1 /*
2 FUSE: Filesystem in Userspace
3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu>
4
5 This program can be distributed under the terms of the GNU GPL.
6 See the file COPYING.
7 */
8
9 #include "fuse_i.h"
10
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/signal.h>
16 #include <linux/module.h>
17 #include <linux/compat.h>
18 #include <linux/swap.h>
19 #include <linux/falloc.h>
20 #include <linux/uio.h>
21
fuse_pages_alloc(unsigned int npages,gfp_t flags,struct fuse_page_desc ** desc)22 static struct page **fuse_pages_alloc(unsigned int npages, gfp_t flags,
23 struct fuse_page_desc **desc)
24 {
25 struct page **pages;
26
27 pages = kzalloc(npages * (sizeof(struct page *) +
28 sizeof(struct fuse_page_desc)), flags);
29 *desc = (void *) (pages + npages);
30
31 return pages;
32 }
33
fuse_send_open(struct fuse_conn * fc,u64 nodeid,struct file * file,int opcode,struct fuse_open_out * outargp)34 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
35 int opcode, struct fuse_open_out *outargp)
36 {
37 struct fuse_open_in inarg;
38 FUSE_ARGS(args);
39
40 memset(&inarg, 0, sizeof(inarg));
41 inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
42 if (!fc->atomic_o_trunc)
43 inarg.flags &= ~O_TRUNC;
44 args.opcode = opcode;
45 args.nodeid = nodeid;
46 args.in_numargs = 1;
47 args.in_args[0].size = sizeof(inarg);
48 args.in_args[0].value = &inarg;
49 args.out_numargs = 1;
50 args.out_args[0].size = sizeof(*outargp);
51 args.out_args[0].value = outargp;
52
53 return fuse_simple_request(fc, &args);
54 }
55
56 struct fuse_release_args {
57 struct fuse_args args;
58 struct fuse_release_in inarg;
59 struct inode *inode;
60 };
61
fuse_file_alloc(struct fuse_conn * fc)62 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc)
63 {
64 struct fuse_file *ff;
65
66 ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT);
67 if (unlikely(!ff))
68 return NULL;
69
70 ff->fc = fc;
71 ff->release_args = kzalloc(sizeof(*ff->release_args),
72 GFP_KERNEL_ACCOUNT);
73 if (!ff->release_args) {
74 kfree(ff);
75 return NULL;
76 }
77
78 INIT_LIST_HEAD(&ff->write_entry);
79 mutex_init(&ff->readdir.lock);
80 refcount_set(&ff->count, 1);
81 RB_CLEAR_NODE(&ff->polled_node);
82 init_waitqueue_head(&ff->poll_wait);
83
84 ff->kh = atomic64_inc_return(&fc->khctr);
85
86 return ff;
87 }
88
fuse_file_free(struct fuse_file * ff)89 void fuse_file_free(struct fuse_file *ff)
90 {
91 kfree(ff->release_args);
92 mutex_destroy(&ff->readdir.lock);
93 kfree(ff);
94 }
95
fuse_file_get(struct fuse_file * ff)96 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
97 {
98 refcount_inc(&ff->count);
99 return ff;
100 }
101
fuse_release_end(struct fuse_conn * fc,struct fuse_args * args,int error)102 static void fuse_release_end(struct fuse_conn *fc, struct fuse_args *args,
103 int error)
104 {
105 struct fuse_release_args *ra = container_of(args, typeof(*ra), args);
106
107 iput(ra->inode);
108 kfree(ra);
109 }
110
fuse_file_put(struct fuse_file * ff,bool sync,bool isdir)111 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir)
112 {
113 if (refcount_dec_and_test(&ff->count)) {
114 struct fuse_args *args = &ff->release_args->args;
115
116 if (isdir ? ff->fc->no_opendir : ff->fc->no_open) {
117 /* Do nothing when client does not implement 'open' */
118 fuse_release_end(ff->fc, args, 0);
119 } else if (sync) {
120 fuse_simple_request(ff->fc, args);
121 fuse_release_end(ff->fc, args, 0);
122 } else {
123 args->end = fuse_release_end;
124 if (fuse_simple_background(ff->fc, args,
125 GFP_KERNEL | __GFP_NOFAIL))
126 fuse_release_end(ff->fc, args, -ENOTCONN);
127 }
128 kfree(ff);
129 }
130 }
131
fuse_do_open(struct fuse_conn * fc,u64 nodeid,struct file * file,bool isdir)132 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
133 bool isdir)
134 {
135 struct fuse_file *ff;
136 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
137
138 ff = fuse_file_alloc(fc);
139 if (!ff)
140 return -ENOMEM;
141
142 ff->fh = 0;
143 /* Default for no-open */
144 ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0);
145 if (isdir ? !fc->no_opendir : !fc->no_open) {
146 struct fuse_open_out outarg;
147 int err;
148
149 err = fuse_send_open(fc, nodeid, file, opcode, &outarg);
150 if (!err) {
151 ff->fh = outarg.fh;
152 ff->open_flags = outarg.open_flags;
153
154 } else if (err != -ENOSYS) {
155 fuse_file_free(ff);
156 return err;
157 } else {
158 if (isdir)
159 fc->no_opendir = 1;
160 else
161 fc->no_open = 1;
162 }
163 }
164
165 if (isdir)
166 ff->open_flags &= ~FOPEN_DIRECT_IO;
167
168 ff->nodeid = nodeid;
169 file->private_data = ff;
170
171 return 0;
172 }
173 EXPORT_SYMBOL_GPL(fuse_do_open);
174
fuse_link_write_file(struct file * file)175 static void fuse_link_write_file(struct file *file)
176 {
177 struct inode *inode = file_inode(file);
178 struct fuse_inode *fi = get_fuse_inode(inode);
179 struct fuse_file *ff = file->private_data;
180 /*
181 * file may be written through mmap, so chain it onto the
182 * inodes's write_file list
183 */
184 spin_lock(&fi->lock);
185 if (list_empty(&ff->write_entry))
186 list_add(&ff->write_entry, &fi->write_files);
187 spin_unlock(&fi->lock);
188 }
189
fuse_finish_open(struct inode * inode,struct file * file)190 void fuse_finish_open(struct inode *inode, struct file *file)
191 {
192 struct fuse_file *ff = file->private_data;
193 struct fuse_conn *fc = get_fuse_conn(inode);
194
195 if (!(ff->open_flags & FOPEN_KEEP_CACHE))
196 invalidate_inode_pages2(inode->i_mapping);
197 if (ff->open_flags & FOPEN_STREAM)
198 stream_open(inode, file);
199 else if (ff->open_flags & FOPEN_NONSEEKABLE)
200 nonseekable_open(inode, file);
201 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
202 struct fuse_inode *fi = get_fuse_inode(inode);
203
204 spin_lock(&fi->lock);
205 fi->attr_version = atomic64_inc_return(&fc->attr_version);
206 i_size_write(inode, 0);
207 spin_unlock(&fi->lock);
208 fuse_invalidate_attr(inode);
209 if (fc->writeback_cache)
210 file_update_time(file);
211 }
212 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
213 fuse_link_write_file(file);
214 }
215
fuse_open_common(struct inode * inode,struct file * file,bool isdir)216 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
217 {
218 struct fuse_conn *fc = get_fuse_conn(inode);
219 int err;
220 bool is_wb_truncate = (file->f_flags & O_TRUNC) &&
221 fc->atomic_o_trunc &&
222 fc->writeback_cache;
223
224 err = generic_file_open(inode, file);
225 if (err)
226 return err;
227
228 if (is_wb_truncate) {
229 inode_lock(inode);
230 fuse_set_nowrite(inode);
231 }
232
233 err = fuse_do_open(fc, get_node_id(inode), file, isdir);
234
235 if (!err)
236 fuse_finish_open(inode, file);
237
238 if (is_wb_truncate) {
239 fuse_release_nowrite(inode);
240 inode_unlock(inode);
241 }
242
243 return err;
244 }
245
fuse_prepare_release(struct fuse_inode * fi,struct fuse_file * ff,int flags,int opcode)246 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff,
247 int flags, int opcode)
248 {
249 struct fuse_conn *fc = ff->fc;
250 struct fuse_release_args *ra = ff->release_args;
251
252 /* Inode is NULL on error path of fuse_create_open() */
253 if (likely(fi)) {
254 spin_lock(&fi->lock);
255 list_del(&ff->write_entry);
256 spin_unlock(&fi->lock);
257 }
258 spin_lock(&fc->lock);
259 if (!RB_EMPTY_NODE(&ff->polled_node))
260 rb_erase(&ff->polled_node, &fc->polled_files);
261 spin_unlock(&fc->lock);
262
263 wake_up_interruptible_all(&ff->poll_wait);
264
265 ra->inarg.fh = ff->fh;
266 ra->inarg.flags = flags;
267 ra->args.in_numargs = 1;
268 ra->args.in_args[0].size = sizeof(struct fuse_release_in);
269 ra->args.in_args[0].value = &ra->inarg;
270 ra->args.opcode = opcode;
271 ra->args.nodeid = ff->nodeid;
272 ra->args.force = true;
273 ra->args.nocreds = true;
274 }
275
fuse_release_common(struct file * file,bool isdir)276 void fuse_release_common(struct file *file, bool isdir)
277 {
278 struct fuse_inode *fi = get_fuse_inode(file_inode(file));
279 struct fuse_file *ff = file->private_data;
280 struct fuse_release_args *ra = ff->release_args;
281 int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE;
282
283 fuse_prepare_release(fi, ff, file->f_flags, opcode);
284
285 if (ff->flock) {
286 ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
287 ra->inarg.lock_owner = fuse_lock_owner_id(ff->fc,
288 (fl_owner_t) file);
289 }
290 /* Hold inode until release is finished */
291 ra->inode = igrab(file_inode(file));
292
293 /*
294 * Normally this will send the RELEASE request, however if
295 * some asynchronous READ or WRITE requests are outstanding,
296 * the sending will be delayed.
