULT;
2193 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2194 return 0;
2195 }
2196
uuid_is_nonzero(__u8 u[16])2197 static bool uuid_is_nonzero(__u8 u[16])
2198 {
2199 int i;
2200
2201 for (i = 0; i < 16; i++)
2202 if (u[i])
2203 return true;
2204 return false;
2205 }
2206
f2fs_ioc_set_encryption_policy(struct file * filp,unsigned long arg)2207 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2208 {
2209 struct inode *inode = file_inode(filp);
2210
2211 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2212 return -EOPNOTSUPP;
2213
2214 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2215
2216 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2217 }
2218
f2fs_ioc_get_encryption_policy(struct file * filp,unsigned long arg)2219 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2220 {
2221 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2222 return -EOPNOTSUPP;
2223 return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2224 }
2225
f2fs_ioc_get_encryption_pwsalt(struct file * filp,unsigned long arg)2226 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2227 {
2228 struct inode *inode = file_inode(filp);
2229 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2230 int err;
2231
2232 if (!f2fs_sb_has_encrypt(sbi))
2233 return -EOPNOTSUPP;
2234
2235 err = mnt_want_write_file(filp);
2236 if (err)
2237 return err;
2238
2239 down_write(&sbi->sb_lock);
2240
2241 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2242 goto got_it;
2243
2244 /* update superblock with uuid */
2245 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2246
2247 err = f2fs_commit_super(sbi, false);
2248 if (err) {
2249 /* undo new data */
2250 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2251 goto out_err;
2252 }
2253 got_it:
2254 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2255 16))
2256 err = -EFAULT;
2257 out_err:
2258 up_write(&sbi->sb_lock);
2259 mnt_drop_write_file(filp);
2260 return err;
2261 }
2262
f2fs_ioc_get_encryption_policy_ex(struct file * filp,unsigned long arg)2263 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2264 unsigned long arg)
2265 {
2266 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2267 return -EOPNOTSUPP;
2268
2269 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2270 }
2271
f2fs_ioc_add_encryption_key(struct file * filp,unsigned long arg)2272 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2273 {
2274 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2275 return -EOPNOTSUPP;
2276
2277 return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2278 }
2279
f2fs_ioc_remove_encryption_key(struct file * filp,unsigned long arg)2280 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2281 {
2282 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2283 return -EOPNOTSUPP;
2284
2285 return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2286 }
2287
f2fs_ioc_remove_encryption_key_all_users(struct file * filp,unsigned long arg)2288 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2289 unsigned long arg)
2290 {
2291 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2292 return -EOPNOTSUPP;
2293
2294 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2295 }
2296
f2fs_ioc_get_encryption_key_status(struct file * filp,unsigned long arg)2297 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2298 unsigned long arg)
2299 {
2300 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2301 return -EOPNOTSUPP;
2302
2303 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2304 }
2305
f2fs_ioc_gc(struct file * filp,unsigned long arg)2306 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2307 {
2308 struct inode *inode = file_inode(filp);
2309 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2310 __u32 sync;
2311 int ret;
2312
2313 if (!capable(CAP_SYS_ADMIN))
2314 return -EPERM;
2315
2316 if (get_user(sync, (__u32 __user *)arg))
2317 return -EFAULT;
2318
2319 if (f2fs_readonly(sbi->sb))
2320 return -EROFS;
2321
2322 ret = mnt_want_write_file(filp);
2323 if (ret)
2324 return ret;
2325
2326 if (!sync) {
2327 if (!mutex_trylock(&sbi->gc_mutex)) {
2328 ret = -EBUSY;
2329 goto out;
2330 }
2331 } else {
2332 mutex_lock(&sbi->gc_mutex);
2333 }
2334
2335 ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
2336 out:
2337 mnt_drop_write_file(filp);
2338 return ret;
2339 }
2340
f2fs_ioc_gc_range(struct file * filp,unsigned long arg)2341 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2342 {
2343 struct inode *inode = file_inode(filp);
2344 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2345 struct f2fs_gc_range range;
2346 u64 end;
2347 int ret;
2348
2349 if (!capable(CAP_SYS_ADMIN))
2350 return -EPERM;
2351
2352 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2353 sizeof(range)))
2354 return -EFAULT;
2355
2356 if (f2fs_readonly(sbi->sb))
2357 return -EROFS;
2358
2359 end = range.start + range.len;
2360 if (end < range.start || range.start < MAIN_BLKADDR(sbi) ||
2361 end >= MAX_BLKADDR(sbi))
2362 return -EINVAL;
2363
2364 ret = mnt_want_write_file(filp);
2365 if (ret)
2366 return ret;
2367
2368 do_more:
2369 if (!range.sync) {
