1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/segment.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include "gc.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32
__reverse_ulong(unsigned char * str)33 static unsigned long __reverse_ulong(unsigned char *str)
34 {
35 unsigned long tmp = 0;
36 int shift = 24, idx = 0;
37
38 #if BITS_PER_LONG == 64
39 shift = 56;
40 #endif
41 while (shift >= 0) {
42 tmp |= (unsigned long)str[idx++] << shift;
43 shift -= BITS_PER_BYTE;
44 }
45 return tmp;
46 }
47
48 /*
49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
51 */
__reverse_ffs(unsigned long word)52 static inline unsigned long __reverse_ffs(unsigned long word)
53 {
54 int num = 0;
55
56 #if BITS_PER_LONG == 64
57 if ((word & 0xffffffff00000000UL) == 0)
58 num += 32;
59 else
60 word >>= 32;
61 #endif
62 if ((word & 0xffff0000) == 0)
63 num += 16;
64 else
65 word >>= 16;
66
67 if ((word & 0xff00) == 0)
68 num += 8;
69 else
70 word >>= 8;
71
72 if ((word & 0xf0) == 0)
73 num += 4;
74 else
75 word >>= 4;
76
77 if ((word & 0xc) == 0)
78 num += 2;
79 else
80 word >>= 2;
81
82 if ((word & 0x2) == 0)
83 num += 1;
84 return num;
85 }
86
87 /*
88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
90 * @size must be integral times of unsigned long.
91 * Example:
92 * MSB <--> LSB
93 * f2fs_set_bit(0, bitmap) => 1000 0000
94 * f2fs_set_bit(7, bitmap) => 0000 0001
95 */
__find_rev_next_bit(const unsigned long * addr,unsigned long size,unsigned long offset)96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97 unsigned long size, unsigned long offset)
98 {
99 const unsigned long *p = addr + BIT_WORD(offset);
100 unsigned long result = size;
101 unsigned long tmp;
102
103 if (offset >= size)
104 return size;
105
106 size -= (offset & ~(BITS_PER_LONG - 1));
107 offset %= BITS_PER_LONG;
108
109 while (1) {
110 if (*p == 0)
111 goto pass;
112
113 tmp = __reverse_ulong((unsigned char *)p);
114
115 tmp &= ~0UL >> offset;
116 if (size < BITS_PER_LONG)
117 tmp &= (~0UL << (BITS_PER_LONG - size));
118 if (tmp)
119 goto found;
120 pass:
121 if (size <= BITS_PER_LONG)
122 break;
123 size -= BITS_PER_LONG;
124 offset = 0;
125 p++;
126 }
127 return result;
128 found:
129 return result - size + __reverse_ffs(tmp);
130 }
131
__find_rev_next_zero_bit(const unsigned long * addr,unsigned long size,unsigned long offset)132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133 unsigned long size, unsigned long offset)
134 {
135 const unsigned long *p = addr + BIT_WORD(offset);
136 unsigned long result = size;
137 unsigned long tmp;
138
139 if (offset >= size)
140 return size;
141
142 size -= (offset & ~(BITS_PER_LONG - 1));
143 offset %= BITS_PER_LONG;
144
145 while (1) {
146 if (*p == ~0UL)
147 goto pass;
148
149 tmp = __reverse_ulong((unsigned char *)p);
150
151 if (offset)
152 tmp |= ~0UL << (BITS_PER_LONG - offset);
153 if (size < BITS_PER_LONG)
154 tmp |= ~0UL >> size;
155 if (tmp != ~0UL)
156 goto found;
157 pass:
158 if (size <= BITS_PER_LONG)
159 break;
160 size -= BITS_PER_LONG;
161 offset = 0;
162 p++;
163 }
164 return result;
165 found:
166 return result - size + __reverse_ffz(tmp);
167 }
168
f2fs_need_SSR(struct f2fs_sb_info * sbi)169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
170 {
171 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
172 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
173 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
174
175 if (test_opt(sbi, LFS))
176 return false;
177 if (sbi->gc_mode == GC_URGENT)
178 return true;
179 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
180 return true;
181
182 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
183 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
184 }
185
f2fs_register_inmem_page(struct inode * inode,struct page * page)186 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
187 {
188 struct inmem_pages *new;
189
190 f2fs_trace_pid(page);
191
192 f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
193
194 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
195
196 /* add atomic page indices to the list */
197 new->page = page;
198 INIT_LIST_HEAD(&new->list);
199
200 /* increase reference count with clean state */
201 get_page(page);
202 mutex_lock(&F2FS_I(inode)->inmem_lock);
203 list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
204 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
205 mutex_unlock(&F2FS_I(inode)->inmem_lock);
206
207 trace_f2fs_register_inmem_page(page, INMEM);
208 }
209
__revoke_inmem_pages(struct inode * inode,struct list_head * head,bool drop,bool recover,bool trylock)210 static int __revoke_inmem_pages(struct inode *inode,
211 struct list_head *head, bool drop, bool recover,
212 bool trylock)
213 {
214 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
215 struct inmem_pages *cur, *tmp;
216 int err = 0;
217
218 list_for_each_entry_safe(cur, tmp, head, list) {
219 struct page *page = cur->page;
220
221 if (drop)
222 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
223
224 if (trylock) {
225 /*
226 * to avoid deadlock in between page lock and
227 * inmem_lock.
228 */
229 if (!trylock_page(page))
230 continue;
231 } else {
232 lock_page(page);
233 }
234
235 f2fs_wait_on_page_writeback(page, DATA, true, true);
236
237 if (recover) {
238 struct dnode_of_data dn;
239 struct node_info ni;
240
241 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
242 retry:
243 set_new_dnode(&dn, inode, NULL, NULL, 0);
244 err = f2fs_get_dnode_of_data(&dn, page->index,
245 LOOKUP_NODE);
246 if (err) {
247 if (err == -ENOMEM) {
248 congestion_wait(BLK_RW_ASYNC, HZ/50);
249 cond_resched();
250 goto retry;
251 }
252 err = -EAGAIN;
253 goto next;
254 }
255
256 err = f2fs_get_node_info(sbi, dn.nid, &ni);
257 if (err) {
258 f2fs_put_dnode(&dn);
259 return err;
260 }
261
262 if (cur->old_addr == NEW_ADDR) {
263 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
264 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
265 } else
266 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
267 cur->old_addr, ni.version, true, true);
268 f2fs_put_dnode(&dn);
269 }
270 next:
271 /* we don't need to invalidate this in the sccessful status */
272 if (drop || recover) {
273 ClearPageUptodate(page);
274 clear_cold_data(page);
275 }
276 f2fs_clear_page_private(page);
277 f2fs_put_page(page, 1);
278
279 list_del(&cur->list);
280 kmem_cache_free(inmem_entry_slab, cur);
281 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
282 }
283 return err;
284 }
285
f2fs_drop_inmem_pages_all(struct f2fs_sb_info * sbi,bool gc_failure)286 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
287 {
288 struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
289 struct inode *inode;
290 struct f2fs_inode_info *fi;
291 unsigned int count = sbi->atomic_files;
292 unsigned int looped = 0;
293 next:
294 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
295 if (list_empty(head)) {
296 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
297 return;
298 }
299 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
300 inode = igrab(&fi->vfs_inode);
301 if (inode)
302 list_move_tail(&fi->inmem_ilist, head);
303 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
304
305 if (inode) {
306 if (gc_failure) {
307 if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
308 goto skip;
309 }
310 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
311 f2fs_drop_inmem_pages(inode);
312 skip:
313 iput(inode);
314 }
315 congestion_wait(BLK_RW_ASYNC, HZ/50);
316 cond_resched();
317 if (gc_failure) {
318 if (++looped >= count)
319 return;
320 }
321 goto next;
322 }
323
f2fs_drop_inmem_pages(struct inode * inode)324 void f2fs_drop_inmem_pages(struct inode *inode)
325 {
326 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
327 struct f2fs_inode_info *fi = F2FS_I(inode);
328
329 while (!list_empty(&fi->inmem_pages)) {
330 mutex_lock(&fi->inmem_lock);
331 __revoke_inmem_pages(inode, &fi->inmem_pages,
332 true, false, true);
333 mutex_unlock(&fi->inmem_lock);
334 }
335
336 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
337 stat_dec_atomic_write(inode);
338
339 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
340 if (!list_empty(&fi->inmem_ilist))
341 list_del_init(&fi->inmem_ilist);
342 if (f2fs_is_atomic_file(inode)) {
343 clear_inode_flag(inode, FI_ATOMIC_FILE);
344 sbi->atomic_files--;
345 }
346 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
347 }
348
f2fs_drop_inmem_page(struct inode * inode,struct page * page)349 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
350 {
351 struct f2fs_inode_info *fi = F2FS_I(inode);
352 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
353 struct list_head *head = &fi->inmem_pages;
354 struct inmem_pages *cur = NULL;
355
356 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
357
358 mutex_lock(&fi->inmem_lock);
359 list_for_each_entry(cur, head, list) {
360 if (cur->page == page)
361 break;
362 }
363
364 f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
365 list_del(&cur->list);
366 mutex_unlock(&fi->inmem_lock);
367
368 dec_page_count(sbi, F2FS_INMEM_PAGES);
369 kmem_cache_free(inmem_entry_slab, cur);
370
371 ClearPageUptodate(page);
372 f2fs_clear_page_private(page);
373 f2fs_put_page(page, 0);
374
375 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
376 }
377
__f2fs_commit_inmem_pages(struct inode * inode)378 static int __f2fs_commit_inmem_pages(struct inode *inode)
379 {
380 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
381 struct f2fs_inode_info *fi = F2FS_I(inode);
382 struct inmem_pages *cur, *tmp;
383 struct f2fs_io_info fio = {
384 .sbi = sbi,
385 .ino = inode->i_ino,
386 .type = DATA,
387 .op = REQ_OP_WRITE,
388 .op_flags = REQ_SYNC | REQ_PRIO,
389 .io_type = FS_DATA_IO,
390 };
391 struct list_head revoke_list;
392 bool submit_bio = false;
393 int err = 0;
394
395 INIT_LIST_HEAD(&revoke_list);
396
397 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
398 struct page *page = cur->page;
399
400 lock_page(page);
401 if (page->mapping == inode->i_mapping) {
402 trace_f2fs_commit_inmem_page(page, INMEM);
403
404 f2fs_wait_on_page_writeback(page, DATA, true, true);
405
406 set_page_dirty(page);
407 if (clear_page_dirty_for_io(page)) {
408 inode_dec_dirty_pages(inode);
409 f2fs_remove_dirty_inode(inode);
410 }
411 retry:
412 fio.page = page;
413 fio.old_blkaddr = NULL_ADDR;
414 fio.encrypted_page = NULL;
415 fio.need_lock = LOCK_DONE;
416 err = f2fs_do_write_data_page(&fio);
417 if (err) {
418 if (err == -ENOMEM) {
419 congestion_wait(BLK_RW_ASYNC, HZ/50);
420 cond_resched();
421 goto retry;
422 }
423 unlock_page(page);
424 break;
425 }
426 /* record old blkaddr for revoking */
427 cur->old_addr = fio.old_blkaddr;
428 submit_bio = true;
429 }
430 unlock_page(page);
431 list_move_tail(&cur->list, &revoke_list);
432 }
433
434 if (submit_bio)
435 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
436
437 if (err) {
438 /*
439 * try to revoke all committed pages, but still we could fail
440 * due to no memory or other reason, if that happened, EAGAIN
441 * will be returned, which means in such case, transaction is
442 * already not integrity, caller should use journal to do the
443 * recovery or rewrite & commit last transaction. For other
444 * error number, revoking was done by filesystem itself.
445 */
446 err = __revoke_inmem_pages(inode, &revoke_list,
447 false, true, false);
448
449 /* drop all uncommitted pages */
450 __revoke_inmem_pages(inode, &fi->inmem_pages,
451 true, false, false);
452 } else {
453 __revoke_inmem_pages(inode, &revoke_list,
454 false, false, false);
455 }
456
457 return err;
458 }
459
f2fs_commit_inmem_pages(struct inode * inode)460 int f2fs_commit_inmem_pages(struct inode *inode)
461 {
462 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
463 struct f2fs_inode_info *fi = F2FS_I(inode);
464 int err;
465
466 f2fs_balance_fs(sbi, true);
467
468 down_write(&fi->i_gc_rwsem[WRITE]);
469
470 f2fs_lock_op(sbi);
471 set_inode_flag(inode, FI_ATOMIC_COMMIT);
472
473 mutex_lock(&fi->inmem_lock);
474 err = __f2fs_commit_inmem_pages(inode);
475 mutex_unlock(&fi->inmem_lock);
476
477 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
478
479 f2fs_unlock_op(sbi);
480 up_write(&fi->i_gc_rwsem[WRITE]);
481
482 return err;
483 }
484
485 /*
486 * This function balances dirty node and dentry pages.
487 * In addition, it controls garbage collection.
488 */
f2fs_balance_fs(struct f2fs_sb_info * sbi,bool need)489 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
490 {
491 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
492 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
493 f2fs_stop_checkpoint(sbi, false);
494 }
495
496 /* balance_fs_bg is able to be pending */
497 if (need && excess_cached_nats(sbi))
498 f2fs_balance_fs_bg(sbi);
499
500 if (!f2fs_is_checkpoint_ready(sbi))
501 return;
502
503 /*
504 * We should do GC or end up with checkpoint, if there are so many dirty
505 * dir/node pages without enough free segments.