297 *
298 * Make the release synchronous if this is a fuseblk mount,
299 * synchronous RELEASE is allowed (and desirable) in this case
300 * because the server can be trusted not to screw up.
301 */
302 fuse_file_put(ff, ff->fc->destroy, isdir);
303 }
304
fuse_open(struct inode * inode,struct file * file)305 static int fuse_open(struct inode *inode, struct file *file)
306 {
307 return fuse_open_common(inode, file, false);
308 }
309
fuse_release(struct inode * inode,struct file * file)310 static int fuse_release(struct inode *inode, struct file *file)
311 {
312 struct fuse_conn *fc = get_fuse_conn(inode);
313
314 /* see fuse_vma_close() for !writeback_cache case */
315 if (fc->writeback_cache)
316 write_inode_now(inode, 1);
317
318 fuse_release_common(file, false);
319
320 /* return value is ignored by VFS */
321 return 0;
322 }
323
fuse_sync_release(struct fuse_inode * fi,struct fuse_file * ff,int flags)324 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, int flags)
325 {
326 WARN_ON(refcount_read(&ff->count) > 1);
327 fuse_prepare_release(fi, ff, flags, FUSE_RELEASE);
328 /*
329 * iput(NULL) is a no-op and since the refcount is 1 and everything's
330 * synchronous, we are fine with not doing igrab() here"
331 */
332 fuse_file_put(ff, true, false);
333 }
334 EXPORT_SYMBOL_GPL(fuse_sync_release);
335
336 /*
337 * Scramble the ID space with XTEA, so that the value of the files_struct
338 * pointer is not exposed to userspace.
339 */
fuse_lock_owner_id(struct fuse_conn * fc,fl_owner_t id)340 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
341 {
342 u32 *k = fc->scramble_key;
343 u64 v = (unsigned long) id;
344 u32 v0 = v;
345 u32 v1 = v >> 32;
346 u32 sum = 0;
347 int i;
348
349 for (i = 0; i < 32; i++) {
350 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
351 sum += 0x9E3779B9;
352 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
353 }
354
355 return (u64) v0 + ((u64) v1 << 32);
356 }
357
358 struct fuse_writepage_args {
359 struct fuse_io_args ia;
360 struct list_head writepages_entry;
361 struct list_head queue_entry;
362 struct fuse_writepage_args *next;
363 struct inode *inode;
364 };
365
fuse_find_writeback(struct fuse_inode * fi,pgoff_t idx_from,pgoff_t idx_to)366 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi,
367 pgoff_t idx_from, pgoff_t idx_to)
368 {
369 struct fuse_writepage_args *wpa;
370
371 list_for_each_entry(wpa, &fi->writepages, writepages_entry) {
372 pgoff_t curr_index;
373
374 WARN_ON(get_fuse_inode(wpa->inode) != fi);
375 curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT;
376 if (idx_from < curr_index + wpa->ia.ap.num_pages &&
377 curr_index <= idx_to) {
378 return wpa;
379 }
380 }
381 return NULL;
382 }
383
384 /*
385 * Check if any page in a range is under writeback
386 *
387 * This is currently done by walking the list of writepage requests
388 * for the inode, which can be pretty inefficient.
389 */
fuse_range_is_writeback(struct inode * inode,pgoff_t idx_from,pgoff_t idx_to)390 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
391 pgoff_t idx_to)
392 {
393 struct fuse_inode *fi = get_fuse_inode(inode);
394 bool found;
395
396 spin_lock(&fi->lock);
397 found = fuse_find_writeback(fi, idx_from, idx_to);
398 spin_unlock(&fi->lock);
399
400 return found;
401 }
402
fuse_page_is_writeback(struct inode * inode,pgoff_t index)403 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
404 {
405 return fuse_range_is_writeback(inode, index, index);
406 }
407
408 /*
409 * Wait for page writeback to be completed.
410 *
411 * Since fuse doesn't rely on the VM writeback tracking, this has to
412 * use some other means.
413 */
fuse_wait_on_page_writeback(struct inode * inode,pgoff_t index)414 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
415 {
416 struct fuse_inode *fi = get_fuse_inode(inode);
417
418 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
419 }
420
421 /*
422 * Wait for all pending writepages on the inode to finish.
423 *
424 * This is currently done by blocking further writes with FUSE_NOWRITE
425 * and waiting for all sent writes to complete.
426 *
427 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
428 * could conflict with truncation.
