• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/super.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/statfs.h>
12 #include <linux/buffer_head.h>
13 #include <linux/backing-dev.h>
14 #include <linux/kthread.h>
15 #include <linux/parser.h>
16 #include <linux/mount.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <linux/random.h>
20 #include <linux/exportfs.h>
21 #include <linux/blkdev.h>
22 #include <linux/quotaops.h>
23 #include <linux/f2fs_fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/quota.h>
26 #include <linux/unicode.h>
27 
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37 
38 static struct kmem_cache *f2fs_inode_cachep;
39 
40 #ifdef CONFIG_F2FS_FAULT_INJECTION
41 
42 const char *f2fs_fault_name[FAULT_MAX] = {
43 	[FAULT_KMALLOC]		= "kmalloc",
44 	[FAULT_KVMALLOC]	= "kvmalloc",
45 	[FAULT_PAGE_ALLOC]	= "page alloc",
46 	[FAULT_PAGE_GET]	= "page get",
47 	[FAULT_ALLOC_BIO]	= "alloc bio",
48 	[FAULT_ALLOC_NID]	= "alloc nid",
49 	[FAULT_ORPHAN]		= "orphan",
50 	[FAULT_BLOCK]		= "no more block",
51 	[FAULT_DIR_DEPTH]	= "too big dir depth",
52 	[FAULT_EVICT_INODE]	= "evict_inode fail",
53 	[FAULT_TRUNCATE]	= "truncate fail",
54 	[FAULT_READ_IO]		= "read IO error",
55 	[FAULT_CHECKPOINT]	= "checkpoint error",
56 	[FAULT_DISCARD]		= "discard error",
57 	[FAULT_WRITE_IO]	= "write IO error",
58 };
59 
f2fs_build_fault_attr(struct f2fs_sb_info * sbi,unsigned int rate,unsigned int type)60 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
61 							unsigned int type)
62 {
63 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
64 
65 	if (rate) {
66 		atomic_set(&ffi->inject_ops, 0);
67 		ffi->inject_rate = rate;
68 	}
69 
70 	if (type)
71 		ffi->inject_type = type;
72 
73 	if (!rate && !type)
74 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
75 }
76 #endif
77 
78 /* f2fs-wide shrinker description */
79 static struct shrinker f2fs_shrinker_info = {
80 	.scan_objects = f2fs_shrink_scan,
81 	.count_objects = f2fs_shrink_count,
82 	.seeks = DEFAULT_SEEKS,
83 };
84 
85 enum {
86 	Opt_gc_background,
87 	Opt_disable_roll_forward,
88 	Opt_norecovery,
89 	Opt_discard,
90 	Opt_nodiscard,
91 	Opt_noheap,
92 	Opt_heap,
93 	Opt_user_xattr,
94 	Opt_nouser_xattr,
95 	Opt_acl,
96 	Opt_noacl,
97 	Opt_active_logs,
98 	Opt_disable_ext_identify,
99 	Opt_inline_xattr,
100 	Opt_noinline_xattr,
101 	Opt_inline_xattr_size,
102 	Opt_inline_data,
103 	Opt_inline_dentry,
104 	Opt_noinline_dentry,
105 	Opt_flush_merge,
106 	Opt_noflush_merge,
107 	Opt_nobarrier,
108 	Opt_fastboot,
109 	Opt_extent_cache,
110 	Opt_noextent_cache,
111 	Opt_noinline_data,
112 	Opt_data_flush,
113 	Opt_reserve_root,
114 	Opt_resgid,
115 	Opt_resuid,
116 	Opt_mode,
117 	Opt_io_size_bits,
118 	Opt_fault_injection,
119 	Opt_fault_type,
120 	Opt_lazytime,
121 	Opt_nolazytime,
122 	Opt_quota,
123 	Opt_noquota,
124 	Opt_usrquota,
125 	Opt_grpquota,
126 	Opt_prjquota,
127 	Opt_usrjquota,
128 	Opt_grpjquota,
129 	Opt_prjjquota,
130 	Opt_offusrjquota,
131 	Opt_offgrpjquota,
132 	Opt_offprjjquota,
133 	Opt_jqfmt_vfsold,
134 	Opt_jqfmt_vfsv0,
135 	Opt_jqfmt_vfsv1,
136 	Opt_whint,
137 	Opt_alloc,
138 	Opt_fsync,
139 	Opt_test_dummy_encryption,
140 	Opt_inlinecrypt,
141 	Opt_checkpoint_disable,
142 	Opt_checkpoint_disable_cap,
143 	Opt_checkpoint_disable_cap_perc,
144 	Opt_checkpoint_enable,
145 	Opt_err,
146 };
147 
148 static match_table_t f2fs_tokens = {
149 	{Opt_gc_background, "background_gc=%s"},
150 	{Opt_disable_roll_forward, "disable_roll_forward"},
151 	{Opt_norecovery, "norecovery"},
152 	{Opt_discard, "discard"},
153 	{Opt_nodiscard, "nodiscard"},
154 	{Opt_noheap, "no_heap"},
155 	{Opt_heap, "heap"},
156 	{Opt_user_xattr, "user_xattr"},
157 	{Opt_nouser_xattr, "nouser_xattr"},
158 	{Opt_acl, "acl"},
159 	{Opt_noacl, "noacl"},
160 	{Opt_active_logs, "active_logs=%u"},
161 	{Opt_disable_ext_identify, "disable_ext_identify"},
162 	{Opt_inline_xattr, "inline_xattr"},
163 	{Opt_noinline_xattr, "noinline_xattr"},
164 	{Opt_inline_xattr_size, "inline_xattr_size=%u"},
165 	{Opt_inline_data, "inline_data"},
166 	{Opt_inline_dentry, "inline_dentry"},
167 	{Opt_noinline_dentry, "noinline_dentry"},
168 	{Opt_flush_merge, "flush_merge"},
169 	{Opt_noflush_merge, "noflush_merge"},
170 	{Opt_nobarrier, "nobarrier"},
171 	{Opt_fastboot, "fastboot"},
172 	{Opt_extent_cache, "extent_cache"},
173 	{Opt_noextent_cache, "noextent_cache"},
174 	{Opt_noinline_data, "noinline_data"},
175 	{Opt_data_flush, "data_flush"},
176 	{Opt_reserve_root, "reserve_root=%u"},
177 	{Opt_resgid, "resgid=%u"},
178 	{Opt_resuid, "resuid=%u"},
179 	{Opt_mode, "mode=%s"},
180 	{Opt_io_size_bits, "io_bits=%u"},
181 	{Opt_fault_injection, "fault_injection=%u"},
182 	{Opt_fault_type, "fault_type=%u"},
183 	{Opt_lazytime, "lazytime"},
184 	{Opt_nolazytime, "nolazytime"},
185 	{Opt_quota, "quota"},
186 	{Opt_noquota, "noquota"},
187 	{Opt_usrquota, "usrquota"},
188 	{Opt_grpquota, "grpquota"},
189 	{Opt_prjquota, "prjquota"},
190 	{Opt_usrjquota, "usrjquota=%s"},
191 	{Opt_grpjquota, "grpjquota=%s"},
192 	{Opt_prjjquota, "prjjquota=%s"},
193 	{Opt_offusrjquota, "usrjquota="},
194 	{Opt_offgrpjquota, "grpjquota="},
195 	{Opt_offprjjquota, "prjjquota="},
196 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
197 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
198 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
199 	{Opt_whint, "whint_mode=%s"},
200 	{Opt_alloc, "alloc_mode=%s"},
201 	{Opt_fsync, "fsync_mode=%s"},
202 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
203 	{Opt_inlinecrypt, "inlinecrypt"},
204 	{Opt_checkpoint_disable, "checkpoint=disable"},
205 	{Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
206 	{Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
207 	{Opt_checkpoint_enable, "checkpoint=enable"},
208 	{Opt_err, NULL},
209 };
210 
f2fs_printk(struct f2fs_sb_info * sbi,const char * fmt,...)211 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...)
212 {
213 	struct va_format vaf;
214 	va_list args;
215 	int level;
216 
217 	va_start(args, fmt);
218 
219 	level = printk_get_level(fmt);
220 	vaf.fmt = printk_skip_level(fmt);
221 	vaf.va = &args;
222 	printk("%c%cF2FS-fs (%s): %pV\n",
223 	       KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
224 
225 	va_end(args);
226 }
227 
228 #ifdef CONFIG_UNICODE
229 static const struct f2fs_sb_encodings {
230 	__u16 magic;
231 	char *name;
232 	char *version;
233 } f2fs_sb_encoding_map[] = {
234 	{F2FS_ENC_UTF8_12_1, "utf8", "12.1.0"},
235 };
236 
f2fs_sb_read_encoding(const struct f2fs_super_block * sb,const struct f2fs_sb_encodings ** encoding,__u16 * flags)237 static int f2fs_sb_read_encoding(const struct f2fs_super_block *sb,
238 				 const struct f2fs_sb_encodings **encoding,
239 				 __u16 *flags)
240 {
241 	__u16 magic = le16_to_cpu(sb->s_encoding);
242 	int i;
243 
244 	for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
245 		if (magic == f2fs_sb_encoding_map[i].magic)
246 			break;
247 
248 	if (i >= ARRAY_SIZE(f2fs_sb_encoding_map))
249 		return -EINVAL;
250 
251 	*encoding = &f2fs_sb_encoding_map[i];
252 	*flags = le16_to_cpu(sb->s_encoding_flags);
253 
254 	return 0;
255 }
256 #endif
257 
limit_reserve_root(struct f2fs_sb_info * sbi)258 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
259 {
260 	block_t limit = min((sbi->user_block_count << 1) / 1000,
261 			sbi->user_block_count - sbi->reserved_blocks);
262 
263 	/* limit is 0.2% */
264 	if (test_opt(sbi, RESERVE_ROOT) &&
265 			F2FS_OPTION(sbi).root_reserved_blocks > limit) {
266 		F2FS_OPTION(sbi).root_reserved_blocks = limit;
267 		f2fs_info(sbi, "Reduce reserved blocks for root = %u",
268 			  F2FS_OPTION(sbi).root_reserved_blocks);
269 	}
270 	if (!test_opt(sbi, RESERVE_ROOT) &&
271 		(!uid_eq(F2FS_OPTION(sbi).s_resuid,
272 				make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
273 		!gid_eq(F2FS_OPTION(sbi).s_resgid,
274 				make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
275 		f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
276 			  from_kuid_munged(&init_user_ns,
277 					   F2FS_OPTION(sbi).s_resuid),
278 			  from_kgid_munged(&init_user_ns,
279 					   F2FS_OPTION(sbi).s_resgid));
280 }
281 
init_once(void * foo)282 static void init_once(void *foo)
283 {
284 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
285 
286 	inode_init_once(&fi->vfs_inode);
287 }
288 
289 #ifdef CONFIG_QUOTA
290 static const char * const quotatypes[] = INITQFNAMES;
291 #define QTYPE2NAME(t) (quotatypes[t])
f2fs_set_qf_name(struct super_block * sb,int qtype,substring_t * args)292 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
293 							substring_t *args)
294 {
295 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
296 	char *qname;
297 	int ret = -EINVAL;
298 
299 	if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
300 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
301 		return -EINVAL;
302 	}
303 	if (f2fs_sb_has_quota_ino(sbi)) {
304 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
305 		return 0;
306 	}
307 
308 	qname = match_strdup(args);
309 	if (!qname) {
310 		f2fs_err(sbi, "Not enough memory for storing quotafile name");
311 		return -ENOMEM;
312 	}
313 	if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
314 		if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
315 			ret = 0;
316 		else
317 			f2fs_err(sbi, "%s quota file already specified",
318 				 QTYPE2NAME(qtype));
319 		goto errout;
320 	}
321 	if (strchr(qname, '/')) {
322 		f2fs_err(sbi, "quotafile must be on filesystem root");
323 		goto errout;
324 	}
325 	F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
326 	set_opt(sbi, QUOTA);
327 	return 0;
328 errout:
329 	kvfree(qname);
330 	return ret;
331 }
332 
f2fs_clear_qf_name(struct super_block * sb,int qtype)333 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
334 {
335 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
336 
337 	if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
338 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
339 		return -EINVAL;
340 	}
341 	kvfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
342 	F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
343 	return 0;
344 }
345 
f2fs_check_quota_options(struct f2fs_sb_info * sbi)346 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
347 {
348 	/*
349 	 * We do the test below only for project quotas. 'usrquota' and
350 	 * 'grpquota' mount options are allowed even without quota feature
351 	 * to support legacy quotas in quota files.
352 	 */
353 	if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
354 		f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
355 		return -1;
356 	}
357 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
358 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
359 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
360 		if (test_opt(sbi, USRQUOTA) &&
361 				F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
362 			clear_opt(sbi, USRQUOTA);
363 
364 		if (test_opt(sbi, GRPQUOTA) &&
365 				F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
366 			clear_opt(sbi, GRPQUOTA);
367 
368 		if (test_opt(sbi, PRJQUOTA) &&
369 				F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
370 			clear_opt(sbi, PRJQUOTA);
371 
372 		if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
373 				test_opt(sbi, PRJQUOTA)) {
374 			f2fs_err(sbi, "old and new quota format mixing");
375 			return -1;
376 		}
377 
378 		if (!F2FS_OPTION(sbi).s_jquota_fmt) {
379 			f2fs_err(sbi, "journaled quota format not specified");
380 			return -1;
381 		}
382 	}
383 
384 	if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
385 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
386 		F2FS_OPTION(sbi).s_jquota_fmt = 0;
387 	}
388 	return 0;
389 }
390 #endif
391 
parse_options(struct super_block * sb,char * options)392 static int parse_options(struct super_block *sb, char *options)
393 {
394 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
395 	substring_t args[MAX_OPT_ARGS];
396 	char *p, *name;
397 	int arg = 0;
398 	kuid_t uid;
399 	kgid_t gid;
400 #ifdef CONFIG_QUOTA
401 	int ret;
402 #endif
403 
404 	if (!options)
405 		return 0;
406 
407 	while ((p = strsep(&options, ",")) != NULL) {
408 		int token;
409 		if (!*p)
410 			continue;
411 		/*
412 		 * Initialize args struct so we know whether arg was
413 		 * found; some options take optional arguments.