506 */
507 if (has_not_enough_free_secs(sbi, 0, 0)) {
508 mutex_lock(&sbi->gc_mutex);
509 f2fs_gc(sbi, false, false, NULL_SEGNO);
510 }
511 }
512
f2fs_balance_fs_bg(struct f2fs_sb_info * sbi)513 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
514 {
515 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
516 return;
517
518 /* try to shrink extent cache when there is no enough memory */
519 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
520 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
521
522 /* check the # of cached NAT entries */
523 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
524 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
525
526 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
527 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
528 else
529 f2fs_build_free_nids(sbi, false, false);
530
531 if (!is_idle(sbi, REQ_TIME) &&
532 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
533 return;
534
535 /* checkpoint is the only way to shrink partial cached entries */
536 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
537 !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
538 excess_prefree_segs(sbi) ||
539 excess_dirty_nats(sbi) ||
540 excess_dirty_nodes(sbi) ||
541 f2fs_time_over(sbi, CP_TIME)) {
542 if (test_opt(sbi, DATA_FLUSH)) {
543 struct blk_plug plug;
544
545 mutex_lock(&sbi->flush_lock);
546
547 blk_start_plug(&plug);
548 f2fs_sync_dirty_inodes(sbi, FILE_INODE);
549 blk_finish_plug(&plug);
550
551 mutex_unlock(&sbi->flush_lock);
552 }
553 f2fs_sync_fs(sbi->sb, true);
554 stat_inc_bg_cp_count(sbi->stat_info);
555 }
556 }
557
__submit_flush_wait(struct f2fs_sb_info * sbi,struct block_device * bdev)558 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
559 struct block_device *bdev)
560 {
561 struct bio *bio;
562 int ret;
563
564 bio = f2fs_bio_alloc(sbi, 0, false);
565 if (!bio)
566 return -ENOMEM;
567
568 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
569 bio_set_dev(bio, bdev);
570 ret = submit_bio_wait(bio);
571 bio_put(bio);
572
573 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
574 test_opt(sbi, FLUSH_MERGE), ret);
575 return ret;
576 }
577
submit_flush_wait(struct f2fs_sb_info * sbi,nid_t ino)578 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
579 {
580 int ret = 0;
581 int i;
582
583 if (!f2fs_is_multi_device(sbi))
584 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
585
586 for (i = 0; i < sbi->s_ndevs; i++) {
587 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
588 continue;
589 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
590 if (ret)
591 break;
592 }
593 return ret;
594 }
595
issue_flush_thread(void * data)596 static int issue_flush_thread(void *data)
597 {
598 struct f2fs_sb_info *sbi = data;
599 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
600 wait_queue_head_t *q = &fcc->flush_wait_queue;
601 repeat:
602 if (kthread_should_stop())
603 return 0;
604
605 sb_start_intwrite(sbi->sb);
606
607 if (!llist_empty(&fcc->issue_list)) {
608 struct flush_cmd *cmd, *next;
609 int ret;
610
611 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
612 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
613
614 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
615
616 ret = submit_flush_wait(sbi, cmd->ino);
617 atomic_inc(&fcc->issued_flush);
618
619 llist_for_each_entry_safe(cmd, next,
620 fcc->dispatch_list, llnode) {
621 cmd->ret = ret;
622 complete(&cmd->wait);
623 }
624 fcc->dispatch_list = NULL;
625 }
626
627 sb_end_intwrite(sbi->sb);
628
629 wait_event_interruptible(*q,
630 kthread_should_stop() || !llist_empty(&fcc->issue_list));
631 goto repeat;
632 }
633
f2fs_issue_flush(struct f2fs_sb_info * sbi,nid_t ino)634 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
635 {
636 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
637 struct flush_cmd cmd;
638 int ret;
639
640 if (test_opt(sbi, NOBARRIER))
641 return 0;
642
643 if (!test_opt(sbi, FLUSH_MERGE)) {
644 atomic_inc(&fcc->queued_flush);
645 ret = submit_flush_wait(sbi, ino);
646 atomic_dec(&fcc->queued_flush);
647 atomic_inc(&fcc->issued_flush);
648 return ret;
649 }
650
651 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
652 f2fs_is_multi_device(sbi)) {
653 ret = submit_flush_wait(sbi, ino);
654 atomic_dec(&fcc->queued_flush);
655
656 atomic_inc(&fcc->issued_flush);
657 return ret;
658 }
659
660 cmd.ino = ino;
661 init_completion(&cmd.wait);
662
663 llist_add(&cmd.llnode, &fcc->issue_list);
664
665 /* update issue_list before we wake up issue_flush thread */
666 smp_mb();
667
668 if (waitqueue_active(&fcc->flush_wait_queue))
669 wake_up(&fcc->flush_wait_queue);
670
671 if (fcc->f2fs_issue_flush) {
672 wait_for_completion(&cmd.wait);
673 atomic_dec(&fcc->queued_flush);
674 } else {
675 struct llist_node *list;
676
677 list = llist_del_all(&fcc->issue_list);
678 if (!list) {
679 wait_for_completion(&cmd.wait);
680 atomic_dec(&fcc->queued_flush);
681 } else {
682 struct flush_cmd *tmp, *next;
683
684 ret = submit_flush_wait(sbi, ino);
685
686 llist_for_each_entry_safe(tmp, next, list, llnode) {
687 if (tmp == &cmd) {
688 cmd.ret = ret;
689 atomic_dec(&fcc->queued_flush);
690 continue;
691 }
692 tmp->ret = ret;
693 complete(&tmp->wait);
694 }
695 }
696 }
697
698 return cmd.ret;
699 }
700
f2fs_create_flush_cmd_control(struct f2fs_sb_info * sbi)701 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
702 {
703 dev_t dev = sbi->sb->s_bdev->bd_dev;
704 struct flush_cmd_control *fcc;
705 int err = 0;
706
707 if (SM_I(sbi)->fcc_info) {
708 fcc = SM_I(sbi)->fcc_info;
709 if (fcc->f2fs_issue_flush)
710 return err;
711 goto init_thread;
712 }
713
714 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
715 if (!fcc)
716 return -ENOMEM;
717 atomic_set(&fcc->issued_flush, 0);
718 atomic_set(&fcc->queued_flush, 0);
719 init_waitqueue_head(&fcc->flush_wait_queue);
720 init_llist_head(&fcc->issue_list);
721 SM_I(sbi)->fcc_info = fcc;
722 if (!test_opt(sbi, FLUSH_MERGE))
723 return err;
724
725 init_thread:
726 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
727 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
728 if (IS_ERR(fcc->f2fs_issue_flush)) {
729 err = PTR_ERR(fcc->f2fs_issue_flush);
730 kvfree(fcc);
731 SM_I(sbi)->fcc_info = NULL;
732 return err;
733 }
734
735 return err;
736 }
737
f2fs_destroy_flush_cmd_control(struct f2fs_sb_info * sbi,bool free)738 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
739 {
740 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
741
742 if (fcc && fcc->f2fs_issue_flush) {
743 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
744
745 fcc->f2fs_issue_flush = NULL;
746 kthread_stop(flush_thread);
747 }
748 if (free) {
749 kvfree(fcc);
750 SM_I(sbi)->fcc_info = NULL;
751 }
752 }
753
f2fs_flush_device_cache(struct f2fs_sb_info * sbi)754 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
755 {
756 int ret = 0, i;
757
758 if (!f2fs_is_multi_device(sbi))
759 return 0;
760
761 for (i = 1; i < sbi->s_ndevs; i++) {
762 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
763 continue;
764 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
765 if (ret)
766 break;
767
768 spin_lock(&sbi->dev_lock);
769 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
770 spin_unlock(&sbi->dev_lock);
771 }
772
773 return ret;
774 }
775
__locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)776 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
777 enum dirty_type dirty_type)
778 {
779 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
780
781 /* need not be added */
782 if (IS_CURSEG(sbi, segno))
783 return;
784
785 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
786 dirty_i->nr_dirty[dirty_type]++;
787
788 if (dirty_type == DIRTY) {
789 struct seg_entry *sentry = get_seg_entry(sbi, segno);
790 enum dirty_type t = sentry->type;
791
792 if (unlikely(t >= DIRTY)) {
793 f2fs_bug_on(sbi, 1);
794 return;
795 }
796 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
797 dirty_i->nr_dirty[t]++;
798 }
799 }
800
__remove_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)801 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
802 enum dirty_type dirty_type)
803 {
804 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
805
806 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
807 dirty_i->nr_dirty[dirty_type]--;
808
809 if (dirty_type == DIRTY) {
810 struct seg_entry *sentry = get_seg_entry(sbi, segno);
811 enum dirty_type t = sentry->type;
812
813 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
814 dirty_i->nr_dirty[t]--;
815
816 if (get_valid_blocks(sbi, segno, true) == 0) {
817 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
818 dirty_i->victim_secmap);
819 #ifdef CONFIG_F2FS_CHECK_FS
820 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
821 #endif
822 }
823 }
824 }
825
826 /*
827 * Should not occur error such as -ENOMEM.
828 * Adding dirty entry into seglist is not critical operation.
829 * If a given segment is one of current working segments, it won't be added.
830 */
locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno)831 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
832 {
833 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
834 unsigned short valid_blocks, ckpt_valid_blocks;
835
836 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
837 return;
838
839 mutex_lock(&dirty_i->seglist_lock);
840
841 valid_blocks = get_valid_blocks(sbi, segno, false);
842 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
843
844 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
845 ckpt_valid_blocks == sbi->blocks_per_seg)) {
846 __locate_dirty_segment(sbi, segno, PRE);
847 __remove_dirty_segment(sbi, segno, DIRTY);
848 } else if (valid_blocks < sbi->blocks_per_seg) {
849 __locate_dirty_segment(sbi, segno, DIRTY);
850 } else {
851 /* Recovery routine with SSR needs this */
852 __remove_dirty_segment(sbi, segno, DIRTY);
853 }
854
855 mutex_unlock(&dirty_i->seglist_lock);
856 }
857
858 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
f2fs_dirty_to_prefree(struct f2fs_sb_info * sbi)859 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
860 {
861 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
862 unsigned int segno;
863
864 mutex_lock(&dirty_i->seglist_lock);
865 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
866 if (get_valid_blocks(sbi, segno, false))
867 continue;
868 if (IS_CURSEG(sbi, segno))
869 continue;
870 __locate_dirty_segment(sbi, segno, PRE);
871 __remove_dirty_segment(sbi, segno, DIRTY);
872 }
873 mutex_unlock(&dirty_i->seglist_lock);
874 }
875
f2fs_get_unusable_blocks(struct f2fs_sb_info * sbi)876 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
877 {
878 int ovp_hole_segs =
879 (overprovision_segments(sbi) - reserved_segments(sbi));
880 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
881 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
882 block_t holes[2] = {0, 0}; /* DATA and NODE */
883 block_t unusable;
884 struct seg_entry *se;
885 unsigned int segno;
886
887 mutex_lock(&dirty_i->seglist_lock);
888 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
889 se = get_seg_entry(sbi, segno);
890 if (IS_NODESEG(se->type))
891 holes[NODE] += sbi->blocks_per_seg - se->valid_blocks;
892 else
893 holes[DATA] += sbi->blocks_per_seg - se->valid_blocks;
894 }
895 mutex_unlock(&dirty_i->seglist_lock);
896
897 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
898 if (unusable > ovp_holes)
899 return unusable - ovp_holes;
900 return 0;
901 }
902
f2fs_disable_cp_again(struct f2fs_sb_info * sbi,block_t unusable)903 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
904 {
905 int ovp_hole_segs =
906 (overprovision_segments(sbi) - reserved_segments(sbi));
907 if (unusable > F2FS_OPTION(sbi).unusable_cap)
908 return -EAGAIN;
909 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
910 dirty_segments(sbi) > ovp_hole_segs)
911 return -EAGAIN;
912 return 0;
913 }
914
915 /* This is only used by SBI_CP_DISABLED */
get_free_segment(struct f2fs_sb_info * sbi)916 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
917 {
918 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
919 unsigned int segno = 0;
920
921 mutex_lock(&dirty_i->seglist_lock);
922 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
923 if (get_valid_blocks(sbi, segno, false))
924 continue;
925 if (get_ckpt_valid_blocks(sbi, segno))
926 continue;
927 mutex_unlock(&dirty_i->seglist_lock);
928 return segno;
929 }
930 mutex_unlock(&dirty_i->seglist_lock);
931 return NULL_SEGNO;
932 }
933
__create_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)934 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
935 struct block_device *bdev, block_t lstart,
936 block_t start, block_t len)
937 {
938 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
939 struct list_head *pend_list;
940 struct discard_cmd *dc;
941
942 f2fs_bug_on(sbi, !len);
943
944 pend_list = &dcc->pend_list[plist_idx(len)];
945
946 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
947 INIT_LIST_HEAD(&dc->list);
948 dc->bdev = bdev;
949 dc->lstart = lstart;
950 dc->start = start;
951 dc->len = len;
952 dc->ref = 0;
953 dc->state = D_PREP;
954 dc->queued = 0;
955 dc->error = 0;
956 init_completion(&dc->wait);
957 list_add_tail(&dc->list, pend_list);
958 spin_lock_init(&dc->lock);
959 dc->bio_ref = 0;
960 atomic_inc(&dcc->discard_cmd_cnt);
961 dcc->undiscard_blks += len;
962
963 return dc;
964 }
965
__attach_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len,struct rb_node * parent,struct rb_node ** p,bool leftmost)966 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
967 struct block_device *bdev, block_t lstart,
968 block_t start, block_t len,
969 struct rb_node *parent, struct rb_node **p,
970 bool leftmost)
971 {
972 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
973 struct discard_cmd *dc;
974
975 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
976
977 rb_link_node(&dc->rb_node, parent, p);
978 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
979
980 return dc;
981 }
982
__detach_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)983 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
984 struct discard_cmd *dc)
985 {
986 if (dc->state == D_DONE)
987 atomic_sub(dc->queued, &dcc->queued_discard);
988
989 list_del(&dc->list);
990 rb_erase_cached(&dc->rb_node, &dcc->root);
991 dcc->undiscard_blks -= dc->len;
992
993 kmem_cache_free(discard_cmd_slab, dc);
994
995 atomic_dec(&dcc->discard_cmd_cnt);
996 }
997
__remove_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc)998 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
999 struct discard_cmd *dc)
1000 {
1001 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1002 unsigned long flags;
1003
1004 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1005
1006 spin_lock_irqsave(&dc->lock, flags);
1007 if (dc->bio_ref) {
1008 spin_unlock_irqrestore(&dc->lock, flags);
1009 return;
1010 }
1011 spin_unlock_irqrestore(&dc->lock, flags);
1012
1013 f2fs_bug_on(sbi, dc->ref);
1014
1015 if (dc->error == -EOPNOTSUPP)
1016 dc->error = 0;
1017
1018 if (dc->error)
1019 printk_ratelimited(
1020 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1021 KERN_INFO, sbi->sb->s_id,
1022 dc->lstart, dc->start, dc->len, dc->error);
1023 __detach_discard_cmd(dcc, dc);
1024 }
1025
f2fs_submit_discard_endio(struct bio * bio)1026 static void f2fs_submit_discard_endio(struct bio *bio)
1027 {
1028 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1029 unsigned long flags;
1030
1031 dc->error = blk_status_to_errno(bio->bi_status);
1032
1033 spin_lock_irqsave(&dc->lock, flags);
1034 dc->bio_ref--;
1035 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1036 dc->state = D_DONE;
1037 complete_all(&dc->wait);
1038 }
1039 spin_unlock_irqrestore(&dc->lock, flags);
1040 bio_put(bio);
1041 }
1042
__check_sit_bitmap(struct f2fs_sb_info * sbi,block_t start,block_t end)1043 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1044 block_t start, block_t end)
1045 {
1046 #ifdef CONFIG_F2FS_CHECK_FS
1047 struct seg_entry *sentry;
1048 unsigned int segno;
1049 block_t blk = start;
1050 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1051 unsigned long *map;
1052
1053 while (blk < end) {
1054 segno = GET_SEGNO(sbi, blk);
1055 sentry = get_seg_entry(sbi, segno);
1056 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1057
1058 if (end < START_BLOCK(sbi, segno + 1))
1059 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1060 else
1061 size = max_blocks;
1062 map = (unsigned long *)(sentry->cur_valid_map);
1063 offset = __find_rev_next_bit(map, size, offset);
1064 f2fs_bug_on(sbi, offset != size);
1065 blk = START_BLOCK(sbi, segno + 1);
1066 }
1067 #endif
1068 }
1069
__init_discard_policy(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int discard_type,unsigned int granularity)1070 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1071 struct discard_policy *dpolicy,
1072 int discard_type, unsigned int granularity)
1073 {
1074 /* common policy */
1075 dpolicy->type = discard_type;
1076 dpolicy->sync = true;
1077 dpolicy->ordered = false;
1078 dpolicy->granularity = granularity;
1079
1080 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1081 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1082 dpolicy->timeout = 0;
1083
1084 if (discard_type == DPOLICY_BG) {
1085 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1086 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1087 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1088 dpolicy->io_aware = true;
1089 dpolicy->sync = false;
1090 dpolicy->ordered = true;
1091 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1092 dpolicy->granularity = 1;
1093 dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1094 }
1095 } else if (discard_type == DPOLICY_FORCE) {
1096 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1097 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1098 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1099 dpolicy->io_aware = false;
1100 } else if (discard_type == DPOLICY_FSTRIM) {
1101 dpolicy->io_aware = false;
1102 } else if (discard_type == DPOLICY_UMOUNT) {
1103 dpolicy->max_requests = UINT_MAX;
1104 dpolicy->io_aware = false;
1105 /* we need to issue all to keep CP_TRIMMED_FLAG */
1106 dpolicy->granularity = 1;
1107 }
1108 }
1109
1110 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1111 struct block_device *bdev, block_t lstart,
1112 block_t start, block_t len);
1113 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
__submit_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,struct discard_cmd * dc,unsigned int * issued)1114 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1115 struct discard_policy *dpolicy,
1116 struct discard_cmd *dc,
1117 unsigned int *issued)
1118 {
1119 struct block_device *bdev = dc->bdev;
1120 struct request_queue *q = bdev_get_queue(bdev);
1121 unsigned int max_discard_blocks =
1122 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1123 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1124 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1125 &(dcc->fstrim_list) : &(dcc->wait_list);
1126 int flag = dpolicy->sync ? REQ_SYNC : 0;
1127 block_t lstart, start, len, total_len;
1128 int err = 0;
1129
1130 if (dc->state != D_PREP)
1131 return 0;
1132
1133 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1134 return 0;
1135
1136 trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1137
1138 lstart = dc->lstart;
1139 start = dc->start;
1140 len = dc->len;
1141 total_len = len;
1142
1143 dc->len = 0;
1144
1145 while (total_len && *issued < dpolicy->max_requests && !err) {
1146 struct bio *bio = NULL;
1147 unsigned long flags;
1148 bool last = true;
1149
1150 if (len > max_discard_blocks) {
1151 len = max_discard_blocks;
1152 last = false;
1153 }
1154
1155 (*issued)++;
1156 if (*issued == dpolicy->max_requests)
1157 last = true;
1158
1159 dc->len += len;
1160
1161 if (time_to_inject(sbi, FAULT_DISCARD)) {
1162 f2fs_show_injection_info(sbi, FAULT_DISCARD);
1163 err = -EIO;
1164 goto submit;
1165 }
1166 err = __blkdev_issue_discard(bdev,
1167 SECTOR_FROM_BLOCK(start),
1168 SECTOR_FROM_BLOCK(len),
1169 GFP_NOFS, 0, &bio);
1170 submit:
1171 if (err) {
1172 spin_lock_irqsave(&dc->lock, flags);
1173 if (dc->state == D_PARTIAL)
1174 dc->state = D_SUBMIT;