429 */
fuse_sync_writes(struct inode * inode)430 static void fuse_sync_writes(struct inode *inode)
431 {
432 fuse_set_nowrite(inode);
433 fuse_release_nowrite(inode);
434 }
435
fuse_flush(struct file * file,fl_owner_t id)436 static int fuse_flush(struct file *file, fl_owner_t id)
437 {
438 struct inode *inode = file_inode(file);
439 struct fuse_conn *fc = get_fuse_conn(inode);
440 struct fuse_file *ff = file->private_data;
441 struct fuse_flush_in inarg;
442 FUSE_ARGS(args);
443 int err;
444
445 if (is_bad_inode(inode))
446 return -EIO;
447
448 if (fc->no_flush)
449 return 0;
450
451 err = write_inode_now(inode, 1);
452 if (err)
453 return err;
454
455 inode_lock(inode);
456 fuse_sync_writes(inode);
457 inode_unlock(inode);
458
459 err = filemap_check_errors(file->f_mapping);
460 if (err)
461 return err;
462
463 memset(&inarg, 0, sizeof(inarg));
464 inarg.fh = ff->fh;
465 inarg.lock_owner = fuse_lock_owner_id(fc, id);
466 args.opcode = FUSE_FLUSH;
467 args.nodeid = get_node_id(inode);
468 args.in_numargs = 1;
469 args.in_args[0].size = sizeof(inarg);
470 args.in_args[0].value = &inarg;
471 args.force = true;
472
473 err = fuse_simple_request(fc, &args);
474 if (err == -ENOSYS) {
475 fc->no_flush = 1;
476 err = 0;
477 }
478 return err;
479 }
480
fuse_fsync_common(struct file * file,loff_t start,loff_t end,int datasync,int opcode)481 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
482 int datasync, int opcode)
483 {
484 struct inode *inode = file->f_mapping->host;
485 struct fuse_conn *fc = get_fuse_conn(inode);
486 struct fuse_file *ff = file->private_data;
487 FUSE_ARGS(args);
488 struct fuse_fsync_in inarg;
489
490 memset(&inarg, 0, sizeof(inarg));
491 inarg.fh = ff->fh;
492 inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0;
493 args.opcode = opcode;
494 args.nodeid = get_node_id(inode);
495 args.in_numargs = 1;
496 args.in_args[0].size = sizeof(inarg);
497 args.in_args[0].value = &inarg;
498 return fuse_simple_request(fc, &args);
499 }
500
fuse_fsync(struct file * file,loff_t start,loff_t end,int datasync)501 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
502 int datasync)
503 {
504 struct inode *inode = file->f_mapping->host;
505 struct fuse_conn *fc = get_fuse_conn(inode);
506 int err;
507
508 if (is_bad_inode(inode))
509 return -EIO;
510
511 inode_lock(inode);
512
513 /*
514 * Start writeback against all dirty pages of the inode, then
515 * wait for all outstanding writes, before sending the FSYNC
516 * request.
517 */
518 err = file_write_and_wait_range(file, start, end);
519 if (err)
520 goto out;
521
522 fuse_sync_writes(inode);
523
524 /*
525 * Due to implementation of fuse writeback
526 * file_write_and_wait_range() does not catch errors.
527 * We have to do this directly after fuse_sync_writes()
528 */
529 err = file_check_and_advance_wb_err(file);
530 if (err)
531 goto out;
532
533 err = sync_inode_metadata(inode, 1);
534 if (err)
535 goto out;
536
537 if (fc->no_fsync)
538 goto out;
539
540 err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC);
541 if (err == -ENOSYS) {
542 fc->no_fsync = 1;
543 err = 0;
544 }
545 out:
546 inode_unlock(inode);
547
548 return err;
549 }
550
fuse_read_args_fill(struct fuse_io_args * ia,struct file * file,loff_t pos,size_t count,int opcode)551 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos,
552 size_t count, int opcode)
553 {
554 struct fuse_file *ff = file->private_data;
555 struct fuse_args *args = &ia->ap.args;
556
557 ia->read.in.fh = ff->fh;
558 ia->read.in.offset = pos;
559 ia->read.in.size = count;
560 ia->read.in.flags = file->f_flags;
561 args->opcode = opcode;
562 args->nodeid = ff->nodeid;
563 args->in_numargs = 1;
564 args->in_args[0].size = sizeof(ia->read.in);
565 args->in_args[0].value = &ia->read.in;
566 args->out_argvar = true;
567 args->out_numargs = 1;
568 args->out_args[0].size = count;
569 }
570
fuse_release_user_pages(struct fuse_args_pages * ap,bool should_dirty)571 static void fuse_release_user_pages(struct fuse_args_pages *ap,
572 bool should_dirty)
573 {
574 unsigned int i;
575
576 for (i = 0; i < ap->num_pages; i++) {
577 if (should_dirty)
578 set_page_dirty_lock(ap->pages[i]);
579 put_page(ap->pages[i]);
580 }
581 }
582
fuse_io_release(struct kref * kref)583 static void fuse_io_release(struct kref *kref)
584 {
585 kfree(container_of(kref, struct fuse_io_priv, refcnt));
586 }
587
fuse_get_res_by_io(struct fuse_io_priv * io)588 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
589 {
590 if (io->err)
591 return io->err;
592
593 if (io->bytes >= 0 && io->write)
594 return -EIO;
595
596 return io->bytes < 0 ? io->size : io->bytes;
597 }
598
599 /**
600 * In case of short read, the caller sets 'pos' to the position of
601 * actual end of fuse request in IO request. Otherwise, if bytes_requested
602 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
603 *
604 * An example:
605 * User requested DIO read of 64K. It was splitted into two 32K fuse requests,
606 * both submitted asynchronously. The first of them was ACKed by userspace as
607 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
608 * second request was ACKed as short, e.g. only 1K was read, resulting in
609 * pos == 33K.
610 *
611 * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
612 * will be equal to the length of the longest contiguous fragment of
613 * transferred data starting from the beginning of IO request.
614 */
fuse_aio_complete(struct fuse_io_priv * io,int err,ssize_t pos)615 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
616 {
617 int left;
618
619 spin_lock(&io->lock);
620 if (err)
621 io->err = io->err ? : err;
622 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
623 io->bytes = pos;
624
625 left = --io->reqs;
626 if (!left && io->blocking)
627 complete(io->done);
628 spin_unlock(&io->lock);
629
630 if (!left && !io->blocking) {
631 ssize_t res = fuse_get_res_by_io(io);
632
633 if (res >= 0) {
634 struct inode *inode = file_inode(io->iocb->ki_filp);
635 struct fuse_conn *fc = get_fuse_conn(inode);
636 struct fuse_inode *fi = get_fuse_inode(inode);
637
638 spin_lock(&fi->lock);
639 fi->attr_version = atomic64_inc_return(&fc->attr_version);
640 spin_unlock(&fi->lock);
641 }
642
643 io->iocb->ki_complete(io->iocb, res, 0);
644 }
645
646 kref_put(&io->refcnt, fuse_io_release);
647 }
648
fuse_io_alloc(struct fuse_io_priv * io,unsigned int npages)649 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io,
650 unsigned int npages)
651 {
652 struct fuse_io_args *ia;
653
654 ia = kzalloc(sizeof(*ia), GFP_KERNEL);
655 if (ia) {
656 ia->io = io;
657 ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL,
658 &ia->ap.descs);
659 if (!ia->ap.pages) {
660 kfree(ia);
661 ia = NULL;
662 }
663 }
664 return ia;
665 }
666
fuse_io_free(struct fuse_io_args * ia)667 static void fuse_io_free(struct fuse_io_args *ia)
668 {
669 kfree(ia->ap.pages);
670 kfree(ia);
671 }
672
fuse_aio_complete_req(struct fuse_conn * fc,struct fuse_args * args,int err)673 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_args *args,
674 int err)
675 {
676 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
677 struct fuse_io_priv *io = ia->io;
678 ssize_t pos = -1;
679
680 fuse_release_user_pages(&ia->ap, io->should_dirty);
681
682 if (err) {
683 /* Nothing */
684 } else if (io->write) {
685 if (ia->write.out.size > ia->write.in.size) {
686 err = -EIO;
687 } else if (ia->write.in.size != ia->write.out.size) {
688 pos = ia->write.in.offset - io->offset +
689 ia->write.out.size;
690 }
691 } else {
692 u32 outsize = args->out_args[0].size;
693
694 if (ia->read.in.size != outsize)
695 pos = ia->read.in.offset - io->offset + outsize;
696 }
697
698 fuse_aio_complete(io, err, pos);
699 fuse_io_free(ia);
700 }
701
fuse_async_req_send(struct fuse_conn * fc,struct fuse_io_args * ia,size_t num_bytes)702 static ssize_t fuse_async_req_send(struct fuse_conn *fc,
703 struct fuse_io_args *ia, size_t num_bytes)
704 {
705 ssize_t err;
706 struct fuse_io_priv *io = ia->io;
707
708 spin_lock(&io->lock);
709 kref_get(&io->refcnt);
710 io->size += num_bytes;
711 io->reqs++;
712 spin_unlock(&io->lock);
713
714 ia->ap.args.end = fuse_aio_complete_req;
715 err = fuse_simple_background(fc, &ia->ap.args, GFP_KERNEL);