2370 if (!mutex_trylock(&sbi->gc_mutex)) {
2371 ret = -EBUSY;
2372 goto out;
2373 }
2374 } else {
2375 mutex_lock(&sbi->gc_mutex);
2376 }
2377
2378 ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
2379 range.start += BLKS_PER_SEC(sbi);
2380 if (range.start <= end)
2381 goto do_more;
2382 out:
2383 mnt_drop_write_file(filp);
2384 return ret;
2385 }
2386
f2fs_ioc_write_checkpoint(struct file * filp,unsigned long arg)2387 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2388 {
2389 struct inode *inode = file_inode(filp);
2390 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2391 int ret;
2392
2393 if (!capable(CAP_SYS_ADMIN))
2394 return -EPERM;
2395
2396 if (f2fs_readonly(sbi->sb))
2397 return -EROFS;
2398
2399 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2400 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2401 return -EINVAL;
2402 }
2403
2404 ret = mnt_want_write_file(filp);
2405 if (ret)
2406 return ret;
2407
2408 ret = f2fs_sync_fs(sbi->sb, 1);
2409
2410 mnt_drop_write_file(filp);
2411 return ret;
2412 }
2413
f2fs_defragment_range(struct f2fs_sb_info * sbi,struct file * filp,struct f2fs_defragment * range)2414 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2415 struct file *filp,
2416 struct f2fs_defragment *range)
2417 {
2418 struct inode *inode = file_inode(filp);
2419 struct f2fs_map_blocks map = { .m_next_extent = NULL,
2420 .m_seg_type = NO_CHECK_TYPE ,
2421 .m_may_create = false };
2422 struct extent_info ei = {0, 0, 0};
2423 pgoff_t pg_start, pg_end, next_pgofs;
2424 unsigned int blk_per_seg = sbi->blocks_per_seg;
2425 unsigned int total = 0, sec_num;
2426 block_t blk_end = 0;
2427 bool fragmented = false;
2428 int err;
2429
2430 /* if in-place-update policy is enabled, don't waste time here */
2431 if (f2fs_should_update_inplace(inode, NULL))
2432 return -EINVAL;
2433
2434 pg_start = range->start >> PAGE_SHIFT;
2435 pg_end = (range->start + range->len) >> PAGE_SHIFT;
2436
2437 f2fs_balance_fs(sbi, true);
2438
2439 inode_lock(inode);
2440
2441 /* writeback all dirty pages in the range */
2442 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2443 range->start + range->len - 1);
2444 if (err)
2445 goto out;
2446
2447 /*
2448 * lookup mapping info in extent cache, skip defragmenting if physical
2449 * block addresses are continuous.
2450 */
2451 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2452 if (ei.fofs + ei.len >= pg_end)
2453 goto out;
2454 }
2455
2456 map.m_lblk = pg_start;
2457 map.m_next_pgofs = &next_pgofs;
2458
2459 /*
2460 * lookup mapping info in dnode page cache, skip defragmenting if all
2461 * physical block addresses are continuous even if there are hole(s)
2462 * in logical blocks.
2463 */
2464 while (map.m_lblk < pg_end) {
2465 map.m_len = pg_end - map.m_lblk;
2466 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2467 if (err)
2468 goto out;
2469
2470 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2471 map.m_lblk = next_pgofs;
2472 continue;
2473 }
2474
2475 if (blk_end && blk_end != map.m_pblk)
2476 fragmented = true;
2477
2478 /* record total count of block that we're going to move */
2479 total += map.m_len;
2480
2481 blk_end = map.m_pblk + map.m_len;
2482
2483 map.m_lblk += map.m_len;
2484 }
2485
2486 if (!fragmented) {
2487 total = 0;
2488 goto out;
2489 }
2490
2491 sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi));
2492
2493 /*
2494 * make sure there are enough free section for LFS allocation, this can
2495 * avoid defragment running in SSR mode when free section are allocated
2496 * intensively
2497 */
2498 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2499 err = -EAGAIN;
2500 goto out;
2501 }
2502
2503 map.m_lblk = pg_start;
2504 map.m_len = pg_end - pg_start;
2505 total = 0;
2506
2507 while (map.m_lblk < pg_end) {
2508 pgoff_t idx;
2509 int cnt = 0;
2510
2511 do_map:
2512 map.m_len = pg_end - map.m_lblk;
2513 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2514 if (err)
2515 goto clear_out;
2516
2517 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2518 map.m_lblk = next_pgofs;
2519 goto check;
2520 }
2521
2522 set_inode_flag(inode, FI_DO_DEFRAG);
2523
2524 idx = map.m_lblk;
2525 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2526 struct page *page;
2527
2528 page = f2fs_get_lock_data_page(inode, idx, true);
2529 if (IS_ERR(page)) {
2530 err = PTR_ERR(page);
2531 goto clear_out;
2532 }
2533
2534 set_page_dirty(page);
2535 f2fs_put_page(page, 1);
2536
2537 idx++;
2538 cnt++;
2539 total++;
2540 }
2541
2542 map.m_lblk = idx;
2543 check:
2544 if (map.m_lblk < pg_end && cnt < blk_per_seg)
2545 goto do_map;
2546
2547 clear_inode_flag(inode, FI_DO_DEFRAG);
2548
2549 err = filemap_fdatawrite(inode->i_mapping);
2550 if (err)
2551 goto out;
2552 }
2553 clear_out:
2554 clear_inode_flag(inode, FI_DO_DEFRAG);
2555 out:
2556 inode_unlock(inode);
2557 if (!err)
2558 range->len = (u64)total << PAGE_SHIFT;
2559 return err;
2560 }
2561
f2fs_ioc_defragment(struct file * filp,unsigned long arg)2562 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2563 {
2564 struct inode *inode = file_inode(filp);