1175 spin_unlock_irqrestore(&dc->lock, flags);
1176
1177 break;
1178 }
1179
1180 f2fs_bug_on(sbi, !bio);
1181
1182 /*
1183 * should keep before submission to avoid D_DONE
1184 * right away
1185 */
1186 spin_lock_irqsave(&dc->lock, flags);
1187 if (last)
1188 dc->state = D_SUBMIT;
1189 else
1190 dc->state = D_PARTIAL;
1191 dc->bio_ref++;
1192 spin_unlock_irqrestore(&dc->lock, flags);
1193
1194 atomic_inc(&dcc->queued_discard);
1195 dc->queued++;
1196 list_move_tail(&dc->list, wait_list);
1197
1198 /* sanity check on discard range */
1199 __check_sit_bitmap(sbi, lstart, lstart + len);
1200
1201 bio->bi_private = dc;
1202 bio->bi_end_io = f2fs_submit_discard_endio;
1203 bio->bi_opf |= flag;
1204 submit_bio(bio);
1205
1206 atomic_inc(&dcc->issued_discard);
1207
1208 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1209
1210 lstart += len;
1211 start += len;
1212 total_len -= len;
1213 len = total_len;
1214 }
1215
1216 if (!err && len)
1217 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1218 return err;
1219 }
1220
__insert_discard_tree(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len,struct rb_node ** insert_p,struct rb_node * insert_parent)1221 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
1222 struct block_device *bdev, block_t lstart,
1223 block_t start, block_t len,
1224 struct rb_node **insert_p,
1225 struct rb_node *insert_parent)
1226 {
1227 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1228 struct rb_node **p;
1229 struct rb_node *parent = NULL;
1230 struct discard_cmd *dc = NULL;
1231 bool leftmost = true;
1232
1233 if (insert_p && insert_parent) {
1234 parent = insert_parent;
1235 p = insert_p;
1236 goto do_insert;
1237 }
1238
1239 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1240 lstart, &leftmost);
1241 do_insert:
1242 dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1243 p, leftmost);
1244 if (!dc)
1245 return NULL;
1246
1247 return dc;
1248 }
1249
__relocate_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1250 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1251 struct discard_cmd *dc)
1252 {
1253 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1254 }
1255
__punch_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,block_t blkaddr)1256 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1257 struct discard_cmd *dc, block_t blkaddr)
1258 {
1259 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1260 struct discard_info di = dc->di;
1261 bool modified = false;
1262
1263 if (dc->state == D_DONE || dc->len == 1) {
1264 __remove_discard_cmd(sbi, dc);
1265 return;
1266 }
1267
1268 dcc->undiscard_blks -= di.len;
1269
1270 if (blkaddr > di.lstart) {
1271 dc->len = blkaddr - dc->lstart;
1272 dcc->undiscard_blks += dc->len;
1273 __relocate_discard_cmd(dcc, dc);
1274 modified = true;
1275 }
1276
1277 if (blkaddr < di.lstart + di.len - 1) {
1278 if (modified) {
1279 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1280 di.start + blkaddr + 1 - di.lstart,
1281 di.lstart + di.len - 1 - blkaddr,
1282 NULL, NULL);
1283 } else {
1284 dc->lstart++;
1285 dc->len--;
1286 dc->start++;
1287 dcc->undiscard_blks += dc->len;
1288 __relocate_discard_cmd(dcc, dc);
1289 }
1290 }
1291 }
1292
__update_discard_tree_range(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1293 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1294 struct block_device *bdev, block_t lstart,
1295 block_t start, block_t len)
1296 {
1297 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1298 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1299 struct discard_cmd *dc;
1300 struct discard_info di = {0};
1301 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1302 struct request_queue *q = bdev_get_queue(bdev);
1303 unsigned int max_discard_blocks =
1304 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1305 block_t end = lstart + len;
1306
1307 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1308 NULL, lstart,
1309 (struct rb_entry **)&prev_dc,
1310 (struct rb_entry **)&next_dc,
1311 &insert_p, &insert_parent, true, NULL);
1312 if (dc)
1313 prev_dc = dc;
1314
1315 if (!prev_dc) {
1316 di.lstart = lstart;
1317 di.len = next_dc ? next_dc->lstart - lstart : len;
1318 di.len = min(di.len, len);
1319 di.start = start;
1320 }
1321
1322 while (1) {
1323 struct rb_node *node;
1324 bool merged = false;
1325 struct discard_cmd *tdc = NULL;
1326
1327 if (prev_dc) {
1328 di.lstart = prev_dc->lstart + prev_dc->len;
1329 if (di.lstart < lstart)
1330 di.lstart = lstart;
1331 if (di.lstart >= end)
1332 break;
1333
1334 if (!next_dc || next_dc->lstart > end)
1335 di.len = end - di.lstart;
1336 else
1337 di.len = next_dc->lstart - di.lstart;
1338 di.start = start + di.lstart - lstart;
1339 }
1340
1341 if (!di.len)
1342 goto next;
1343
1344 if (prev_dc && prev_dc->state == D_PREP &&
1345 prev_dc->bdev == bdev &&
1346 __is_discard_back_mergeable(&di, &prev_dc->di,
1347 max_discard_blocks)) {
1348 prev_dc->di.len += di.len;
1349 dcc->undiscard_blks += di.len;
1350 __relocate_discard_cmd(dcc, prev_dc);
1351 di = prev_dc->di;
1352 tdc = prev_dc;
1353 merged = true;
1354 }
1355
1356 if (next_dc && next_dc->state == D_PREP &&
1357 next_dc->bdev == bdev &&
1358 __is_discard_front_mergeable(&di, &next_dc->di,
1359 max_discard_blocks)) {
1360 next_dc->di.lstart = di.lstart;
1361 next_dc->di.len += di.len;
1362 next_dc->di.start = di.start;
1363 dcc->undiscard_blks += di.len;
1364 __relocate_discard_cmd(dcc, next_dc);
1365 if (tdc)
1366 __remove_discard_cmd(sbi, tdc);
1367 merged = true;
1368 }
1369
1370 if (!merged) {
1371 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1372 di.len, NULL, NULL);
1373 }
1374 next:
1375 prev_dc = next_dc;
1376 if (!prev_dc)
1377 break;
1378
1379 node = rb_next(&prev_dc->rb_node);
1380 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1381 }
1382 }
1383
__queue_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1384 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1385 struct block_device *bdev, block_t blkstart, block_t blklen)
1386 {
1387 block_t lblkstart = blkstart;
1388
1389 if (!f2fs_bdev_support_discard(bdev))
1390 return 0;
1391
1392 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1393
1394 if (f2fs_is_multi_device(sbi)) {
1395 int devi = f2fs_target_device_index(sbi, blkstart);
1396
1397 blkstart -= FDEV(devi).start_blk;
1398 }
1399 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1400 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1401 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1402 return 0;
1403 }
1404
__issue_discard_cmd_orderly(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1405 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1406 struct discard_policy *dpolicy)
1407 {
1408 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1409 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1410 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1411 struct discard_cmd *dc;
1412 struct blk_plug plug;
1413 unsigned int pos = dcc->next_pos;
1414 unsigned int issued = 0;
1415 bool io_interrupted = false;
1416
1417 mutex_lock(&dcc->cmd_lock);
1418 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1419 NULL, pos,
1420 (struct rb_entry **)&prev_dc,
1421 (struct rb_entry **)&next_dc,
1422 &insert_p, &insert_parent, true, NULL);
1423 if (!dc)
1424 dc = next_dc;
1425
1426 blk_start_plug(&plug);
1427
1428 while (dc) {
1429 struct rb_node *node;
1430 int err = 0;
1431
1432 if (dc->state != D_PREP)
1433 goto next;
1434
1435 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1436 io_interrupted = true;
1437 break;
1438 }
1439
1440 dcc->next_pos = dc->lstart + dc->len;
1441 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1442
1443 if (issued >= dpolicy->max_requests)
1444 break;
1445 next:
1446 node = rb_next(&dc->rb_node);
1447 if (err)
1448 __remove_discard_cmd(sbi, dc);
1449 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1450 }
1451
1452 blk_finish_plug(&plug);
1453
1454 if (!dc)
1455 dcc->next_pos = 0;
1456
1457 mutex_unlock(&dcc->cmd_lock);
1458
1459 if (!issued && io_interrupted)
1460 issued = -1;
1461
1462 return issued;
1463 }
1464
__issue_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1465 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1466 struct discard_policy *dpolicy)
1467 {
1468 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1469 struct list_head *pend_list;
1470 struct discard_cmd *dc, *tmp;
1471 struct blk_plug plug;
1472 int i, issued = 0;
1473 bool io_interrupted = false;
1474
1475 if (dpolicy->timeout != 0)
1476 f2fs_update_time(sbi, dpolicy->timeout);
1477
1478 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1479 if (dpolicy->timeout != 0 &&
1480 f2fs_time_over(sbi, dpolicy->timeout))
1481 break;
1482
1483 if (i + 1 < dpolicy->granularity)
1484 break;
1485
1486 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1487 return __issue_discard_cmd_orderly(sbi, dpolicy);
1488
1489 pend_list = &dcc->pend_list[i];
1490
1491 mutex_lock(&dcc->cmd_lock);
1492 if (list_empty(pend_list))
1493 goto next;
1494 if (unlikely(dcc->rbtree_check))
1495 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1496 &dcc->root));
1497 blk_start_plug(&plug);
1498 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1499 f2fs_bug_on(sbi, dc->state != D_PREP);
1500
1501 if (dpolicy->timeout != 0 &&
1502 f2fs_time_over(sbi, dpolicy->timeout))
1503 break;
1504
1505 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1506 !is_idle(sbi, DISCARD_TIME)) {
1507 io_interrupted = true;
1508 break;
1509 }
1510
1511 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1512
1513 if (issued >= dpolicy->max_requests)
1514 break;
1515 }
1516 blk_finish_plug(&plug);
1517 next:
1518 mutex_unlock(&dcc->cmd_lock);
1519
1520 if (issued >= dpolicy->max_requests || io_interrupted)
1521 break;
1522 }
1523
1524 if (!issued && io_interrupted)
1525 issued = -1;
1526
1527 return issued;
1528 }
1529
__drop_discard_cmd(struct f2fs_sb_info * sbi)1530 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1531 {
1532 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1533 struct list_head *pend_list;
1534 struct discard_cmd *dc, *tmp;
1535 int i;
1536 bool dropped = false;
1537
1538 mutex_lock(&dcc->cmd_lock);
1539 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1540 pend_list = &dcc->pend_list[i];
1541 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1542 f2fs_bug_on(sbi, dc->state != D_PREP);
1543 __remove_discard_cmd(sbi, dc);
1544 dropped = true;
1545 }
1546 }
1547 mutex_unlock(&dcc->cmd_lock);
1548
1549 return dropped;
1550 }
1551
f2fs_drop_discard_cmd(struct f2fs_sb_info * sbi)1552 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1553 {
1554 __drop_discard_cmd(sbi);
1555 }
1556
__wait_one_discard_bio(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1557 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1558 struct discard_cmd *dc)
1559 {
1560 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1561 unsigned int len = 0;
1562
1563 wait_for_completion_io(&dc->wait);
1564 mutex_lock(&dcc->cmd_lock);
1565 f2fs_bug_on(sbi, dc->state != D_DONE);
1566 dc->ref--;
1567 if (!dc->ref) {
1568 if (!dc->error)
1569 len = dc->len;
1570 __remove_discard_cmd(sbi, dc);
1571 }
1572 mutex_unlock(&dcc->cmd_lock);
1573
1574 return len;
1575 }
1576
__wait_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,block_t start,block_t end)1577 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1578 struct discard_policy *dpolicy,
1579 block_t start, block_t end)
1580 {
1581 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1582 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1583 &(dcc->fstrim_list) : &(dcc->wait_list);
1584 struct discard_cmd *dc, *tmp;
1585 bool need_wait;
1586 unsigned int trimmed = 0;
1587
1588 next:
1589 need_wait = false;
1590
1591 mutex_lock(&dcc->cmd_lock);
1592 list_for_each_entry_safe(dc, tmp, wait_list, list) {
1593 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1594 continue;
1595 if (dc->len < dpolicy->granularity)
1596 continue;
1597 if (dc->state == D_DONE && !dc->ref) {
1598 wait_for_completion_io(&dc->wait);
1599 if (!dc->error)
1600 trimmed += dc->len;
1601 __remove_discard_cmd(sbi, dc);
1602 } else {
1603 dc->ref++;
1604 need_wait = true;
1605 break;
1606 }
1607 }
1608 mutex_unlock(&dcc->cmd_lock);
1609
1610 if (need_wait) {
1611 trimmed += __wait_one_discard_bio(sbi, dc);
1612 goto next;
1613 }
1614
1615 return trimmed;
1616 }
1617
__wait_all_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1618 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1619 struct discard_policy *dpolicy)
1620 {
1621 struct discard_policy dp;
1622 unsigned int discard_blks;
1623
1624 if (dpolicy)
1625 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1626
1627 /* wait all */
1628 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1629 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1630 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1631 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1632
1633 return discard_blks;
1634 }
1635
1636 /* This should be covered by global mutex, &sit_i->sentry_lock */
f2fs_wait_discard_bio(struct f2fs_sb_info * sbi,block_t blkaddr)1637 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1638 {
1639 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1640 struct discard_cmd *dc;
1641 bool need_wait = false;
1642
1643 mutex_lock(&dcc->cmd_lock);
1644 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1645 NULL, blkaddr);
1646 if (dc) {
1647 if (dc->state == D_PREP) {
1648 __punch_discard_cmd(sbi, dc, blkaddr);
1649 } else {
1650 dc->ref++;
1651 need_wait = true;
1652 }
1653 }
1654 mutex_unlock(&dcc->cmd_lock);
1655
1656 if (need_wait)
1657 __wait_one_discard_bio(sbi, dc);
1658 }
1659
f2fs_stop_discard_thread(struct f2fs_sb_info * sbi)1660 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1661 {
1662 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1663
1664 if (dcc && dcc->f2fs_issue_discard) {
1665 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1666
1667 dcc->f2fs_issue_discard = NULL;
1668 kthread_stop(discard_thread);
1669 }
1670 }
1671
1672 /* This comes from f2fs_put_super */
f2fs_issue_discard_timeout(struct f2fs_sb_info * sbi)1673 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1674 {
1675 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1676 struct discard_policy dpolicy;
1677 bool dropped;
1678
1679 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1680 dcc->discard_granularity);
1681 dpolicy.timeout = UMOUNT_DISCARD_TIMEOUT;
1682 __issue_discard_cmd(sbi, &dpolicy);
1683 dropped = __drop_discard_cmd(sbi);
1684
1685 /* just to make sure there is no pending discard commands */
1686 __wait_all_discard_cmd(sbi, NULL);
1687
1688 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1689 return dropped;
1690 }
1691
issue_discard_thread(void * data)1692 static int issue_discard_thread(void *data)
1693 {
1694 struct f2fs_sb_info *sbi = data;
1695 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1696 wait_queue_head_t *q = &dcc->discard_wait_queue;
1697 struct discard_policy dpolicy;
1698 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1699 int issued;
1700
1701 set_freezable();
1702
1703 do {
1704 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1705 dcc->discard_granularity);
1706
1707 wait_event_interruptible_timeout(*q,
1708 kthread_should_stop() || freezing(current) ||
1709 dcc->discard_wake,
1710 msecs_to_jiffies(wait_ms));
1711
1712 if (dcc->discard_wake)
1713 dcc->discard_wake = 0;
1714
1715 /* clean up pending candidates before going to sleep */
1716 if (atomic_read(&dcc->queued_discard))
1717 __wait_all_discard_cmd(sbi, NULL);
1718
1719 if (try_to_freeze())
1720 continue;
1721 if (f2fs_readonly(sbi->sb))
1722 continue;
1723 if (kthread_should_stop())
1724 return 0;
1725 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1726 wait_ms = dpolicy.max_interval;
1727 continue;
1728 }
1729
1730 if (sbi->gc_mode == GC_URGENT)
1731 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1732
1733 sb_start_intwrite(sbi->sb);
1734
1735 issued = __issue_discard_cmd(sbi, &dpolicy);
1736 if (issued > 0) {
1737 __wait_all_discard_cmd(sbi, &dpolicy);
1738 wait_ms = dpolicy.min_interval;
1739 } else if (issued == -1){
1740 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1741 if (!wait_ms)
1742 wait_ms = dpolicy.mid_interval;
1743 } else {
1744 wait_ms = dpolicy.max_interval;
1745 }
1746
1747 sb_end_intwrite(sbi->sb);
1748
1749 } while (!kthread_should_stop());
1750 return 0;
1751 }
1752
1753 #ifdef CONFIG_BLK_DEV_ZONED
__f2fs_issue_discard_zone(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1754 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1755 struct block_device *bdev, block_t blkstart, block_t blklen)
1756 {
1757 sector_t sector, nr_sects;
1758 block_t lblkstart = blkstart;
1759 int devi = 0;
1760
1761 if (f2fs_is_multi_device(sbi)) {
1762 devi = f2fs_target_device_index(sbi, blkstart);
1763 if (blkstart < FDEV(devi).start_blk ||
1764 blkstart > FDEV(devi).end_blk) {
1765 f2fs_err(sbi, "Invalid block %x", blkstart);
1766 return -EIO;
1767 }
1768 blkstart -= FDEV(devi).start_blk;
1769 }
1770
1771 /* For sequential zones, reset the zone write pointer */
1772 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1773 sector = SECTOR_FROM_BLOCK(blkstart);
1774 nr_sects = SECTOR_FROM_BLOCK(blklen);
1775
1776 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1777 nr_sects != bdev_zone_sectors(bdev)) {
1778 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1779 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1780 blkstart, blklen);
1781 return -EIO;
1782 }
1783 trace_f2fs_issue_reset_zone(bdev, blkstart);
1784 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1785 sector, nr_sects, GFP_NOFS);
1786 }
1787
1788 /* For conventional zones, use regular discard if supported */
1789 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1790 }
1791 #endif
1792
__issue_discard_async(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1793 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1794 struct block_device *bdev, block_t blkstart, block_t blklen)
1795 {
1796 #ifdef CONFIG_BLK_DEV_ZONED
1797 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1798 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1799 #endif
1800 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1801 }
1802
f2fs_issue_discard(struct f2fs_sb_info * sbi,block_t blkstart,block_t blklen)1803 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1804 block_t blkstart, block_t blklen)
1805 {
1806 sector_t start = blkstart, len = 0;
1807 struct block_device *bdev;
1808 struct seg_entry *se;
1809 unsigned int offset;
1810 block_t i;
1811 int err = 0;
1812
1813 bdev = f2fs_target_device(sbi, blkstart, NULL);
1814
1815 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1816 if (i != start) {
1817 struct block_device *bdev2 =
1818 f2fs_target_device(sbi, i, NULL);
1819
1820 if (bdev2 != bdev) {
1821 err = __issue_discard_async(sbi, bdev,
1822 start, len);
1823 if (err)
1824 return err;
1825 bdev = bdev2;
1826 start = i;
1827 len = 0;
1828 }
1829 }
1830
1831 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1832 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1833
1834 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1835 sbi->discard_blks--;
1836 }
1837
1838 if (len)
1839 err = __issue_discard_async(sbi, bdev, start, len);
1840 return err;
1841 }
1842
add_discard_addrs(struct f2fs_sb_info * sbi,struct cp_control * cpc,bool check_only)1843 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1844 bool check_only)
1845 {
1846 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1847 int max_blocks = sbi->blocks_per_seg;
1848 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1849 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1850 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1851 unsigned long *discard_map = (unsigned long *)se->discard_map;
1852 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1853 unsigned int start = 0, end = -1;
1854 bool force = (cpc->reason & CP_DISCARD);
1855 struct discard_entry *de = NULL;
1856 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1857 int i;
1858
1859 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1860 return false;
1861
1862 if (!force) {