716 if (err)
717 fuse_aio_complete_req(fc, &ia->ap.args, err);
718
719 return num_bytes;
720 }
721
fuse_send_read(struct fuse_io_args * ia,loff_t pos,size_t count,fl_owner_t owner)722 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count,
723 fl_owner_t owner)
724 {
725 struct file *file = ia->io->iocb->ki_filp;
726 struct fuse_file *ff = file->private_data;
727 struct fuse_conn *fc = ff->fc;
728
729 fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
730 if (owner != NULL) {
731 ia->read.in.read_flags |= FUSE_READ_LOCKOWNER;
732 ia->read.in.lock_owner = fuse_lock_owner_id(fc, owner);
733 }
734
735 if (ia->io->async)
736 return fuse_async_req_send(fc, ia, count);
737
738 return fuse_simple_request(fc, &ia->ap.args);
739 }
740
fuse_read_update_size(struct inode * inode,loff_t size,u64 attr_ver)741 static void fuse_read_update_size(struct inode *inode, loff_t size,
742 u64 attr_ver)
743 {
744 struct fuse_conn *fc = get_fuse_conn(inode);
745 struct fuse_inode *fi = get_fuse_inode(inode);
746
747 spin_lock(&fi->lock);
748 if (attr_ver == fi->attr_version && size < inode->i_size &&
749 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
750 fi->attr_version = atomic64_inc_return(&fc->attr_version);
751 i_size_write(inode, size);
752 }
753 spin_unlock(&fi->lock);
754 }
755
fuse_short_read(struct inode * inode,u64 attr_ver,size_t num_read,struct fuse_args_pages * ap)756 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read,
757 struct fuse_args_pages *ap)
758 {
759 struct fuse_conn *fc = get_fuse_conn(inode);
760
761 if (fc->writeback_cache) {
762 /*
763 * A hole in a file. Some data after the hole are in page cache,
764 * but have not reached the client fs yet. So, the hole is not
765 * present there.
766 */
767 int i;
768 int start_idx = num_read >> PAGE_SHIFT;
769 size_t off = num_read & (PAGE_SIZE - 1);
770
771 for (i = start_idx; i < ap->num_pages; i++) {
772 zero_user_segment(ap->pages[i], off, PAGE_SIZE);
773 off = 0;
774 }
775 } else {
776 loff_t pos = page_offset(ap->pages[0]) + num_read;
777 fuse_read_update_size(inode, pos, attr_ver);
778 }
779 }
780
fuse_do_readpage(struct file * file,struct page * page)781 static int fuse_do_readpage(struct file *file, struct page *page)
782 {
783 struct inode *inode = page->mapping->host;
784 struct fuse_conn *fc = get_fuse_conn(inode);
785 loff_t pos = page_offset(page);
786 struct fuse_page_desc desc = { .length = PAGE_SIZE };
787 struct fuse_io_args ia = {
788 .ap.args.page_zeroing = true,
789 .ap.args.out_pages = true,
790 .ap.num_pages = 1,
791 .ap.pages = &page,
792 .ap.descs = &desc,
793 };
794 ssize_t res;
795 u64 attr_ver;
796
797 /*
798 * Page writeback can extend beyond the lifetime of the
799 * page-cache page, so make sure we read a properly synced
800 * page.
801 */
802 fuse_wait_on_page_writeback(inode, page->index);
803
804 attr_ver = fuse_get_attr_version(fc);
805
806 fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ);
807 res = fuse_simple_request(fc, &ia.ap.args);
808 if (res < 0)
809 return res;
810 /*
811 * Short read means EOF. If file size is larger, truncate it
812 */
813 if (res < desc.length)
814 fuse_short_read(inode, attr_ver, res, &ia.ap);
815
816 SetPageUptodate(page);
817
818 return 0;
819 }
820
fuse_readpage(struct file * file,struct page * page)821 static int fuse_readpage(struct file *file, struct page *page)
822 {
823 struct inode *inode = page->mapping->host;
824 int err;
825
826 err = -EIO;
827 if (is_bad_inode(inode))
828 goto out;
829
830 err = fuse_do_readpage(file, page);
831 fuse_invalidate_atime(inode);
832 out:
833 unlock_page(page);
834 return err;
835 }
836
fuse_readpages_end(struct fuse_conn * fc,struct fuse_args * args,int err)837 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_args *args,
838 int err)
839 {
840 int i;
841 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
842 struct fuse_args_pages *ap = &ia->ap;
843 size_t count = ia->read.in.size;
844 size_t num_read = args->out_args[0].size;
845 struct address_space *mapping = NULL;
846
847 for (i = 0; mapping == NULL && i < ap->num_pages; i++)
848 mapping = ap->pages[i]->mapping;
849
850 if (mapping) {
851 struct inode *inode = mapping->host;
852
853 /*
854 * Short read means EOF. If file size is larger, truncate it
855 */
856 if (!err && num_read < count)
857 fuse_short_read(inode, ia->read.attr_ver, num_read, ap);
858
859 fuse_invalidate_atime(inode);
860 }
861
862 for (i = 0; i < ap->num_pages; i++) {
863 struct page *page = ap->pages[i];
864
865 if (!err)
866 SetPageUptodate(page);
867 else
868 SetPageError(page);
869 unlock_page(page);
870 put_page(page);
871 }
872 if (ia->ff)
873 fuse_file_put(ia->ff, false, false);
874
875 fuse_io_free(ia);
876 }
877
fuse_send_readpages(struct fuse_io_args * ia,struct file * file)878 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file)
879 {
880 struct fuse_file *ff = file->private_data;
881 struct fuse_conn *fc = ff->fc;
882 struct fuse_args_pages *ap = &ia->ap;
883 loff_t pos = page_offset(ap->pages[0]);
884 size_t count = ap->num_pages << PAGE_SHIFT;
885 ssize_t res;
886 int err;
887
888 ap->args.out_pages = true;
889 ap->args.page_zeroing = true;
890 ap->args.page_replace = true;
891 fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
892 ia->read.attr_ver = fuse_get_attr_version(fc);
893 if (fc->async_read) {
894 ia->ff = fuse_file_get(ff);
895 ap->args.end = fuse_readpages_end;
896 err = fuse_simple_background(fc, &ap->args, GFP_KERNEL);
897 if (!err)
898 return;
899 } else {
900 res = fuse_simple_request(fc, &ap->args);
901 err = res < 0 ? res : 0;
902 }
903 fuse_readpages_end(fc, &ap->args, err);
904 }
905
906 struct fuse_fill_data {
907 struct fuse_io_args *ia;
908 struct file *file;
909 struct inode *inode;
910 unsigned int nr_pages;
911 unsigned int max_pages;
912 };
913
fuse_readpages_fill(void * _data,struct page * page)914 static int fuse_readpages_fill(void *_data, struct page *page)
915 {
916 struct fuse_fill_data *data = _data;
917 struct fuse_io_args *ia = data->ia;
918 struct fuse_args_pages *ap = &ia->ap;
919 struct inode *inode = data->inode;
920 struct fuse_conn *fc = get_fuse_conn(inode);
921
922 fuse_wait_on_page_writeback(inode, page->index);
923
924 if (ap->num_pages &&
925 (ap->num_pages == fc->max_pages ||
926 (ap->num_pages + 1) * PAGE_SIZE > fc->max_read ||
927 ap->pages[ap->num_pages - 1]->index + 1 != page->index)) {
928 data->max_pages = min_t(unsigned int, data->nr_pages,
929 fc->max_pages);
930 fuse_send_readpages(ia, data->file);
931 data->ia = ia = fuse_io_alloc(NULL, data->max_pages);
932 if (!ia) {
933 unlock_page(page);
934 return -ENOMEM;
935 }
936 ap = &ia->ap;
937 }
938
939 if (WARN_ON(ap->num_pages >= data->max_pages)) {
940 unlock_page(page);
941 fuse_io_free(ia);
942 return -EIO;
943 }
944
945 get_page(page);
946 ap->pages[ap->num_pages] = page;
947 ap->descs[ap->num_pages].length = PAGE_SIZE;
948 ap->num_pages++;
949 data->nr_pages--;
950 return 0;
951 }
952
fuse_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)953 static int fuse_readpages(struct file *file, struct address_space *mapping,
954 struct list_head *pages, unsigned nr_pages)
955 {
956 struct inode *inode = mapping->host;
957 struct fuse_conn *fc = get_fuse_conn(inode);
958 struct fuse_fill_data data;
959 int err;
960
961 err = -EIO;
962 if (is_bad_inode(inode))
963 goto out;
964
965 data.file = file;
966 data.inode = inode;
967 data.nr_pages = nr_pages;
968 data.max_pages = min_t(unsigned int, nr_pages, fc->max_pages);
969 ;
970 data.ia = fuse_io_alloc(NULL, data.max_pages);
971 err = -ENOMEM;
972 if (!data.ia)
973 goto out;
974
975 err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data);
976 if (!err) {
977 if (data.ia->ap.num_pages)
978 fuse_send_readpages(data.ia, file);
979 else
980 fuse_io_free(data.ia);
981 }
982 out:
983 return err;
984 }
985
fuse_cache_read_iter(struct kiocb * iocb,struct iov_iter * to)986 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to)
987 {
988 struct inode *inode = iocb->ki_filp->f_mapping->host;
989 struct fuse_conn *fc = get_fuse_conn(inode);
990
991 /*
992 * In auto invalidate mode, always update attributes on read.