2565 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2566 struct f2fs_defragment range;
2567 int err;
2568
2569 if (!capable(CAP_SYS_ADMIN))
2570 return -EPERM;
2571
2572 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2573 return -EINVAL;
2574
2575 if (f2fs_readonly(sbi->sb))
2576 return -EROFS;
2577
2578 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2579 sizeof(range)))
2580 return -EFAULT;
2581
2582 /* verify alignment of offset & size */
2583 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2584 return -EINVAL;
2585
2586 if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2587 sbi->max_file_blocks))
2588 return -EINVAL;
2589
2590 err = mnt_want_write_file(filp);
2591 if (err)
2592 return err;
2593
2594 err = f2fs_defragment_range(sbi, filp, &range);
2595 mnt_drop_write_file(filp);
2596
2597 f2fs_update_time(sbi, REQ_TIME);
2598 if (err < 0)
2599 return err;
2600
2601 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2602 sizeof(range)))
2603 return -EFAULT;
2604
2605 return 0;
2606 }
2607
f2fs_move_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,size_t len)2608 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2609 struct file *file_out, loff_t pos_out, size_t len)
2610 {
2611 struct inode *src = file_inode(file_in);
2612 struct inode *dst = file_inode(file_out);
2613 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2614 size_t olen = len, dst_max_i_size = 0;
2615 size_t dst_osize;
2616 int ret;
2617
2618 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2619 src->i_sb != dst->i_sb)
2620 return -EXDEV;
2621
2622 if (unlikely(f2fs_readonly(src->i_sb)))
2623 return -EROFS;
2624
2625 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2626 return -EINVAL;
2627
2628 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2629 return -EOPNOTSUPP;
2630
2631 if (src == dst) {
2632 if (pos_in == pos_out)
2633 return 0;
2634 if (pos_out > pos_in && pos_out < pos_in + len)
2635 return -EINVAL;
2636 }
2637
2638 inode_lock(src);
2639 if (src != dst) {
2640 ret = -EBUSY;
2641 if (!inode_trylock(dst))
2642 goto out;
2643 }
2644
2645 ret = -EINVAL;
2646 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2647 goto out_unlock;
2648 if (len == 0)
2649 olen = len = src->i_size - pos_in;
2650 if (pos_in + len == src->i_size)
2651 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2652 if (len == 0) {
2653 ret = 0;
2654 goto out_unlock;
2655 }
2656
2657 dst_osize = dst->i_size;
2658 if (pos_out + olen > dst->i_size)
2659 dst_max_i_size = pos_out + olen;
2660
2661 /* verify the end result is block aligned */
2662 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2663 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2664 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2665 goto out_unlock;
2666
2667 ret = f2fs_convert_inline_inode(src);
2668 if (ret)
2669 goto out_unlock;
2670
2671 ret = f2fs_convert_inline_inode(dst);
2672 if (ret)
2673 goto out_unlock;
2674
2675 /* write out all dirty pages from offset */
2676 ret = filemap_write_and_wait_range(src->i_mapping,
2677 pos_in, pos_in + len);
2678 if (ret)
2679 goto out_unlock;
2680
2681 ret = filemap_write_and_wait_range(dst->i_mapping,
2682 pos_out, pos_out + len);
2683 if (ret)
2684 goto out_unlock;
2685
2686 f2fs_balance_fs(sbi, true);
2687
2688 down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2689 if (src != dst) {
2690 ret = -EBUSY;
2691 if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2692 goto out_src;
2693 }
2694
2695 f2fs_lock_op(sbi);
2696 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2697 pos_out >> F2FS_BLKSIZE_BITS,
2698 len >> F2FS_BLKSIZE_BITS, false);
2699
2700 if (!ret) {
2701 if (dst_max_i_size)
2702 f2fs_i_size_write(dst, dst_max_i_size);
2703 else if (dst_osize != dst->i_size)
2704 f2fs_i_size_write(dst, dst_osize);
2705 }
2706 f2fs_unlock_op(sbi);
2707
2708 if (src != dst)
2709 up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2710 out_src:
2711 up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2712 out_unlock:
2713 if (src != dst)
2714 inode_unlock(dst);
2715 out:
2716 inode_unlock(src);
2717 return ret;
2718 }
2719
f2fs_ioc_move_range(struct file * filp,unsigned long arg)2720 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2721 {
2722 struct f2fs_move_range range;
2723 struct fd dst;
2724 int err;
2725
2726 if (!(filp->f_mode & FMODE_READ) ||
2727 !(filp->f_mode & FMODE_WRITE))
2728 return -EBADF;
2729
2730 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2731 sizeof(range)))
2732 return -EFAULT;
2733
2734 dst = fdget(range.dst_fd);
2735 if (!dst.file)
2736 return -EBADF;
2737
2738 if (!(dst.file->f_mode & FMODE_WRITE)) {
2739 err = -EBADF;
2740 goto err_out;
2741 }
2742
2743 err = mnt_want_write_file(filp);
2744 if (err)
2745 goto err_out;
2746
2747 err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2748 range.pos_out, range.len);
2749
2750 mnt_drop_write_file(filp);
2751 if (err)
2752 goto err_out;
2753
2754 if (copy_to_user((struct f2fs_move_range __user *)arg,
2755 &range, sizeof(range)))
2756 err = -EFAULT;
2757 err_out:
2758 fdput(dst);
2759 return err;
2760 }
2761