1863 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1864 SM_I(sbi)->dcc_info->nr_discards >=
1865 SM_I(sbi)->dcc_info->max_discards)
1866 return false;
1867 }
1868
1869 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1870 for (i = 0; i < entries; i++)
1871 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1872 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1873
1874 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1875 SM_I(sbi)->dcc_info->max_discards) {
1876 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1877 if (start >= max_blocks)
1878 break;
1879
1880 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1881 if (force && start && end != max_blocks
1882 && (end - start) < cpc->trim_minlen)
1883 continue;
1884
1885 if (check_only)
1886 return true;
1887
1888 if (!de) {
1889 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1890 GFP_F2FS_ZERO);
1891 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1892 list_add_tail(&de->list, head);
1893 }
1894
1895 for (i = start; i < end; i++)
1896 __set_bit_le(i, (void *)de->discard_map);
1897
1898 SM_I(sbi)->dcc_info->nr_discards += end - start;
1899 }
1900 return false;
1901 }
1902
release_discard_addr(struct discard_entry * entry)1903 static void release_discard_addr(struct discard_entry *entry)
1904 {
1905 list_del(&entry->list);
1906 kmem_cache_free(discard_entry_slab, entry);
1907 }
1908
f2fs_release_discard_addrs(struct f2fs_sb_info * sbi)1909 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1910 {
1911 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1912 struct discard_entry *entry, *this;
1913
1914 /* drop caches */
1915 list_for_each_entry_safe(entry, this, head, list)
1916 release_discard_addr(entry);
1917 }
1918
1919 /*
1920 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1921 */
set_prefree_as_free_segments(struct f2fs_sb_info * sbi)1922 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1923 {
1924 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1925 unsigned int segno;
1926
1927 mutex_lock(&dirty_i->seglist_lock);
1928 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1929 __set_test_and_free(sbi, segno);
1930 mutex_unlock(&dirty_i->seglist_lock);
1931 }
1932
f2fs_clear_prefree_segments(struct f2fs_sb_info * sbi,struct cp_control * cpc)1933 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1934 struct cp_control *cpc)
1935 {
1936 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1937 struct list_head *head = &dcc->entry_list;
1938 struct discard_entry *entry, *this;
1939 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1940 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1941 unsigned int start = 0, end = -1;
1942 unsigned int secno, start_segno;
1943 bool force = (cpc->reason & CP_DISCARD);
1944 bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
1945
1946 mutex_lock(&dirty_i->seglist_lock);
1947
1948 while (1) {
1949 int i;
1950
1951 if (need_align && end != -1)
1952 end--;
1953 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1954 if (start >= MAIN_SEGS(sbi))
1955 break;
1956 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1957 start + 1);
1958
1959 if (need_align) {
1960 start = rounddown(start, sbi->segs_per_sec);
1961 end = roundup(end, sbi->segs_per_sec);
1962 }
1963
1964 for (i = start; i < end; i++) {
1965 if (test_and_clear_bit(i, prefree_map))
1966 dirty_i->nr_dirty[PRE]--;
1967 }
1968
1969 if (!f2fs_realtime_discard_enable(sbi))
1970 continue;
1971
1972 if (force && start >= cpc->trim_start &&
1973 (end - 1) <= cpc->trim_end)
1974 continue;
1975
1976 if (!test_opt(sbi, LFS) || !__is_large_section(sbi)) {
1977 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1978 (end - start) << sbi->log_blocks_per_seg);
1979 continue;
1980 }
1981 next:
1982 secno = GET_SEC_FROM_SEG(sbi, start);
1983 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1984 if (!IS_CURSEC(sbi, secno) &&
1985 !get_valid_blocks(sbi, start, true))
1986 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1987 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1988
1989 start = start_segno + sbi->segs_per_sec;
1990 if (start < end)
1991 goto next;
1992 else
1993 end = start - 1;
1994 }
1995 mutex_unlock(&dirty_i->seglist_lock);
1996
1997 /* send small discards */
1998 list_for_each_entry_safe(entry, this, head, list) {
1999 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2000 bool is_valid = test_bit_le(0, entry->discard_map);
2001
2002 find_next:
2003 if (is_valid) {
2004 next_pos = find_next_zero_bit_le(entry->discard_map,
2005 sbi->blocks_per_seg, cur_pos);
2006 len = next_pos - cur_pos;
2007
2008 if (f2fs_sb_has_blkzoned(sbi) ||
2009 (force && len < cpc->trim_minlen))
2010 goto skip;
2011
2012 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2013 len);
2014 total_len += len;
2015 } else {
2016 next_pos = find_next_bit_le(entry->discard_map,
2017 sbi->blocks_per_seg, cur_pos);
2018 }
2019 skip:
2020 cur_pos = next_pos;
2021 is_valid = !is_valid;
2022
2023 if (cur_pos < sbi->blocks_per_seg)
2024 goto find_next;
2025
2026 release_discard_addr(entry);
2027 dcc->nr_discards -= total_len;
2028 }
2029
2030 wake_up_discard_thread(sbi, false);
2031 }
2032
create_discard_cmd_control(struct f2fs_sb_info * sbi)2033 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2034 {
2035 dev_t dev = sbi->sb->s_bdev->bd_dev;
2036 struct discard_cmd_control *dcc;
2037 int err = 0, i;
2038
2039 if (SM_I(sbi)->dcc_info) {
2040 dcc = SM_I(sbi)->dcc_info;
2041 goto init_thread;
2042 }
2043
2044 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2045 if (!dcc)
2046 return -ENOMEM;
2047
2048 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2049 INIT_LIST_HEAD(&dcc->entry_list);
2050 for (i = 0; i < MAX_PLIST_NUM; i++)
2051 INIT_LIST_HEAD(&dcc->pend_list[i]);
2052 INIT_LIST_HEAD(&dcc->wait_list);
2053 INIT_LIST_HEAD(&dcc->fstrim_list);
2054 mutex_init(&dcc->cmd_lock);
2055 atomic_set(&dcc->issued_discard, 0);
2056 atomic_set(&dcc->queued_discard, 0);
2057 atomic_set(&dcc->discard_cmd_cnt, 0);
2058 dcc->nr_discards = 0;
2059 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2060 dcc->undiscard_blks = 0;
2061 dcc->next_pos = 0;
2062 dcc->root = RB_ROOT_CACHED;
2063 dcc->rbtree_check = false;
2064
2065 init_waitqueue_head(&dcc->discard_wait_queue);
2066 SM_I(sbi)->dcc_info = dcc;
2067 init_thread:
2068 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2069 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2070 if (IS_ERR(dcc->f2fs_issue_discard)) {
2071 err = PTR_ERR(dcc->f2fs_issue_discard);
2072 kvfree(dcc);
2073 SM_I(sbi)->dcc_info = NULL;
2074 return err;
2075 }
2076
2077 return err;
2078 }
2079
destroy_discard_cmd_control(struct f2fs_sb_info * sbi)2080 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2081 {
2082 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2083
2084 if (!dcc)
2085 return;
2086
2087 f2fs_stop_discard_thread(sbi);
2088
2089 /*
2090 * Recovery can cache discard commands, so in error path of
2091 * fill_super(), it needs to give a chance to handle them.
2092 */
2093 if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2094 f2fs_issue_discard_timeout(sbi);
2095
2096 kvfree(dcc);
2097 SM_I(sbi)->dcc_info = NULL;
2098 }
2099
__mark_sit_entry_dirty(struct f2fs_sb_info * sbi,unsigned int segno)2100 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2101 {
2102 struct sit_info *sit_i = SIT_I(sbi);
2103
2104 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2105 sit_i->dirty_sentries++;
2106 return false;
2107 }
2108
2109 return true;
2110 }
2111
__set_sit_entry_type(struct f2fs_sb_info * sbi,int type,unsigned int segno,int modified)2112 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2113 unsigned int segno, int modified)
2114 {
2115 struct seg_entry *se = get_seg_entry(sbi, segno);
2116 se->type = type;
2117 if (modified)
2118 __mark_sit_entry_dirty(sbi, segno);
2119 }
2120
update_sit_entry(struct f2fs_sb_info * sbi,block_t blkaddr,int del)2121 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2122 {
2123 struct seg_entry *se;
2124 unsigned int segno, offset;
2125 long int new_vblocks;
2126 bool exist;
2127 #ifdef CONFIG_F2FS_CHECK_FS
2128 bool mir_exist;
2129 #endif
2130
2131 segno = GET_SEGNO(sbi, blkaddr);
2132
2133 se = get_seg_entry(sbi, segno);
2134 new_vblocks = se->valid_blocks + del;
2135 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2136
2137 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
2138 (new_vblocks > sbi->blocks_per_seg)));
2139
2140 se->valid_blocks = new_vblocks;
2141 se->mtime = get_mtime(sbi, false);
2142 if (se->mtime > SIT_I(sbi)->max_mtime)
2143 SIT_I(sbi)->max_mtime = se->mtime;
2144
2145 /* Update valid block bitmap */
2146 if (del > 0) {
2147 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2148 #ifdef CONFIG_F2FS_CHECK_FS
2149 mir_exist = f2fs_test_and_set_bit(offset,
2150 se->cur_valid_map_mir);
2151 if (unlikely(exist != mir_exist)) {
2152 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2153 blkaddr, exist);
2154 f2fs_bug_on(sbi, 1);
2155 }
2156 #endif
2157 if (unlikely(exist)) {
2158 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2159 blkaddr);
2160 f2fs_bug_on(sbi, 1);
2161 se->valid_blocks--;
2162 del = 0;
2163 }
2164
2165 if (!f2fs_test_and_set_bit(offset, se->discard_map))
2166 sbi->discard_blks--;
2167
2168 /*
2169 * SSR should never reuse block which is checkpointed
2170 * or newly invalidated.
2171 */
2172 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2173 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2174 se->ckpt_valid_blocks++;
2175 }
2176 } else {
2177 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2178 #ifdef CONFIG_F2FS_CHECK_FS
2179 mir_exist = f2fs_test_and_clear_bit(offset,
2180 se->cur_valid_map_mir);
2181 if (unlikely(exist != mir_exist)) {
2182 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2183 blkaddr, exist);
2184 f2fs_bug_on(sbi, 1);
2185 }
2186 #endif
2187 if (unlikely(!exist)) {
2188 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2189 blkaddr);
2190 f2fs_bug_on(sbi, 1);
2191 se->valid_blocks++;
2192 del = 0;
2193 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2194 /*
2195 * If checkpoints are off, we must not reuse data that
2196 * was used in the previous checkpoint. If it was used
2197 * before, we must track that to know how much space we
2198 * really have.
2199 */
2200 if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2201 spin_lock(&sbi->stat_lock);
2202 sbi->unusable_block_count++;
2203 spin_unlock(&sbi->stat_lock);
2204 }
2205 }
2206
2207 if (f2fs_test_and_clear_bit(offset, se->discard_map))
2208 sbi->discard_blks++;
2209 }
2210 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2211 se->ckpt_valid_blocks += del;
2212
2213 __mark_sit_entry_dirty(sbi, segno);
2214
2215 /* update total number of valid blocks to be written in ckpt area */
2216 SIT_I(sbi)->written_valid_blocks += del;
2217
2218 if (__is_large_section(sbi))
2219 get_sec_entry(sbi, segno)->valid_blocks += del;
2220 }
2221
f2fs_invalidate_blocks(struct f2fs_sb_info * sbi,block_t addr)2222 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2223 {
2224 unsigned int segno = GET_SEGNO(sbi, addr);
2225 struct sit_info *sit_i = SIT_I(sbi);
2226
2227 f2fs_bug_on(sbi, addr == NULL_ADDR);
2228 if (addr == NEW_ADDR)
2229 return;
2230
2231 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2232
2233 /* add it into sit main buffer */
2234 down_write(&sit_i->sentry_lock);
2235
2236 update_sit_entry(sbi, addr, -1);
2237
2238 /* add it into dirty seglist */
2239 locate_dirty_segment(sbi, segno);
2240
2241 up_write(&sit_i->sentry_lock);
2242 }
2243
f2fs_is_checkpointed_data(struct f2fs_sb_info * sbi,block_t blkaddr)2244 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2245 {
2246 struct sit_info *sit_i = SIT_I(sbi);
2247 unsigned int segno, offset;
2248 struct seg_entry *se;
2249 bool is_cp = false;
2250
2251 if (!__is_valid_data_blkaddr(blkaddr))
2252 return true;
2253
2254 down_read(&sit_i->sentry_lock);
2255
2256 segno = GET_SEGNO(sbi, blkaddr);
2257 se = get_seg_entry(sbi, segno);
2258 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2259
2260 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2261 is_cp = true;
2262
2263 up_read(&sit_i->sentry_lock);
2264
2265 return is_cp;
2266 }
2267
2268 /*
2269 * This function should be resided under the curseg_mutex lock
2270 */
__add_sum_entry(struct f2fs_sb_info * sbi,int type,struct f2fs_summary * sum)2271 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2272 struct f2fs_summary *sum)
2273 {
2274 struct curseg_info *curseg = CURSEG_I(sbi, type);
2275 void *addr = curseg->sum_blk;
2276 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2277 memcpy(addr, sum, sizeof(struct f2fs_summary));
2278 }
2279
2280 /*
2281 * Calculate the number of current summary pages for writing
2282 */
f2fs_npages_for_summary_flush(struct f2fs_sb_info * sbi,bool for_ra)2283 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2284 {
2285 int valid_sum_count = 0;
2286 int i, sum_in_page;
2287
2288 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2289 if (sbi->ckpt->alloc_type[i] == SSR)
2290 valid_sum_count += sbi->blocks_per_seg;
2291 else {
2292 if (for_ra)
2293 valid_sum_count += le16_to_cpu(
2294 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2295 else
2296 valid_sum_count += curseg_blkoff(sbi, i);
2297 }
2298 }
2299
2300 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2301 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2302 if (valid_sum_count <= sum_in_page)
2303 return 1;
2304 else if ((valid_sum_count - sum_in_page) <=
2305 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2306 return 2;
2307 return 3;
2308 }
2309
2310 /*
2311 * Caller should put this summary page
2312 */
f2fs_get_sum_page(struct f2fs_sb_info * sbi,unsigned int segno)2313 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2314 {
2315 return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
2316 }
2317
f2fs_update_meta_page(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)2318 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2319 void *src, block_t blk_addr)
2320 {
2321 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2322
2323 memcpy(page_address(page), src, PAGE_SIZE);
2324 set_page_dirty(page);
2325 f2fs_put_page(page, 1);
2326 }
2327
write_sum_page(struct f2fs_sb_info * sbi,struct f2fs_summary_block * sum_blk,block_t blk_addr)2328 static void write_sum_page(struct f2fs_sb_info *sbi,
2329 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2330 {
2331 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2332 }
2333
write_current_sum_page(struct f2fs_sb_info * sbi,int type,block_t blk_addr)2334 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2335 int type, block_t blk_addr)
2336 {
2337 struct curseg_info *curseg = CURSEG_I(sbi, type);
2338 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2339 struct f2fs_summary_block *src = curseg->sum_blk;
2340 struct f2fs_summary_block *dst;
2341
2342 dst = (struct f2fs_summary_block *)page_address(page);
2343 memset(dst, 0, PAGE_SIZE);
2344
2345 mutex_lock(&curseg->curseg_mutex);
2346
2347 down_read(&curseg->journal_rwsem);
2348 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2349 up_read(&curseg->journal_rwsem);
2350
2351 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2352 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2353
2354 mutex_unlock(&curseg->curseg_mutex);
2355
2356 set_page_dirty(page);
2357 f2fs_put_page(page, 1);
2358 }
2359
is_next_segment_free(struct f2fs_sb_info * sbi,int type)2360 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2361 {
2362 struct curseg_info *curseg = CURSEG_I(sbi, type);
2363 unsigned int segno = curseg->segno + 1;
2364 struct free_segmap_info *free_i = FREE_I(sbi);
2365
2366 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2367 return !test_bit(segno, free_i->free_segmap);
2368 return 0;
2369 }
2370
2371 /*
2372 * Find a new segment from the free segments bitmap to right order
2373 * This function should be returned with success, otherwise BUG
2374 */
get_new_segment(struct f2fs_sb_info * sbi,unsigned int * newseg,bool new_sec,int dir)2375 static void get_new_segment(struct f2fs_sb_info *sbi,
2376 unsigned int *newseg, bool new_sec, int dir)
2377 {
2378 struct free_segmap_info *free_i = FREE_I(sbi);
2379 unsigned int segno, secno, zoneno;
2380 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2381 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2382 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2383 unsigned int left_start = hint;
2384 bool init = true;
2385 int go_left = 0;
2386 int i;
2387
2388 spin_lock(&free_i->segmap_lock);
2389
2390 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2391 segno = find_next_zero_bit(free_i->free_segmap,
2392 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2393 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2394 goto got_it;
2395 }
2396 find_other_zone:
2397 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2398 if (secno >= MAIN_SECS(sbi)) {
2399 if (dir == ALLOC_RIGHT) {
2400 secno = find_next_zero_bit(free_i->free_secmap,
2401 MAIN_SECS(sbi), 0);
2402 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2403 } else {
2404 go_left = 1;
2405 left_start = hint - 1;
2406 }
2407 }
2408 if (go_left == 0)
2409 goto skip_left;
2410
2411 while (test_bit(left_start, free_i->free_secmap)) {
2412 if (left_start > 0) {
2413 left_start--;
2414 continue;
2415 }
2416 left_start = find_next_zero_bit(free_i->free_secmap,
2417 MAIN_SECS(sbi), 0);
2418 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2419 break;
2420 }
2421 secno = left_start;
2422 skip_left:
2423 segno = GET_SEG_FROM_SEC(sbi, secno);
2424 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2425
2426 /* give up on finding another zone */
2427 if (!init)
2428 goto got_it;
2429 if (sbi->secs_per_zone == 1)
2430 goto got_it;
2431 if (zoneno == old_zoneno)
2432 goto got_it;
2433 if (dir == ALLOC_LEFT) {
2434 if (!go_left && zoneno + 1 >= total_zones)
2435 goto got_it;
2436 if (go_left && zoneno == 0)
2437 goto got_it;
2438 }
2439 for (i = 0; i < NR_CURSEG_TYPE; i++)
2440 if (CURSEG_I(sbi, i)->zone == zoneno)
2441 break;
2442
2443 if (i < NR_CURSEG_TYPE) {
2444 /* zone is in user, try another */
2445 if (go_left)
2446 hint = zoneno * sbi->secs_per_zone - 1;
2447 else if (zoneno + 1 >= total_zones)
2448 hint = 0;
2449 else
2450 hint = (zoneno + 1) * sbi->secs_per_zone;
2451 init = false;
2452 goto find_other_zone;
2453 }
2454 got_it:
2455 /* set it as dirty segment in free segmap */
2456 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2457 __set_inuse(sbi, segno);
2458 *newseg = segno;
2459 spin_unlock(&free_i->segmap_lock);
2460 }
2461
reset_curseg(struct f2fs_sb_info * sbi,int type,int modified)2462 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2463 {
2464 struct curseg_info *curseg = CURSEG_I(sbi, type);
2465 struct summary_footer *sum_footer;
2466
2467 curseg->segno = curseg->next_segno;
2468 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2469 curseg->next_blkoff = 0;
2470 curseg->next_segno = NULL_SEGNO;
2471
2472 sum_footer = &(curseg->sum_blk->footer);
2473 memset(sum_footer, 0, sizeof(struct summary_footer));
2474 if (IS_DATASEG(type))
2475 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2476 if (IS_NODESEG(type))
2477 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2478 __set_sit_entry_type(sbi, type, curseg->segno, modified);
2479 }
2480
__get_next_segno(struct f2fs_sb_info * sbi,int type)2481 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2482 {
2483 /* if segs_per_sec is large than 1, we need to keep original policy. */
2484 if (__is_large_section(sbi))
2485 return CURSEG_I(sbi, type)->segno;
2486
2487 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2488 return 0;
2489
2490 if (test_opt(sbi, NOHEAP) &&
2491 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2492 return 0;
2493
2494 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2495 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2496
2497 /* find segments from 0 to reuse freed segments */
2498 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2499 return 0;
2500
2501 return CURSEG_I(sbi, type)->segno;
2502 }
2503
2504 /*
2505 * Allocate a current working segment.