414 		 */
415 		args[0].to = args[0].from = NULL;
416 		token = match_token(p, f2fs_tokens, args);
417 
418 		switch (token) {
419 		case Opt_gc_background:
420 			name = match_strdup(&args[0]);
421 
422 			if (!name)
423 				return -ENOMEM;
424 			if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
425 				set_opt(sbi, BG_GC);
426 				clear_opt(sbi, FORCE_FG_GC);
427 			} else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
428 				clear_opt(sbi, BG_GC);
429 				clear_opt(sbi, FORCE_FG_GC);
430 			} else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
431 				set_opt(sbi, BG_GC);
432 				set_opt(sbi, FORCE_FG_GC);
433 			} else {
434 				kvfree(name);
435 				return -EINVAL;
436 			}
437 			kvfree(name);
438 			break;
439 		case Opt_disable_roll_forward:
440 			set_opt(sbi, DISABLE_ROLL_FORWARD);
441 			break;
442 		case Opt_norecovery:
443 			/* this option mounts f2fs with ro */
444 			set_opt(sbi, DISABLE_ROLL_FORWARD);
445 			if (!f2fs_readonly(sb))
446 				return -EINVAL;
447 			break;
448 		case Opt_discard:
449 			set_opt(sbi, DISCARD);
450 			break;
451 		case Opt_nodiscard:
452 			if (f2fs_sb_has_blkzoned(sbi)) {
453 				f2fs_warn(sbi, "discard is required for zoned block devices");
454 				return -EINVAL;
455 			}
456 			clear_opt(sbi, DISCARD);
457 			break;
458 		case Opt_noheap:
459 			set_opt(sbi, NOHEAP);
460 			break;
461 		case Opt_heap:
462 			clear_opt(sbi, NOHEAP);
463 			break;
464 #ifdef CONFIG_F2FS_FS_XATTR
465 		case Opt_user_xattr:
466 			set_opt(sbi, XATTR_USER);
467 			break;
468 		case Opt_nouser_xattr:
469 			clear_opt(sbi, XATTR_USER);
470 			break;
471 		case Opt_inline_xattr:
472 			set_opt(sbi, INLINE_XATTR);
473 			break;
474 		case Opt_noinline_xattr:
475 			clear_opt(sbi, INLINE_XATTR);
476 			break;
477 		case Opt_inline_xattr_size:
478 			if (args->from && match_int(args, &arg))
479 				return -EINVAL;
480 			set_opt(sbi, INLINE_XATTR_SIZE);
481 			F2FS_OPTION(sbi).inline_xattr_size = arg;
482 			break;
483 #else
484 		case Opt_user_xattr:
485 			f2fs_info(sbi, "user_xattr options not supported");
486 			break;
487 		case Opt_nouser_xattr:
488 			f2fs_info(sbi, "nouser_xattr options not supported");
489 			break;
490 		case Opt_inline_xattr:
491 			f2fs_info(sbi, "inline_xattr options not supported");
492 			break;
493 		case Opt_noinline_xattr:
494 			f2fs_info(sbi, "noinline_xattr options not supported");
495 			break;
496 #endif
497 #ifdef CONFIG_F2FS_FS_POSIX_ACL
498 		case Opt_acl:
499 			set_opt(sbi, POSIX_ACL);
500 			break;
501 		case Opt_noacl:
502 			clear_opt(sbi, POSIX_ACL);
503 			break;
504 #else
505 		case Opt_acl:
506 			f2fs_info(sbi, "acl options not supported");
507 			break;
508 		case Opt_noacl:
509 			f2fs_info(sbi, "noacl options not supported");
510 			break;
511 #endif
512 		case Opt_active_logs:
513 			if (args->from && match_int(args, &arg))
514 				return -EINVAL;
515 			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
516 				return -EINVAL;
517 			F2FS_OPTION(sbi).active_logs = arg;
518 			break;
519 		case Opt_disable_ext_identify:
520 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
521 			break;
522 		case Opt_inline_data:
523 			set_opt(sbi, INLINE_DATA);
524 			break;
525 		case Opt_inline_dentry:
526 			set_opt(sbi, INLINE_DENTRY);
527 			break;
528 		case Opt_noinline_dentry:
529 			clear_opt(sbi, INLINE_DENTRY);
530 			break;
531 		case Opt_flush_merge:
532 			set_opt(sbi, FLUSH_MERGE);
533 			break;
534 		case Opt_noflush_merge:
535 			clear_opt(sbi, FLUSH_MERGE);
536 			break;
537 		case Opt_nobarrier:
538 			set_opt(sbi, NOBARRIER);
539 			break;
540 		case Opt_fastboot:
541 			set_opt(sbi, FASTBOOT);
542 			break;
543 		case Opt_extent_cache:
544 			set_opt(sbi, EXTENT_CACHE);
545 			break;
546 		case Opt_noextent_cache:
547 			clear_opt(sbi, EXTENT_CACHE);
548 			break;
549 		case Opt_noinline_data:
550 			clear_opt(sbi, INLINE_DATA);
551 			break;
552 		case Opt_data_flush:
553 			set_opt(sbi, DATA_FLUSH);
554 			break;
555 		case Opt_reserve_root:
556 			if (args->from && match_int(args, &arg))
557 				return -EINVAL;
558 			if (test_opt(sbi, RESERVE_ROOT)) {
559 				f2fs_info(sbi, "Preserve previous reserve_root=%u",
560 					  F2FS_OPTION(sbi).root_reserved_blocks);
561 			} else {
562 				F2FS_OPTION(sbi).root_reserved_blocks = arg;
563 				set_opt(sbi, RESERVE_ROOT);
564 			}
565 			break;
566 		case Opt_resuid:
567 			if (args->from && match_int(args, &arg))
568 				return -EINVAL;
569 			uid = make_kuid(current_user_ns(), arg);
570 			if (!uid_valid(uid)) {
571 				f2fs_err(sbi, "Invalid uid value %d", arg);
572 				return -EINVAL;
573 			}
574 			F2FS_OPTION(sbi).s_resuid = uid;
575 			break;
576 		case Opt_resgid:
577 			if (args->from && match_int(args, &arg))
578 				return -EINVAL;
579 			gid = make_kgid(current_user_ns(), arg);
580 			if (!gid_valid(gid)) {
581 				f2fs_err(sbi, "Invalid gid value %d", arg);
582 				return -EINVAL;
583 			}
584 			F2FS_OPTION(sbi).s_resgid = gid;
585 			break;
586 		case Opt_mode:
587 			name = match_strdup(&args[0]);
588 
589 			if (!name)
590 				return -ENOMEM;
591 			if (strlen(name) == 8 &&
592 					!strncmp(name, "adaptive", 8)) {
593 				if (f2fs_sb_has_blkzoned(sbi)) {
594 					f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature");
595 					kvfree(name);
596 					return -EINVAL;
597 				}
598 				set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
599 			} else if (strlen(name) == 3 &&
600 					!strncmp(name, "lfs", 3)) {
601 				set_opt_mode(sbi, F2FS_MOUNT_LFS);
602 			} else {
603 				kvfree(name);
604 				return -EINVAL;
605 			}
606 			kvfree(name);
607 			break;
608 		case Opt_io_size_bits:
609 			if (args->from && match_int(args, &arg))
610 				return -EINVAL;
611 			if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) {
612 				f2fs_warn(sbi, "Not support %d, larger than %d",
613 					  1 << arg, BIO_MAX_PAGES);
614 				return -EINVAL;
615 			}
616 			F2FS_OPTION(sbi).write_io_size_bits = arg;
617 			break;
618 #ifdef CONFIG_F2FS_FAULT_INJECTION
619 		case Opt_fault_injection:
620 			if (args->from && match_int(args, &arg))
621 				return -EINVAL;
622 			f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
623 			set_opt(sbi, FAULT_INJECTION);
624 			break;
625 
626 		case Opt_fault_type:
627 			if (args->from && match_int(args, &arg))
628 				return -EINVAL;
629 			f2fs_build_fault_attr(sbi, 0, arg);
630 			set_opt(sbi, FAULT_INJECTION);
631 			break;
632 #else
633 		case Opt_fault_injection:
634 			f2fs_info(sbi, "fault_injection options not supported");
635 			break;
636 
637 		case Opt_fault_type:
638 			f2fs_info(sbi, "fault_type options not supported");
639 			break;
640 #endif
641 		case Opt_lazytime:
642 			sb->s_flags |= SB_LAZYTIME;
643 			break;
644 		case Opt_nolazytime:
645 			sb->s_flags &= ~SB_LAZYTIME;
646 			break;
647 #ifdef CONFIG_QUOTA
648 		case Opt_quota:
649 		case Opt_usrquota:
650 			set_opt(sbi, USRQUOTA);
651 			break;
652 		case Opt_grpquota:
653 			set_opt(sbi, GRPQUOTA);
654 			break;
655 		case Opt_prjquota:
656 			set_opt(sbi, PRJQUOTA);
657 			break;
658 		case Opt_usrjquota:
659 			ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
660 			if (ret)
661 				return ret;
662 			break;
663 		case Opt_grpjquota:
664 			ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
665 			if (ret)
666 				return ret;
667 			break;
668 		case Opt_prjjquota:
669 			ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
670 			if (ret)
671 				return ret;
672 			break;
673 		case Opt_offusrjquota:
674 			ret = f2fs_clear_qf_name(sb, USRQUOTA);
675 			if (ret)
676 				return ret;
677 			break;
678 		case Opt_offgrpjquota:
679 			ret = f2fs_clear_qf_name(sb, GRPQUOTA);
680 			if (ret)
681 				return ret;
682 			break;
683 		case Opt_offprjjquota:
684 			ret = f2fs_clear_qf_name(sb, PRJQUOTA);
685 			if (ret)
686 				return ret;
687 			break;
688 		case Opt_jqfmt_vfsold:
689 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
690 			break;
691 		case Opt_jqfmt_vfsv0:
692 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
693 			break;
694 		case Opt_jqfmt_vfsv1:
695 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
696 			break;
697 		case Opt_noquota:
698 			clear_opt(sbi, QUOTA);
699 			clear_opt(sbi, USRQUOTA);
700 			clear_opt(sbi, GRPQUOTA);
701 			clear_opt(sbi, PRJQUOTA);
702 			break;
703 #else
704 		case Opt_quota:
705 		case Opt_usrquota:
706 		case Opt_grpquota:
707 		case Opt_prjquota:
708 		case Opt_usrjquota:
709 		case Opt_grpjquota:
710 		case Opt_prjjquota:
711 		case Opt_offusrjquota:
712 		case Opt_offgrpjquota:
713 		case Opt_offprjjquota:
714 		case Opt_jqfmt_vfsold:
715 		case Opt_jqfmt_vfsv0:
716 		case Opt_jqfmt_vfsv1:
717 		case Opt_noquota:
718 			f2fs_info(sbi, "quota operations not supported");
719 			break;
720 #endif
721 		case Opt_whint:
722 			name = match_strdup(&args[0]);
723 			if (!name)
724 				return -ENOMEM;
725 			if (strlen(name) == 10 &&
726 					!strncmp(name, "user-based", 10)) {
727 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
728 			} else if (strlen(name) == 3 &&
729 					!strncmp(name, "off", 3)) {
730 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
731 			} else if (strlen(name) == 8 &&
732 					!strncmp(name, "fs-based", 8)) {
733 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
734 			} else {
735 				kvfree(name);
736 				return -EINVAL;
737 			}
738 			kvfree(name);
739 			break;
740 		case Opt_alloc:
741 			name = match_strdup(&args[0]);
742 			if (!name)
743 				return -ENOMEM;
744 
745 			if (strlen(name) == 7 &&
746 					!strncmp(name, "default", 7)) {
747 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
748 			} else if (strlen(name) == 5 &&
749 					!strncmp(name, "reuse", 5)) {
750 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
751 			} else {
752 				kvfree(name);
753 				return -EINVAL;
754 			}
755 			kvfree(name);
756 			break;
757 		case Opt_fsync:
758 			name = match_strdup(&args[0]);
759 			if (!name)
760 				return -ENOMEM;
761 			if (strlen(name) == 5 &&
762 					!strncmp(name, "posix", 5)) {
763 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
764 			} else if (strlen(name) == 6 &&
765 					!strncmp(name, "strict", 6)) {
766 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
767 			} else if (strlen(name) == 9 &&
768 					!strncmp(name, "nobarrier", 9)) {
769 				F2FS_OPTION(sbi).fsync_mode =
770 							FSYNC_MODE_NOBARRIER;
771 			} else {
772 				kvfree(name);
773 				return -EINVAL;
774 			}
775 			kvfree(name);
776 			break;
777 		case Opt_test_dummy_encryption:
778 #ifdef CONFIG_FS_ENCRYPTION
779 			if (!f2fs_sb_has_encrypt(sbi)) {
780 				f2fs_err(sbi, "Encrypt feature is off");
781 				return -EINVAL;
782 			}
783 
784 			F2FS_OPTION(sbi).test_dummy_encryption = true;
785 			f2fs_info(sbi, "Test dummy encryption mode enabled");
786 #else
787 			f2fs_info(sbi, "Test dummy encryption mount option ignored");
788 #endif
789 			break;
790 		case Opt_inlinecrypt:
791 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
792 			F2FS_OPTION(sbi).inlinecrypt = true;
793 #else
794 			f2fs_info(sbi, "inline encryption not supported");
795 #endif
796 			break;
797 		case Opt_checkpoint_disable_cap_perc:
798 			if (args->from && match_int(args, &arg))
799 				return -EINVAL;
800 			if (arg < 0 || arg > 100)
801 				return -EINVAL;
802 			if (arg == 100)
803 				F2FS_OPTION(sbi).unusable_cap =
804 					sbi->user_block_count;
805 			else
806 				F2FS_OPTION(sbi).unusable_cap =
807 					(sbi->user_block_count / 100) *	arg;
808 			set_opt(sbi, DISABLE_CHECKPOINT);
809 			break;
810 		case Opt_checkpoint_disable_cap:
811 			if (args->from && match_int(args, &arg))
812 				return -EINVAL;
813 			F2FS_OPTION(sbi).unusable_cap = arg;
814 			set_opt(sbi, DISABLE_CHECKPOINT);
815 			break;
816 		case Opt_checkpoint_disable:
817 			set_opt(sbi, DISABLE_CHECKPOINT);
818 			break;
819 		case Opt_checkpoint_enable:
820 			clear_opt(sbi, DISABLE_CHECKPOINT);
821 			break;
822 		default:
823 			f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
824 				 p);
825 			return -EINVAL;
826 		}
827 	}
828 #ifdef CONFIG_QUOTA
829 	if (f2fs_check_quota_options(sbi))
830 		return -EINVAL;
831 #else
832 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
833 		f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
834 		return -EINVAL;
835 	}
836 	if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
837 		f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
838 		return -EINVAL;
839 	}
840 #endif
841 #ifndef CONFIG_UNICODE
842 	if (f2fs_sb_has_casefold(sbi)) {
843 		f2fs_err(sbi,
844 			"Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
845 		return -EINVAL;
846 	}
847 #endif
848 
849 	if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
850 		f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO",
851 			 F2FS_IO_SIZE_KB(sbi));
852 		return -EINVAL;
853 	}
854 
855 	if (test_opt(sbi, INLINE_XATTR_SIZE)) {
856 		int min_size, max_size;
857 
858 		if (!f2fs_sb_has_extra_attr(sbi) ||
859 			!f2fs_sb_has_flexible_inline_xattr(sbi)) {
860 			f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
861 			return -EINVAL;
862 		}
863 		if (!test_opt(sbi, INLINE_XATTR)) {
864 			f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
865 			return -EINVAL;
866 		}
867 
868 		min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32);
869 		max_size = MAX_INLINE_XATTR_SIZE;
870 
871 		if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
872 				F2FS_OPTION(sbi).inline_xattr_size > max_size) {
873 			f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
874 				 min_size, max_size);
875 			return -EINVAL;
876 		}
877 	}
878 
879 	if (test_opt(sbi, DISABLE_CHECKPOINT) && test_opt(sbi, LFS)) {
880 		f2fs_err(sbi, "LFS not compatible with checkpoint=disable\n");
881 		return -EINVAL;
882 	}
883 
884 	/* Not pass down write hints if the number of active logs is lesser
885 	 * than NR_CURSEG_TYPE.
886 	 */
887 	if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
888 		F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
889 	return 0;
890 }
891 
f2fs_alloc_inode(struct super_block * sb)892 static struct inode *f2fs_alloc_inode(struct super_block *sb)
893 {
894 	struct f2fs_inode_info *fi;
895 
896 	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
897 	if (!fi)
898 		return NULL;
899 
900 	init_once((void *) fi);
901 
902 	/* Initialize f2fs-specific inode info */
903 	atomic_set(&fi->dirty_pages, 0);
904 	init_rwsem(&fi->i_sem);
905 	INIT_LIST_HEAD(&fi->dirty_list);
906 	INIT_LIST_HEAD(&fi->gdirty_list);
907 	INIT_LIST_HEAD(&fi->inmem_ilist);
908 	INIT_LIST_HEAD(&fi->inmem_pages);
909 	mutex_init(&fi->inmem_lock);
910 	init_rwsem(&fi->i_gc_rwsem[READ]);
911 	init_rwsem(&fi->i_gc_rwsem[WRITE]);
912 	init_rwsem(&fi->i_mmap_sem);
913 	init_rwsem(&fi->i_xattr_sem);
914 
915 	/* Will be used by directory only */
916 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
917 
918 	return &fi->vfs_inode;
919 }
920 
f2fs_drop_inode(struct inode * inode)921 static int f2fs_drop_inode(struct inode *inode)
922 {
923 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
924 	int ret;
925 
926 	/*
927 	 * during filesystem shutdown, if checkpoint is disabled,
928 	 * drop useless meta/node dirty pages.
929 	 */
930 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
931 		if (inode->i_ino == F2FS_NODE_INO(sbi) ||
932 			inode->i_ino == F2FS_META_INO(sbi)) {
933 			trace_f2fs_drop_inode(inode, 1);
934 			return 1;
935 		}
936 	}
937 
938 	/*
939 	 * This is to avoid a deadlock condition like below.