f2fs_ioc_flush_device(struct file * filp,unsigned long arg)2762 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2763 {
2764 struct inode *inode = file_inode(filp);
2765 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2766 struct sit_info *sm = SIT_I(sbi);
2767 unsigned int start_segno = 0, end_segno = 0;
2768 unsigned int dev_start_segno = 0, dev_end_segno = 0;
2769 struct f2fs_flush_device range;
2770 int ret;
2771
2772 if (!capable(CAP_SYS_ADMIN))
2773 return -EPERM;
2774
2775 if (f2fs_readonly(sbi->sb))
2776 return -EROFS;
2777
2778 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2779 return -EINVAL;
2780
2781 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2782 sizeof(range)))
2783 return -EFAULT;
2784
2785 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2786 __is_large_section(sbi)) {
2787 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2788 range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2789 return -EINVAL;
2790 }
2791
2792 ret = mnt_want_write_file(filp);
2793 if (ret)
2794 return ret;
2795
2796 if (range.dev_num != 0)
2797 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2798 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2799
2800 start_segno = sm->last_victim[FLUSH_DEVICE];
2801 if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2802 start_segno = dev_start_segno;
2803 end_segno = min(start_segno + range.segments, dev_end_segno);
2804
2805 while (start_segno < end_segno) {
2806 if (!mutex_trylock(&sbi->gc_mutex)) {
2807 ret = -EBUSY;
2808 goto out;
2809 }
2810 sm->last_victim[GC_CB] = end_segno + 1;
2811 sm->last_victim[GC_GREEDY] = end_segno + 1;
2812 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2813 ret = f2fs_gc(sbi, true, true, start_segno);
2814 if (ret == -EAGAIN)
2815 ret = 0;
2816 else if (ret < 0)
2817 break;
2818 start_segno++;
2819 }
2820 out:
2821 mnt_drop_write_file(filp);
2822 return ret;
2823 }
2824
f2fs_ioc_get_features(struct file * filp,unsigned long arg)2825 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2826 {
2827 struct inode *inode = file_inode(filp);
2828 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2829
2830 /* Must validate to set it with SQLite behavior in Android. */
2831 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2832
2833 return put_user(sb_feature, (u32 __user *)arg);
2834 }
2835
2836 #ifdef CONFIG_QUOTA
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)2837 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
2838 {
2839 struct dquot *transfer_to[MAXQUOTAS] = {};
2840 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2841 struct super_block *sb = sbi->sb;
2842 int err = 0;
2843
2844 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2845 if (!IS_ERR(transfer_to[PRJQUOTA])) {
2846 err = __dquot_transfer(inode, transfer_to);
2847 if (err)
2848 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2849 dqput(transfer_to[PRJQUOTA]);
2850 }
2851 return err;
2852 }
2853
f2fs_ioc_setproject(struct file * filp,__u32 projid)2854 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2855 {
2856 struct inode *inode = file_inode(filp);
2857 struct f2fs_inode_info *fi = F2FS_I(inode);
2858 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2859 struct page *ipage;
2860 kprojid_t kprojid;
2861 int err;
2862
2863 if (!f2fs_sb_has_project_quota(sbi)) {
2864 if (projid != F2FS_DEF_PROJID)
2865 return -EOPNOTSUPP;
2866 else
2867 return 0;
2868 }
2869
2870 if (!f2fs_has_extra_attr(inode))
2871 return -EOPNOTSUPP;
2872
2873 kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
2874
2875 if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
2876 return 0;
2877
2878 err = -EPERM;
2879 /* Is it quota file? Do not allow user to mess with it */
2880 if (IS_NOQUOTA(inode))
2881 return err;
2882
2883 ipage = f2fs_get_node_page(sbi, inode->i_ino);
2884 if (IS_ERR(ipage))
2885 return PTR_ERR(ipage);
2886
2887 if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
2888 i_projid)) {
2889 err = -EOVERFLOW;
2890 f2fs_put_page(ipage, 1);
2891 return err;
2892 }
2893 f2fs_put_page(ipage, 1);
2894
2895 err = dquot_initialize(inode);
2896 if (err)
2897 return err;
2898
2899 f2fs_lock_op(sbi);
2900 err = f2fs_transfer_project_quota(inode, kprojid);
2901 if (err)
2902 goto out_unlock;
2903
2904 F2FS_I(inode)->i_projid = kprojid;
2905 inode->i_ctime = current_time(inode);
2906 f2fs_mark_inode_dirty_sync(inode, true);
2907 out_unlock:
2908 f2fs_unlock_op(sbi);
2909 return err;
2910 }
2911 #else
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)2912 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
2913 {
2914 return 0;
2915 }
2916
f2fs_ioc_setproject(struct file * filp,__u32 projid)2917 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2918 {
2919 if (projid != F2FS_DEF_PROJID)
2920 return -EOPNOTSUPP;
2921 return 0;
2922 }
2923 #endif
2924
2925 /* FS_IOC_FSGETXATTR and FS_IOC_FSSETXATTR support */
2926
2927 /*
2928 * To make a new on-disk f2fs i_flag gettable via FS_IOC_FSGETXATTR and settable
2929 * via FS_IOC_FSSETXATTR, add an entry for it to f2fs_xflags_map[], and add its
2930 * FS_XFLAG_* equivalent to F2FS_SUPPORTED_XFLAGS.