2506 * This function always allocates a free segment in LFS manner.
2507 */
new_curseg(struct f2fs_sb_info * sbi,int type,bool new_sec)2508 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2509 {
2510 struct curseg_info *curseg = CURSEG_I(sbi, type);
2511 unsigned int segno = curseg->segno;
2512 int dir = ALLOC_LEFT;
2513
2514 write_sum_page(sbi, curseg->sum_blk,
2515 GET_SUM_BLOCK(sbi, segno));
2516 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2517 dir = ALLOC_RIGHT;
2518
2519 if (test_opt(sbi, NOHEAP))
2520 dir = ALLOC_RIGHT;
2521
2522 segno = __get_next_segno(sbi, type);
2523 get_new_segment(sbi, &segno, new_sec, dir);
2524 curseg->next_segno = segno;
2525 reset_curseg(sbi, type, 1);
2526 curseg->alloc_type = LFS;
2527 }
2528
__next_free_blkoff(struct f2fs_sb_info * sbi,struct curseg_info * seg,block_t start)2529 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2530 struct curseg_info *seg, block_t start)
2531 {
2532 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2533 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2534 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2535 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2536 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2537 int i, pos;
2538
2539 for (i = 0; i < entries; i++)
2540 target_map[i] = ckpt_map[i] | cur_map[i];
2541
2542 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2543
2544 seg->next_blkoff = pos;
2545 }
2546
2547 /*
2548 * If a segment is written by LFS manner, next block offset is just obtained
2549 * by increasing the current block offset. However, if a segment is written by
2550 * SSR manner, next block offset obtained by calling __next_free_blkoff
2551 */
__refresh_next_blkoff(struct f2fs_sb_info * sbi,struct curseg_info * seg)2552 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2553 struct curseg_info *seg)
2554 {
2555 if (seg->alloc_type == SSR)
2556 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2557 else
2558 seg->next_blkoff++;
2559 }
2560
2561 /*
2562 * This function always allocates a used segment(from dirty seglist) by SSR
2563 * manner, so it should recover the existing segment information of valid blocks
2564 */
change_curseg(struct f2fs_sb_info * sbi,int type)2565 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2566 {
2567 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2568 struct curseg_info *curseg = CURSEG_I(sbi, type);
2569 unsigned int new_segno = curseg->next_segno;
2570 struct f2fs_summary_block *sum_node;
2571 struct page *sum_page;
2572
2573 write_sum_page(sbi, curseg->sum_blk,
2574 GET_SUM_BLOCK(sbi, curseg->segno));
2575 __set_test_and_inuse(sbi, new_segno);
2576
2577 mutex_lock(&dirty_i->seglist_lock);
2578 __remove_dirty_segment(sbi, new_segno, PRE);
2579 __remove_dirty_segment(sbi, new_segno, DIRTY);
2580 mutex_unlock(&dirty_i->seglist_lock);
2581
2582 reset_curseg(sbi, type, 1);
2583 curseg->alloc_type = SSR;
2584 __next_free_blkoff(sbi, curseg, 0);
2585
2586 sum_page = f2fs_get_sum_page(sbi, new_segno);
2587 f2fs_bug_on(sbi, IS_ERR(sum_page));
2588 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2589 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2590 f2fs_put_page(sum_page, 1);
2591 }
2592
get_ssr_segment(struct f2fs_sb_info * sbi,int type)2593 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2594 {
2595 struct curseg_info *curseg = CURSEG_I(sbi, type);
2596 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2597 unsigned segno = NULL_SEGNO;
2598 int i, cnt;
2599 bool reversed = false;
2600
2601 /* f2fs_need_SSR() already forces to do this */
2602 if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2603 curseg->next_segno = segno;
2604 return 1;
2605 }
2606
2607 /* For node segments, let's do SSR more intensively */
2608 if (IS_NODESEG(type)) {
2609 if (type >= CURSEG_WARM_NODE) {
2610 reversed = true;
2611 i = CURSEG_COLD_NODE;
2612 } else {
2613 i = CURSEG_HOT_NODE;
2614 }
2615 cnt = NR_CURSEG_NODE_TYPE;
2616 } else {
2617 if (type >= CURSEG_WARM_DATA) {
2618 reversed = true;
2619 i = CURSEG_COLD_DATA;
2620 } else {
2621 i = CURSEG_HOT_DATA;
2622 }
2623 cnt = NR_CURSEG_DATA_TYPE;
2624 }
2625
2626 for (; cnt-- > 0; reversed ? i-- : i++) {
2627 if (i == type)
2628 continue;
2629 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2630 curseg->next_segno = segno;
2631 return 1;
2632 }
2633 }
2634
2635 /* find valid_blocks=0 in dirty list */
2636 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2637 segno = get_free_segment(sbi);
2638 if (segno != NULL_SEGNO) {
2639 curseg->next_segno = segno;
2640 return 1;
2641 }
2642 }
2643 return 0;
2644 }
2645
2646 /*
2647 * flush out current segment and replace it with new segment
2648 * This function should be returned with success, otherwise BUG
2649 */
allocate_segment_by_default(struct f2fs_sb_info * sbi,int type,bool force)2650 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2651 int type, bool force)
2652 {
2653 struct curseg_info *curseg = CURSEG_I(sbi, type);
2654
2655 if (force)
2656 new_curseg(sbi, type, true);
2657 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2658 type == CURSEG_WARM_NODE)
2659 new_curseg(sbi, type, false);
2660 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) &&
2661 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2662 new_curseg(sbi, type, false);
2663 else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2664 change_curseg(sbi, type);
2665 else
2666 new_curseg(sbi, type, false);
2667
2668 stat_inc_seg_type(sbi, curseg);
2669 }
2670
allocate_segment_for_resize(struct f2fs_sb_info * sbi,int type,unsigned int start,unsigned int end)2671 void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2672 unsigned int start, unsigned int end)
2673 {
2674 struct curseg_info *curseg = CURSEG_I(sbi, type);
2675 unsigned int segno;
2676
2677 down_read(&SM_I(sbi)->curseg_lock);
2678 mutex_lock(&curseg->curseg_mutex);
2679 down_write(&SIT_I(sbi)->sentry_lock);
2680
2681 segno = CURSEG_I(sbi, type)->segno;
2682 if (segno < start || segno > end)
2683 goto unlock;
2684
2685 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2686 change_curseg(sbi, type);
2687 else
2688 new_curseg(sbi, type, true);
2689
2690 stat_inc_seg_type(sbi, curseg);
2691
2692 locate_dirty_segment(sbi, segno);
2693 unlock:
2694 up_write(&SIT_I(sbi)->sentry_lock);
2695
2696 if (segno != curseg->segno)
2697 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2698 type, segno, curseg->segno);
2699
2700 mutex_unlock(&curseg->curseg_mutex);
2701 up_read(&SM_I(sbi)->curseg_lock);
2702 }
2703
f2fs_allocate_new_segments(struct f2fs_sb_info * sbi,int type)2704 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi, int type)
2705 {
2706 struct curseg_info *curseg;
2707 unsigned int old_segno;
2708 int i;
2709
2710 down_write(&SIT_I(sbi)->sentry_lock);
2711
2712 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2713 if (type != NO_CHECK_TYPE && i != type)
2714 continue;
2715
2716 curseg = CURSEG_I(sbi, i);
2717 if (type == NO_CHECK_TYPE || curseg->next_blkoff ||
2718 get_valid_blocks(sbi, curseg->segno, false) ||
2719 get_ckpt_valid_blocks(sbi, curseg->segno)) {
2720 old_segno = curseg->segno;
2721 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2722 locate_dirty_segment(sbi, old_segno);
2723 }
2724 }
2725
2726 up_write(&SIT_I(sbi)->sentry_lock);
2727 }
2728
2729 static const struct segment_allocation default_salloc_ops = {
2730 .allocate_segment = allocate_segment_by_default,
2731 };
2732
f2fs_exist_trim_candidates(struct f2fs_sb_info * sbi,struct cp_control * cpc)2733 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2734 struct cp_control *cpc)
2735 {
2736 __u64 trim_start = cpc->trim_start;
2737 bool has_candidate = false;
2738
2739 down_write(&SIT_I(sbi)->sentry_lock);
2740 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2741 if (add_discard_addrs(sbi, cpc, true)) {
2742 has_candidate = true;
2743 break;
2744 }
2745 }
2746 up_write(&SIT_I(sbi)->sentry_lock);
2747
2748 cpc->trim_start = trim_start;
2749 return has_candidate;
2750 }
2751
__issue_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,unsigned int start,unsigned int end)2752 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2753 struct discard_policy *dpolicy,
2754 unsigned int start, unsigned int end)
2755 {
2756 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2757 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2758 struct rb_node **insert_p = NULL, *insert_parent = NULL;
2759 struct discard_cmd *dc;
2760 struct blk_plug plug;
2761 int issued;
2762 unsigned int trimmed = 0;
2763
2764 next:
2765 issued = 0;
2766
2767 mutex_lock(&dcc->cmd_lock);
2768 if (unlikely(dcc->rbtree_check))
2769 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2770 &dcc->root));
2771
2772 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2773 NULL, start,
2774 (struct rb_entry **)&prev_dc,
2775 (struct rb_entry **)&next_dc,
2776 &insert_p, &insert_parent, true, NULL);
2777 if (!dc)
2778 dc = next_dc;
2779
2780 blk_start_plug(&plug);
2781
2782 while (dc && dc->lstart <= end) {
2783 struct rb_node *node;
2784 int err = 0;
2785
2786 if (dc->len < dpolicy->granularity)
2787 goto skip;
2788
2789 if (dc->state != D_PREP) {
2790 list_move_tail(&dc->list, &dcc->fstrim_list);
2791 goto skip;
2792 }
2793
2794 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2795
2796 if (issued >= dpolicy->max_requests) {
2797 start = dc->lstart + dc->len;
2798
2799 if (err)
2800 __remove_discard_cmd(sbi, dc);
2801
2802 blk_finish_plug(&plug);
2803 mutex_unlock(&dcc->cmd_lock);
2804 trimmed += __wait_all_discard_cmd(sbi, NULL);
2805 congestion_wait(BLK_RW_ASYNC, HZ/50);
2806 goto next;
2807 }
2808 skip:
2809 node = rb_next(&dc->rb_node);
2810 if (err)
2811 __remove_discard_cmd(sbi, dc);
2812 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2813
2814 if (fatal_signal_pending(current))
2815 break;
2816 }
2817
2818 blk_finish_plug(&plug);
2819 mutex_unlock(&dcc->cmd_lock);
2820
2821 return trimmed;
2822 }
2823
f2fs_trim_fs(struct f2fs_sb_info * sbi,struct fstrim_range * range)2824 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2825 {
2826 __u64 start = F2FS_BYTES_TO_BLK(range->start);
2827 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2828 unsigned int start_segno, end_segno;
2829 block_t start_block, end_block;
2830 struct cp_control cpc;
2831 struct discard_policy dpolicy;
2832 unsigned long long trimmed = 0;
2833 int err = 0;
2834 bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
2835
2836 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2837 return -EINVAL;
2838
2839 if (end < MAIN_BLKADDR(sbi))
2840 goto out;
2841
2842 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2843 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
2844 return -EFSCORRUPTED;
2845 }
2846
2847 /* start/end segment number in main_area */
2848 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2849 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2850 GET_SEGNO(sbi, end);
2851 if (need_align) {
2852 start_segno = rounddown(start_segno, sbi->segs_per_sec);
2853 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
2854 }
2855
2856 cpc.reason = CP_DISCARD;
2857 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2858 cpc.trim_start = start_segno;
2859 cpc.trim_end = end_segno;
2860
2861 if (sbi->discard_blks == 0)
2862 goto out;
2863
2864 mutex_lock(&sbi->gc_mutex);
2865 err = f2fs_write_checkpoint(sbi, &cpc);
2866 mutex_unlock(&sbi->gc_mutex);
2867 if (err)
2868 goto out;
2869
2870 /*
2871 * We filed discard candidates, but actually we don't need to wait for
2872 * all of them, since they'll be issued in idle time along with runtime
2873 * discard option. User configuration looks like using runtime discard
2874 * or periodic fstrim instead of it.
2875 */
2876 if (f2fs_realtime_discard_enable(sbi))
2877 goto out;
2878
2879 start_block = START_BLOCK(sbi, start_segno);
2880 end_block = START_BLOCK(sbi, end_segno + 1);
2881
2882 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2883 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
2884 start_block, end_block);
2885
2886 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
2887 start_block, end_block);
2888 out:
2889 if (!err)
2890 range->len = F2FS_BLK_TO_BYTES(trimmed);
2891 return err;
2892 }
2893
__has_curseg_space(struct f2fs_sb_info * sbi,int type)2894 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2895 {
2896 struct curseg_info *curseg = CURSEG_I(sbi, type);
2897 if (curseg->next_blkoff < sbi->blocks_per_seg)
2898 return true;
2899 return false;
2900 }
2901
f2fs_rw_hint_to_seg_type(enum rw_hint hint)2902 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2903 {
2904 switch (hint) {
2905 case WRITE_LIFE_SHORT:
2906 return CURSEG_HOT_DATA;
2907 case WRITE_LIFE_EXTREME:
2908 return CURSEG_COLD_DATA;
2909 default:
2910 return CURSEG_WARM_DATA;
2911 }
2912 }
2913
2914 /* This returns write hints for each segment type. This hints will be
2915 * passed down to block layer. There are mapping tables which depend on
2916 * the mount option 'whint_mode'.