940 	 * writeback_single_inode(inode)
941 	 *  - f2fs_write_data_page
942 	 *    - f2fs_gc -> iput -> evict
943 	 *       - inode_wait_for_writeback(inode)
944 	 */
945 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
946 		if (!inode->i_nlink && !is_bad_inode(inode)) {
947 			/* to avoid evict_inode call simultaneously */
948 			atomic_inc(&inode->i_count);
949 			spin_unlock(&inode->i_lock);
950 
951 			/* some remained atomic pages should discarded */
952 			if (f2fs_is_atomic_file(inode))
953 				f2fs_drop_inmem_pages(inode);
954 
955 			/* should remain fi->extent_tree for writepage */
956 			f2fs_destroy_extent_node(inode);
957 
958 			sb_start_intwrite(inode->i_sb);
959 			f2fs_i_size_write(inode, 0);
960 
961 			f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
962 					inode, NULL, 0, DATA);
963 			truncate_inode_pages_final(inode->i_mapping);
964 
965 			if (F2FS_HAS_BLOCKS(inode))
966 				f2fs_truncate(inode);
967 
968 			sb_end_intwrite(inode->i_sb);
969 
970 			spin_lock(&inode->i_lock);
971 			atomic_dec(&inode->i_count);
972 		}
973 		trace_f2fs_drop_inode(inode, 0);
974 		return 0;
975 	}
976 	ret = generic_drop_inode(inode);
977 	if (!ret)
978 		ret = fscrypt_drop_inode(inode);
979 	trace_f2fs_drop_inode(inode, ret);
980 	return ret;
981 }
982 
f2fs_inode_dirtied(struct inode * inode,bool sync)983 int f2fs_inode_dirtied(struct inode *inode, bool sync)
984 {
985 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
986 	int ret = 0;
987 
988 	spin_lock(&sbi->inode_lock[DIRTY_META]);
989 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
990 		ret = 1;
991 	} else {
992 		set_inode_flag(inode, FI_DIRTY_INODE);
993 		stat_inc_dirty_inode(sbi, DIRTY_META);
994 	}
995 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
996 		list_add_tail(&F2FS_I(inode)->gdirty_list,
997 				&sbi->inode_list[DIRTY_META]);
998 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
999 	}
1000 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1001 	return ret;
1002 }
1003 
f2fs_inode_synced(struct inode * inode)1004 void f2fs_inode_synced(struct inode *inode)
1005 {
1006 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1007 
1008 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1009 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1010 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1011 		return;
1012 	}
1013 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1014 		list_del_init(&F2FS_I(inode)->gdirty_list);
1015 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
1016 	}
1017 	clear_inode_flag(inode, FI_DIRTY_INODE);
1018 	clear_inode_flag(inode, FI_AUTO_RECOVER);
1019 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1020 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1021 }
1022 
1023 /*
1024  * f2fs_dirty_inode() is called from __mark_inode_dirty()
1025  *
1026  * We should call set_dirty_inode to write the dirty inode through write_inode.
1027  */
f2fs_dirty_inode(struct inode * inode,int flags)1028 static void f2fs_dirty_inode(struct inode *inode, int flags)
1029 {
1030 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1031 
1032 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1033 			inode->i_ino == F2FS_META_INO(sbi))
1034 		return;
1035 
1036 	if (flags == I_DIRTY_TIME)
1037 		return;
1038 
1039 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1040 		clear_inode_flag(inode, FI_AUTO_RECOVER);
1041 
1042 	f2fs_inode_dirtied(inode, false);
1043 }
1044 
f2fs_free_inode(struct inode * inode)1045 static void f2fs_free_inode(struct inode *inode)
1046 {
1047 	fscrypt_free_inode(inode);
1048 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1049 }
1050 
destroy_percpu_info(struct f2fs_sb_info * sbi)1051 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1052 {
1053 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
1054 	percpu_counter_destroy(&sbi->total_valid_inode_count);
1055 }
1056 
destroy_device_list(struct f2fs_sb_info * sbi)1057 static void destroy_device_list(struct f2fs_sb_info *sbi)
1058 {
1059 	int i;
1060 
1061 	for (i = 0; i < sbi->s_ndevs; i++) {
1062 		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1063 #ifdef CONFIG_BLK_DEV_ZONED
1064 		kvfree(FDEV(i).blkz_seq);
1065 #endif
1066 	}
1067 	kvfree(sbi->devs);
1068 }
1069 
f2fs_put_super(struct super_block * sb)1070 static void f2fs_put_super(struct super_block *sb)
1071 {
1072 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1073 	int i;
1074 	bool dropped;
1075 
1076 	f2fs_quota_off_umount(sb);
1077 
1078 	/* prevent remaining shrinker jobs */
1079 	mutex_lock(&sbi->umount_mutex);
1080 
1081 	/*
1082 	 * We don't need to do checkpoint when superblock is clean.
1083 	 * But, the previous checkpoint was not done by umount, it needs to do
1084 	 * clean checkpoint again.
1085 	 */
1086 	if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1087 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1088 		struct cp_control cpc = {
1089 			.reason = CP_UMOUNT,
1090 		};
1091 		f2fs_write_checkpoint(sbi, &cpc);
1092 	}
1093 
1094 	/* be sure to wait for any on-going discard commands */
1095 	dropped = f2fs_issue_discard_timeout(sbi);
1096 
1097 	if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1098 					!sbi->discard_blks && !dropped) {
1099 		struct cp_control cpc = {
1100 			.reason = CP_UMOUNT | CP_TRIMMED,
1101 		};
1102 		f2fs_write_checkpoint(sbi, &cpc);
1103 	}
1104 
1105 	/*
1106 	 * normally superblock is clean, so we need to release this.
1107 	 * In addition, EIO will skip do checkpoint, we need this as well.
1108 	 */
1109 	f2fs_release_ino_entry(sbi, true);
1110 
1111 	f2fs_leave_shrinker(sbi);
1112 	mutex_unlock(&sbi->umount_mutex);
1113 
1114 	/* our cp_error case, we can wait for any writeback page */
1115 	f2fs_flush_merged_writes(sbi);
1116 
1117 	f2fs_wait_on_all_pages_writeback(sbi);
1118 
1119 	f2fs_bug_on(sbi, sbi->fsync_node_num);
1120 
1121 	iput(sbi->node_inode);
1122 	sbi->node_inode = NULL;
1123 
1124 	iput(sbi->meta_inode);
1125 	sbi->meta_inode = NULL;
1126 
1127 	/*
1128 	 * iput() can update stat information, if f2fs_write_checkpoint()
1129 	 * above failed with error.
1130 	 */
1131 	f2fs_destroy_stats(sbi);
1132 
1133 	/* destroy f2fs internal modules */
1134 	f2fs_destroy_node_manager(sbi);
1135 	f2fs_destroy_segment_manager(sbi);
1136 
1137 	kvfree(sbi->ckpt);
1138 
1139 	f2fs_unregister_sysfs(sbi);
1140 
1141 	sb->s_fs_info = NULL;
1142 	if (sbi->s_chksum_driver)
1143 		crypto_free_shash(sbi->s_chksum_driver);
1144 	kvfree(sbi->raw_super);
1145 
1146 	destroy_device_list(sbi);
1147 	mempool_destroy(sbi->write_io_dummy);
1148 #ifdef CONFIG_QUOTA
1149 	for (i = 0; i < MAXQUOTAS; i++)
1150 		kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
1151 #endif
1152 	destroy_percpu_info(sbi);
1153 	for (i = 0; i < NR_PAGE_TYPE; i++)
1154 		kvfree(sbi->write_io[i]);
1155 #ifdef CONFIG_UNICODE
1156 	utf8_unload(sbi->s_encoding);
1157 #endif
1158 	kvfree(sbi);
1159 }
1160 
f2fs_sync_fs(struct super_block * sb,int sync)1161 int f2fs_sync_fs(struct super_block *sb, int sync)
1162 {
1163 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1164 	int err = 0;
1165 
1166 	if (unlikely(f2fs_cp_error(sbi)))
1167 		return 0;
1168 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1169 		return 0;
1170 
1171 	trace_f2fs_sync_fs(sb, sync);
1172 
1173 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1174 		return -EAGAIN;
1175 
1176 	if (sync) {
1177 		struct cp_control cpc;
1178 
1179 		cpc.reason = __get_cp_reason(sbi);
1180 
1181 		mutex_lock(&sbi->gc_mutex);
1182 		err = f2fs_write_checkpoint(sbi, &cpc);
1183 		mutex_unlock(&sbi->gc_mutex);
1184 	}
1185 	f2fs_trace_ios(NULL, 1);
1186 
1187 	return err;
1188 }
1189 
f2fs_freeze(struct super_block * sb)1190 static int f2fs_freeze(struct super_block *sb)
1191 {
1192 	if (f2fs_readonly(sb))
1193 		return 0;
1194 
1195 	/* IO error happened before */
1196 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1197 		return -EIO;
1198 
1199 	/* must be clean, since sync_filesystem() was already called */
1200 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1201 		return -EINVAL;
1202 	return 0;
1203 }
1204 
f2fs_unfreeze(struct super_block * sb)1205 static int f2fs_unfreeze(struct super_block *sb)
1206 {
1207 	return 0;
1208 }
1209 
1210 #ifdef CONFIG_QUOTA
f2fs_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)1211 static int f2fs_statfs_project(struct super_block *sb,
1212 				kprojid_t projid, struct kstatfs *buf)
1213 {
1214 	struct kqid qid;
1215 	struct dquot *dquot;
1216 	u64 limit;
1217 	u64 curblock;
1218 
1219 	qid = make_kqid_projid(projid);
1220 	dquot = dqget(sb, qid);
1221 	if (IS_ERR(dquot))
1222 		return PTR_ERR(dquot);
1223 	spin_lock(&dquot->dq_dqb_lock);
1224 
1225 	limit = 0;
1226 	if (dquot->dq_dqb.dqb_bsoftlimit)
1227 		limit = dquot->dq_dqb.dqb_bsoftlimit;
1228 	if (dquot->dq_dqb.dqb_bhardlimit &&
1229 			(!limit || dquot->dq_dqb.dqb_bhardlimit < limit))
1230 		limit = dquot->dq_dqb.dqb_bhardlimit;
1231 
1232 	if (limit && buf->f_blocks > limit) {
1233 		curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
1234 		buf->f_blocks = limit;
1235 		buf->f_bfree = buf->f_bavail =
1236 			(buf->f_blocks > curblock) ?
1237 			 (buf->f_blocks - curblock) : 0;
1238 	}
1239 
1240 	limit = 0;
1241 	if (dquot->dq_dqb.dqb_isoftlimit)
1242 		limit = dquot->dq_dqb.dqb_isoftlimit;
1243 	if (dquot->dq_dqb.dqb_ihardlimit &&
1244 			(!limit || dquot->dq_dqb.dqb_ihardlimit < limit))
1245 		limit = dquot->dq_dqb.dqb_ihardlimit;
1246 
1247 	if (limit && buf->f_files > limit) {
1248 		buf->f_files = limit;
1249 		buf->f_ffree =
1250 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1251 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1252 	}
1253 
1254 	spin_unlock(&dquot->dq_dqb_lock);
1255 	dqput(dquot);
1256 	return 0;
1257 }
1258 #endif
1259 
f2fs_statfs(struct dentry * dentry,struct kstatfs * buf)1260 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1261 {
1262 	struct super_block *sb = dentry->d_sb;
1263 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1264 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1265 	block_t total_count, user_block_count, start_count;
1266 	u64 avail_node_count;
1267 
1268 	total_count = le64_to_cpu(sbi->raw_super->block_count);
1269 	user_block_count = sbi->user_block_count;
1270 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1271 	buf->f_type = F2FS_SUPER_MAGIC;
1272 	buf->f_bsize = sbi->blocksize;
1273 
1274 	buf->f_blocks = total_count - start_count;
1275 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1276 						sbi->current_reserved_blocks;
1277 
1278 	spin_lock(&sbi->stat_lock);
1279 	if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1280 		buf->f_bfree = 0;
1281 	else
1282 		buf->f_bfree -= sbi->unusable_block_count;
1283 	spin_unlock(&sbi->stat_lock);
1284 
1285 	if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1286 		buf->f_bavail = buf->f_bfree -
1287 				F2FS_OPTION(sbi).root_reserved_blocks;
1288 	else
1289 		buf->f_bavail = 0;
1290 
1291 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1292 
1293 	if (avail_node_count > user_block_count) {
1294 		buf->f_files = user_block_count;
1295 		buf->f_ffree = buf->f_bavail;
1296 	} else {
1297 		buf->f_files = avail_node_count;
1298 		buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1299 					buf->f_bavail);
1300 	}
1301 
1302 	buf->f_namelen = F2FS_NAME_LEN;
1303 	buf->f_fsid.val[0] = (u32)id;
1304 	buf->f_fsid.val[1] = (u32)(id >> 32);
1305 
1306 #ifdef CONFIG_QUOTA
1307 	if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1308 			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1309 		f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1310 	}
1311 #endif
1312 	return 0;
1313 }
1314 
f2fs_show_quota_options(struct seq_file * seq,struct super_block * sb)1315 static inline void f2fs_show_quota_options(struct seq_file *seq,
1316 					   struct super_block *sb)
1317 {
1318 #ifdef CONFIG_QUOTA
1319 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1320 
1321 	if (F2FS_OPTION(sbi).s_jquota_fmt) {
1322 		char *fmtname = "";
1323 
1324 		switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1325 		case QFMT_VFS_OLD:
1326 			fmtname = "vfsold";
1327 			break;
1328 		case QFMT_VFS_V0:
1329 			fmtname = "vfsv0";
1330 			break;
1331 		case QFMT_VFS_V1:
1332 			fmtname = "vfsv1";
1333 			break;
1334 		}
1335 		seq_printf(seq, ",jqfmt=%s", fmtname);
1336 	}
1337 
1338 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1339 		seq_show_option(seq, "usrjquota",
1340 			F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1341 
1342 	if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1343 		seq_show_option(seq, "grpjquota",
1344 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1345 
1346 	if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1347 		seq_show_option(seq, "prjjquota",
1348 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1349 #endif
1350 }
1351 
f2fs_show_options(struct seq_file * seq,struct dentry * root)1352 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1353 {
1354 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1355 
1356 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
1357 		if (test_opt(sbi, FORCE_FG_GC))
1358 			seq_printf(seq, ",background_gc=%s", "sync");
1359 		else
1360 			seq_printf(seq, ",background_gc=%s", "on");
1361 	} else {
1362 		seq_printf(seq, ",background_gc=%s", "off");
1363 	}
1364 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1365 		seq_puts(seq, ",disable_roll_forward");
1366 	if (test_opt(sbi, DISCARD))
1367 		seq_puts(seq, ",discard");
1368 	else
1369 		seq_puts(seq, ",nodiscard");
1370 	if (test_opt(sbi, NOHEAP))
1371 		seq_puts(seq, ",no_heap");
1372 	else
1373 		seq_puts(seq, ",heap");
1374 #ifdef CONFIG_F2FS_FS_XATTR
1375 	if (test_opt(sbi, XATTR_USER))
1376 		seq_puts(seq, ",user_xattr");
1377 	else
1378 		seq_puts(seq, ",nouser_xattr");
1379 	if (test_opt(sbi, INLINE_XATTR))
1380 		seq_puts(seq, ",inline_xattr");
1381 	else
1382 		seq_puts(seq, ",noinline_xattr");
1383 	if (test_opt(sbi, INLINE_XATTR_SIZE))
1384 		seq_printf(seq, ",inline_xattr_size=%u",
1385 					F2FS_OPTION(sbi).inline_xattr_size);
1386 #endif
1387 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1388 	if (test_opt(sbi, POSIX_ACL))
1389 		seq_puts(seq, ",acl");
1390 	else
1391 		seq_puts(seq, ",noacl");
1392 #endif
1393 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1394 		seq_puts(seq, ",disable_ext_identify");
1395 	if (test_opt(sbi, INLINE_DATA))
1396 		seq_puts(seq, ",inline_data");
1397 	else
1398 		seq_puts(seq, ",noinline_data");
1399 	if (test_opt(sbi, INLINE_DENTRY))
1400 		seq_puts(seq, ",inline_dentry");
1401 	else
1402 		seq_puts(seq, ",noinline_dentry");
1403 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1404 		seq_puts(seq, ",flush_merge");
1405 	if (test_opt(sbi, NOBARRIER))
1406 		seq_puts(seq, ",nobarrier");
1407 	if (test_opt(sbi, FASTBOOT))
1408 		seq_puts(seq, ",fastboot");
1409 	if (test_opt(sbi, EXTENT_CACHE))
1410 		seq_puts(seq, ",extent_cache");
1411 	else
1412 		seq_puts(seq, ",noextent_cache");
1413 	if (test_opt(sbi, DATA_FLUSH))
1414 		seq_puts(seq, ",data_flush");
1415 
1416 	seq_puts(seq, ",mode=");
1417 	if (test_opt(sbi, ADAPTIVE))
1418 		seq_puts(seq, "adaptive");
1419 	else if (test_opt(sbi, LFS))
1420 		seq_puts(seq, "lfs");
1421 	seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1422 	if (test_opt(sbi, RESERVE_ROOT))
1423 		seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1424 				F2FS_OPTION(sbi).root_reserved_blocks,
1425 				from_kuid_munged(&init_user_ns,
1426 					F2FS_OPTION(sbi).s_resuid),
1427 				from_kgid_munged(&init_user_ns,
1428 					F2FS_OPTION(sbi).s_resgid));
1429 	if (F2FS_IO_SIZE_BITS(sbi))
1430 		seq_printf(seq, ",io_bits=%u",
1431 				F2FS_OPTION(sbi).write_io_size_bits);
1432 #ifdef CONFIG_F2FS_FAULT_INJECTION
1433 	if (test_opt(sbi, FAULT_INJECTION)) {
1434 		seq_printf(seq, ",fault_injection=%u",
1435 				F2FS_OPTION(sbi).fault_info.inject_rate);
1436 		seq_printf(seq, ",fault_type=%u",
1437 				F2FS_OPTION(sbi).fault_info.inject_type);
1438 	}
1439 #endif
1440 #ifdef CONFIG_QUOTA
1441 	if (test_opt(sbi, QUOTA))
1442 		seq_puts(seq, ",quota");
1443 	if (test_opt(sbi, USRQUOTA))
1444 		seq_puts(seq, ",usrquota");
1445 	if (test_opt(sbi, GRPQUOTA))
1446 		seq_puts(seq, ",grpquota");
1447 	if (test_opt(sbi, PRJQUOTA))
1448 		seq_puts(seq, ",prjquota");
1449 #endif
1450 	f2fs_show_quota_options(seq, sbi->sb);
1451 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1452 		seq_printf(seq, ",whint_mode=%s", "user-based");
1453 	else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1454 		seq_printf(seq, ",whint_mode=%s", "fs-based");
1455 #ifdef CONFIG_FS_ENCRYPTION
1456 	if (F2FS_OPTION(sbi).test_dummy_encryption)
1457 		seq_puts(seq, ",test_dummy_encryption");
1458 	if (F2FS_OPTION(sbi).inlinecrypt)
1459 		seq_puts(seq, ",inlinecrypt");
1460 #endif
1461 
1462 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1463 		seq_printf(seq, ",alloc_mode=%s", "default");
1464 	else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1465 		seq_printf(seq, ",alloc_mode=%s", "reuse");
1466 
1467 	if (test_opt(sbi, DISABLE_CHECKPOINT))