993 * Otherwise, only update if we attempt to read past EOF (to ensure
994 * i_size is up to date).
995 */
996 if (fc->auto_inval_data ||
997 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
998 int err;
999 err = fuse_update_attributes(inode, iocb->ki_filp);
1000 if (err)
1001 return err;
1002 }
1003
1004 return generic_file_read_iter(iocb, to);
1005 }
1006
fuse_write_args_fill(struct fuse_io_args * ia,struct fuse_file * ff,loff_t pos,size_t count)1007 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff,
1008 loff_t pos, size_t count)
1009 {
1010 struct fuse_args *args = &ia->ap.args;
1011
1012 ia->write.in.fh = ff->fh;
1013 ia->write.in.offset = pos;
1014 ia->write.in.size = count;
1015 args->opcode = FUSE_WRITE;
1016 args->nodeid = ff->nodeid;
1017 args->in_numargs = 2;
1018 if (ff->fc->minor < 9)
1019 args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
1020 else
1021 args->in_args[0].size = sizeof(ia->write.in);
1022 args->in_args[0].value = &ia->write.in;
1023 args->in_args[1].size = count;
1024 args->out_numargs = 1;
1025 args->out_args[0].size = sizeof(ia->write.out);
1026 args->out_args[0].value = &ia->write.out;
1027 }
1028
fuse_write_flags(struct kiocb * iocb)1029 static unsigned int fuse_write_flags(struct kiocb *iocb)
1030 {
1031 unsigned int flags = iocb->ki_filp->f_flags;
1032
1033 if (iocb->ki_flags & IOCB_DSYNC)
1034 flags |= O_DSYNC;
1035 if (iocb->ki_flags & IOCB_SYNC)
1036 flags |= O_SYNC;
1037
1038 return flags;
1039 }
1040
fuse_send_write(struct fuse_io_args * ia,loff_t pos,size_t count,fl_owner_t owner)1041 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos,
1042 size_t count, fl_owner_t owner)
1043 {
1044 struct kiocb *iocb = ia->io->iocb;
1045 struct file *file = iocb->ki_filp;
1046 struct fuse_file *ff = file->private_data;
1047 struct fuse_conn *fc = ff->fc;
1048 struct fuse_write_in *inarg = &ia->write.in;
1049 ssize_t err;
1050
1051 fuse_write_args_fill(ia, ff, pos, count);
1052 inarg->flags = fuse_write_flags(iocb);
1053 if (owner != NULL) {
1054 inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
1055 inarg->lock_owner = fuse_lock_owner_id(fc, owner);
1056 }
1057
1058 if (ia->io->async)
1059 return fuse_async_req_send(fc, ia, count);
1060
1061 err = fuse_simple_request(fc, &ia->ap.args);
1062 if (!err && ia->write.out.size > count)
1063 err = -EIO;
1064
1065 return err ?: ia->write.out.size;
1066 }
1067
fuse_write_update_size(struct inode * inode,loff_t pos)1068 bool fuse_write_update_size(struct inode *inode, loff_t pos)
1069 {
1070 struct fuse_conn *fc = get_fuse_conn(inode);
1071 struct fuse_inode *fi = get_fuse_inode(inode);
1072 bool ret = false;
1073
1074 spin_lock(&fi->lock);
1075 fi->attr_version = atomic64_inc_return(&fc->attr_version);
1076 if (pos > inode->i_size) {
1077 i_size_write(inode, pos);
1078 ret = true;
1079 }
1080 spin_unlock(&fi->lock);
1081
1082 return ret;
1083 }
1084
fuse_send_write_pages(struct fuse_io_args * ia,struct kiocb * iocb,struct inode * inode,loff_t pos,size_t count)1085 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia,
1086 struct kiocb *iocb, struct inode *inode,
1087 loff_t pos, size_t count)
1088 {
1089 struct fuse_args_pages *ap = &ia->ap;
1090 struct file *file = iocb->ki_filp;
1091 struct fuse_file *ff = file->private_data;
1092 struct fuse_conn *fc = ff->fc;
1093 unsigned int offset, i;
1094 int err;
1095
1096 for (i = 0; i < ap->num_pages; i++)
1097 fuse_wait_on_page_writeback(inode, ap->pages[i]->index);
1098
1099 fuse_write_args_fill(ia, ff, pos, count);
1100 ia->write.in.flags = fuse_write_flags(iocb);
1101
1102 err = fuse_simple_request(fc, &ap->args);
1103 if (!err && ia->write.out.size > count)
1104 err = -EIO;
1105
1106 offset = ap->descs[0].offset;
1107 count = ia->write.out.size;
1108 for (i = 0; i < ap->num_pages; i++) {
1109 struct page *page = ap->pages[i];
1110
1111 if (!err && !offset && count >= PAGE_SIZE)
1112 SetPageUptodate(page);
1113
1114 if (count > PAGE_SIZE - offset)
1115 count -= PAGE_SIZE - offset;
1116 else
1117 count = 0;
1118 offset = 0;
1119
1120 unlock_page(page);
1121 put_page(page);
1122 }
1123
1124 return err;
1125 }
1126
fuse_fill_write_pages(struct fuse_args_pages * ap,struct address_space * mapping,struct iov_iter * ii,loff_t pos,unsigned int max_pages)1127 static ssize_t fuse_fill_write_pages(struct fuse_args_pages *ap,
1128 struct address_space *mapping,
1129 struct iov_iter *ii, loff_t pos,
1130 unsigned int max_pages)
1131 {
1132 struct fuse_conn *fc = get_fuse_conn(mapping->host);
1133 unsigned offset = pos & (PAGE_SIZE - 1);
1134 size_t count = 0;
1135 int err;
1136
1137 ap->args.in_pages = true;
1138 ap->descs[0].offset = offset;
1139
1140 do {
1141 size_t tmp;
1142 struct page *page;
1143 pgoff_t index = pos >> PAGE_SHIFT;
1144 size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1145 iov_iter_count(ii));
1146
1147 bytes = min_t(size_t, bytes, fc->max_write - count);
1148
1149 again:
1150 err = -EFAULT;
1151 if (iov_iter_fault_in_readable(ii, bytes))
1152 break;
1153
1154 err = -ENOMEM;
1155 page = grab_cache_page_write_begin(mapping, index, 0);
1156 if (!page)
1157 break;
1158
1159 if (mapping_writably_mapped(mapping))
1160 flush_dcache_page(page);
1161
1162 tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
1163 flush_dcache_page(page);
1164
1165 iov_iter_advance(ii, tmp);
1166 if (!tmp) {
1167 unlock_page(page);
1168 put_page(page);
1169 bytes = min(bytes, iov_iter_single_seg_count(ii));
1170 goto again;
1171 }
1172
1173 err = 0;
1174 ap->pages[ap->num_pages] = page;
1175 ap->descs[ap->num_pages].length = tmp;
1176 ap->num_pages++;
1177
1178 count += tmp;
1179 pos += tmp;
1180 offset += tmp;
1181 if (offset == PAGE_SIZE)
1182 offset = 0;
1183
1184 if (!fc->big_writes)
1185 break;
1186 } while (iov_iter_count(ii) && count < fc->max_write &&
1187 ap->num_pages < max_pages && offset == 0);
1188
1189 return count > 0 ? count : err;
1190 }
1191
fuse_wr_pages(loff_t pos,size_t len,unsigned int max_pages)1192 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1193 unsigned int max_pages)
1194 {
1195 return min_t(unsigned int,