2917 *
2918 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2919 *
2920 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2921 *
2922 * User F2FS Block
2923 * ---- ---- -----
2924 * META WRITE_LIFE_NOT_SET
2925 * HOT_NODE "
2926 * WARM_NODE "
2927 * COLD_NODE "
2928 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2929 * extension list " "
2930 *
2931 * -- buffered io
2932 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2933 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2934 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2935 * WRITE_LIFE_NONE " "
2936 * WRITE_LIFE_MEDIUM " "
2937 * WRITE_LIFE_LONG " "
2938 *
2939 * -- direct io
2940 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2941 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2942 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2943 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2944 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2945 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2946 *
2947 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2948 *
2949 * User F2FS Block
2950 * ---- ---- -----
2951 * META WRITE_LIFE_MEDIUM;
2952 * HOT_NODE WRITE_LIFE_NOT_SET
2953 * WARM_NODE "
2954 * COLD_NODE WRITE_LIFE_NONE
2955 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2956 * extension list " "
2957 *
2958 * -- buffered io
2959 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2960 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2961 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
2962 * WRITE_LIFE_NONE " "
2963 * WRITE_LIFE_MEDIUM " "
2964 * WRITE_LIFE_LONG " "
2965 *
2966 * -- direct io
2967 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2968 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2969 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2970 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2971 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2972 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2973 */
2974
f2fs_io_type_to_rw_hint(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)2975 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2976 enum page_type type, enum temp_type temp)
2977 {
2978 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2979 if (type == DATA) {
2980 if (temp == WARM)
2981 return WRITE_LIFE_NOT_SET;
2982 else if (temp == HOT)
2983 return WRITE_LIFE_SHORT;
2984 else if (temp == COLD)
2985 return WRITE_LIFE_EXTREME;
2986 } else {
2987 return WRITE_LIFE_NOT_SET;
2988 }
2989 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2990 if (type == DATA) {
2991 if (temp == WARM)
2992 return WRITE_LIFE_LONG;
2993 else if (temp == HOT)
2994 return WRITE_LIFE_SHORT;
2995 else if (temp == COLD)
2996 return WRITE_LIFE_EXTREME;
2997 } else if (type == NODE) {
2998 if (temp == WARM || temp == HOT)
2999 return WRITE_LIFE_NOT_SET;
3000 else if (temp == COLD)
3001 return WRITE_LIFE_NONE;
3002 } else if (type == META) {
3003 return WRITE_LIFE_MEDIUM;
3004 }
3005 }
3006 return WRITE_LIFE_NOT_SET;
3007 }
3008
__get_segment_type_2(struct f2fs_io_info * fio)3009 static int __get_segment_type_2(struct f2fs_io_info *fio)
3010 {
3011 if (fio->type == DATA)
3012 return CURSEG_HOT_DATA;
3013 else
3014 return CURSEG_HOT_NODE;
3015 }
3016
__get_segment_type_4(struct f2fs_io_info * fio)3017 static int __get_segment_type_4(struct f2fs_io_info *fio)
3018 {
3019 if (fio->type == DATA) {
3020 struct inode *inode = fio->page->mapping->host;
3021
3022 if (S_ISDIR(inode->i_mode))
3023 return CURSEG_HOT_DATA;
3024 else
3025 return CURSEG_COLD_DATA;
3026 } else {
3027 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3028 return CURSEG_WARM_NODE;
3029 else
3030 return CURSEG_COLD_NODE;
3031 }
3032 }
3033
__get_segment_type_6(struct f2fs_io_info * fio)3034 static int __get_segment_type_6(struct f2fs_io_info *fio)
3035 {
3036 if (fio->type == DATA) {
3037 struct inode *inode = fio->page->mapping->host;
3038
3039 if (is_cold_data(fio->page) || file_is_cold(inode))
3040 return CURSEG_COLD_DATA;
3041 if (file_is_hot(inode) ||
3042 is_inode_flag_set(inode, FI_HOT_DATA) ||
3043 f2fs_is_atomic_file(inode) ||
3044 f2fs_is_volatile_file(inode))
3045 return CURSEG_HOT_DATA;
3046 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3047 } else {
3048 if (IS_DNODE(fio->page))
3049 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3050 CURSEG_HOT_NODE;
3051 return CURSEG_COLD_NODE;
3052 }
3053 }
3054
__get_segment_type(struct f2fs_io_info * fio)3055 static int __get_segment_type(struct f2fs_io_info *fio)
3056 {
3057 int type = 0;
3058
3059 switch (F2FS_OPTION(fio->sbi).active_logs) {
3060 case 2:
3061 type = __get_segment_type_2(fio);
3062 break;
3063 case 4:
3064 type = __get_segment_type_4(fio);
3065 break;
3066 case 6:
3067 type = __get_segment_type_6(fio);
3068 break;
3069 default:
3070 f2fs_bug_on(fio->sbi, true);
3071 }
3072
3073 if (IS_HOT(type))
3074 fio->temp = HOT;
3075 else if (IS_WARM(type))
3076 fio->temp = WARM;
3077 else
3078 fio->temp = COLD;
3079 return type;
3080 }
3081
f2fs_allocate_data_block(struct f2fs_sb_info * sbi,struct page * page,block_t old_blkaddr,block_t * new_blkaddr,struct f2fs_summary * sum,int type,struct f2fs_io_info * fio,bool add_list)3082 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3083 block_t old_blkaddr, block_t *new_blkaddr,
3084 struct f2fs_summary *sum, int type,
3085 struct f2fs_io_info *fio, bool add_list)
3086 {
3087 struct sit_info *sit_i = SIT_I(sbi);
3088 struct curseg_info *curseg = CURSEG_I(sbi, type);
3089 bool put_pin_sem = false;
3090
3091 if (type == CURSEG_COLD_DATA) {
3092 /* GC during CURSEG_COLD_DATA_PINNED allocation */
3093 if (down_read_trylock(&sbi->pin_sem)) {
3094 put_pin_sem = true;
3095 } else {
3096 type = CURSEG_WARM_DATA;
3097 curseg = CURSEG_I(sbi, type);
3098 }
3099 } else if (type == CURSEG_COLD_DATA_PINNED) {
3100 type = CURSEG_COLD_DATA;
3101 }
3102
3103 down_read(&SM_I(sbi)->curseg_lock);
3104
3105 mutex_lock(&curseg->curseg_mutex);
3106 down_write(&sit_i->sentry_lock);
3107
3108 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3109
3110 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3111
3112 /*
3113 * __add_sum_entry should be resided under the curseg_mutex
3114 * because, this function updates a summary entry in the
3115 * current summary block.
3116 */
3117 __add_sum_entry(sbi, type, sum);
3118
3119 __refresh_next_blkoff(sbi, curseg);
3120
3121 stat_inc_block_count(sbi, curseg);
3122
3123 /*
3124 * SIT information should be updated before segment allocation,
3125 * since SSR needs latest valid block information.
3126 */
3127 update_sit_entry(sbi, *new_blkaddr, 1);
3128 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3129 update_sit_entry(sbi, old_blkaddr, -1);
3130
3131 if (!__has_curseg_space(sbi, type))
3132 sit_i->s_ops->allocate_segment(sbi, type, false);
3133
3134 /*
3135 * segment dirty status should be updated after segment allocation,
3136 * so we just need to update status only one time after previous
3137 * segment being closed.
3138 */
3139 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3140 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3141
3142 up_write(&sit_i->sentry_lock);
3143
3144 if (page && IS_NODESEG(type)) {
3145 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3146
3147 f2fs_inode_chksum_set(sbi, page);
3148 }
3149
3150 if (F2FS_IO_ALIGNED(sbi))
3151 fio->retry = false;
3152
3153 if (add_list) {
3154 struct f2fs_bio_info *io;
3155
3156 INIT_LIST_HEAD(&fio->list);
3157 fio->in_list = true;
3158 io = sbi->write_io[fio->type] + fio->temp;
3159 spin_lock(&io->io_lock);
3160 list_add_tail(&fio->list, &io->io_list);
3161 spin_unlock(&io->io_lock);
3162 }
3163
3164 mutex_unlock(&curseg->curseg_mutex);
3165
3166 up_read(&SM_I(sbi)->curseg_lock);
3167
3168 if (put_pin_sem)
3169 up_read(&sbi->pin_sem);
3170 }
3171
update_device_state(struct f2fs_io_info * fio)3172 static void update_device_state(struct f2fs_io_info *fio)
3173 {
3174 struct f2fs_sb_info *sbi = fio->sbi;
3175 unsigned int devidx;
3176
3177 if (!f2fs_is_multi_device(sbi))
3178 return;
3179
3180 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3181
3182 /* update device state for fsync */
3183 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3184
3185 /* update device state for checkpoint */
3186 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3187 spin_lock(&sbi->dev_lock);
3188 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3189 spin_unlock(&sbi->dev_lock);
3190 }
3191 }
3192
do_write_page(struct f2fs_summary * sum,struct f2fs_io_info * fio)3193 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3194 {
3195 int type = __get_segment_type(fio);
3196 bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA);
3197
3198 if (keep_order)
3199 down_read(&fio->sbi->io_order_lock);
3200 reallocate:
3201 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3202 &fio->new_blkaddr, sum, type, fio, true);
3203 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3204 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3205 fio->old_blkaddr, fio->old_blkaddr);
3206
3207 /* writeout dirty page into bdev */
3208 f2fs_submit_page_write(fio);
3209 if (fio->retry) {
3210 fio->old_blkaddr = fio->new_blkaddr;
3211 goto reallocate;
3212 }
3213
3214 update_device_state(fio);
3215
3216 if (keep_order)
3217 up_read(&fio->sbi->io_order_lock);
3218 }
3219
f2fs_do_write_meta_page(struct f2fs_sb_info * sbi,struct page * page,enum iostat_type io_type)3220 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3221 enum iostat_type io_type)
3222 {
3223 struct f2fs_io_info fio = {
3224 .sbi = sbi,
3225 .type = META,
3226 .temp = HOT,
3227 .op = REQ_OP_WRITE,
3228 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3229 .old_blkaddr = page->index,
3230 .new_blkaddr = page->index,
3231 .page = page,
3232 .encrypted_page = NULL,
3233 .in_list = false,
3234 };
3235
3236 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3237 fio.op_flags &= ~REQ_META;
3238
3239 set_page_writeback(page);
3240 ClearPageError(page);
3241 f2fs_submit_page_write(&fio);
3242
3243 stat_inc_meta_count(sbi, page->index);
3244 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3245 }
3246
f2fs_do_write_node_page(unsigned int nid,struct f2fs_io_info * fio)3247 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3248 {
3249 struct f2fs_summary sum;
3250
3251 set_summary(&sum, nid, 0, 0);
3252 do_write_page(&sum, fio);
3253
3254 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3255 }
3256
f2fs_outplace_write_data(struct dnode_of_data * dn,struct f2fs_io_info * fio)3257 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3258 struct f2fs_io_info *fio)
3259 {
3260 struct f2fs_sb_info *sbi = fio->sbi;
3261 struct f2fs_summary sum;
3262
3263 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3264 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3265 do_write_page(&sum, fio);
3266 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3267
3268 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3269 }
3270
f2fs_inplace_write_data(struct f2fs_io_info * fio)3271 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3272 {
3273 int err;
3274 struct f2fs_sb_info *sbi = fio->sbi;
3275 unsigned int segno;
3276
3277 fio->new_blkaddr = fio->old_blkaddr;
3278 /* i/o temperature is needed for passing down write hints */
3279 __get_segment_type(fio);
3280
3281 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3282
3283 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3284 set_sbi_flag(sbi, SBI_NEED_FSCK);
3285 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3286 __func__, segno);
3287 return -EFSCORRUPTED;
3288 }
3289
3290 stat_inc_inplace_blocks(fio->sbi);
3291
3292 if (fio->bio)
3293 err = f2fs_merge_page_bio(fio);
3294 else
3295 err = f2fs_submit_page_bio(fio);
3296 if (!err) {
3297 update_device_state(fio);
3298 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3299 }
3300
3301 return err;
3302 }
3303
__f2fs_get_curseg(struct f2fs_sb_info * sbi,unsigned int segno)3304 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3305 unsigned int segno)
3306 {
3307 int i;
3308
3309 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3310 if (CURSEG_I(sbi, i)->segno == segno)
3311 break;
3312 }
3313 return i;
3314 }
3315
f2fs_do_replace_block(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,block_t old_blkaddr,block_t new_blkaddr,bool recover_curseg,bool recover_newaddr)3316 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3317 block_t old_blkaddr, block_t new_blkaddr,
3318 bool recover_curseg, bool recover_newaddr)
3319 {
3320 struct sit_info *sit_i = SIT_I(sbi);
3321 struct curseg_info *curseg;
3322 unsigned int segno, old_cursegno;
3323 struct seg_entry *se;
3324 int type;
3325 unsigned short old_blkoff;
3326
3327 segno = GET_SEGNO(sbi, new_blkaddr);
3328 se = get_seg_entry(sbi, segno);
3329 type = se->type;
3330
3331 down_write(&SM_I(sbi)->curseg_lock);
3332
3333 if (!recover_curseg) {
3334 /* for recovery flow */
3335 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3336 if (old_blkaddr == NULL_ADDR)
3337 type = CURSEG_COLD_DATA;
3338 else
3339 type = CURSEG_WARM_DATA;
3340 }
3341 } else {
3342 if (IS_CURSEG(sbi, segno)) {
3343 /* se->type is volatile as SSR allocation */
3344 type = __f2fs_get_curseg(sbi, segno);
3345 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3346 } else {
3347 type = CURSEG_WARM_DATA;
3348 }
3349 }
3350
3351 f2fs_bug_on(sbi, !IS_DATASEG(type));
3352 curseg = CURSEG_I(sbi, type);
3353
3354 mutex_lock(&curseg->curseg_mutex);
3355 down_write(&sit_i->sentry_lock);
3356
3357 old_cursegno = curseg->segno;
3358 old_blkoff = curseg->next_blkoff;
3359
3360 /* change the current segment */
3361 if (segno != curseg->segno) {
3362 curseg->next_segno = segno;
3363 change_curseg(sbi, type);
3364 }
3365
3366 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3367 __add_sum_entry(sbi, type, sum);
3368
3369 if (!recover_curseg || recover_newaddr)
3370 update_sit_entry(sbi, new_blkaddr, 1);
3371 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3372 invalidate_mapping_pages(META_MAPPING(sbi),
3373 old_blkaddr, old_blkaddr);
3374 update_sit_entry(sbi, old_blkaddr, -1);
3375 }
3376
3377 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3378 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3379
3380 locate_dirty_segment(sbi, old_cursegno);
3381
3382 if (recover_curseg) {
3383 if (old_cursegno != curseg->segno) {
3384 curseg->next_segno = old_cursegno;
3385 change_curseg(sbi, type);
3386 }
3387 curseg->next_blkoff = old_blkoff;
3388 }
3389
3390 up_write(&sit_i->sentry_lock);
3391 mutex_unlock(&curseg->curseg_mutex);
3392 up_write(&SM_I(sbi)->curseg_lock);
3393 }
3394
f2fs_replace_block(struct f2fs_sb_info * sbi,struct dnode_of_data * dn,block_t old_addr,block_t new_addr,unsigned char version,bool recover_curseg,bool recover_newaddr)3395 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3396 block_t old_addr, block_t new_addr,
3397 unsigned char version, bool recover_curseg,
3398 bool recover_newaddr)
3399 {
3400 struct f2fs_summary sum;
3401
3402 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3403
3404 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3405 recover_curseg, recover_newaddr);
3406
3407 f2fs_update_data_blkaddr(dn, new_addr);
3408 }
3409
f2fs_wait_on_page_writeback(struct page * page,enum page_type type,bool ordered,bool locked)3410 void f2fs_wait_on_page_writeback(struct page *page,
3411 enum page_type type, bool ordered, bool locked)
3412 {
3413 if (PageWriteback(page)) {
3414 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3415
3416 /* submit cached LFS IO */
3417 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3418 /* sbumit cached IPU IO */
3419 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3420 if (ordered) {
3421 wait_on_page_writeback(page);
3422 f2fs_bug_on(sbi, locked && PageWriteback(page));
3423 } else {
3424 wait_for_stable_page(page);
3425 }
3426 }
3427 }
3428
f2fs_wait_on_block_writeback(struct inode * inode,block_t blkaddr)3429 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3430 {
3431 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3432 struct page *cpage;
3433
3434 if (!f2fs_post_read_required(inode))
3435 return;
3436
3437 if (!__is_valid_data_blkaddr(blkaddr))
3438 return;
3439
3440 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3441 if (cpage) {
3442 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3443 f2fs_put_page(cpage, 1);
3444 }
3445 }
3446
f2fs_wait_on_block_writeback_range(struct inode * inode,block_t blkaddr,block_t len)3447 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3448 block_t len)
3449 {
3450 block_t i;
3451
3452 for (i = 0; i < len; i++)
3453 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3454 }
3455
read_compacted_summaries(struct f2fs_sb_info * sbi)3456 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3457 {
3458 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3459 struct curseg_info *seg_i;
3460 unsigned char *kaddr;
3461 struct page *page;
3462 block_t start;
3463 int i, j, offset;
3464
3465 start = start_sum_block(sbi);
3466
3467 page = f2fs_get_meta_page(sbi, start++);
3468 if (IS_ERR(page))
3469 return PTR_ERR(page);
3470 kaddr = (unsigned char *)page_address(page);
3471
3472 /* Step 1: restore nat cache */
3473 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3474 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3475
3476 /* Step 2: restore sit cache */