1468 		seq_printf(seq, ",checkpoint=disable:%u",
1469 				F2FS_OPTION(sbi).unusable_cap);
1470 	if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1471 		seq_printf(seq, ",fsync_mode=%s", "posix");
1472 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1473 		seq_printf(seq, ",fsync_mode=%s", "strict");
1474 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1475 		seq_printf(seq, ",fsync_mode=%s", "nobarrier");
1476 	return 0;
1477 }
1478 
default_options(struct f2fs_sb_info * sbi)1479 static void default_options(struct f2fs_sb_info *sbi)
1480 {
1481 	/* init some FS parameters */
1482 	F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE;
1483 	F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1484 	F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1485 	F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1486 	F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1487 	F2FS_OPTION(sbi).test_dummy_encryption = false;
1488 #ifdef CONFIG_FS_ENCRYPTION
1489 	F2FS_OPTION(sbi).inlinecrypt = false;
1490 #endif
1491 	F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
1492 	F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
1493 
1494 	set_opt(sbi, BG_GC);
1495 	set_opt(sbi, INLINE_XATTR);
1496 	set_opt(sbi, INLINE_DATA);
1497 	set_opt(sbi, INLINE_DENTRY);
1498 	set_opt(sbi, EXTENT_CACHE);
1499 	set_opt(sbi, NOHEAP);
1500 	clear_opt(sbi, DISABLE_CHECKPOINT);
1501 	F2FS_OPTION(sbi).unusable_cap = 0;
1502 	sbi->sb->s_flags |= SB_LAZYTIME;
1503 	set_opt(sbi, FLUSH_MERGE);
1504 	set_opt(sbi, DISCARD);
1505 	if (f2fs_sb_has_blkzoned(sbi))
1506 		set_opt_mode(sbi, F2FS_MOUNT_LFS);
1507 	else
1508 		set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1509 
1510 #ifdef CONFIG_F2FS_FS_XATTR
1511 	set_opt(sbi, XATTR_USER);
1512 #endif
1513 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1514 	set_opt(sbi, POSIX_ACL);
1515 #endif
1516 
1517 	f2fs_build_fault_attr(sbi, 0, 0);
1518 }
1519 
1520 #ifdef CONFIG_QUOTA
1521 static int f2fs_enable_quotas(struct super_block *sb);
1522 #endif
1523 
f2fs_disable_checkpoint(struct f2fs_sb_info * sbi)1524 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
1525 {
1526 	unsigned int s_flags = sbi->sb->s_flags;
1527 	struct cp_control cpc;
1528 	int err = 0;
1529 	int ret;
1530 	block_t unusable;
1531 
1532 	if (s_flags & SB_RDONLY) {
1533 		f2fs_err(sbi, "checkpoint=disable on readonly fs");
1534 		return -EINVAL;
1535 	}
1536 	sbi->sb->s_flags |= SB_ACTIVE;
1537 
1538 	f2fs_update_time(sbi, DISABLE_TIME);
1539 
1540 	while (!f2fs_time_over(sbi, DISABLE_TIME)) {
1541 		mutex_lock(&sbi->gc_mutex);
1542 		err = f2fs_gc(sbi, true, false, NULL_SEGNO);
1543 		if (err == -ENODATA) {
1544 			err = 0;
1545 			break;
1546 		}
1547 		if (err && err != -EAGAIN)
1548 			break;
1549 	}
1550 
1551 	ret = sync_filesystem(sbi->sb);
1552 	if (ret || err) {
1553 		err = ret ? ret: err;
1554 		goto restore_flag;
1555 	}
1556 
1557 	unusable = f2fs_get_unusable_blocks(sbi);
1558 	if (f2fs_disable_cp_again(sbi, unusable)) {
1559 		err = -EAGAIN;
1560 		goto restore_flag;
1561 	}
1562 
1563 	mutex_lock(&sbi->gc_mutex);
1564 	cpc.reason = CP_PAUSE;
1565 	set_sbi_flag(sbi, SBI_CP_DISABLED);
1566 	err = f2fs_write_checkpoint(sbi, &cpc);
1567 	if (err)
1568 		goto out_unlock;
1569 
1570 	spin_lock(&sbi->stat_lock);
1571 	sbi->unusable_block_count = unusable;
1572 	spin_unlock(&sbi->stat_lock);
1573 
1574 out_unlock:
1575 	mutex_unlock(&sbi->gc_mutex);
1576 restore_flag:
1577 	sbi->sb->s_flags = s_flags;	/* Restore MS_RDONLY status */
1578 	return err;
1579 }
1580 
f2fs_enable_checkpoint(struct f2fs_sb_info * sbi)1581 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
1582 {
1583 	mutex_lock(&sbi->gc_mutex);
1584 	f2fs_dirty_to_prefree(sbi);
1585 
1586 	clear_sbi_flag(sbi, SBI_CP_DISABLED);
1587 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1588 	mutex_unlock(&sbi->gc_mutex);
1589 
1590 	f2fs_sync_fs(sbi->sb, 1);
1591 }
1592 
f2fs_remount(struct super_block * sb,int * flags,char * data)1593 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1594 {
1595 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1596 	struct f2fs_mount_info org_mount_opt;
1597 	unsigned long old_sb_flags;
1598 	int err;
1599 	bool need_restart_gc = false;
1600 	bool need_stop_gc = false;
1601 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1602 	bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT);
1603 	bool no_io_align = !F2FS_IO_ALIGNED(sbi);
1604 	bool checkpoint_changed;
1605 #ifdef CONFIG_QUOTA
1606 	int i, j;
1607 #endif
1608 
1609 	/*
1610 	 * Save the old mount options in case we
1611 	 * need to restore them.
1612 	 */
1613 	org_mount_opt = sbi->mount_opt;
1614 	old_sb_flags = sb->s_flags;
1615 
1616 #ifdef CONFIG_QUOTA
1617 	org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1618 	for (i = 0; i < MAXQUOTAS; i++) {
1619 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
1620 			org_mount_opt.s_qf_names[i] =
1621 				kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1622 				GFP_KERNEL);
1623 			if (!org_mount_opt.s_qf_names[i]) {
1624 				for (j = 0; j < i; j++)
1625 					kvfree(org_mount_opt.s_qf_names[j]);
1626 				return -ENOMEM;
1627 			}
1628 		} else {
1629 			org_mount_opt.s_qf_names[i] = NULL;
1630 		}
1631 	}
1632 #endif
1633 
1634 	/* recover superblocks we couldn't write due to previous RO mount */
1635 	if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1636 		err = f2fs_commit_super(sbi, false);
1637 		f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
1638 			  err);
1639 		if (!err)
1640 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1641 	}
1642 
1643 	default_options(sbi);
1644 
1645 	/* parse mount options */
1646 	err = parse_options(sb, data);
1647 	if (err)
1648 		goto restore_opts;
1649 	checkpoint_changed =
1650 			disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT);
1651 
1652 	/*
1653 	 * Previous and new state of filesystem is RO,
1654 	 * so skip checking GC and FLUSH_MERGE conditions.
1655 	 */
1656 	if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1657 		goto skip;
1658 
1659 #ifdef CONFIG_QUOTA
1660 	if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1661 		err = dquot_suspend(sb, -1);
1662 		if (err < 0)
1663 			goto restore_opts;
1664 	} else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
1665 		/* dquot_resume needs RW */
1666 		sb->s_flags &= ~SB_RDONLY;
1667 		if (sb_any_quota_suspended(sb)) {
1668 			dquot_resume(sb, -1);
1669 		} else if (f2fs_sb_has_quota_ino(sbi)) {
1670 			err = f2fs_enable_quotas(sb);
1671 			if (err)
1672 				goto restore_opts;
1673 		}
1674 	}
1675 #endif
1676 	/* disallow enable/disable extent_cache dynamically */
1677 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1678 		err = -EINVAL;
1679 		f2fs_warn(sbi, "switch extent_cache option is not allowed");
1680 		goto restore_opts;
1681 	}
1682 
1683 	if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) {
1684 		err = -EINVAL;
1685 		f2fs_warn(sbi, "switch io_bits option is not allowed");
1686 		goto restore_opts;
1687 	}
1688 
1689 	if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
1690 		err = -EINVAL;
1691 		f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
1692 		goto restore_opts;
1693 	}
1694 
1695 	/*
1696 	 * We stop the GC thread if FS is mounted as RO
1697 	 * or if background_gc = off is passed in mount
1698 	 * option. Also sync the filesystem.
1699 	 */
1700 	if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) {
1701 		if (sbi->gc_thread) {
1702 			f2fs_stop_gc_thread(sbi);
1703 			need_restart_gc = true;
1704 		}
1705 	} else if (!sbi->gc_thread) {
1706 		err = f2fs_start_gc_thread(sbi);
1707 		if (err)
1708 			goto restore_opts;
1709 		need_stop_gc = true;
1710 	}
1711 
1712 	if (*flags & SB_RDONLY ||
1713 		F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1714 		writeback_inodes_sb(sb, WB_REASON_SYNC);
1715 		sync_inodes_sb(sb);
1716 
1717 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1718 		set_sbi_flag(sbi, SBI_IS_CLOSE);
1719 		f2fs_sync_fs(sb, 1);
1720 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
1721 	}
1722 
1723 	if (checkpoint_changed) {
1724 		if (test_opt(sbi, DISABLE_CHECKPOINT)) {
1725 			err = f2fs_disable_checkpoint(sbi);
1726 			if (err)
1727 				goto restore_gc;
1728 		} else {
1729 			f2fs_enable_checkpoint(sbi);
1730 		}
1731 	}
1732 
1733 	/*
1734 	 * We stop issue flush thread if FS is mounted as RO
1735 	 * or if flush_merge is not passed in mount option.
1736 	 */
1737 	if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1738 		clear_opt(sbi, FLUSH_MERGE);
1739 		f2fs_destroy_flush_cmd_control(sbi, false);
1740 	} else {
1741 		err = f2fs_create_flush_cmd_control(sbi);
1742 		if (err)
1743 			goto restore_gc;
1744 	}
1745 skip:
1746 #ifdef CONFIG_QUOTA
1747 	/* Release old quota file names */
1748 	for (i = 0; i < MAXQUOTAS; i++)
1749 		kvfree(org_mount_opt.s_qf_names[i]);
1750 #endif
1751 	/* Update the POSIXACL Flag */
1752 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
1753 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
1754 
1755 	limit_reserve_root(sbi);
1756 	*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
1757 	return 0;
1758 restore_gc:
1759 	if (need_restart_gc) {
1760 		if (f2fs_start_gc_thread(sbi))
1761 			f2fs_warn(sbi, "background gc thread has stopped");
1762 	} else if (need_stop_gc) {
1763 		f2fs_stop_gc_thread(sbi);
1764 	}
1765 restore_opts:
1766 #ifdef CONFIG_QUOTA
1767 	F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1768 	for (i = 0; i < MAXQUOTAS; i++) {
1769 		kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
1770 		F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1771 	}
1772 #endif
1773 	sbi->mount_opt = org_mount_opt;
1774 	sb->s_flags = old_sb_flags;
1775 	return err;
1776 }
1777 
1778 #ifdef CONFIG_QUOTA
1779 /* Read data from quotafile */
f2fs_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)1780 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1781 			       size_t len, loff_t off)
1782 {
1783 	struct inode *inode = sb_dqopt(sb)->files[type];
1784 	struct address_space *mapping = inode->i_mapping;
1785 	block_t blkidx = F2FS_BYTES_TO_BLK(off);
1786 	int offset = off & (sb->s_blocksize - 1);
1787 	int tocopy;
1788 	size_t toread;
1789 	loff_t i_size = i_size_read(inode);
1790 	struct page *page;
1791 	char *kaddr;
1792 
1793 	if (off > i_size)
1794 		return 0;
1795 
1796 	if (off + len > i_size)
1797 		len = i_size - off;
1798 	toread = len;
1799 	while (toread > 0) {
1800 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1801 repeat:
1802 		page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
1803 		if (IS_ERR(page)) {
1804 			if (PTR_ERR(page) == -ENOMEM) {
1805 				congestion_wait(BLK_RW_ASYNC, HZ/50);
1806 				goto repeat;
1807 			}
1808 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1809 			return PTR_ERR(page);
1810 		}
1811 
1812 		lock_page(page);
1813 
1814 		if (unlikely(page->mapping != mapping)) {
1815 			f2fs_put_page(page, 1);
1816 			goto repeat;
1817 		}
1818 		if (unlikely(!PageUptodate(page))) {
1819 			f2fs_put_page(page, 1);
1820 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1821 			return -EIO;
1822 		}
1823 
1824 		kaddr = kmap_atomic(page);
1825 		memcpy(data, kaddr + offset, tocopy);
1826 		kunmap_atomic(kaddr);
1827 		f2fs_put_page(page, 1);
1828 
1829 		offset = 0;
1830 		toread -= tocopy;
1831 		data += tocopy;
1832 		blkidx++;
1833 	}
1834 	return len;
1835 }
1836 
1837 /* Write to quotafile */
f2fs_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)1838 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1839 				const char *data, size_t len, loff_t off)
1840 {
1841 	struct inode *inode = sb_dqopt(sb)->files[type];
1842 	struct address_space *mapping = inode->i_mapping;
1843 	const struct address_space_operations *a_ops = mapping->a_ops;
1844 	int offset = off & (sb->s_blocksize - 1);
1845 	size_t towrite = len;
1846 	struct page *page;
1847 	char *kaddr;
1848 	int err = 0;
1849 	int tocopy;
1850 
1851 	while (towrite > 0) {
1852 		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1853 								towrite);
1854 retry:
1855 		err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1856 							&page, NULL);
1857 		if (unlikely(err)) {
1858 			if (err == -ENOMEM) {
1859 				congestion_wait(BLK_RW_ASYNC, HZ/50);
1860 				goto retry;
1861 			}
1862 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1863 			break;
1864 		}
1865 
1866 		kaddr = kmap_atomic(page);
1867 		memcpy(kaddr + offset, data, tocopy);
1868 		kunmap_atomic(kaddr);
1869 		flush_dcache_page(page);
1870 
1871 		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1872 						page, NULL);
1873 		offset = 0;
1874 		towrite -= tocopy;
1875 		off += tocopy;
1876 		data += tocopy;
1877 		cond_resched();
1878 	}
1879 
1880 	if (len == towrite)
1881 		return err;
1882 	inode->i_mtime = inode->i_ctime = current_time(inode);
1883 	f2fs_mark_inode_dirty_sync(inode, false);
1884 	return len - towrite;
1885 }
1886 
f2fs_get_dquots(struct inode * inode)1887 static struct dquot **f2fs_get_dquots(struct inode *inode)
1888 {
1889 	return F2FS_I(inode)->i_dquot;
1890 }
1891 
f2fs_get_reserved_space(struct inode * inode)1892 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1893 {
1894 	return &F2FS_I(inode)->i_reserved_quota;
1895 }
1896 
f2fs_quota_on_mount(struct f2fs_sb_info * sbi,int type)1897 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
1898 {
1899 	if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
1900 		f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
1901 		return 0;
1902 	}
1903 
1904 	return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
1905 					F2FS_OPTION(sbi).s_jquota_fmt, type);
1906 }
1907 
f2fs_enable_quota_files(struct f2fs_sb_info * sbi,bool rdonly)1908 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
1909 {
1910 	int enabled = 0;
1911 	int i, err;
1912 
1913 	if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
1914 		err = f2fs_enable_quotas(sbi->sb);
1915 		if (err) {
1916 			f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
1917 			return 0;
1918 		}
1919 		return 1;
1920 	}
1921 
1922 	for (i = 0; i < MAXQUOTAS; i++) {
1923 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
1924 			err = f2fs_quota_on_mount(sbi, i);
1925 			if (!err) {
1926 				enabled = 1;
1927 				continue;
1928 			}
1929 			f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
1930 				 err, i);
1931 		}
1932 	}
1933 	return enabled;
1934 }
1935 
f2fs_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)1936 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
1937 			     unsigned int flags)
1938 {
1939 	struct inode *qf_inode;
1940 	unsigned long qf_inum;
1941 	int err;
1942 
1943 	BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
1944 
1945 	qf_inum = f2fs_qf_ino(sb, type);
1946 	if (!qf_inum)
1947 		return -EPERM;
1948 
1949 	qf_inode = f2fs_iget(sb, qf_inum);
1950 	if (IS_ERR(qf_inode)) {
1951 		f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
1952 		return PTR_ERR(qf_inode);
1953 	}
1954 
1955 	/* Don't account quota for quota files to avoid recursion */
1956 	qf_inode->i_flags |= S_NOQUOTA;
1957 	err = dquot_enable(qf_inode, type, format_id, flags);
1958 	iput(qf_inode);
1959 	return err;
1960 }
1961 
f2fs_enable_quotas(struct super_block * sb)1962 static int f2fs_enable_quotas(struct super_block *sb)
1963 {
1964 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1965 	int type, err = 0;
1966 	unsigned long qf_inum;
1967 	bool quota_mopt[MAXQUOTAS] = {
1968 		test_opt(sbi, USRQUOTA),
1969 		test_opt(sbi, GRPQUOTA),
1970 		test_opt(sbi, PRJQUOTA),
1971 	};
1972 
1973 	if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
1974 		f2fs_err(sbi, "quota file may be corrupted, skip loading it");
1975 		return 0;
1976 	}
1977 
1978 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
1979 
1980 	for (type = 0; type < MAXQUOTAS; type++) {
1981 		qf_inum = f2fs_qf_ino(sb, type);
1982 		if (qf_inum) {
1983 			err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
1984 				DQUOT_USAGE_ENABLED |
1985 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
1986 			if (err) {
1987 				f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
1988 					 type, err);
1989 				for (type--; type >= 0; type--)
1990 					dquot_quota_off(sb, type);
1991 				set_sbi_flag(F2FS_SB(sb),
1992 						SBI_QUOTA_NEED_REPAIR);
1993 				return err;
1994 			}
1995 		}
1996 	}
1997 	return 0;
1998 }
1999 
f2fs_quota_sync(struct super_block * sb,int type)2000 int f2fs_quota_sync(struct super_block *sb, int type)
2001 {
2002 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2003 	struct quota_info *dqopt = sb_dqopt(sb);
2004 	int cnt;
2005 	int ret;
2006 
2007 	/*
2008 	 * do_quotactl
2009 	 *  f2fs_quota_sync
2010 	 *  down_read(quota_sem)
2011 	 *  dquot_writeback_dquots()
2012 	 *  f2fs_dquot_commit
2013 	 *                            block_operation
2014 	 *                            down_read(quota_sem)
2015 	 */
2016 	f2fs_lock_op(sbi);
2017 
2018 	down_read(&sbi->quota_sem);
2019 	ret = dquot_writeback_dquots(sb, type);
2020 	if (ret)
2021 		goto out;
2022 
2023 	/*
2024 	 * Now when everything is written we can discard the pagecache so
2025 	 * that userspace sees the changes.