2931 */
2932
2933 static const struct {
2934 u32 iflag;
2935 u32 xflag;
2936 } f2fs_xflags_map[] = {
2937 { F2FS_SYNC_FL, FS_XFLAG_SYNC },
2938 { F2FS_IMMUTABLE_FL, FS_XFLAG_IMMUTABLE },
2939 { F2FS_APPEND_FL, FS_XFLAG_APPEND },
2940 { F2FS_NODUMP_FL, FS_XFLAG_NODUMP },
2941 { F2FS_NOATIME_FL, FS_XFLAG_NOATIME },
2942 { F2FS_PROJINHERIT_FL, FS_XFLAG_PROJINHERIT },
2943 };
2944
2945 #define F2FS_SUPPORTED_XFLAGS ( \
2946 FS_XFLAG_SYNC | \
2947 FS_XFLAG_IMMUTABLE | \
2948 FS_XFLAG_APPEND | \
2949 FS_XFLAG_NODUMP | \
2950 FS_XFLAG_NOATIME | \
2951 FS_XFLAG_PROJINHERIT)
2952
2953 /* Convert f2fs on-disk i_flags to FS_IOC_FS{GET,SET}XATTR flags */
f2fs_iflags_to_xflags(u32 iflags)2954 static inline u32 f2fs_iflags_to_xflags(u32 iflags)
2955 {
2956 u32 xflags = 0;
2957 int i;
2958
2959 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++)
2960 if (iflags & f2fs_xflags_map[i].iflag)
2961 xflags |= f2fs_xflags_map[i].xflag;
2962
2963 return xflags;
2964 }
2965
2966 /* Convert FS_IOC_FS{GET,SET}XATTR flags to f2fs on-disk i_flags */
f2fs_xflags_to_iflags(u32 xflags)2967 static inline u32 f2fs_xflags_to_iflags(u32 xflags)
2968 {
2969 u32 iflags = 0;
2970 int i;
2971
2972 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++)
2973 if (xflags & f2fs_xflags_map[i].xflag)
2974 iflags |= f2fs_xflags_map[i].iflag;
2975
2976 return iflags;
2977 }
2978
f2fs_fill_fsxattr(struct inode * inode,struct fsxattr * fa)2979 static void f2fs_fill_fsxattr(struct inode *inode, struct fsxattr *fa)
2980 {
2981 struct f2fs_inode_info *fi = F2FS_I(inode);
2982
2983 simple_fill_fsxattr(fa, f2fs_iflags_to_xflags(fi->i_flags));
2984
2985 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
2986 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
2987 }
2988
f2fs_ioc_fsgetxattr(struct file * filp,unsigned long arg)2989 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
2990 {
2991 struct inode *inode = file_inode(filp);
2992 struct fsxattr fa;
2993
2994 f2fs_fill_fsxattr(inode, &fa);
2995
2996 if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
2997 return -EFAULT;
2998 return 0;
2999 }
3000
f2fs_ioc_fssetxattr(struct file * filp,unsigned long arg)3001 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
3002 {
3003 struct inode *inode = file_inode(filp);
3004 struct fsxattr fa, old_fa;
3005 u32 iflags;
3006 int err;
3007
3008 if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
3009 return -EFAULT;
3010
3011 /* Make sure caller has proper permission */
3012 if (!inode_owner_or_capable(inode))
3013 return -EACCES;
3014
3015 if (fa.fsx_xflags & ~F2FS_SUPPORTED_XFLAGS)
3016 return -EOPNOTSUPP;
3017
3018 iflags = f2fs_xflags_to_iflags(fa.fsx_xflags);
3019 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3020 return -EOPNOTSUPP;
3021
3022 err = mnt_want_write_file(filp);
3023 if (err)
3024 return err;
3025
3026 inode_lock(inode);
3027
3028 f2fs_fill_fsxattr(inode, &old_fa);
3029 err = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
3030 if (err)
3031 goto out;
3032
3033 err = f2fs_setflags_common(inode, iflags,
3034 f2fs_xflags_to_iflags(F2FS_SUPPORTED_XFLAGS));
3035 if (err)
3036 goto out;
3037
3038 err = f2fs_ioc_setproject(filp, fa.fsx_projid);
3039 out:
3040 inode_unlock(inode);
3041 mnt_drop_write_file(filp);
3042 return err;
3043 }
3044
f2fs_pin_file_control(struct inode * inode,bool inc)3045 int f2fs_pin_file_control(struct inode *inode, bool inc)
3046 {
3047 struct f2fs_inode_info *fi = F2FS_I(inode);
3048 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3049
3050 /* Use i_gc_failures for normal file as a risk signal. */
3051 if (inc)
3052 f2fs_i_gc_failures_write(inode,
3053 fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3054
3055 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3056 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3057 __func__, inode->i_ino,
3058 fi->i_gc_failures[GC_FAILURE_PIN]);
3059 clear_inode_flag(inode, FI_PIN_FILE);
3060 return -EAGAIN;
3061 }
3062 return 0;
3063 }
3064
f2fs_ioc_set_pin_file(struct file * filp,unsigned long arg)3065 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3066 {
3067 struct inode *inode = file_inode(filp);
3068 __u32 pin;
3069 int ret = 0;
3070
3071 if (get_user(pin, (__u32 __user *)arg))
3072 return -EFAULT;
3073
3074 if (!S_ISREG(inode->i_mode))
3075 return -EINVAL;
3076