1196 ((pos + len - 1) >> PAGE_SHIFT) -
1197 (pos >> PAGE_SHIFT) + 1,
1198 max_pages);
1199 }
1200
fuse_perform_write(struct kiocb * iocb,struct address_space * mapping,struct iov_iter * ii,loff_t pos)1201 static ssize_t fuse_perform_write(struct kiocb *iocb,
1202 struct address_space *mapping,
1203 struct iov_iter *ii, loff_t pos)
1204 {
1205 struct inode *inode = mapping->host;
1206 struct fuse_conn *fc = get_fuse_conn(inode);
1207 struct fuse_inode *fi = get_fuse_inode(inode);
1208 int err = 0;
1209 ssize_t res = 0;
1210
1211 if (inode->i_size < pos + iov_iter_count(ii))
1212 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1213
1214 do {
1215 ssize_t count;
1216 struct fuse_io_args ia = {};
1217 struct fuse_args_pages *ap = &ia.ap;
1218 unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1219 fc->max_pages);
1220
1221 ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs);
1222 if (!ap->pages) {
1223 err = -ENOMEM;
1224 break;
1225 }
1226
1227 count = fuse_fill_write_pages(ap, mapping, ii, pos, nr_pages);
1228 if (count <= 0) {
1229 err = count;
1230 } else {
1231 err = fuse_send_write_pages(&ia, iocb, inode,
1232 pos, count);
1233 if (!err) {
1234 size_t num_written = ia.write.out.size;
1235
1236 res += num_written;
1237 pos += num_written;
1238
1239 /* break out of the loop on short write */
1240 if (num_written != count)
1241 err = -EIO;
1242 }
1243 }
1244 kfree(ap->pages);
1245 } while (!err && iov_iter_count(ii));
1246
1247 if (res > 0)
1248 fuse_write_update_size(inode, pos);
1249
1250 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1251 fuse_invalidate_attr(inode);
1252
1253 return res > 0 ? res : err;
1254 }
1255
fuse_cache_write_iter(struct kiocb * iocb,struct iov_iter * from)1256 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from)
1257 {
1258 struct file *file = iocb->ki_filp;
1259 struct address_space *mapping = file->f_mapping;
1260 ssize_t written = 0;
1261 ssize_t written_buffered = 0;
1262 struct inode *inode = mapping->host;
1263 ssize_t err;
1264 loff_t endbyte = 0;
1265
1266 if (get_fuse_conn(inode)->writeback_cache) {
1267 /* Update size (EOF optimization) and mode (SUID clearing) */
1268 err = fuse_update_attributes(mapping->host, file);
1269 if (err)
1270 return err;
1271
1272 return generic_file_write_iter(iocb, from);
1273 }
1274
1275 inode_lock(inode);
1276
1277 /* We can write back this queue in page reclaim */
1278 current->backing_dev_info = inode_to_bdi(inode);
1279
1280 err = generic_write_checks(iocb, from);
1281 if (err <= 0)
1282 goto out;
1283
1284 err = file_remove_privs(file);
1285 if (err)
1286 goto out;
1287
1288 err = file_update_time(file);
1289 if (err)
1290 goto out;
1291
1292 if (iocb->ki_flags & IOCB_DIRECT) {
1293 loff_t pos = iocb->ki_pos;
1294 written = generic_file_direct_write(iocb, from);
1295 if (written < 0 || !iov_iter_count(from))
1296 goto out;
1297
1298 pos += written;
1299
1300 written_buffered = fuse_perform_write(iocb, mapping, from, pos);
1301 if (written_buffered < 0) {
1302 err = written_buffered;
1303 goto out;
1304 }
1305 endbyte = pos + written_buffered - 1;
1306
1307 err = filemap_write_and_wait_range(file->f_mapping, pos,
1308 endbyte);
1309 if (err)
1310 goto out;
1311
1312 invalidate_mapping_pages(file->f_mapping,
1313 pos >> PAGE_SHIFT,
1314 endbyte >> PAGE_SHIFT);
1315
1316 written += written_buffered;
1317 iocb->ki_pos = pos + written_buffered;
1318 } else {
1319 written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos);
1320 if (written >= 0)
1321 iocb->ki_pos += written;
1322 }
1323 out:
1324 current->backing_dev_info = NULL;
1325 inode_unlock(inode);
1326 if (written > 0)
1327 written = generic_write_sync(iocb, written);
1328
1329 return written ? written : err;
1330 }
1331
fuse_page_descs_length_init(struct fuse_page_desc * descs,unsigned int index,unsigned int nr_pages)1332 static inline void fuse_page_descs_length_init(struct fuse_page_desc *descs,
1333 unsigned int index,
1334 unsigned int nr_pages)
1335 {
1336 int i;
1337
1338 for (i = index; i < index + nr_pages; i++)
1339 descs[i].length = PAGE_SIZE - descs[i].offset;
1340 }
1341
fuse_get_user_addr(const struct iov_iter * ii)1342 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1343 {
1344 return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1345 }
1346
fuse_get_frag_size(const struct iov_iter * ii,size_t max_size)1347 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1348 size_t max_size)
1349 {
1350 return min(iov_iter_single_seg_count(ii), max_size);
1351 }
1352
fuse_get_user_pages(struct fuse_args_pages * ap,struct iov_iter * ii,size_t * nbytesp,int write,unsigned int max_pages)1353 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii,
1354 size_t *nbytesp, int write,
1355 unsigned int max_pages)
1356 {
1357 size_t nbytes = 0; /* # bytes already packed in req */
1358 ssize_t ret = 0;
1359
1360 /* Special case for kernel I/O: can copy directly into the buffer */
1361 if (iov_iter_is_kvec(ii)) {
1362 unsigned long user_addr = fuse_get_user_addr(ii);
1363 size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1364
1365 if (write)
1366 ap->args.in_args[1].value = (void *) user_addr;
1367 else
1368 ap->args.out_args[0].value = (void *) user_addr;
1369
1370 iov_iter_advance(ii, frag_size);
1371 *nbytesp = frag_size;
1372 return 0;
1373 }
1374
1375 while (nbytes < *nbytesp && ap->num_pages < max_pages) {
1376 unsigned npages;
1377 size_t start;
1378 ret = iov_iter_get_pages(ii, &ap->pages[ap->num_pages],
1379 *nbytesp - nbytes,
1380 max_pages - ap->num_pages,
1381 &start);
1382 if (ret < 0)
1383 break;
1384
1385 iov_iter_advance(ii, ret);
1386 nbytes += ret;
1387
1388 ret += start;
1389 npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
1390
1391 ap->descs[ap->num_pages].offset = start;
1392 fuse_page_descs_length_init(ap->descs, ap->num_pages, npages);
1393
1394 ap->num_pages += npages;
1395 ap->descs[ap->num_pages - 1].length -=
1396 (PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1397 }
1398
1399 if (write)
1400 ap->args.in_pages = 1;
1401 else
1402 ap->args.out_pages = 1;
1403