2026 	 */
2027 	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
2028 		struct address_space *mapping;
2029 
2030 		if (type != -1 && cnt != type)
2031 			continue;
2032 		if (!sb_has_quota_active(sb, cnt))
2033 			continue;
2034 
2035 		mapping = dqopt->files[cnt]->i_mapping;
2036 
2037 		ret = filemap_fdatawrite(mapping);
2038 		if (ret)
2039 			goto out;
2040 
2041 		/* if we are using journalled quota */
2042 		if (is_journalled_quota(sbi))
2043 			continue;
2044 
2045 		ret = filemap_fdatawait(mapping);
2046 		if (ret)
2047 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2048 
2049 		inode_lock(dqopt->files[cnt]);
2050 		truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
2051 		inode_unlock(dqopt->files[cnt]);
2052 	}
2053 out:
2054 	if (ret)
2055 		set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2056 	up_read(&sbi->quota_sem);
2057 	f2fs_unlock_op(sbi);
2058 	return ret;
2059 }
2060 
f2fs_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)2061 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
2062 							const struct path *path)
2063 {
2064 	struct inode *inode;
2065 	int err;
2066 
2067 	/* if quota sysfile exists, deny enabling quota with specific file */
2068 	if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
2069 		f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
2070 		return -EBUSY;
2071 	}
2072 
2073 	err = f2fs_quota_sync(sb, type);
2074 	if (err)
2075 		return err;
2076 
2077 	err = dquot_quota_on(sb, type, format_id, path);
2078 	if (err)
2079 		return err;
2080 
2081 	inode = d_inode(path->dentry);
2082 
2083 	inode_lock(inode);
2084 	F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
2085 	f2fs_set_inode_flags(inode);
2086 	inode_unlock(inode);
2087 	f2fs_mark_inode_dirty_sync(inode, false);
2088 
2089 	return 0;
2090 }
2091 
__f2fs_quota_off(struct super_block * sb,int type)2092 static int __f2fs_quota_off(struct super_block *sb, int type)
2093 {
2094 	struct inode *inode = sb_dqopt(sb)->files[type];
2095 	int err;
2096 
2097 	if (!inode || !igrab(inode))
2098 		return dquot_quota_off(sb, type);
2099 
2100 	err = f2fs_quota_sync(sb, type);
2101 	if (err)
2102 		goto out_put;
2103 
2104 	err = dquot_quota_off(sb, type);
2105 	if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2106 		goto out_put;
2107 
2108 	inode_lock(inode);
2109 	F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2110 	f2fs_set_inode_flags(inode);
2111 	inode_unlock(inode);
2112 	f2fs_mark_inode_dirty_sync(inode, false);
2113 out_put:
2114 	iput(inode);
2115 	return err;
2116 }
2117 
f2fs_quota_off(struct super_block * sb,int type)2118 static int f2fs_quota_off(struct super_block *sb, int type)
2119 {
2120 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2121 	int err;
2122 
2123 	err = __f2fs_quota_off(sb, type);
2124 
2125 	/*
2126 	 * quotactl can shutdown journalled quota, result in inconsistence
2127 	 * between quota record and fs data by following updates, tag the
2128 	 * flag to let fsck be aware of it.
2129 	 */
2130 	if (is_journalled_quota(sbi))
2131 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2132 	return err;
2133 }
2134 
f2fs_quota_off_umount(struct super_block * sb)2135 void f2fs_quota_off_umount(struct super_block *sb)
2136 {
2137 	int type;
2138 	int err;
2139 
2140 	for (type = 0; type < MAXQUOTAS; type++) {
2141 		err = __f2fs_quota_off(sb, type);
2142 		if (err) {
2143 			int ret = dquot_quota_off(sb, type);
2144 
2145 			f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
2146 				 type, err, ret);
2147 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2148 		}
2149 	}
2150 	/*
2151 	 * In case of checkpoint=disable, we must flush quota blocks.
2152 	 * This can cause NULL exception for node_inode in end_io, since
2153 	 * put_super already dropped it.
2154 	 */
2155 	sync_filesystem(sb);
2156 }
2157 
f2fs_truncate_quota_inode_pages(struct super_block * sb)2158 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2159 {
2160 	struct quota_info *dqopt = sb_dqopt(sb);
2161 	int type;
2162 
2163 	for (type = 0; type < MAXQUOTAS; type++) {
2164 		if (!dqopt->files[type])
2165 			continue;
2166 		f2fs_inode_synced(dqopt->files[type]);
2167 	}
2168 }
2169 
f2fs_dquot_commit(struct dquot * dquot)2170 static int f2fs_dquot_commit(struct dquot *dquot)
2171 {
2172 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2173 	int ret;
2174 
2175 	down_read(&sbi->quota_sem);
2176 	ret = dquot_commit(dquot);
2177 	if (ret < 0)
2178 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2179 	up_read(&sbi->quota_sem);
2180 	return ret;
2181 }
2182 
f2fs_dquot_acquire(struct dquot * dquot)2183 static int f2fs_dquot_acquire(struct dquot *dquot)
2184 {
2185 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2186 	int ret;
2187 
2188 	down_read(&sbi->quota_sem);
2189 	ret = dquot_acquire(dquot);
2190 	if (ret < 0)
2191 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2192 	up_read(&sbi->quota_sem);
2193 	return ret;
2194 }
2195 
f2fs_dquot_release(struct dquot * dquot)2196 static int f2fs_dquot_release(struct dquot *dquot)
2197 {
2198 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2199 	int ret;
2200 
2201 	down_read(&sbi->quota_sem);
2202 	ret = dquot_release(dquot);
2203 	if (ret < 0)
2204 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2205 	up_read(&sbi->quota_sem);
2206 	return ret;
2207 }
2208 
f2fs_dquot_mark_dquot_dirty(struct dquot * dquot)2209 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2210 {
2211 	struct super_block *sb = dquot->dq_sb;
2212 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2213 	int ret;
2214 
2215 	down_read(&sbi->quota_sem);
2216 	ret = dquot_mark_dquot_dirty(dquot);
2217 
2218 	/* if we are using journalled quota */
2219 	if (is_journalled_quota(sbi))
2220 		set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2221 
2222 	up_read(&sbi->quota_sem);
2223 	return ret;
2224 }
2225 
f2fs_dquot_commit_info(struct super_block * sb,int type)2226 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2227 {
2228 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2229 	int ret;
2230 
2231 	down_read(&sbi->quota_sem);
2232 	ret = dquot_commit_info(sb, type);
2233 	if (ret < 0)
2234 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2235 	up_read(&sbi->quota_sem);
2236 	return ret;
2237 }
2238 
f2fs_get_projid(struct inode * inode,kprojid_t * projid)2239 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2240 {
2241 	*projid = F2FS_I(inode)->i_projid;
2242 	return 0;
2243 }
2244 
2245 static const struct dquot_operations f2fs_quota_operations = {
2246 	.get_reserved_space = f2fs_get_reserved_space,
2247 	.write_dquot	= f2fs_dquot_commit,
2248 	.acquire_dquot	= f2fs_dquot_acquire,
2249 	.release_dquot	= f2fs_dquot_release,
2250 	.mark_dirty	= f2fs_dquot_mark_dquot_dirty,
2251 	.write_info	= f2fs_dquot_commit_info,
2252 	.alloc_dquot	= dquot_alloc,
2253 	.destroy_dquot	= dquot_destroy,
2254 	.get_projid	= f2fs_get_projid,
2255 	.get_next_id	= dquot_get_next_id,
2256 };
2257 
2258 static const struct quotactl_ops f2fs_quotactl_ops = {
2259 	.quota_on	= f2fs_quota_on,
2260 	.quota_off	= f2fs_quota_off,
2261 	.quota_sync	= f2fs_quota_sync,
2262 	.get_state	= dquot_get_state,
2263 	.set_info	= dquot_set_dqinfo,
2264 	.get_dqblk	= dquot_get_dqblk,
2265 	.set_dqblk	= dquot_set_dqblk,
2266 	.get_nextdqblk	= dquot_get_next_dqblk,
2267 };
2268 #else
f2fs_quota_sync(struct super_block * sb,int type)2269 int f2fs_quota_sync(struct super_block *sb, int type)
2270 {
2271 	return 0;
2272 }
2273 
f2fs_quota_off_umount(struct super_block * sb)2274 void f2fs_quota_off_umount(struct super_block *sb)
2275 {
2276 }
2277 #endif
2278 
2279 static const struct super_operations f2fs_sops = {
2280 	.alloc_inode	= f2fs_alloc_inode,
2281 	.free_inode	= f2fs_free_inode,
2282 	.drop_inode	= f2fs_drop_inode,
2283 	.write_inode	= f2fs_write_inode,
2284 	.dirty_inode	= f2fs_dirty_inode,
2285 	.show_options	= f2fs_show_options,
2286 #ifdef CONFIG_QUOTA
2287 	.quota_read	= f2fs_quota_read,
2288 	.quota_write	= f2fs_quota_write,
2289 	.get_dquots	= f2fs_get_dquots,
2290 #endif
2291 	.evict_inode	= f2fs_evict_inode,
2292 	.put_super	= f2fs_put_super,
2293 	.sync_fs	= f2fs_sync_fs,
2294 	.freeze_fs	= f2fs_freeze,
2295 	.unfreeze_fs	= f2fs_unfreeze,
2296 	.statfs		= f2fs_statfs,
2297 	.remount_fs	= f2fs_remount,
2298 };
2299 
2300 #ifdef CONFIG_FS_ENCRYPTION
f2fs_get_context(struct inode * inode,void * ctx,size_t len)2301 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
2302 {
2303 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2304 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2305 				ctx, len, NULL);
2306 }
2307 
f2fs_set_context(struct inode * inode,const void * ctx,size_t len,void * fs_data)2308 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
2309 							void *fs_data)
2310 {
2311 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2312 
2313 	/*
2314 	 * Encrypting the root directory is not allowed because fsck
2315 	 * expects lost+found directory to exist and remain unencrypted
2316 	 * if LOST_FOUND feature is enabled.
2317 	 *
2318 	 */
2319 	if (f2fs_sb_has_lost_found(sbi) &&
2320 			inode->i_ino == F2FS_ROOT_INO(sbi))
2321 		return -EPERM;
2322 
2323 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2324 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2325 				ctx, len, fs_data, XATTR_CREATE);
2326 }
2327 
f2fs_dummy_context(struct inode * inode)2328 static bool f2fs_dummy_context(struct inode *inode)
2329 {
2330 	return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode));
2331 }
2332 
f2fs_has_stable_inodes(struct super_block * sb)2333 static bool f2fs_has_stable_inodes(struct super_block *sb)
2334 {
2335 	return true;
2336 }
2337 
f2fs_get_ino_and_lblk_bits(struct super_block * sb,int * ino_bits_ret,int * lblk_bits_ret)2338 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb,
2339 				       int *ino_bits_ret, int *lblk_bits_ret)
2340 {
2341 	*ino_bits_ret = 8 * sizeof(nid_t);
2342 	*lblk_bits_ret = 8 * sizeof(block_t);
2343 }
2344 
f2fs_inline_crypt_enabled(struct super_block * sb)2345 static bool f2fs_inline_crypt_enabled(struct super_block *sb)
2346 {
2347 	return F2FS_OPTION(F2FS_SB(sb)).inlinecrypt;
2348 }
2349 
f2fs_get_num_devices(struct super_block * sb)2350 static int f2fs_get_num_devices(struct super_block *sb)
2351 {
2352 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2353 
2354 	if (f2fs_is_multi_device(sbi))
2355 		return sbi->s_ndevs;
2356 	return 1;
2357 }
2358 
f2fs_get_devices(struct super_block * sb,struct request_queue ** devs)2359 static void f2fs_get_devices(struct super_block *sb,
2360 			     struct request_queue **devs)
2361 {
2362 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2363 	int i;
2364 
2365 	for (i = 0; i < sbi->s_ndevs; i++)
2366 		devs[i] = bdev_get_queue(FDEV(i).bdev);
2367 }
2368 
2369 static const struct fscrypt_operations f2fs_cryptops = {
2370 	.key_prefix		= "f2fs:",
2371 	.get_context		= f2fs_get_context,
2372 	.set_context		= f2fs_set_context,
2373 	.dummy_context		= f2fs_dummy_context,
2374 	.empty_dir		= f2fs_empty_dir,
2375 	.max_namelen		= F2FS_NAME_LEN,
2376 	.has_stable_inodes	= f2fs_has_stable_inodes,
2377 	.get_ino_and_lblk_bits	= f2fs_get_ino_and_lblk_bits,
2378 	.inline_crypt_enabled	= f2fs_inline_crypt_enabled,
2379 	.get_num_devices	= f2fs_get_num_devices,
2380 	.get_devices		= f2fs_get_devices,
2381 };
2382 #endif
2383 
f2fs_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)2384 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
2385 		u64 ino, u32 generation)
2386 {
2387 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2388 	struct inode *inode;
2389 
2390 	if (f2fs_check_nid_range(sbi, ino))
2391 		return ERR_PTR(-ESTALE);
2392 
2393 	/*
2394 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
2395 	 * However f2fs_iget currently does appropriate checks to handle stale
2396 	 * inodes so everything is OK.