3477 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3478 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3479 offset = 2 * SUM_JOURNAL_SIZE;
3480
3481 /* Step 3: restore summary entries */
3482 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3483 unsigned short blk_off;
3484 unsigned int segno;
3485
3486 seg_i = CURSEG_I(sbi, i);
3487 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3488 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3489 seg_i->next_segno = segno;
3490 reset_curseg(sbi, i, 0);
3491 seg_i->alloc_type = ckpt->alloc_type[i];
3492 seg_i->next_blkoff = blk_off;
3493
3494 if (seg_i->alloc_type == SSR)
3495 blk_off = sbi->blocks_per_seg;
3496
3497 for (j = 0; j < blk_off; j++) {
3498 struct f2fs_summary *s;
3499 s = (struct f2fs_summary *)(kaddr + offset);
3500 seg_i->sum_blk->entries[j] = *s;
3501 offset += SUMMARY_SIZE;
3502 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3503 SUM_FOOTER_SIZE)
3504 continue;
3505
3506 f2fs_put_page(page, 1);
3507 page = NULL;
3508
3509 page = f2fs_get_meta_page(sbi, start++);
3510 if (IS_ERR(page))
3511 return PTR_ERR(page);
3512 kaddr = (unsigned char *)page_address(page);
3513 offset = 0;
3514 }
3515 }
3516 f2fs_put_page(page, 1);
3517 return 0;
3518 }
3519
read_normal_summaries(struct f2fs_sb_info * sbi,int type)3520 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3521 {
3522 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3523 struct f2fs_summary_block *sum;
3524 struct curseg_info *curseg;
3525 struct page *new;
3526 unsigned short blk_off;
3527 unsigned int segno = 0;
3528 block_t blk_addr = 0;
3529 int err = 0;
3530
3531 /* get segment number and block addr */
3532 if (IS_DATASEG(type)) {
3533 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3534 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3535 CURSEG_HOT_DATA]);
3536 if (__exist_node_summaries(sbi))
3537 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3538 else
3539 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3540 } else {
3541 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3542 CURSEG_HOT_NODE]);
3543 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3544 CURSEG_HOT_NODE]);
3545 if (__exist_node_summaries(sbi))
3546 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3547 type - CURSEG_HOT_NODE);
3548 else
3549 blk_addr = GET_SUM_BLOCK(sbi, segno);
3550 }
3551
3552 new = f2fs_get_meta_page(sbi, blk_addr);
3553 if (IS_ERR(new))
3554 return PTR_ERR(new);
3555 sum = (struct f2fs_summary_block *)page_address(new);
3556
3557 if (IS_NODESEG(type)) {
3558 if (__exist_node_summaries(sbi)) {
3559 struct f2fs_summary *ns = &sum->entries[0];
3560 int i;
3561 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3562 ns->version = 0;
3563 ns->ofs_in_node = 0;
3564 }
3565 } else {
3566 err = f2fs_restore_node_summary(sbi, segno, sum);
3567 if (err)
3568 goto out;
3569 }
3570 }
3571
3572 /* set uncompleted segment to curseg */
3573 curseg = CURSEG_I(sbi, type);
3574 mutex_lock(&curseg->curseg_mutex);
3575
3576 /* update journal info */
3577 down_write(&curseg->journal_rwsem);
3578 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3579 up_write(&curseg->journal_rwsem);
3580
3581 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3582 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3583 curseg->next_segno = segno;
3584 reset_curseg(sbi, type, 0);
3585 curseg->alloc_type = ckpt->alloc_type[type];
3586 curseg->next_blkoff = blk_off;
3587 mutex_unlock(&curseg->curseg_mutex);
3588 out:
3589 f2fs_put_page(new, 1);
3590 return err;
3591 }
3592
restore_curseg_summaries(struct f2fs_sb_info * sbi)3593 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3594 {
3595 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3596 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3597 int type = CURSEG_HOT_DATA;
3598 int err;
3599
3600 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3601 int npages = f2fs_npages_for_summary_flush(sbi, true);
3602
3603 if (npages >= 2)
3604 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3605 META_CP, true);
3606
3607 /* restore for compacted data summary */
3608 err = read_compacted_summaries(sbi);
3609 if (err)
3610 return err;
3611 type = CURSEG_HOT_NODE;
3612 }
3613
3614 if (__exist_node_summaries(sbi))
3615 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3616 NR_CURSEG_TYPE - type, META_CP, true);
3617
3618 for (; type <= CURSEG_COLD_NODE; type++) {
3619 err = read_normal_summaries(sbi, type);
3620 if (err)
3621 return err;
3622 }
3623
3624 /* sanity check for summary blocks */
3625 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3626 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3627 f2fs_err(sbi, "invalid journal entries nats %u sits %u\n",
3628 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3629 return -EINVAL;
3630 }
3631
3632 return 0;
3633 }
3634
write_compacted_summaries(struct f2fs_sb_info * sbi,block_t blkaddr)3635 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3636 {
3637 struct page *page;
3638 unsigned char *kaddr;
3639 struct f2fs_summary *summary;
3640 struct curseg_info *seg_i;
3641 int written_size = 0;
3642 int i, j;
3643
3644 page = f2fs_grab_meta_page(sbi, blkaddr++);
3645 kaddr = (unsigned char *)page_address(page);
3646 memset(kaddr, 0, PAGE_SIZE);
3647
3648 /* Step 1: write nat cache */
3649 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3650 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3651 written_size += SUM_JOURNAL_SIZE;
3652
3653 /* Step 2: write sit cache */
3654 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3655 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3656 written_size += SUM_JOURNAL_SIZE;
3657
3658 /* Step 3: write summary entries */
3659 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3660 unsigned short blkoff;
3661 seg_i = CURSEG_I(sbi, i);
3662 if (sbi->ckpt->alloc_type[i] == SSR)
3663 blkoff = sbi->blocks_per_seg;
3664 else
3665 blkoff = curseg_blkoff(sbi, i);
3666
3667 for (j = 0; j < blkoff; j++) {
3668 if (!page) {
3669 page = f2fs_grab_meta_page(sbi, blkaddr++);
3670 kaddr = (unsigned char *)page_address(page);
3671 memset(kaddr, 0, PAGE_SIZE);
3672 written_size = 0;
3673 }
3674 summary = (struct f2fs_summary *)(kaddr + written_size);
3675 *summary = seg_i->sum_blk->entries[j];
3676 written_size += SUMMARY_SIZE;
3677
3678 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3679 SUM_FOOTER_SIZE)
3680 continue;
3681
3682 set_page_dirty(page);
3683 f2fs_put_page(page, 1);
3684 page = NULL;
3685 }
3686 }
3687 if (page) {
3688 set_page_dirty(page);
3689 f2fs_put_page(page, 1);
3690 }
3691 }
3692
write_normal_summaries(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3693 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3694 block_t blkaddr, int type)
3695 {
3696 int i, end;
3697 if (IS_DATASEG(type))
3698 end = type + NR_CURSEG_DATA_TYPE;
3699 else
3700 end = type + NR_CURSEG_NODE_TYPE;
3701
3702 for (i = type; i < end; i++)
3703 write_current_sum_page(sbi, i, blkaddr + (i - type));
3704 }
3705
f2fs_write_data_summaries(struct f2fs_sb_info * sbi,block_t start_blk)3706 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3707 {
3708 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3709 write_compacted_summaries(sbi, start_blk);
3710 else
3711 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3712 }
3713
f2fs_write_node_summaries(struct f2fs_sb_info * sbi,block_t start_blk)3714 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3715 {
3716 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3717 }
3718
f2fs_lookup_journal_in_cursum(struct f2fs_journal * journal,int type,unsigned int val,int alloc)3719 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3720 unsigned int val, int alloc)
3721 {
3722 int i;
3723
3724 if (type == NAT_JOURNAL) {
3725 for (i = 0; i < nats_in_cursum(journal); i++) {
3726 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3727 return i;
3728 }
3729 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3730 return update_nats_in_cursum(journal, 1);
3731 } else if (type == SIT_JOURNAL) {
3732 for (i = 0; i < sits_in_cursum(journal); i++)
3733 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3734 return i;
3735 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3736 return update_sits_in_cursum(journal, 1);
3737 }
3738 return -1;
3739 }
3740
get_current_sit_page(struct f2fs_sb_info * sbi,unsigned int segno)3741 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3742 unsigned int segno)
3743 {
3744 return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
3745 }
3746
get_next_sit_page(struct f2fs_sb_info * sbi,unsigned int start)3747 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3748 unsigned int start)
3749 {
3750 struct sit_info *sit_i = SIT_I(sbi);
3751 struct page *page;
3752 pgoff_t src_off, dst_off;
3753
3754 src_off = current_sit_addr(sbi, start);
3755 dst_off = next_sit_addr(sbi, src_off);
3756
3757 page = f2fs_grab_meta_page(sbi, dst_off);
3758 seg_info_to_sit_page(sbi, page, start);
3759
3760 set_page_dirty(page);
3761 set_to_next_sit(sit_i, start);
3762
3763 return page;
3764 }
3765
grab_sit_entry_set(void)3766 static struct sit_entry_set *grab_sit_entry_set(void)
3767 {
3768 struct sit_entry_set *ses =
3769 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3770
3771 ses->entry_cnt = 0;
3772 INIT_LIST_HEAD(&ses->set_list);
3773 return ses;
3774 }
3775
release_sit_entry_set(struct sit_entry_set * ses)3776 static void release_sit_entry_set(struct sit_entry_set *ses)
3777 {
3778 list_del(&ses->set_list);
3779 kmem_cache_free(sit_entry_set_slab, ses);
3780 }
3781
adjust_sit_entry_set(struct sit_entry_set * ses,struct list_head * head)3782 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3783 struct list_head *head)
3784 {
3785 struct sit_entry_set *next = ses;
3786
3787 if (list_is_last(&ses->set_list, head))
3788 return;
3789
3790 list_for_each_entry_continue(next, head, set_list)
3791 if (ses->entry_cnt <= next->entry_cnt)
3792 break;
3793
3794 list_move_tail(&ses->set_list, &next->set_list);
3795 }
3796
add_sit_entry(unsigned int segno,struct list_head * head)3797 static void add_sit_entry(unsigned int segno, struct list_head *head)
3798 {
3799 struct sit_entry_set *ses;
3800 unsigned int start_segno = START_SEGNO(segno);
3801
3802 list_for_each_entry(ses, head, set_list) {
3803 if (ses->start_segno == start_segno) {
3804 ses->entry_cnt++;
3805 adjust_sit_entry_set(ses, head);
3806 return;
3807 }
3808 }
3809
3810 ses = grab_sit_entry_set();
3811
3812 ses->start_segno = start_segno;
3813 ses->entry_cnt++;
3814 list_add(&ses->set_list, head);
3815 }
3816
add_sits_in_set(struct f2fs_sb_info * sbi)3817 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3818 {
3819 struct f2fs_sm_info *sm_info = SM_I(sbi);
3820 struct list_head *set_list = &sm_info->sit_entry_set;
3821 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3822 unsigned int segno;
3823
3824 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3825 add_sit_entry(segno, set_list);
3826 }
3827
remove_sits_in_journal(struct f2fs_sb_info * sbi)3828 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3829 {
3830 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3831 struct f2fs_journal *journal = curseg->journal;
3832 int i;
3833
3834 down_write(&curseg->journal_rwsem);
3835 for (i = 0; i < sits_in_cursum(journal); i++) {
3836 unsigned int segno;
3837 bool dirtied;
3838
3839 segno = le32_to_cpu(segno_in_journal(journal, i));
3840 dirtied = __mark_sit_entry_dirty(sbi, segno);
3841
3842 if (!dirtied)
3843 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3844 }
3845 update_sits_in_cursum(journal, -i);
3846 up_write(&curseg->journal_rwsem);
3847 }
3848
3849 /*
3850 * CP calls this function, which flushes SIT entries including sit_journal,
3851 * and moves prefree segs to free segs.
3852 */
f2fs_flush_sit_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)3853 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3854 {
3855 struct sit_info *sit_i = SIT_I(sbi);
3856 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3857 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3858 struct f2fs_journal *journal = curseg->journal;
3859 struct sit_entry_set *ses, *tmp;
3860 struct list_head *head = &SM_I(sbi)->sit_entry_set;
3861 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
3862 struct seg_entry *se;
3863
3864 down_write(&sit_i->sentry_lock);
3865
3866 if (!sit_i->dirty_sentries)
3867 goto out;
3868
3869 /*
3870 * add and account sit entries of dirty bitmap in sit entry
3871 * set temporarily
3872 */
3873 add_sits_in_set(sbi);
3874
3875 /*
3876 * if there are no enough space in journal to store dirty sit
3877 * entries, remove all entries from journal and add and account
3878 * them in sit entry set.
3879 */
3880 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
3881 !to_journal)
3882 remove_sits_in_journal(sbi);
3883
3884 /*
3885 * there are two steps to flush sit entries:
3886 * #1, flush sit entries to journal in current cold data summary block.
3887 * #2, flush sit entries to sit page.
3888 */
3889 list_for_each_entry_safe(ses, tmp, head, set_list) {
3890 struct page *page = NULL;
3891 struct f2fs_sit_block *raw_sit = NULL;
3892 unsigned int start_segno = ses->start_segno;
3893 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3894 (unsigned long)MAIN_SEGS(sbi));
3895 unsigned int segno = start_segno;
3896
3897 if (to_journal &&
3898 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3899 to_journal = false;
3900
3901 if (to_journal) {
3902 down_write(&curseg->journal_rwsem);
3903 } else {
3904 page = get_next_sit_page(sbi, start_segno);
3905 raw_sit = page_address(page);
3906 }
3907
3908 /* flush dirty sit entries in region of current sit set */
3909 for_each_set_bit_from(segno, bitmap, end) {
3910 int offset, sit_offset;
3911
3912 se = get_seg_entry(sbi, segno);
3913 #ifdef CONFIG_F2FS_CHECK_FS
3914 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3915 SIT_VBLOCK_MAP_SIZE))
3916 f2fs_bug_on(sbi, 1);
3917 #endif
3918
3919 /* add discard candidates */
3920 if (!(cpc->reason & CP_DISCARD)) {
3921 cpc->trim_start = segno;
3922 add_discard_addrs(sbi, cpc, false);
3923 }
3924
3925 if (to_journal) {
3926 offset = f2fs_lookup_journal_in_cursum(journal,
3927 SIT_JOURNAL, segno, 1);
3928 f2fs_bug_on(sbi, offset < 0);
3929 segno_in_journal(journal, offset) =
3930 cpu_to_le32(segno);
3931 seg_info_to_raw_sit(se,
3932 &sit_in_journal(journal, offset));
3933 check_block_count(sbi, segno,
3934 &sit_in_journal(journal, offset));
3935 } else {
3936 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3937 seg_info_to_raw_sit(se,
3938 &raw_sit->entries[sit_offset]);
3939 check_block_count(sbi, segno,
3940 &raw_sit->entries[sit_offset]);
3941 }
3942
3943 __clear_bit(segno, bitmap);
3944 sit_i->dirty_sentries--;
3945 ses->entry_cnt--;
3946 }
3947
3948 if (to_journal)
3949 up_write(&curseg->journal_rwsem);
3950 else
3951 f2fs_put_page(page, 1);
3952
3953 f2fs_bug_on(sbi, ses->entry_cnt);
3954 release_sit_entry_set(ses);
3955 }
3956
3957 f2fs_bug_on(sbi, !list_empty(head));
3958 f2fs_bug_on(sbi, sit_i->dirty_sentries);
3959 out:
3960 if (cpc->reason & CP_DISCARD) {
3961 __u64 trim_start = cpc->trim_start;
3962
3963 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3964 add_discard_addrs(sbi, cpc, false);
3965
3966 cpc->trim_start = trim_start;
3967 }
3968 up_write(&sit_i->sentry_lock);
3969
3970 set_prefree_as_free_segments(sbi);
3971 }
3972
build_sit_info(struct f2fs_sb_info * sbi)3973 static int build_sit_info(struct f2fs_sb_info *sbi)
3974 {
3975 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3976 struct sit_info *sit_i;
3977 unsigned int sit_segs, start;
3978 char *src_bitmap, *bitmap;
3979 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
3980
3981 /* allocate memory for SIT information */
3982 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3983 if (!sit_i)
3984 return -ENOMEM;
3985
3986 SM_I(sbi)->sit_info = sit_i;
3987
3988 sit_i->sentries =
3989 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
3990 MAIN_SEGS(sbi)),
3991 GFP_KERNEL);
3992 if (!sit_i->sentries)
3993 return -ENOMEM;
3994
3995 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3996 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
3997 GFP_KERNEL);
3998 if (!sit_i->dirty_sentries_bitmap)
3999 return -ENOMEM;
4000
4001 #ifdef CONFIG_F2FS_CHECK_FS
4002 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
4003 #else
4004 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
4005 #endif
4006 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4007 if (!sit_i->bitmap)
4008 return -ENOMEM;
4009
4010 bitmap = sit_i->bitmap;
4011
4012 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4013 sit_i->sentries[start].cur_valid_map = bitmap;
4014 bitmap += SIT_VBLOCK_MAP_SIZE;
4015
4016 sit_i->sentries[start].ckpt_valid_map = bitmap;
4017 bitmap += SIT_VBLOCK_MAP_SIZE;
4018
4019 #ifdef CONFIG_F2FS_CHECK_FS
4020 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4021 bitmap += SIT_VBLOCK_MAP_SIZE;
4022 #endif
4023
4024 sit_i->sentries[start].discard_map = bitmap;
4025 bitmap += SIT_VBLOCK_MAP_SIZE;
4026 }
4027
4028 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4029 if (!sit_i->tmp_map)
4030 return -ENOMEM;
4031
4032 if (__is_large_section(sbi)) {
4033 sit_i->sec_entries =
4034 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4035 MAIN_SECS(sbi)),
4036 GFP_KERNEL);
4037 if (!sit_i->sec_entries)
4038 return -ENOMEM;
4039 }
4040
4041 /* get information related with SIT */