1404 *nbytesp = nbytes;
1405
1406 return ret < 0 ? ret : 0;
1407 }
1408
fuse_direct_io(struct fuse_io_priv * io,struct iov_iter * iter,loff_t * ppos,int flags)1409 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1410 loff_t *ppos, int flags)
1411 {
1412 int write = flags & FUSE_DIO_WRITE;
1413 int cuse = flags & FUSE_DIO_CUSE;
1414 struct file *file = io->iocb->ki_filp;
1415 struct inode *inode = file->f_mapping->host;
1416 struct fuse_file *ff = file->private_data;
1417 struct fuse_conn *fc = ff->fc;
1418 size_t nmax = write ? fc->max_write : fc->max_read;
1419 loff_t pos = *ppos;
1420 size_t count = iov_iter_count(iter);
1421 pgoff_t idx_from = pos >> PAGE_SHIFT;
1422 pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1423 ssize_t res = 0;
1424 int err = 0;
1425 struct fuse_io_args *ia;
1426 unsigned int max_pages;
1427
1428 max_pages = iov_iter_npages(iter, fc->max_pages);
1429 ia = fuse_io_alloc(io, max_pages);
1430 if (!ia)
1431 return -ENOMEM;
1432
1433 ia->io = io;
1434 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1435 if (!write)
1436 inode_lock(inode);
1437 fuse_sync_writes(inode);
1438 if (!write)
1439 inode_unlock(inode);
1440 }
1441
1442 io->should_dirty = !write && iter_is_iovec(iter);
1443 while (count) {
1444 ssize_t nres;
1445 fl_owner_t owner = current->files;
1446 size_t nbytes = min(count, nmax);
1447
1448 err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write,
1449 max_pages);
1450 if (err && !nbytes)
1451 break;
1452
1453 if (write) {
1454 if (!capable(CAP_FSETID))
1455 ia->write.in.write_flags |= FUSE_WRITE_KILL_PRIV;
1456
1457 nres = fuse_send_write(ia, pos, nbytes, owner);
1458 } else {
1459 nres = fuse_send_read(ia, pos, nbytes, owner);
1460 }
1461
1462 if (!io->async || nres < 0) {
1463 fuse_release_user_pages(&ia->ap, io->should_dirty);
1464 fuse_io_free(ia);
1465 }
1466 ia = NULL;
1467 if (nres < 0) {
1468 err = nres;
1469 break;
1470 }
1471 WARN_ON(nres > nbytes);
1472
1473 count -= nres;
1474 res += nres;
1475 pos += nres;
1476 if (nres != nbytes)
1477 break;
1478 if (count) {
1479 max_pages = iov_iter_npages(iter, fc->max_pages);
1480 ia = fuse_io_alloc(io, max_pages);
1481 if (!ia)
1482 break;
1483 }
1484 }
1485 if (ia)
1486 fuse_io_free(ia);
1487 if (res > 0)
1488 *ppos = pos;
1489
1490 return res > 0 ? res : err;
1491 }
1492 EXPORT_SYMBOL_GPL(fuse_direct_io);
1493
__fuse_direct_read(struct fuse_io_priv * io,struct iov_iter * iter,loff_t * ppos)1494 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1495 struct iov_iter *iter,
1496 loff_t *ppos)
1497 {
1498 ssize_t res;
1499 struct inode *inode = file_inode(io->iocb->ki_filp);
1500
1501 res = fuse_direct_io(io, iter, ppos, 0);
1502
1503 fuse_invalidate_atime(inode);
1504
1505 return res;
1506 }
1507
1508 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
1509
fuse_direct_read_iter(struct kiocb * iocb,struct iov_iter * to)1510 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1511 {
1512 ssize_t res;
1513
1514 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1515 res = fuse_direct_IO(iocb, to);
1516 } else {
1517 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1518
1519 res = __fuse_direct_read(&io, to, &iocb->ki_pos);
1520 }
1521
1522 return res;
1523 }
1524
fuse_direct_write_iter(struct kiocb * iocb,struct iov_iter * from)1525 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1526 {
1527 struct inode *inode = file_inode(iocb->ki_filp);
1528 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1529 ssize_t res;
1530
1531 /* Don't allow parallel writes to the same file */
1532 inode_lock(inode);
1533 res = generic_write_checks(iocb, from);
1534 if (res > 0) {
1535 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1536 res = fuse_direct_IO(iocb, from);
1537 } else {
1538 res = fuse_direct_io(&io, from, &iocb->ki_pos,
1539 FUSE_DIO_WRITE);
1540 }
1541 }
1542 fuse_invalidate_attr(inode);
1543 if (res > 0)
1544 fuse_write_update_size(inode, iocb->ki_pos);
1545 inode_unlock(inode);
1546
1547 return res;
1548 }
1549
fuse_file_read_iter(struct kiocb * iocb,struct iov_iter * to)1550 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1551 {
1552 struct file *file = iocb->ki_filp;
1553 struct fuse_file *ff = file->private_data;
1554
1555 if (is_bad_inode(file_inode(file)))
1556 return -EIO;
1557
1558 if (!(ff->open_flags & FOPEN_DIRECT_IO))
1559 return fuse_cache_read_iter(iocb, to);
1560 else
1561 return fuse_direct_read_iter(iocb, to);
1562 }
1563
fuse_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1564 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1565 {
1566 struct file *file = iocb->ki_filp;
1567 struct fuse_file *ff = file->private_data;
1568
1569 if (is_bad_inode(file_inode(file)))
1570 return -EIO;
1571
1572 if (!(ff->open_flags & FOPEN_DIRECT_IO))
1573 return fuse_cache_write_iter(iocb, from);
1574 else
1575 return fuse_direct_write_iter(iocb, from);
1576 }
1577
fuse_writepage_free(struct fuse_writepage_args * wpa)1578 static void fuse_writepage_free(struct fuse_writepage_args *wpa)
1579 {
1580 struct fuse_args_pages *ap = &wpa->ia.ap;
1581 int i;
1582
1583 for (i = 0; i < ap->num_pages; i++)
1584 __free_page(ap->pages[i]);
1585
1586 if (wpa->ia.ff)
1587 fuse_file_put(wpa->ia.ff, false, false);
1588
1589 kfree(ap->pages);
1590 kfree(wpa);
1591 }
1592
fuse_writepage_finish(struct fuse_conn * fc,struct fuse_writepage_args * wpa)1593 static void fuse_writepage_finish(struct fuse_conn *fc,
1594 struct fuse_writepage_args *wpa)
1595 {
1596 struct fuse_args_pages *ap = &wpa->ia.ap;
1597 struct inode *inode = wpa->inode;
1598 struct fuse_inode *fi = get_fuse_inode(inode);
1599 struct backing_dev_info *bdi = inode_to_bdi(inode);
1600 int i;
1601
1602 list_del(&wpa->writepages_entry);
1603 for (i = 0; i < ap->num_pages; i++) {
1604 dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1605 dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP);
1606 wb_writeout_inc(&bdi->wb);
1607 }
1608 wake_up(&fi->page_waitq);
1609 }
1610
1611 /* Called under fi->lock, may release and reacquire it */