3077 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3078 return -EROFS;
3079
3080 ret = mnt_want_write_file(filp);
3081 if (ret)
3082 return ret;
3083
3084 inode_lock(inode);
3085
3086 if (f2fs_should_update_outplace(inode, NULL)) {
3087 ret = -EINVAL;
3088 goto out;
3089 }
3090
3091 if (!pin) {
3092 clear_inode_flag(inode, FI_PIN_FILE);
3093 f2fs_i_gc_failures_write(inode, 0);
3094 goto done;
3095 }
3096
3097 if (f2fs_pin_file_control(inode, false)) {
3098 ret = -EAGAIN;
3099 goto out;
3100 }
3101 ret = f2fs_convert_inline_inode(inode);
3102 if (ret)
3103 goto out;
3104
3105 set_inode_flag(inode, FI_PIN_FILE);
3106 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3107 done:
3108 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3109 out:
3110 inode_unlock(inode);
3111 mnt_drop_write_file(filp);
3112 return ret;
3113 }
3114
f2fs_ioc_get_pin_file(struct file * filp,unsigned long arg)3115 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3116 {
3117 struct inode *inode = file_inode(filp);
3118 __u32 pin = 0;
3119
3120 if (is_inode_flag_set(inode, FI_PIN_FILE))
3121 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3122 return put_user(pin, (u32 __user *)arg);
3123 }
3124
f2fs_precache_extents(struct inode * inode)3125 int f2fs_precache_extents(struct inode *inode)
3126 {
3127 struct f2fs_inode_info *fi = F2FS_I(inode);
3128 struct f2fs_map_blocks map;
3129 pgoff_t m_next_extent;
3130 loff_t end;
3131 int err;
3132
3133 if (is_inode_flag_set(inode, FI_NO_EXTENT))
3134 return -EOPNOTSUPP;
3135
3136 map.m_lblk = 0;
3137 map.m_next_pgofs = NULL;
3138 map.m_next_extent = &m_next_extent;
3139 map.m_seg_type = NO_CHECK_TYPE;
3140 map.m_may_create = false;
3141 end = F2FS_I_SB(inode)->max_file_blocks;
3142
3143 while (map.m_lblk < end) {
3144 map.m_len = end - map.m_lblk;
3145
3146 down_write(&fi->i_gc_rwsem[WRITE]);
3147 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
3148 up_write(&fi->i_gc_rwsem[WRITE]);
3149 if (err)
3150 return err;
3151
3152 map.m_lblk = m_next_extent;
3153 }
3154
3155 return err;
3156 }
3157
f2fs_ioc_precache_extents(struct file * filp,unsigned long arg)3158 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
3159 {
3160 return f2fs_precache_extents(file_inode(filp));
3161 }
3162
f2fs_ioc_resize_fs(struct file * filp,unsigned long arg)3163 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3164 {
3165 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3166 __u64 block_count;
3167 int ret;
3168
3169 if (!capable(CAP_SYS_ADMIN))
3170 return -EPERM;
3171
3172 if (f2fs_readonly(sbi->sb))
3173 return -EROFS;
3174
3175 if (copy_from_user(&block_count, (void __user *)arg,
3176 sizeof(block_count)))
3177 return -EFAULT;
3178
3179 ret = f2fs_resize_fs(sbi, block_count);
3180
3181 return ret;
3182 }
3183
f2fs_ioc_enable_verity(struct file * filp,unsigned long arg)3184 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3185 {
3186 struct inode *inode = file_inode(filp);
3187
3188 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3189
3190 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3191 f2fs_warn(F2FS_I_SB(inode),
3192 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem.\n",
3193 inode->i_ino);
3194 return -EOPNOTSUPP;
3195 }
3196
3197 return fsverity_ioctl_enable(filp, (const void __user *)arg);
3198 }
3199
f2fs_ioc_measure_verity(struct file * filp,unsigned long arg)3200 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3201 {
3202 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3203 return -EOPNOTSUPP;
3204
3205 return fsverity_ioctl_measure(filp, (void __user *)arg);
3206 }
3207
f2fs_get_volume_name(struct file * filp,unsigned long arg)3208 static int f2fs_get_volume_name(struct file *filp, unsigned long arg)
3209 {
3210 struct inode *inode = file_inode(filp);
3211 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3212 char *vbuf;
3213 int count;
3214 int err = 0;
3215
3216 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3217 if (!vbuf)
3218 return -ENOMEM;
3219
3220 down_read(&sbi->sb_lock);
3221 count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3222 ARRAY_SIZE(sbi->raw_super->volume_name),
3223 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3224 up_read(&sbi->sb_lock);
3225
3226 if (copy_to_user((char __user *)arg, vbuf,
3227 min(FSLABEL_MAX, count)))
3228 err = -EFAULT;
3229
3230 kvfree(vbuf);