4042 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4043
4044 /* setup SIT bitmap from ckeckpoint pack */
4045 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4046 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4047
4048 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4049 if (!sit_i->sit_bitmap)
4050 return -ENOMEM;
4051
4052 #ifdef CONFIG_F2FS_CHECK_FS
4053 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4054 sit_bitmap_size, GFP_KERNEL);
4055 if (!sit_i->sit_bitmap_mir)
4056 return -ENOMEM;
4057
4058 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4059 main_bitmap_size, GFP_KERNEL);
4060 if (!sit_i->invalid_segmap)
4061 return -ENOMEM;
4062 #endif
4063
4064 /* init SIT information */
4065 sit_i->s_ops = &default_salloc_ops;
4066
4067 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4068 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4069 sit_i->written_valid_blocks = 0;
4070 sit_i->bitmap_size = sit_bitmap_size;
4071 sit_i->dirty_sentries = 0;
4072 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4073 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4074 sit_i->mounted_time = ktime_get_real_seconds();
4075 init_rwsem(&sit_i->sentry_lock);
4076 return 0;
4077 }
4078
build_free_segmap(struct f2fs_sb_info * sbi)4079 static int build_free_segmap(struct f2fs_sb_info *sbi)
4080 {
4081 struct free_segmap_info *free_i;
4082 unsigned int bitmap_size, sec_bitmap_size;
4083
4084 /* allocate memory for free segmap information */
4085 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4086 if (!free_i)
4087 return -ENOMEM;
4088
4089 SM_I(sbi)->free_info = free_i;
4090
4091 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4092 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4093 if (!free_i->free_segmap)
4094 return -ENOMEM;
4095
4096 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4097 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4098 if (!free_i->free_secmap)
4099 return -ENOMEM;
4100
4101 /* set all segments as dirty temporarily */
4102 memset(free_i->free_segmap, 0xff, bitmap_size);
4103 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4104
4105 /* init free segmap information */
4106 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4107 free_i->free_segments = 0;
4108 free_i->free_sections = 0;
4109 spin_lock_init(&free_i->segmap_lock);
4110 return 0;
4111 }
4112
build_curseg(struct f2fs_sb_info * sbi)4113 static int build_curseg(struct f2fs_sb_info *sbi)
4114 {
4115 struct curseg_info *array;
4116 int i;
4117
4118 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
4119 GFP_KERNEL);
4120 if (!array)
4121 return -ENOMEM;
4122
4123 SM_I(sbi)->curseg_array = array;
4124
4125 for (i = 0; i < NR_CURSEG_TYPE; i++) {
4126 mutex_init(&array[i].curseg_mutex);
4127 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4128 if (!array[i].sum_blk)
4129 return -ENOMEM;
4130 init_rwsem(&array[i].journal_rwsem);
4131 array[i].journal = f2fs_kzalloc(sbi,
4132 sizeof(struct f2fs_journal), GFP_KERNEL);
4133 if (!array[i].journal)
4134 return -ENOMEM;
4135 array[i].segno = NULL_SEGNO;
4136 array[i].next_blkoff = 0;
4137 }
4138 return restore_curseg_summaries(sbi);
4139 }
4140
build_sit_entries(struct f2fs_sb_info * sbi)4141 static int build_sit_entries(struct f2fs_sb_info *sbi)
4142 {
4143 struct sit_info *sit_i = SIT_I(sbi);
4144 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4145 struct f2fs_journal *journal = curseg->journal;
4146 struct seg_entry *se;
4147 struct f2fs_sit_entry sit;
4148 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4149 unsigned int i, start, end;
4150 unsigned int readed, start_blk = 0;
4151 int err = 0;
4152 block_t total_node_blocks = 0;
4153
4154 do {
4155 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4156 META_SIT, true);
4157
4158 start = start_blk * sit_i->sents_per_block;
4159 end = (start_blk + readed) * sit_i->sents_per_block;
4160
4161 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4162 struct f2fs_sit_block *sit_blk;
4163 struct page *page;
4164
4165 se = &sit_i->sentries[start];
4166 page = get_current_sit_page(sbi, start);
4167 if (IS_ERR(page))
4168 return PTR_ERR(page);
4169 sit_blk = (struct f2fs_sit_block *)page_address(page);
4170 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4171 f2fs_put_page(page, 1);
4172
4173 err = check_block_count(sbi, start, &sit);
4174 if (err)
4175 return err;
4176 seg_info_from_raw_sit(se, &sit);
4177 if (IS_NODESEG(se->type))
4178 total_node_blocks += se->valid_blocks;
4179
4180 /* build discard map only one time */
4181 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4182 memset(se->discard_map, 0xff,
4183 SIT_VBLOCK_MAP_SIZE);
4184 } else {
4185 memcpy(se->discard_map,
4186 se->cur_valid_map,
4187 SIT_VBLOCK_MAP_SIZE);
4188 sbi->discard_blks +=
4189 sbi->blocks_per_seg -
4190 se->valid_blocks;
4191 }
4192
4193 if (__is_large_section(sbi))
4194 get_sec_entry(sbi, start)->valid_blocks +=
4195 se->valid_blocks;
4196 }
4197 start_blk += readed;
4198 } while (start_blk < sit_blk_cnt);
4199
4200 down_read(&curseg->journal_rwsem);
4201 for (i = 0; i < sits_in_cursum(journal); i++) {
4202 unsigned int old_valid_blocks;
4203
4204 start = le32_to_cpu(segno_in_journal(journal, i));
4205 if (start >= MAIN_SEGS(sbi)) {
4206 f2fs_err(sbi, "Wrong journal entry on segno %u",
4207 start);
4208 err = -EFSCORRUPTED;
4209 break;
4210 }
4211
4212 se = &sit_i->sentries[start];
4213 sit = sit_in_journal(journal, i);
4214
4215 old_valid_blocks = se->valid_blocks;
4216 if (IS_NODESEG(se->type))
4217 total_node_blocks -= old_valid_blocks;
4218
4219 err = check_block_count(sbi, start, &sit);
4220 if (err)
4221 break;
4222 seg_info_from_raw_sit(se, &sit);
4223 if (IS_NODESEG(se->type))
4224 total_node_blocks += se->valid_blocks;
4225
4226 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4227 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4228 } else {
4229 memcpy(se->discard_map, se->cur_valid_map,
4230 SIT_VBLOCK_MAP_SIZE);
4231 sbi->discard_blks += old_valid_blocks;
4232 sbi->discard_blks -= se->valid_blocks;
4233 }
4234
4235 if (__is_large_section(sbi)) {
4236 get_sec_entry(sbi, start)->valid_blocks +=
4237 se->valid_blocks;
4238 get_sec_entry(sbi, start)->valid_blocks -=
4239 old_valid_blocks;
4240 }
4241 }
4242 up_read(&curseg->journal_rwsem);
4243
4244 if (!err && total_node_blocks != valid_node_count(sbi)) {
4245 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4246 total_node_blocks, valid_node_count(sbi));
4247 err = -EFSCORRUPTED;
4248 }
4249
4250 return err;
4251 }
4252
init_free_segmap(struct f2fs_sb_info * sbi)4253 static void init_free_segmap(struct f2fs_sb_info *sbi)
4254 {
4255 unsigned int start;
4256 int type;
4257
4258 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4259 struct seg_entry *sentry = get_seg_entry(sbi, start);
4260 if (!sentry->valid_blocks)
4261 __set_free(sbi, start);
4262 else
4263 SIT_I(sbi)->written_valid_blocks +=
4264 sentry->valid_blocks;
4265 }
4266
4267 /* set use the current segments */
4268 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4269 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4270 __set_test_and_inuse(sbi, curseg_t->segno);
4271 }
4272 }
4273
init_dirty_segmap(struct f2fs_sb_info * sbi)4274 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4275 {
4276 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4277 struct free_segmap_info *free_i = FREE_I(sbi);
4278 unsigned int segno = 0, offset = 0;
4279 unsigned short valid_blocks;
4280
4281 while (1) {
4282 /* find dirty segment based on free segmap */
4283 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4284 if (segno >= MAIN_SEGS(sbi))
4285 break;
4286 offset = segno + 1;
4287 valid_blocks = get_valid_blocks(sbi, segno, false);
4288 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
4289 continue;
4290 if (valid_blocks > sbi->blocks_per_seg) {
4291 f2fs_bug_on(sbi, 1);
4292 continue;
4293 }
4294 mutex_lock(&dirty_i->seglist_lock);
4295 __locate_dirty_segment(sbi, segno, DIRTY);
4296 mutex_unlock(&dirty_i->seglist_lock);
4297 }
4298 }
4299
init_victim_secmap(struct f2fs_sb_info * sbi)4300 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4301 {
4302 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4303 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4304
4305 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4306 if (!dirty_i->victim_secmap)
4307 return -ENOMEM;
4308 return 0;
4309 }
4310
build_dirty_segmap(struct f2fs_sb_info * sbi)4311 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4312 {
4313 struct dirty_seglist_info *dirty_i;
4314 unsigned int bitmap_size, i;
4315
4316 /* allocate memory for dirty segments list information */
4317 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4318 GFP_KERNEL);
4319 if (!dirty_i)
4320 return -ENOMEM;
4321
4322 SM_I(sbi)->dirty_info = dirty_i;
4323 mutex_init(&dirty_i->seglist_lock);
4324
4325 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4326
4327 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4328 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4329 GFP_KERNEL);
4330 if (!dirty_i->dirty_segmap[i])
4331 return -ENOMEM;
4332 }
4333
4334 init_dirty_segmap(sbi);
4335 return init_victim_secmap(sbi);
4336 }
4337
sanity_check_curseg(struct f2fs_sb_info * sbi)4338 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4339 {
4340 int i;
4341
4342 /*
4343 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4344 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4345 */
4346 for (i = 0; i < NO_CHECK_TYPE; i++) {
4347 struct curseg_info *curseg = CURSEG_I(sbi, i);
4348 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4349 unsigned int blkofs = curseg->next_blkoff;
4350
4351 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4352 goto out;
4353
4354 if (curseg->alloc_type == SSR)
4355 continue;
4356
4357 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4358 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4359 continue;
4360 out:
4361 f2fs_err(sbi,
4362 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4363 i, curseg->segno, curseg->alloc_type,
4364 curseg->next_blkoff, blkofs);
4365 return -EFSCORRUPTED;
4366 }
4367 }
4368 return 0;
4369 }
4370
4371 /*
4372 * Update min, max modified time for cost-benefit GC algorithm
4373 */
init_min_max_mtime(struct f2fs_sb_info * sbi)4374 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
4375 {
4376 struct sit_info *sit_i = SIT_I(sbi);
4377 unsigned int segno;
4378
4379 down_write(&sit_i->sentry_lock);
4380
4381 sit_i->min_mtime = ULLONG_MAX;
4382
4383 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4384 unsigned int i;
4385 unsigned long long mtime = 0;
4386
4387 for (i = 0; i < sbi->segs_per_sec; i++)
4388 mtime += get_seg_entry(sbi, segno + i)->mtime;
4389
4390 mtime = div_u64(mtime, sbi->segs_per_sec);
4391
4392 if (sit_i->min_mtime > mtime)
4393 sit_i->min_mtime = mtime;
4394 }
4395 sit_i->max_mtime = get_mtime(sbi, false);
4396 up_write(&sit_i->sentry_lock);
4397 }
4398
f2fs_build_segment_manager(struct f2fs_sb_info * sbi)4399 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
4400 {
4401 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4402 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4403 struct f2fs_sm_info *sm_info;
4404 int err;
4405
4406 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
4407 if (!sm_info)
4408 return -ENOMEM;
4409
4410 /* init sm info */
4411 sbi->sm_info = sm_info;
4412 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
4413 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
4414 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
4415 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4416 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4417 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
4418 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
4419 sm_info->rec_prefree_segments = sm_info->main_segments *
4420 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
4421 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
4422 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
4423
4424 if (!test_opt(sbi, LFS))
4425 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
4426 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
4427 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
4428 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
4429 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
4430 sm_info->min_ssr_sections = reserved_sections(sbi);
4431
4432 INIT_LIST_HEAD(&sm_info->sit_entry_set);
4433
4434 init_rwsem(&sm_info->curseg_lock);
4435
4436 if (!f2fs_readonly(sbi->sb)) {
4437 err = f2fs_create_flush_cmd_control(sbi);
4438 if (err)
4439 return err;
4440 }
4441
4442 err = create_discard_cmd_control(sbi);
4443 if (err)
4444 return err;
4445
4446 err = build_sit_info(sbi);
4447 if (err)
4448 return err;
4449 err = build_free_segmap(sbi);
4450 if (err)
4451 return err;
4452 err = build_curseg(sbi);
4453 if (err)
4454 return err;
4455
4456 /* reinit free segmap based on SIT */
4457 err = build_sit_entries(sbi);
4458 if (err)
4459 return err;
4460
4461 init_free_segmap(sbi);
4462 err = build_dirty_segmap(sbi);
4463 if (err)
4464 return err;
4465
4466 err = sanity_check_curseg(sbi);
4467 if (err)
4468 return err;
4469
4470 init_min_max_mtime(sbi);
4471 return 0;
4472 }
4473
discard_dirty_segmap(struct f2fs_sb_info * sbi,enum dirty_type dirty_type)4474 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4475 enum dirty_type dirty_type)
4476 {
4477 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4478
4479 mutex_lock(&dirty_i->seglist_lock);
4480 kvfree(dirty_i->dirty_segmap[dirty_type]);
4481 dirty_i->nr_dirty[dirty_type] = 0;
4482 mutex_unlock(&dirty_i->seglist_lock);
4483 }
4484
destroy_victim_secmap(struct f2fs_sb_info * sbi)4485 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4486 {
4487 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4488 kvfree(dirty_i->victim_secmap);
4489 }
4490
destroy_dirty_segmap(struct f2fs_sb_info * sbi)4491 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4492 {
4493 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4494 int i;
4495
4496 if (!dirty_i)
4497 return;
4498
4499 /* discard pre-free/dirty segments list */
4500 for (i = 0; i < NR_DIRTY_TYPE; i++)
4501 discard_dirty_segmap(sbi, i);
4502
4503 destroy_victim_secmap(sbi);
4504 SM_I(sbi)->dirty_info = NULL;
4505 kvfree(dirty_i);
4506 }
4507
destroy_curseg(struct f2fs_sb_info * sbi)4508 static void destroy_curseg(struct f2fs_sb_info *sbi)
4509 {
4510 struct curseg_info *array = SM_I(sbi)->curseg_array;
4511 int i;
4512
4513 if (!array)
4514 return;
4515 SM_I(sbi)->curseg_array = NULL;
4516 for (i = 0; i < NR_CURSEG_TYPE; i++) {
4517 kvfree(array[i].sum_blk);
4518 kvfree(array[i].journal);
4519 }
4520 kvfree(array);
4521 }
4522
destroy_free_segmap(struct f2fs_sb_info * sbi)4523 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4524 {
4525 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4526 if (!free_i)
4527 return;
4528 SM_I(sbi)->free_info = NULL;
4529 kvfree(free_i->free_segmap);
4530 kvfree(free_i->free_secmap);
4531 kvfree(free_i);
4532 }
4533
destroy_sit_info(struct f2fs_sb_info * sbi)4534 static void destroy_sit_info(struct f2fs_sb_info *sbi)
4535 {
4536 struct sit_info *sit_i = SIT_I(sbi);
4537
4538 if (!sit_i)
4539 return;
4540
4541 if (sit_i->sentries)
4542 kvfree(sit_i->bitmap);
4543 kvfree(sit_i->tmp_map);
4544
4545 kvfree(sit_i->sentries);
4546 kvfree(sit_i->sec_entries);
4547 kvfree(sit_i->dirty_sentries_bitmap);
4548
4549 SM_I(sbi)->sit_info = NULL;
4550 kvfree(sit_i->sit_bitmap);
4551 #ifdef CONFIG_F2FS_CHECK_FS
4552 kvfree(sit_i->sit_bitmap_mir);
4553 kvfree(sit_i->invalid_segmap);
4554 #endif
4555 kvfree(sit_i);
4556 }
4557
f2fs_destroy_segment_manager(struct f2fs_sb_info * sbi)4558 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4559 {
4560 struct f2fs_sm_info *sm_info = SM_I(sbi);
4561
4562 if (!sm_info)
4563 return;
4564 f2fs_destroy_flush_cmd_control(sbi, true);
4565 destroy_discard_cmd_control(sbi);
4566 destroy_dirty_segmap(sbi);
4567 destroy_curseg(sbi);
4568 destroy_free_segmap(sbi);
4569 destroy_sit_info(sbi);
4570 sbi->sm_info = NULL;
4571 kvfree(sm_info);
4572 }
4573
f2fs_create_segment_manager_caches(void)4574 int __init f2fs_create_segment_manager_caches(void)
4575 {
4576 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
4577 sizeof(struct discard_entry));
4578 if (!discard_entry_slab)
4579 goto fail;
4580
4581 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
4582 sizeof(struct discard_cmd));
4583 if (!discard_cmd_slab)
4584 goto destroy_discard_entry;
4585
4586 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
4587 sizeof(struct sit_entry_set));
4588 if (!sit_entry_set_slab)
4589 goto destroy_discard_cmd;
4590
4591 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
4592 sizeof(struct inmem_pages));
4593 if (!inmem_entry_slab)
4594 goto destroy_sit_entry_set;
4595 return 0;
4596
4597 destroy_sit_entry_set:
4598 kmem_cache_destroy(sit_entry_set_slab);
4599 destroy_discard_cmd:
4600 kmem_cache_destroy(discard_cmd_slab);
4601 destroy_discard_entry:
4602 kmem_cache_destroy(discard_entry_slab);
4603 fail:
4604 return -ENOMEM;
4605 }
4606
f2fs_destroy_segment_manager_caches(void)4607 void f2fs_destroy_segment_manager_caches(void)
4608 {
4609 kmem_cache_destroy(sit_entry_set_slab);
4610 kmem_cache_destroy(discard_cmd_slab);
4611 kmem_cache_destroy(discard_entry_slab);
4612 kmem_cache_destroy(inmem_entry_slab);
4613 }
4614