2397 	 */
2398 	inode = f2fs_iget(sb, ino);
2399 	if (IS_ERR(inode))
2400 		return ERR_CAST(inode);
2401 	if (unlikely(generation && inode->i_generation != generation)) {
2402 		/* we didn't find the right inode.. */
2403 		iput(inode);
2404 		return ERR_PTR(-ESTALE);
2405 	}
2406 	return inode;
2407 }
2408 
f2fs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)2409 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2410 		int fh_len, int fh_type)
2411 {
2412 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
2413 				    f2fs_nfs_get_inode);
2414 }
2415 
f2fs_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)2416 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
2417 		int fh_len, int fh_type)
2418 {
2419 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
2420 				    f2fs_nfs_get_inode);
2421 }
2422 
2423 static const struct export_operations f2fs_export_ops = {
2424 	.fh_to_dentry = f2fs_fh_to_dentry,
2425 	.fh_to_parent = f2fs_fh_to_parent,
2426 	.get_parent = f2fs_get_parent,
2427 };
2428 
max_file_blocks(void)2429 static loff_t max_file_blocks(void)
2430 {
2431 	loff_t result = 0;
2432 	loff_t leaf_count = DEF_ADDRS_PER_BLOCK;
2433 
2434 	/*
2435 	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2436 	 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2437 	 * space in inode.i_addr, it will be more safe to reassign
2438 	 * result as zero.
2439 	 */
2440 
2441 	/* two direct node blocks */
2442 	result += (leaf_count * 2);
2443 
2444 	/* two indirect node blocks */
2445 	leaf_count *= NIDS_PER_BLOCK;
2446 	result += (leaf_count * 2);
2447 
2448 	/* one double indirect node block */
2449 	leaf_count *= NIDS_PER_BLOCK;
2450 	result += leaf_count;
2451 
2452 	return result;
2453 }
2454 
__f2fs_commit_super(struct buffer_head * bh,struct f2fs_super_block * super)2455 static int __f2fs_commit_super(struct buffer_head *bh,
2456 			struct f2fs_super_block *super)
2457 {
2458 	lock_buffer(bh);
2459 	if (super)
2460 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2461 	set_buffer_dirty(bh);
2462 	unlock_buffer(bh);
2463 
2464 	/* it's rare case, we can do fua all the time */
2465 	return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2466 }
2467 
sanity_check_area_boundary(struct f2fs_sb_info * sbi,struct buffer_head * bh)2468 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2469 					struct buffer_head *bh)
2470 {
2471 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2472 					(bh->b_data + F2FS_SUPER_OFFSET);
2473 	struct super_block *sb = sbi->sb;
2474 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2475 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2476 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2477 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2478 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2479 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2480 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2481 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2482 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2483 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2484 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2485 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
2486 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2487 	u64 main_end_blkaddr = main_blkaddr +
2488 				(segment_count_main << log_blocks_per_seg);
2489 	u64 seg_end_blkaddr = segment0_blkaddr +
2490 				(segment_count << log_blocks_per_seg);
2491 
2492 	if (segment0_blkaddr != cp_blkaddr) {
2493 		f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2494 			  segment0_blkaddr, cp_blkaddr);
2495 		return true;
2496 	}
2497 
2498 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2499 							sit_blkaddr) {
2500 		f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2501 			  cp_blkaddr, sit_blkaddr,
2502 			  segment_count_ckpt << log_blocks_per_seg);
2503 		return true;
2504 	}
2505 
2506 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2507 							nat_blkaddr) {
2508 		f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2509 			  sit_blkaddr, nat_blkaddr,
2510 			  segment_count_sit << log_blocks_per_seg);
2511 		return true;
2512 	}
2513 
2514 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2515 							ssa_blkaddr) {
2516 		f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2517 			  nat_blkaddr, ssa_blkaddr,
2518 			  segment_count_nat << log_blocks_per_seg);
2519 		return true;
2520 	}
2521 
2522 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2523 							main_blkaddr) {
2524 		f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2525 			  ssa_blkaddr, main_blkaddr,
2526 			  segment_count_ssa << log_blocks_per_seg);
2527 		return true;
2528 	}
2529 
2530 	if (main_end_blkaddr > seg_end_blkaddr) {
2531 		f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
2532 			  main_blkaddr,
2533 			  segment0_blkaddr +
2534 			  (segment_count << log_blocks_per_seg),
2535 			  segment_count_main << log_blocks_per_seg);
2536 		return true;
2537 	} else if (main_end_blkaddr < seg_end_blkaddr) {
2538 		int err = 0;
2539 		char *res;
2540 
2541 		/* fix in-memory information all the time */
2542 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2543 				segment0_blkaddr) >> log_blocks_per_seg);
2544 
2545 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2546 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2547 			res = "internally";
2548 		} else {
2549 			err = __f2fs_commit_super(bh, NULL);
2550 			res = err ? "failed" : "done";
2551 		}
2552 		f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%u) block(%u)",
2553 			  res, main_blkaddr,
2554 			  segment0_blkaddr +
2555 			  (segment_count << log_blocks_per_seg),
2556 			  segment_count_main << log_blocks_per_seg);
2557 		if (err)
2558 			return true;
2559 	}
2560 	return false;
2561 }
2562 
sanity_check_raw_super(struct f2fs_sb_info * sbi,struct buffer_head * bh)2563 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2564 				struct buffer_head *bh)
2565 {
2566 	block_t segment_count, segs_per_sec, secs_per_zone;
2567 	block_t total_sections, blocks_per_seg;
2568 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2569 					(bh->b_data + F2FS_SUPER_OFFSET);
2570 	unsigned int blocksize;
2571 	size_t crc_offset = 0;
2572 	__u32 crc = 0;
2573 
2574 	if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
2575 		f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
2576 			  F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2577 		return -EINVAL;
2578 	}
2579 
2580 	/* Check checksum_offset and crc in superblock */
2581 	if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
2582 		crc_offset = le32_to_cpu(raw_super->checksum_offset);
2583 		if (crc_offset !=
2584 			offsetof(struct f2fs_super_block, crc)) {
2585 			f2fs_info(sbi, "Invalid SB checksum offset: %zu",
2586 				  crc_offset);
2587 			return -EFSCORRUPTED;
2588 		}
2589 		crc = le32_to_cpu(raw_super->crc);
2590 		if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
2591 			f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
2592 			return -EFSCORRUPTED;
2593 		}
2594 	}
2595 
2596 	/* Currently, support only 4KB page cache size */
2597 	if (F2FS_BLKSIZE != PAGE_SIZE) {
2598 		f2fs_info(sbi, "Invalid page_cache_size (%lu), supports only 4KB",
2599 			  PAGE_SIZE);
2600 		return -EFSCORRUPTED;
2601 	}
2602 
2603 	/* Currently, support only 4KB block size */
2604 	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
2605 	if (blocksize != F2FS_BLKSIZE) {
2606 		f2fs_info(sbi, "Invalid blocksize (%u), supports only 4KB",
2607 			  blocksize);
2608 		return -EFSCORRUPTED;
2609 	}
2610 
2611 	/* check log blocks per segment */
2612 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2613 		f2fs_info(sbi, "Invalid log blocks per segment (%u)",
2614 			  le32_to_cpu(raw_super->log_blocks_per_seg));
2615 		return -EFSCORRUPTED;
2616 	}
2617 
2618 	/* Currently, support 512/1024/2048/4096 bytes sector size */
2619 	if (le32_to_cpu(raw_super->log_sectorsize) >
2620 				F2FS_MAX_LOG_SECTOR_SIZE ||
2621 		le32_to_cpu(raw_super->log_sectorsize) <
2622 				F2FS_MIN_LOG_SECTOR_SIZE) {
2623 		f2fs_info(sbi, "Invalid log sectorsize (%u)",
2624 			  le32_to_cpu(raw_super->log_sectorsize));
2625 		return -EFSCORRUPTED;
2626 	}
2627 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
2628 		le32_to_cpu(raw_super->log_sectorsize) !=
2629 			F2FS_MAX_LOG_SECTOR_SIZE) {
2630 		f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
2631 			  le32_to_cpu(raw_super->log_sectors_per_block),
2632 			  le32_to_cpu(raw_super->log_sectorsize));
2633 		return -EFSCORRUPTED;
2634 	}
2635 
2636 	segment_count = le32_to_cpu(raw_super->segment_count);
2637 	segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2638 	secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2639 	total_sections = le32_to_cpu(raw_super->section_count);
2640 
2641 	/* blocks_per_seg should be 512, given the above check */
2642 	blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
2643 
2644 	if (segment_count > F2FS_MAX_SEGMENT ||
2645 				segment_count < F2FS_MIN_SEGMENTS) {
2646 		f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
2647 		return -EFSCORRUPTED;
2648 	}
2649 
2650 	if (total_sections > segment_count ||
2651 			total_sections < F2FS_MIN_SEGMENTS ||
2652 			segs_per_sec > segment_count || !segs_per_sec) {
2653 		f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
2654 			  segment_count, total_sections, segs_per_sec);
2655 		return -EFSCORRUPTED;
2656 	}
2657 
2658 	if ((segment_count / segs_per_sec) < total_sections) {
2659 		f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
2660 			  segment_count, segs_per_sec, total_sections);
2661 		return -EFSCORRUPTED;
2662 	}
2663 
2664 	if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
2665 		f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
2666 			  segment_count, le64_to_cpu(raw_super->block_count));
2667 		return -EFSCORRUPTED;
2668 	}
2669 
2670 	if (RDEV(0).path[0]) {
2671 		block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments);
2672 		int i = 1;
2673 
2674 		while (i < MAX_DEVICES && RDEV(i).path[0]) {
2675 			dev_seg_count += le32_to_cpu(RDEV(i).total_segments);
2676 			i++;
2677 		}
2678 		if (segment_count != dev_seg_count) {
2679 			f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)",
2680 					segment_count, dev_seg_count);
2681 			return -EFSCORRUPTED;
2682 		}
2683 	}
2684 
2685 	if (secs_per_zone > total_sections || !secs_per_zone) {
2686 		f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
2687 			  secs_per_zone, total_sections);
2688 		return -EFSCORRUPTED;
2689 	}
2690 	if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
2691 			raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
2692 			(le32_to_cpu(raw_super->extension_count) +
2693 			raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
2694 		f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
2695 			  le32_to_cpu(raw_super->extension_count),
2696 			  raw_super->hot_ext_count,
2697 			  F2FS_MAX_EXTENSION);
2698 		return -EFSCORRUPTED;
2699 	}
2700 
2701 	if (le32_to_cpu(raw_super->cp_payload) >
2702 				(blocks_per_seg - F2FS_CP_PACKS)) {
2703 		f2fs_info(sbi, "Insane cp_payload (%u > %u)",
2704 			  le32_to_cpu(raw_super->cp_payload),
2705 			  blocks_per_seg - F2FS_CP_PACKS);
2706 		return -EFSCORRUPTED;
2707 	}
2708 
2709 	/* check reserved ino info */
2710 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
2711 		le32_to_cpu(raw_super->meta_ino) != 2 ||
2712 		le32_to_cpu(raw_super->root_ino) != 3) {
2713 		f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2714 			  le32_to_cpu(raw_super->node_ino),
2715 			  le32_to_cpu(raw_super->meta_ino),
2716 			  le32_to_cpu(raw_super->root_ino));
2717 		return -EFSCORRUPTED;
2718 	}
2719 
2720 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2721 	if (sanity_check_area_boundary(sbi, bh))
2722 		return -EFSCORRUPTED;
2723 
2724 	return 0;
2725 }
2726 
f2fs_sanity_check_ckpt(struct f2fs_sb_info * sbi)2727 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
2728 {
2729 	unsigned int total, fsmeta;
2730 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2731 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2732 	unsigned int ovp_segments, reserved_segments;
2733 	unsigned int main_segs, blocks_per_seg;
2734 	unsigned int sit_segs, nat_segs;
2735 	unsigned int sit_bitmap_size, nat_bitmap_size;
2736 	unsigned int log_blocks_per_seg;
2737 	unsigned int segment_count_main;
2738 	unsigned int cp_pack_start_sum, cp_payload;
2739 	block_t user_block_count, valid_user_blocks;
2740 	block_t avail_node_count, valid_node_count;
2741 	int i, j;
2742 
2743 	total = le32_to_cpu(raw_super->segment_count);
2744 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2745 	sit_segs = le32_to_cpu(raw_super->segment_count_sit);
2746 	fsmeta += sit_segs;
2747 	nat_segs = le32_to_cpu(raw_super->segment_count_nat);
2748 	fsmeta += nat_segs;
2749 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2750 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2751 
2752 	if (unlikely(fsmeta >= total))
2753 		return 1;
2754 
2755 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2756 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2757 
2758 	if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2759 			ovp_segments == 0 || reserved_segments == 0)) {
2760 		f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
2761 		return 1;
2762 	}
2763 
2764 	user_block_count = le64_to_cpu(ckpt->user_block_count);
2765 	segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2766 	log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2767 	if (!user_block_count || user_block_count >=
2768 			segment_count_main << log_blocks_per_seg) {
2769 		f2fs_err(sbi, "Wrong user_block_count: %u",
2770 			 user_block_count);
2771 		return 1;
2772 	}
2773 
2774 	valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
2775 	if (valid_user_blocks > user_block_count) {
2776 		f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
2777 			 valid_user_blocks, user_block_count);
2778 		return 1;
2779 	}
2780 
2781 	valid_node_count = le32_to_cpu(ckpt->valid_node_count);
2782 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
2783 	if (valid_node_count > avail_node_count) {
2784 		f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
2785 			 valid_node_count, avail_node_count);
2786 		return 1;
2787 	}
2788 
2789 	main_segs = le32_to_cpu(raw_super->segment_count_main);
2790 	blocks_per_seg = sbi->blocks_per_seg;
2791 
2792 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2793 		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2794 			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2795 			return 1;
2796 		for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
2797 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2798 				le32_to_cpu(ckpt->cur_node_segno[j])) {
2799 				f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
2800 					 i, j,
2801 					 le32_to_cpu(ckpt->cur_node_segno[i]));
2802 				return 1;
2803 			}
2804 		}
2805 	}
2806 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2807 		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2808 			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2809 			return 1;
2810 		for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
2811 			if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
2812 				le32_to_cpu(ckpt->cur_data_segno[j])) {
2813 				f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
2814 					 i, j,
2815 					 le32_to_cpu(ckpt->cur_data_segno[i]));
2816 				return 1;
2817 			}
2818 		}
2819 	}
2820 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2821 		for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
2822 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2823 				le32_to_cpu(ckpt->cur_data_segno[j])) {
2824 				f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
2825 					 i, j,
2826 					 le32_to_cpu(ckpt->cur_node_segno[i]));
2827 				return 1;
2828 			}
2829 		}
2830 	}
2831 
2832 	sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2833 	nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2834 
2835 	if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
2836 		nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
2837 		f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
2838 			 sit_bitmap_size, nat_bitmap_size);
2839 		return 1;
2840 	}
2841 
2842 	cp_pack_start_sum = __start_sum_addr(sbi);
2843 	cp_payload = __cp_payload(sbi);
2844 	if (cp_pack_start_sum < cp_payload + 1 ||
2845 		cp_pack_start_sum > blocks_per_seg - 1 -
2846 			NR_CURSEG_TYPE) {
2847 		f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
2848 			 cp_pack_start_sum);
2849 		return 1;
2850 	}
2851 
2852 	if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
2853 		le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
2854 		f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
2855 			  "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
2856 			  "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
2857 			  le32_to_cpu(ckpt->checksum_offset));
2858 		return 1;
2859 	}
2860 
2861 	if (unlikely(f2fs_cp_error(sbi))) {
2862 		f2fs_err(sbi, "A bug case: need to run fsck");
2863 		return 1;
2864 	}
2865 	return 0;
2866 }
2867 
init_sb_info(struct f2fs_sb_info * sbi)2868 static void init_sb_info(struct f2fs_sb_info *sbi)
2869 {
2870 	struct f2fs_super_block *raw_super = sbi->raw_super;
2871 	int i;
2872 
2873 	sbi->log_sectors_per_block =
2874 		le32_to_cpu(raw_super->log_sectors_per_block);
2875 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
2876 	sbi->blocksize = 1 << sbi->log_blocksize;
2877 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2878 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
2879 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2880 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2881 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
2882 	sbi->total_node_count =
2883 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
2884 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
2885 	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
2886 	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
2887 	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
2888 	sbi->cur_victim_sec = NULL_SECNO;
2889 	sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
2890 	sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
2891 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
2892 	sbi->migration_granularity = sbi->segs_per_sec;
2893 
2894 	sbi->dir_level = DEF_DIR_LEVEL;
2895 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
2896 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
2897 	sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
2898 	sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
2899 	sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
2900 	sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
2901 				DEF_UMOUNT_DISCARD_TIMEOUT;
2902 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
2903 
2904 	for (i = 0; i < NR_COUNT_TYPE; i++)
2905 		atomic_set(&sbi->nr_pages[i], 0);
2906 
2907 	for (i = 0; i < META; i++)
2908 		atomic_set(&sbi->wb_sync_req[i], 0);
2909 
2910 	INIT_LIST_HEAD(&sbi->s_list);
2911 	mutex_init(&sbi->umount_mutex);
2912 	init_rwsem(&sbi->io_order_lock);
2913 	spin_lock_init(&sbi->cp_lock);
2914 
2915 	sbi->dirty_device = 0;
2916 	spin_lock_init(&sbi->dev_lock);
2917 
2918 	init_rwsem(&sbi->sb_lock);
2919 	init_rwsem(&sbi->pin_sem);
2920 }
2921 
init_percpu_info(struct f2fs_sb_info * sbi)2922 static int init_percpu_info(struct f2fs_sb_info *sbi)
2923 {
2924 	int err;
2925 
2926 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
2927 	if (err)
2928 		return err;
2929 
2930 	err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
2931 								GFP_KERNEL);
2932 	if (err)
2933 		percpu_counter_destroy(&sbi->alloc_valid_block_count);
2934 
2935 	return err;
2936 }
2937 
2938 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_report_zone_cb(struct blk_zone * zone,unsigned int idx,void * data)2939 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
2940 			       void *data)
2941 {
2942 	struct f2fs_dev_info *dev = data;
2943 
2944 	if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL)
2945 		set_bit(idx, dev->blkz_seq);
2946 	return 0;
2947 }
2948 
init_blkz_info(struct f2fs_sb_info * sbi,int devi)2949 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
2950 {
2951 	struct block_device *bdev = FDEV(devi).bdev;
2952 	sector_t nr_sectors = bdev->bd_part->nr_sects;
2953 	int ret;
2954 
2955 	if (!f2fs_sb_has_blkzoned(sbi))
2956 		return 0;
2957 
2958 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
2959 				SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
2960 		return -EINVAL;
2961 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
2962 	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
2963 				__ilog2_u32(sbi->blocks_per_blkz))
2964 		return -EINVAL;
2965 	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
2966 	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
2967 					sbi->log_blocks_per_blkz;
2968 	if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
2969 		FDEV(devi).nr_blkz++;
2970 
2971 	FDEV(devi).blkz_seq = f2fs_kzalloc(sbi,
2972 					BITS_TO_LONGS(FDEV(devi).nr_blkz)
2973 					* sizeof(unsigned long),
2974 					GFP_KERNEL);
2975 	if (!FDEV(devi).blkz_seq)
2976 		return -ENOMEM;
2977 
2978 	/* Get block zones type */
2979 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
2980 				  &FDEV(devi));
2981 	if (ret < 0)
2982 		return ret;
2983 
2984 	return 0;
2985 }
2986 #endif
2987 
2988 /*
2989  * Read f2fs raw super block.