3231 return err;
3232 }
3233
f2fs_set_volume_name(struct file * filp,unsigned long arg)3234 static int f2fs_set_volume_name(struct file *filp, unsigned long arg)
3235 {
3236 struct inode *inode = file_inode(filp);
3237 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3238 char *vbuf;
3239 int err = 0;
3240
3241 if (!capable(CAP_SYS_ADMIN))
3242 return -EPERM;
3243
3244 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3245 if (IS_ERR(vbuf))
3246 return PTR_ERR(vbuf);
3247
3248 err = mnt_want_write_file(filp);
3249 if (err)
3250 goto out;
3251
3252 down_write(&sbi->sb_lock);
3253
3254 memset(sbi->raw_super->volume_name, 0,
3255 sizeof(sbi->raw_super->volume_name));
3256 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3257 sbi->raw_super->volume_name,
3258 ARRAY_SIZE(sbi->raw_super->volume_name));
3259
3260 err = f2fs_commit_super(sbi, false);
3261
3262 up_write(&sbi->sb_lock);
3263
3264 mnt_drop_write_file(filp);
3265 out:
3266 kfree(vbuf);
3267 return err;
3268 }
3269
f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)3270 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
3271 {
3272 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
3273 return -EIO;
3274 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
3275 return -ENOSPC;
3276
3277 switch (cmd) {
3278 case F2FS_IOC_GETFLAGS:
3279 return f2fs_ioc_getflags(filp, arg);
3280 case F2FS_IOC_SETFLAGS:
3281 return f2fs_ioc_setflags(filp, arg);
3282 case F2FS_IOC_GETVERSION:
3283 return f2fs_ioc_getversion(filp, arg);
3284 case F2FS_IOC_START_ATOMIC_WRITE:
3285 return f2fs_ioc_start_atomic_write(filp);
3286 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
3287 return f2fs_ioc_commit_atomic_write(filp);
3288 case F2FS_IOC_START_VOLATILE_WRITE:
3289 return f2fs_ioc_start_volatile_write(filp);
3290 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
3291 return f2fs_ioc_release_volatile_write(filp);
3292 case F2FS_IOC_ABORT_VOLATILE_WRITE:
3293 return f2fs_ioc_abort_volatile_write(filp);
3294 case F2FS_IOC_SHUTDOWN:
3295 return f2fs_ioc_shutdown(filp, arg);
3296 case FITRIM:
3297 return f2fs_ioc_fitrim(filp, arg);
3298 case F2FS_IOC_SET_ENCRYPTION_POLICY:
3299 return f2fs_ioc_set_encryption_policy(filp, arg);
3300 case F2FS_IOC_GET_ENCRYPTION_POLICY:
3301 return f2fs_ioc_get_encryption_policy(filp, arg);
3302 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
3303 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
3304 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
3305 return f2fs_ioc_get_encryption_policy_ex(filp, arg);
3306 case FS_IOC_ADD_ENCRYPTION_KEY:
3307 return f2fs_ioc_add_encryption_key(filp, arg);
3308 case FS_IOC_REMOVE_ENCRYPTION_KEY:
3309 return f2fs_ioc_remove_encryption_key(filp, arg);
3310 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
3311 return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
3312 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
3313 return f2fs_ioc_get_encryption_key_status(filp, arg);
3314 case F2FS_IOC_GARBAGE_COLLECT:
3315 return f2fs_ioc_gc(filp, arg);
3316 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
3317 return f2fs_ioc_gc_range(filp, arg);
3318 case F2FS_IOC_WRITE_CHECKPOINT:
3319 return f2fs_ioc_write_checkpoint(filp, arg);
3320 case F2FS_IOC_DEFRAGMENT:
3321 return f2fs_ioc_defragment(filp, arg);
3322 case F2FS_IOC_MOVE_RANGE:
3323 return f2fs_ioc_move_range(filp, arg);
3324 case F2FS_IOC_FLUSH_DEVICE:
3325 return f2fs_ioc_flush_device(filp, arg);
3326 case F2FS_IOC_GET_FEATURES:
3327 return f2fs_ioc_get_features(filp, arg);
3328 case F2FS_IOC_FSGETXATTR:
3329 return f2fs_ioc_fsgetxattr(filp, arg);
3330 case F2FS_IOC_FSSETXATTR:
3331 return f2fs_ioc_fssetxattr(filp, arg);
3332 case F2FS_IOC_GET_PIN_FILE:
3333 return f2fs_ioc_get_pin_file(filp, arg);
3334 case F2FS_IOC_SET_PIN_FILE:
3335 return f2fs_ioc_set_pin_file(filp, arg);
3336 case F2FS_IOC_PRECACHE_EXTENTS:
3337 return f2fs_ioc_precache_extents(filp, arg);
3338 case F2FS_IOC_RESIZE_FS:
3339 return f2fs_ioc_resize_fs(filp, arg);
3340 case FS_IOC_ENABLE_VERITY:
3341 return f2fs_ioc_enable_verity(filp, arg);
3342 case FS_IOC_MEASURE_VERITY:
3343 return f2fs_ioc_measure_verity(filp, arg);
3344 case F2FS_IOC_GET_VOLUME_NAME:
3345 return f2fs_get_volume_name(filp, arg);
3346 case F2FS_IOC_SET_VOLUME_NAME:
3347 return f2fs_set_volume_name(filp, arg);