2990  * Because we have two copies of super block, so read both of them
2991  * to get the first valid one. If any one of them is broken, we pass
2992  * them recovery flag back to the caller.
2993  */
read_raw_super_block(struct f2fs_sb_info * sbi,struct f2fs_super_block ** raw_super,int * valid_super_block,int * recovery)2994 static int read_raw_super_block(struct f2fs_sb_info *sbi,
2995 			struct f2fs_super_block **raw_super,
2996 			int *valid_super_block, int *recovery)
2997 {
2998 	struct super_block *sb = sbi->sb;
2999 	int block;
3000 	struct buffer_head *bh;
3001 	struct f2fs_super_block *super;
3002 	int err = 0;
3003 
3004 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
3005 	if (!super)
3006 		return -ENOMEM;
3007 
3008 	for (block = 0; block < 2; block++) {
3009 		bh = sb_bread(sb, block);
3010 		if (!bh) {
3011 			f2fs_err(sbi, "Unable to read %dth superblock",
3012 				 block + 1);
3013 			err = -EIO;
3014 			*recovery = 1;
3015 			continue;
3016 		}
3017 
3018 		/* sanity checking of raw super */
3019 		err = sanity_check_raw_super(sbi, bh);
3020 		if (err) {
3021 			f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
3022 				 block + 1);
3023 			brelse(bh);
3024 			*recovery = 1;
3025 			continue;
3026 		}
3027 
3028 		if (!*raw_super) {
3029 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
3030 							sizeof(*super));
3031 			*valid_super_block = block;
3032 			*raw_super = super;
3033 		}
3034 		brelse(bh);
3035 	}
3036 
3037 	/* No valid superblock */
3038 	if (!*raw_super)
3039 		kvfree(super);
3040 	else
3041 		err = 0;
3042 
3043 	return err;
3044 }
3045 
f2fs_commit_super(struct f2fs_sb_info * sbi,bool recover)3046 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
3047 {
3048 	struct buffer_head *bh;
3049 	__u32 crc = 0;
3050 	int err;
3051 
3052 	if ((recover && f2fs_readonly(sbi->sb)) ||
3053 				bdev_read_only(sbi->sb->s_bdev)) {
3054 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3055 		return -EROFS;
3056 	}
3057 
3058 	/* we should update superblock crc here */
3059 	if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
3060 		crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
3061 				offsetof(struct f2fs_super_block, crc));
3062 		F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
3063 	}
3064 
3065 	/* write back-up superblock first */
3066 	bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
3067 	if (!bh)
3068 		return -EIO;
3069 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3070 	brelse(bh);
3071 
3072 	/* if we are in recovery path, skip writing valid superblock */
3073 	if (recover || err)
3074 		return err;
3075 
3076 	/* write current valid superblock */
3077 	bh = sb_bread(sbi->sb, sbi->valid_super_block);
3078 	if (!bh)
3079 		return -EIO;
3080 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3081 	brelse(bh);
3082 	return err;
3083 }
3084 
f2fs_scan_devices(struct f2fs_sb_info * sbi)3085 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
3086 {
3087 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3088 	unsigned int max_devices = MAX_DEVICES;
3089 	int i;
3090 
3091 	/* Initialize single device information */
3092 	if (!RDEV(0).path[0]) {
3093 		if (!bdev_is_zoned(sbi->sb->s_bdev))
3094 			return 0;
3095 		max_devices = 1;
3096 	}
3097 
3098 	/*
3099 	 * Initialize multiple devices information, or single
3100 	 * zoned block device information.
3101 	 */
3102 	sbi->devs = f2fs_kzalloc(sbi,
3103 				 array_size(max_devices,
3104 					    sizeof(struct f2fs_dev_info)),
3105 				 GFP_KERNEL);
3106 	if (!sbi->devs)
3107 		return -ENOMEM;
3108 
3109 	for (i = 0; i < max_devices; i++) {
3110 
3111 		if (i > 0 && !RDEV(i).path[0])
3112 			break;
3113 
3114 		if (max_devices == 1) {
3115 			/* Single zoned block device mount */
3116 			FDEV(0).bdev =
3117 				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
3118 					sbi->sb->s_mode, sbi->sb->s_type);
3119 		} else {
3120 			/* Multi-device mount */
3121 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
3122 			FDEV(i).total_segments =
3123 				le32_to_cpu(RDEV(i).total_segments);
3124 			if (i == 0) {
3125 				FDEV(i).start_blk = 0;
3126 				FDEV(i).end_blk = FDEV(i).start_blk +
3127 				    (FDEV(i).total_segments <<
3128 				    sbi->log_blocks_per_seg) - 1 +
3129 				    le32_to_cpu(raw_super->segment0_blkaddr);
3130 			} else {
3131 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
3132 				FDEV(i).end_blk = FDEV(i).start_blk +
3133 					(FDEV(i).total_segments <<
3134 					sbi->log_blocks_per_seg) - 1;
3135 			}
3136 			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
3137 					sbi->sb->s_mode, sbi->sb->s_type);
3138 		}
3139 		if (IS_ERR(FDEV(i).bdev))
3140 			return PTR_ERR(FDEV(i).bdev);
3141 
3142 		/* to release errored devices */
3143 		sbi->s_ndevs = i + 1;
3144 
3145 #ifdef CONFIG_BLK_DEV_ZONED
3146 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
3147 				!f2fs_sb_has_blkzoned(sbi)) {
3148 			f2fs_err(sbi, "Zoned block device feature not enabled\n");
3149 			return -EINVAL;
3150 		}
3151 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
3152 			if (init_blkz_info(sbi, i)) {
3153 				f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
3154 				return -EINVAL;
3155 			}
3156 			if (max_devices == 1)
3157 				break;
3158 			f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
3159 				  i, FDEV(i).path,
3160 				  FDEV(i).total_segments,
3161 				  FDEV(i).start_blk, FDEV(i).end_blk,
3162 				  bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
3163 				  "Host-aware" : "Host-managed");
3164 			continue;
3165 		}
3166 #endif
3167 		f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
3168 			  i, FDEV(i).path,
3169 			  FDEV(i).total_segments,
3170 			  FDEV(i).start_blk, FDEV(i).end_blk);
3171 	}
3172 	f2fs_info(sbi,
3173 		  "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
3174 	return 0;
3175 }
3176 
f2fs_setup_casefold(struct f2fs_sb_info * sbi)3177 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
3178 {
3179 #ifdef CONFIG_UNICODE
3180 	if (f2fs_sb_has_casefold(sbi) && !sbi->s_encoding) {
3181 		const struct f2fs_sb_encodings *encoding_info;
3182 		struct unicode_map *encoding;
3183 		__u16 encoding_flags;
3184 
3185 		if (f2fs_sb_has_encrypt(sbi)) {
3186 			f2fs_err(sbi,
3187 				"Can't mount with encoding and encryption");
3188 			return -EINVAL;
3189 		}
3190 
3191 		if (f2fs_sb_read_encoding(sbi->raw_super, &encoding_info,
3192 					  &encoding_flags)) {
3193 			f2fs_err(sbi,
3194 				 "Encoding requested by superblock is unknown");
3195 			return -EINVAL;
3196 		}
3197 
3198 		encoding = utf8_load(encoding_info->version);
3199 		if (IS_ERR(encoding)) {
3200 			f2fs_err(sbi,
3201 				 "can't mount with superblock charset: %s-%s "
3202 				 "not supported by the kernel. flags: 0x%x.",
3203 				 encoding_info->name, encoding_info->version,
3204 				 encoding_flags);
3205 			return PTR_ERR(encoding);
3206 		}
3207 		f2fs_info(sbi, "Using encoding defined by superblock: "
3208 			 "%s-%s with flags 0x%hx", encoding_info->name,
3209 			 encoding_info->version?:"\b", encoding_flags);
3210 
3211 		sbi->s_encoding = encoding;
3212 		sbi->s_encoding_flags = encoding_flags;
3213 		sbi->sb->s_d_op = &f2fs_dentry_ops;
3214 	}
3215 #else
3216 	if (f2fs_sb_has_casefold(sbi)) {
3217 		f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
3218 		return -EINVAL;
3219 	}
3220 #endif
3221 	return 0;
3222 }
3223 
f2fs_tuning_parameters(struct f2fs_sb_info * sbi)3224 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
3225 {
3226 	struct f2fs_sm_info *sm_i = SM_I(sbi);
3227 
3228 	/* adjust parameters according to the volume size */
3229 	if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
3230 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
3231 		sm_i->dcc_info->discard_granularity = 1;
3232 		sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
3233 	}
3234 
3235 	sbi->readdir_ra = 1;
3236 }
3237 
f2fs_fill_super(struct super_block * sb,void * data,int silent)3238 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
3239 {
3240 	struct f2fs_sb_info *sbi;
3241 	struct f2fs_super_block *raw_super;
3242 	struct inode *root;
3243 	int err;
3244 	bool skip_recovery = false, need_fsck = false;
3245 	char *options = NULL;
3246 	int recovery, i, valid_super_block;
3247 	struct curseg_info *seg_i;
3248 	int retry_cnt = 1;
3249 
3250 try_onemore:
3251 	err = -EINVAL;
3252 	raw_super = NULL;
3253 	valid_super_block = -1;
3254 	recovery = 0;
3255 
3256 	/* allocate memory for f2fs-specific super block info */
3257 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
3258 	if (!sbi)
3259 		return -ENOMEM;
3260 
3261 	sbi->sb = sb;
3262 
3263 	/* Load the checksum driver */
3264 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
3265 	if (IS_ERR(sbi->s_chksum_driver)) {
3266 		f2fs_err(sbi, "Cannot load crc32 driver.");
3267 		err = PTR_ERR(sbi->s_chksum_driver);
3268 		sbi->s_chksum_driver = NULL;
3269 		goto free_sbi;
3270 	}
3271 
3272 	/* set a block size */
3273 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
3274 		f2fs_err(sbi, "unable to set blocksize");
3275 		goto free_sbi;
3276 	}
3277 
3278 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
3279 								&recovery);
3280 	if (err)
3281 		goto free_sbi;
3282 
3283 	sb->s_fs_info = sbi;
3284 	sbi->raw_super = raw_super;
3285 
3286 	/* precompute checksum seed for metadata */
3287 	if (f2fs_sb_has_inode_chksum(sbi))
3288 		sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
3289 						sizeof(raw_super->uuid));
3290 
3291 	/*
3292 	 * The BLKZONED feature indicates that the drive was formatted with
3293 	 * zone alignment optimization. This is optional for host-aware
3294 	 * devices, but mandatory for host-managed zoned block devices.
3295 	 */
3296 #ifndef CONFIG_BLK_DEV_ZONED
3297 	if (f2fs_sb_has_blkzoned(sbi)) {
3298 		f2fs_err(sbi, "Zoned block device support is not enabled");
3299 		err = -EOPNOTSUPP;
3300 		goto free_sb_buf;
3301 	}
3302 #endif
3303 	default_options(sbi);
3304 	/* parse mount options */
3305 	options = kstrdup((const char *)data, GFP_KERNEL);
3306 	if (data && !options) {
3307 		err = -ENOMEM;
3308 		goto free_sb_buf;
3309 	}
3310 
3311 	err = parse_options(sb, options);
3312 	if (err)
3313 		goto free_options;
3314 
3315 	sbi->max_file_blocks = max_file_blocks();
3316 	sb->s_maxbytes = sbi->max_file_blocks <<
3317 				le32_to_cpu(raw_super->log_blocksize);
3318 	sb->s_max_links = F2FS_LINK_MAX;
3319 
3320 	err = f2fs_setup_casefold(sbi);
3321 	if (err)
3322 		goto free_options;
3323 
3324 #ifdef CONFIG_QUOTA
3325 	sb->dq_op = &f2fs_quota_operations;
3326 	sb->s_qcop = &f2fs_quotactl_ops;
3327 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3328 
3329 	if (f2fs_sb_has_quota_ino(sbi)) {
3330 		for (i = 0; i < MAXQUOTAS; i++) {
3331 			if (f2fs_qf_ino(sbi->sb, i))
3332 				sbi->nquota_files++;
3333 		}
3334 	}
3335 #endif
3336 
3337 	sb->s_op = &f2fs_sops;
3338 #ifdef CONFIG_FS_ENCRYPTION
3339 	sb->s_cop = &f2fs_cryptops;
3340 #endif
3341 #ifdef CONFIG_FS_VERITY
3342 	sb->s_vop = &f2fs_verityops;
3343 #endif
3344 	sb->s_xattr = f2fs_xattr_handlers;
3345 	sb->s_export_op = &f2fs_export_ops;
3346 	sb->s_magic = F2FS_SUPER_MAGIC;
3347 	sb->s_time_gran = 1;
3348 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3349 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
3350 	memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
3351 	sb->s_iflags |= SB_I_CGROUPWB;
3352 
3353 	/* init f2fs-specific super block info */
3354 	sbi->valid_super_block = valid_super_block;
3355 	mutex_init(&sbi->gc_mutex);
3356 	mutex_init(&sbi->writepages);
3357 	mutex_init(&sbi->cp_mutex);
3358 	mutex_init(&sbi->resize_mutex);
3359 	init_rwsem(&sbi->node_write);
3360 	init_rwsem(&sbi->node_change);
3361 
3362 	/* disallow all the data/node/meta page writes */
3363 	set_sbi_flag(sbi, SBI_POR_DOING);
3364 	spin_lock_init(&sbi->stat_lock);
3365 
3366 	/* init iostat info */
3367 	spin_lock_init(&sbi->iostat_lock);
3368 	sbi->iostat_enable = false;
3369 
3370 	for (i = 0; i < NR_PAGE_TYPE; i++) {
3371 		int n = (i == META) ? 1: NR_TEMP_TYPE;
3372 		int j;
3373 
3374 		sbi->write_io[i] =
3375 			f2fs_kmalloc(sbi,
3376 				     array_size(n,
3377 						sizeof(struct f2fs_bio_info)),
3378 				     GFP_KERNEL);
3379 		if (!sbi->write_io[i]) {
3380 			err = -ENOMEM;
3381 			goto free_bio_info;
3382 		}
3383 
3384 		for (j = HOT; j < n; j++) {
3385 			init_rwsem(&sbi->write_io[i][j].io_rwsem);
3386 			sbi->write_io[i][j].sbi = sbi;
3387 			sbi->write_io[i][j].bio = NULL;
3388 			spin_lock_init(&sbi->write_io[i][j].io_lock);
3389 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
3390 			INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
3391 			init_rwsem(&sbi->write_io[i][j].bio_list_lock);
3392 		}
3393 	}
3394 
3395 	init_rwsem(&sbi->cp_rwsem);
3396 	init_rwsem(&sbi->quota_sem);
3397 	init_waitqueue_head(&sbi->cp_wait);
3398 	init_sb_info(sbi);
3399 
3400 	err = init_percpu_info(sbi);
3401 	if (err)
3402 		goto free_bio_info;
3403 
3404 	if (F2FS_IO_ALIGNED(sbi)) {
3405 		sbi->write_io_dummy =
3406 			mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
3407 		if (!sbi->write_io_dummy) {
3408 			err = -ENOMEM;
3409 			goto free_percpu;
3410 		}
3411 	}
3412 
3413 	/* get an inode for meta space */
3414 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
3415 	if (IS_ERR(sbi->meta_inode)) {
3416 		f2fs_err(sbi, "Failed to read F2FS meta data inode");
3417 		err = PTR_ERR(sbi->meta_inode);
3418 		goto free_io_dummy;
3419 	}
3420 
3421 	err = f2fs_get_valid_checkpoint(sbi);
3422 	if (err) {
3423 		f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
3424 		goto free_meta_inode;
3425 	}
3426 
3427 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
3428 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3429 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
3430 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3431 		sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
3432 	}
3433 
3434 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
3435 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3436 
3437 	/* Initialize device list */
3438 	err = f2fs_scan_devices(sbi);
3439 	if (err) {
3440 		f2fs_err(sbi, "Failed to find devices");
3441 		goto free_devices;
3442 	}
3443 
3444 	sbi->total_valid_node_count =
3445 				le32_to_cpu(sbi->ckpt->valid_node_count);
3446 	percpu_counter_set(&sbi->total_valid_inode_count,
3447 				le32_to_cpu(sbi->ckpt->valid_inode_count));
3448 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
3449 	sbi->total_valid_block_count =
3450 				le64_to_cpu(sbi->ckpt->valid_block_count);
3451 	sbi->last_valid_block_count = sbi->total_valid_block_count;
3452 	sbi->reserved_blocks = 0;
3453 	sbi->current_reserved_blocks = 0;
3454 	limit_reserve_root(sbi);
3455 
3456 	for (i = 0; i < NR_INODE_TYPE; i++) {
3457 		INIT_LIST_HEAD(&sbi->inode_list[i]);
3458 		spin_lock_init(&sbi->inode_lock[i]);
3459 	}
3460 	mutex_init(&sbi->flush_lock);
3461 
3462 	f2fs_init_extent_cache_info(sbi);
3463 
3464 	f2fs_init_ino_entry_info(sbi);
3465 
3466 	f2fs_init_fsync_node_info(sbi);
3467 
3468 	/* setup f2fs internal modules */
3469 	err = f2fs_build_segment_manager(sbi);
3470 	if (err) {
3471 		f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
3472 			 err);
3473 		goto free_sm;
3474 	}
3475 	err = f2fs_build_node_manager(sbi);
3476 	if (err) {
3477 		f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
3478 			 err);
3479 		goto free_nm;
3480 	}
3481 
3482 	/* For write statistics */
3483 	if (sb->s_bdev->bd_part)
3484 		sbi->sectors_written_start =
3485 			(u64)part_stat_read(sb->s_bdev->bd_part,
3486 					    sectors[STAT_WRITE]);
3487 
3488 	/* Read accumulated write IO statistics if exists */
3489 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
3490 	if (__exist_node_summaries(sbi))
3491 		sbi->kbytes_written =
3492 			le64_to_cpu(seg_i->journal->info.kbytes_written);
3493 
3494 	f2fs_build_gc_manager(sbi);
3495 
3496 	err = f2fs_build_stats(sbi);
3497 	if (err)
3498 		goto free_nm;
3499 
3500 	/* get an inode for node space */
3501 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
3502 	if (IS_ERR(sbi->node_inode)) {
3503 		f2fs_err(sbi, "Failed to read node inode");
3504 		err = PTR_ERR(sbi->node_inode);
3505 		goto free_stats;
3506 	}
3507 
3508 	/* read root inode and dentry */
3509 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
3510 	if (IS_ERR(root)) {
3511 		f2fs_err(sbi, "Failed to read root inode");
3512 		err = PTR_ERR(root);
3513 		goto free_node_inode;
3514 	}
3515 	if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
3516 			!root->i_size || !root->i_nlink) {
3517 		iput(root);
3518 		err = -EINVAL;
3519 		goto free_node_inode;
3520 	}
3521 
3522 	sb->s_root = d_make_root(root); /* allocate root dentry */
3523 	if (!sb->s_root) {
3524 		err = -ENOMEM;
3525 		goto free_node_inode;
3526 	}
3527 
3528 	err = f2fs_register_sysfs(sbi);
3529 	if (err)
3530 		goto free_root_inode;
3531 
3532 #ifdef CONFIG_QUOTA
3533 	/* Enable quota usage during mount */
3534 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
3535 		err = f2fs_enable_quotas(sb);
3536 		if (err)
3537 			f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
3538 	}
3539 #endif
3540 	/* if there are nt orphan nodes free them */
3541 	err = f2fs_recover_orphan_inodes(sbi);
3542 	if (err)
3543 		goto free_meta;
3544 
3545 	if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
3546 		goto reset_checkpoint;
3547 
3548 	/* recover fsynced data */
3549 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
3550 		/*
3551 		 * mount should be failed, when device has readonly mode, and
3552 		 * previous checkpoint was not done by clean system shutdown.
3553 		 */
3554 		if (f2fs_hw_is_readonly(sbi)) {
3555 			if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3556 				err = -EROFS;
3557 				f2fs_err(sbi, "Need to recover fsync data, but write access unavailable");
3558 				goto free_meta;
3559 			}
3560 			f2fs_info(sbi, "write access unavailable, skipping recovery");
3561 			goto reset_checkpoint;
3562 		}
3563 
3564 		if (need_fsck)
3565 			set_sbi_flag(sbi, SBI_NEED_FSCK);
3566 
3567 		if (skip_recovery)
3568 			goto reset_checkpoint;
3569 
3570 		err = f2fs_recover_fsync_data(sbi, false);
3571 		if (err < 0) {
3572 			if (err != -ENOMEM)
3573 				skip_recovery = true;
3574 			need_fsck = true;
3575 			f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
3576 				 err);
3577 			goto free_meta;
3578 		}
3579 	} else {
3580 		err = f2fs_recover_fsync_data(sbi, true);
3581 
3582 		if (!f2fs_readonly(sb) && err > 0) {
3583 			err = -EINVAL;
3584 			f2fs_err(sbi, "Need to recover fsync data");
3585 			goto free_meta;
3586 		}
3587 	}
3588 reset_checkpoint:
3589 	/* f2fs_recover_fsync_data() cleared this already */
3590 	clear_sbi_flag(sbi, SBI_POR_DOING);
3591 
3592 	if (test_opt(sbi, DISABLE_CHECKPOINT)) {
3593 		err = f2fs_disable_checkpoint(sbi);
3594 		if (err)
3595 			goto sync_free_meta;
3596 	} else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
3597 		f2fs_enable_checkpoint(sbi);
3598 	}
3599 
3600 	/*
3601 	 * If filesystem is not mounted as read-only then
3602 	 * do start the gc_thread.
3603 	 */
3604 	if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
3605 		/* After POR, we can run background GC thread.*/
3606 		err = f2fs_start_gc_thread(sbi);
3607 		if (err)
3608 			goto sync_free_meta;
3609 	}
3610 	kvfree(options);
3611 
3612 	/* recover broken superblock */
3613 	if (recovery) {
3614 		err = f2fs_commit_super(sbi, true);
3615 		f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
3616 			  sbi->valid_super_block ? 1 : 2, err);
3617 	}
3618 
3619 	f2fs_join_shrinker(sbi);
3620 
3621 	f2fs_tuning_parameters(sbi);
3622 
3623 	f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
3624 		    cur_cp_version(F2FS_CKPT(sbi)));
3625 	f2fs_update_time(sbi, CP_TIME);
3626 	f2fs_update_time(sbi, REQ_TIME);
3627 	clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3628 	return 0;
3629 
3630 sync_free_meta:
3631 	/* safe to flush all the data */
3632 	sync_filesystem(sbi->sb);
3633 	retry_cnt = 0;
3634 
3635 free_meta:
3636 #ifdef CONFIG_QUOTA
3637 	f2fs_truncate_quota_inode_pages(sb);
3638 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
3639 		f2fs_quota_off_umount(sbi->sb);
3640 #endif
3641 	/*
3642 	 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
3643 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
3644 	 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
3645 	 * falls into an infinite loop in f2fs_sync_meta_pages().
3646 	 */
3647 	truncate_inode_pages_final(META_MAPPING(sbi));
3648 	/* evict some inodes being cached by GC */
3649 	evict_inodes(sb);
3650 	f2fs_unregister_sysfs(sbi);
3651 free_root_inode:
3652 	dput(sb->s_root);
3653 	sb->s_root = NULL;
3654 free_node_inode:
3655 	f2fs_release_ino_entry(sbi, true);
3656 	truncate_inode_pages_final(NODE_MAPPING(sbi));
3657 	iput(sbi->node_inode);
3658 	sbi->node_inode = NULL;
3659 free_stats:
3660 	f2fs_destroy_stats(sbi);
3661 free_nm:
3662 	f2fs_destroy_node_manager(sbi);
3663 free_sm:
3664 	f2fs_destroy_segment_manager(sbi);
3665 free_devices:
3666 	destroy_device_list(sbi);
3667 	kvfree(sbi->ckpt);
3668 free_meta_inode:
3669 	make_bad_inode(sbi->meta_inode);
3670 	iput(sbi->meta_inode);
3671 	sbi->meta_inode = NULL;
3672 free_io_dummy:
3673 	mempool_destroy(sbi->write_io_dummy);
3674 free_percpu:
3675 	destroy_percpu_info(sbi);
3676 free_bio_info:
3677 	for (i = 0; i < NR_PAGE_TYPE; i++)
3678 		kvfree(sbi->write_io[i]);
3679 
3680 #ifdef CONFIG_UNICODE
3681 	utf8_unload(sbi->s_encoding);
3682 #endif
3683 free_options:
3684 #ifdef CONFIG_QUOTA
3685 	for (i = 0; i < MAXQUOTAS; i++)
3686 		kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
3687 #endif
3688 	kvfree(options);
3689 free_sb_buf:
3690 	kvfree(raw_super);
3691 free_sbi:
3692 	if (sbi->s_chksum_driver)
3693 		crypto_free_shash(sbi->s_chksum_driver);
3694 	kvfree(sbi);
3695 
3696 	/* give only one another chance */
3697 	if (retry_cnt > 0 && skip_recovery) {
3698 		retry_cnt--;
3699 		shrink_dcache_sb(sb);
3700 		goto try_onemore;
3701 	}
3702 	return err;
3703 }
3704 
f2fs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)3705 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
3706 			const char *dev_name, void *data)
3707 {
3708 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
3709 }
3710 
kill_f2fs_super(struct super_block * sb)3711 static void kill_f2fs_super(struct super_block *sb)
3712 {
3713 	if (sb->s_root) {
3714 		struct f2fs_sb_info *sbi = F2FS_SB(sb);
3715 
3716 		set_sbi_flag(sbi, SBI_IS_CLOSE);
3717 		f2fs_stop_gc_thread(sbi);
3718 		f2fs_stop_discard_thread(sbi);
3719 
3720 		if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
3721 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3722 			struct cp_control cpc = {
3723 				.reason = CP_UMOUNT,
3724 			};
3725 			f2fs_write_checkpoint(sbi, &cpc);
3726 		}
3727 
3728 		if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
3729 			sb->s_flags &= ~SB_RDONLY;
3730 	}
3731 	kill_block_super(sb);
3732 }
3733 
3734 static struct file_system_type f2fs_fs_type = {
3735 	.owner		= THIS_MODULE,
3736 	.name		= "f2fs",
3737 	.mount		= f2fs_mount,
3738 	.kill_sb	= kill_f2fs_super,
3739 	.fs_flags	= FS_REQUIRES_DEV,
3740 };
3741 MODULE_ALIAS_FS("f2fs");
3742 
init_inodecache(void)3743 static int __init init_inodecache(void)
3744 {
3745 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
3746 			sizeof(struct f2fs_inode_info), 0,
3747 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
3748 	if (!f2fs_inode_cachep)
3749 		return -ENOMEM;
3750 	return 0;
3751 }
3752 
destroy_inodecache(void)3753 static void destroy_inodecache(void)
3754 {
3755 	/*
3756 	 * Make sure all delayed rcu free inodes are flushed before we
3757 	 * destroy cache.
3758 	 */
3759 	rcu_barrier();
3760 	kmem_cache_destroy(f2fs_inode_cachep);
3761 }
3762 
init_f2fs_fs(void)3763 static int __init init_f2fs_fs(void)
3764 {
3765 	int err;
3766 
3767 	if (PAGE_SIZE != F2FS_BLKSIZE) {
3768 		printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
3769 				PAGE_SIZE, F2FS_BLKSIZE);
3770 		return -EINVAL;
3771 	}
3772 
3773 	f2fs_build_trace_ios();
3774 
3775 	err = init_inodecache();
3776 	if (err)
3777 		goto fail;
3778 	err = f2fs_create_node_manager_caches();
3779 	if (err)
3780 		goto free_inodecache;
3781 	err = f2fs_create_segment_manager_caches();
3782 	if (err)
3783 		goto free_node_manager_caches;
3784 	err = f2fs_create_checkpoint_caches();
3785 	if (err)
3786 		goto free_segment_manager_caches;
3787 	err = f2fs_create_extent_cache();
3788 	if (err)
3789 		goto free_checkpoint_caches;
3790 	err = f2fs_init_sysfs();
3791 	if (err)
3792 		goto free_extent_cache;
3793 	err = register_shrinker(&f2fs_shrinker_info);
3794 	if (err)
3795 		goto free_sysfs;
3796 	err = register_filesystem(&f2fs_fs_type);
3797 	if (err)
3798 		goto free_shrinker;
3799 	f2fs_create_root_stats();
3800 	err = f2fs_init_post_read_processing();
3801 	if (err)
3802 		goto free_root_stats;
3803 	err = f2fs_init_bio_entry_cache();
3804 	if (err)
3805 		goto free_post_read;
3806 	return 0;
3807 
3808 free_post_read:
3809 	f2fs_destroy_post_read_processing();
3810 free_root_stats:
3811 	f2fs_destroy_root_stats();
3812 	unregister_filesystem(&f2fs_fs_type);
3813 free_shrinker:
3814 	unregister_shrinker(&f2fs_shrinker_info);
3815 free_sysfs:
3816 	f2fs_exit_sysfs();
3817 free_extent_cache:
3818 	f2fs_destroy_extent_cache();
3819 free_checkpoint_caches:
3820 	f2fs_destroy_checkpoint_caches();
3821 free_segment_manager_caches:
3822 	f2fs_destroy_segment_manager_caches();
3823 free_node_manager_caches:
3824 	f2fs_destroy_node_manager_caches();
3825 free_inodecache:
3826 	destroy_inodecache();
3827 fail:
3828 	return err;
3829 }
3830 
exit_f2fs_fs(void)3831 static void __exit exit_f2fs_fs(void)
3832 {
3833 	f2fs_destroy_bio_entry_cache();
3834 	f2fs_destroy_post_read_processing();
3835 	f2fs_destroy_root_stats();
3836 	unregister_filesystem(&f2fs_fs_type);
3837 	unregister_shrinker(&f2fs_shrinker_info);
3838 	f2fs_exit_sysfs();
3839 	f2fs_destroy_extent_cache();
3840 	f2fs_destroy_checkpoint_caches();
3841 	f2fs_destroy_segment_manager_caches();
3842 	f2fs_destroy_node_manager_caches();
3843 	destroy_inodecache();
3844 	f2fs_destroy_trace_ios();
3845 }
3846 
3847 module_init(init_f2fs_fs)
3848 module_exit(exit_f2fs_fs)
3849 
3850 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
3851 MODULE_DESCRIPTION("Flash Friendly File System");
3852 MODULE_LICENSE("GPL");
3853 
3854