3348 default:
3349 return -ENOTTY;
3350 }
3351 }
3352
f2fs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)3353 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3354 {
3355 struct file *file = iocb->ki_filp;
3356 struct inode *inode = file_inode(file);
3357 ssize_t ret;
3358
3359 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
3360 ret = -EIO;
3361 goto out;
3362 }
3363
3364 if (iocb->ki_flags & IOCB_NOWAIT) {
3365 if (!inode_trylock(inode)) {
3366 ret = -EAGAIN;
3367 goto out;
3368 }
3369 } else {
3370 inode_lock(inode);
3371 }
3372
3373 ret = generic_write_checks(iocb, from);
3374 if (ret > 0) {
3375 bool preallocated = false;
3376 size_t target_size = 0;
3377 int err;
3378
3379 if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
3380 set_inode_flag(inode, FI_NO_PREALLOC);
3381
3382 if ((iocb->ki_flags & IOCB_NOWAIT)) {
3383 if (!f2fs_overwrite_io(inode, iocb->ki_pos,
3384 iov_iter_count(from)) ||
3385 f2fs_has_inline_data(inode) ||
3386 f2fs_force_buffered_io(inode, iocb, from)) {
3387 clear_inode_flag(inode, FI_NO_PREALLOC);
3388 inode_unlock(inode);
3389 ret = -EAGAIN;
3390 goto out;
3391 }
3392 } else {
3393 preallocated = true;
3394 target_size = iocb->ki_pos + iov_iter_count(from);
3395
3396 err = f2fs_preallocate_blocks(iocb, from);
3397 if (err) {
3398 clear_inode_flag(inode, FI_NO_PREALLOC);
3399 inode_unlock(inode);
3400 ret = err;
3401 goto out;
3402 }
3403 }
3404 ret = __generic_file_write_iter(iocb, from);
3405 clear_inode_flag(inode, FI_NO_PREALLOC);
3406
3407 /* if we couldn't write data, we should deallocate blocks. */
3408 if (preallocated && i_size_read(inode) < target_size)
3409 f2fs_truncate(inode);
3410
3411 if (ret > 0)
3412 f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
3413 }
3414 inode_unlock(inode);
3415 out:
3416 trace_f2fs_file_write_iter(inode, iocb->ki_pos,
3417 iov_iter_count(from), ret);
3418 if (ret > 0)
3419 ret = generic_write_sync(iocb, ret);
3420 return ret;
3421 }
3422
3423 #ifdef CONFIG_COMPAT
f2fs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3424 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3425 {
3426 switch (cmd) {
3427 case F2FS_IOC32_GETFLAGS:
3428 cmd = F2FS_IOC_GETFLAGS;
3429 break;
3430 case F2FS_IOC32_SETFLAGS:
3431 cmd = F2FS_IOC_SETFLAGS;
3432 break;
3433 case F2FS_IOC32_GETVERSION:
3434 cmd = F2FS_IOC_GETVERSION;
3435 break;
3436 case F2FS_IOC_START_ATOMIC_WRITE:
3437 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
3438 case F2FS_IOC_START_VOLATILE_WRITE:
3439 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
3440 case F2FS_IOC_ABORT_VOLATILE_WRITE:
3441 case F2FS_IOC_SHUTDOWN:
3442 case F2FS_IOC_SET_ENCRYPTION_POLICY:
3443 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
3444 case F2FS_IOC_GET_ENCRYPTION_POLICY:
3445 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
3446 case FS_IOC_ADD_ENCRYPTION_KEY:
3447 case FS_IOC_REMOVE_ENCRYPTION_KEY:
3448 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
3449 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
3450 case F2FS_IOC_GARBAGE_COLLECT:
3451 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
3452 case F2FS_IOC_WRITE_CHECKPOINT:
3453 case F2FS_IOC_DEFRAGMENT:
3454 case F2FS_IOC_MOVE_RANGE:
3455 case F2FS_IOC_FLUSH_DEVICE:
3456 case F2FS_IOC_GET_FEATURES:
3457 case F2FS_IOC_FSGETXATTR:
3458 case F2FS_IOC_FSSETXATTR:
3459 case F2FS_IOC_GET_PIN_FILE:
3460 case F2FS_IOC_SET_PIN_FILE:
3461 case F2FS_IOC_PRECACHE_EXTENTS:
3462 case F2FS_IOC_RESIZE_FS:
3463 case FS_IOC_ENABLE_VERITY:
3464 case FS_IOC_MEASURE_VERITY:
3465 case F2FS_IOC_GET_VOLUME_NAME:
3466 case F2FS_IOC_SET_VOLUME_NAME:
3467 break;
3468 default:
3469 return -ENOIOCTLCMD;
3470 }
3471 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
3472 }
3473 #endif
3474
3475 const struct file_operations f2fs_file_operations = {
3476 .llseek = f2fs_llseek,
3477 .read_iter = generic_file_read_iter,
3478 .write_iter = f2fs_file_write_iter,
3479 .open = f2fs_file_open,
3480 .release = f2fs_release_file,
3481 .mmap = f2fs_file_mmap,
3482 .flush = f2fs_file_flush,
3483 .fsync = f2fs_sync_file,
3484 .fallocate = f2fs_fallocate,
3485 .unlocked_ioctl = f2fs_ioctl,
3486 #ifdef CONFIG_COMPAT
3487 .compat_ioctl = f2fs_compat_ioctl,
3488 #endif
3489 .splice_read = generic_file_splice_read,
3490 .splice_write = iter_file_splice_write,
3491 };
3492