fuse_send_writepage(struct fuse_conn * fc,struct fuse_writepage_args * wpa,loff_t size)1612 static void fuse_send_writepage(struct fuse_conn *fc,
1613 struct fuse_writepage_args *wpa, loff_t size)
1614 __releases(fi->lock)
1615 __acquires(fi->lock)
1616 {
1617 struct fuse_writepage_args *aux, *next;
1618 struct fuse_inode *fi = get_fuse_inode(wpa->inode);
1619 struct fuse_write_in *inarg = &wpa->ia.write.in;
1620 struct fuse_args *args = &wpa->ia.ap.args;
1621 __u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE;
1622 int err;
1623
1624 fi->writectr++;
1625 if (inarg->offset + data_size <= size) {
1626 inarg->size = data_size;
1627 } else if (inarg->offset < size) {
1628 inarg->size = size - inarg->offset;
1629 } else {
1630 /* Got truncated off completely */
1631 goto out_free;
1632 }
1633
1634 args->in_args[1].size = inarg->size;
1635 args->force = true;
1636 args->nocreds = true;
1637
1638 err = fuse_simple_background(fc, args, GFP_ATOMIC);
1639 if (err == -ENOMEM) {
1640 spin_unlock(&fi->lock);
1641 err = fuse_simple_background(fc, args, GFP_NOFS | __GFP_NOFAIL);
1642 spin_lock(&fi->lock);
1643 }
1644
1645 /* Fails on broken connection only */
1646 if (unlikely(err))
1647 goto out_free;
1648
1649 return;
1650
1651 out_free:
1652 fi->writectr--;
1653 fuse_writepage_finish(fc, wpa);
1654 spin_unlock(&fi->lock);
1655
1656 /* After fuse_writepage_finish() aux request list is private */
1657 for (aux = wpa->next; aux; aux = next) {
1658 next = aux->next;
1659 aux->next = NULL;
1660 fuse_writepage_free(aux);
1661 }
1662
1663 fuse_writepage_free(wpa);
1664 spin_lock(&fi->lock);
1665 }
1666
1667 /*
1668 * If fi->writectr is positive (no truncate or fsync going on) send
1669 * all queued writepage requests.
1670 *
1671 * Called with fi->lock
1672 */
fuse_flush_writepages(struct inode * inode)1673 void fuse_flush_writepages(struct inode *inode)
1674 __releases(fi->lock)
1675 __acquires(fi->lock)
1676 {
1677 struct fuse_conn *fc = get_fuse_conn(inode);
1678 struct fuse_inode *fi = get_fuse_inode(inode);
1679 loff_t crop = i_size_read(inode);
1680 struct fuse_writepage_args *wpa;
1681
1682 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1683 wpa = list_entry(fi->queued_writes.next,
1684 struct fuse_writepage_args, queue_entry);
1685 list_del_init(&wpa->queue_entry);
1686 fuse_send_writepage(fc, wpa, crop);
1687 }
1688 }
1689
fuse_writepage_end(struct fuse_conn * fc,struct fuse_args * args,int error)1690 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_args *args,
1691 int error)
1692 {
1693 struct fuse_writepage_args *wpa =
1694 container_of(args, typeof(*wpa), ia.ap.args);
1695 struct inode *inode = wpa->inode;
1696 struct fuse_inode *fi = get_fuse_inode(inode);
1697
1698 mapping_set_error(inode->i_mapping, error);
1699 spin_lock(&fi->lock);
1700 while (wpa->next) {
1701 struct fuse_conn *fc = get_fuse_conn(inode);
1702 struct fuse_write_in *inarg = &wpa->ia.write.in;
1703 struct fuse_writepage_args *next = wpa->next;
1704
1705 wpa->next = next->next;
1706 next->next = NULL;
1707 next->ia.ff = fuse_file_get(wpa->ia.ff);
1708 list_add(&next->writepages_entry, &fi->writepages);
1709
1710 /*
1711 * Skip fuse_flush_writepages() to make it easy to crop requests
1712 * based on primary request size.
1713 *
1714 * 1st case (trivial): there are no concurrent activities using
1715 * fuse_set/release_nowrite. Then we're on safe side because
1716 * fuse_flush_writepages() would call fuse_send_writepage()
1717 * anyway.
1718 *
1719 * 2nd case: someone called fuse_set_nowrite and it is waiting
1720 * now for completion of all in-flight requests. This happens
1721 * rarely and no more than once per page, so this should be
1722 * okay.
1723 *
1724 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1725 * of fuse_set_nowrite..fuse_release_nowrite section. The fact
1726 * that fuse_set_nowrite returned implies that all in-flight
1727 * requests were completed along with all of their secondary
1728 * requests. Further primary requests are blocked by negative
1729 * writectr. Hence there cannot be any in-flight requests and
1730 * no invocations of fuse_writepage_end() while we're in
1731 * fuse_set_nowrite..fuse_release_nowrite section.
1732 */
1733 fuse_send_writepage(fc, next, inarg->offset + inarg->size);
1734 }
1735 fi->writectr--;
1736 fuse_writepage_finish(fc, wpa);
1737 spin_unlock(&fi->lock);
1738 fuse_writepage_free(wpa);
1739 }
1740
__fuse_write_file_get(struct fuse_conn * fc,struct fuse_inode * fi)1741 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc,
1742 struct fuse_inode *fi)
1743 {
1744 struct fuse_file *ff = NULL;
1745
1746 spin_lock(&fi->lock);
1747 if (!list_empty(&fi->write_files)) {
1748 ff = list_entry(fi->write_files.next, struct fuse_file,
1749 write_entry);
1750 fuse_file_get(ff);
1751 }
1752 spin_unlock(&fi->lock);
1753
1754 return ff;
1755 }
1756
fuse_write_file_get(struct fuse_conn * fc,struct fuse_inode * fi)1757 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc,
1758 struct fuse_inode *fi)
1759 {
1760 struct fuse_file *ff = __fuse_write_file_get(fc, fi);
1761 WARN_ON(!ff);
1762 return ff;
1763 }
1764
fuse_write_inode(struct inode * inode,struct writeback_control * wbc)1765 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1766 {
1767 struct fuse_conn *fc = get_fuse_conn(inode);
1768 struct fuse_inode *fi = get_fuse_inode(inode);
1769 struct fuse_file *ff;
1770 int err;
1771
1772 ff = __fuse_write_file_get(fc, fi);
1773 err = fuse_flush_times(inode, ff);
1774 if (ff)
1775 fuse_file_put(ff, false, false);
1776
1777 return err;
1778 }
1779
fuse_writepage_args_alloc(void)1780 static struct fuse_writepage_args *fuse_writepage_args_alloc(void)
1781 {
1782 struct fuse_writepage_args *wpa;
1783 struct fuse_args_pages *ap;
1784
1785 wpa = kzalloc(sizeof(*wpa), GFP_NOFS);
1786 if (wpa) {
1787 ap = &wpa->ia.ap;
1788 ap->num_pages = 0;
1789 ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs);
1790 if (!ap->pages) {
1791 kfree(wpa);
1792 wpa = NULL;
1793 }
1794 }
1795 return wpa;
1796
1797 }
1798
fuse_writepage_locked(struct page * page)1799 static int fuse_writepage_locked(struct page *page)
1800 {
1801 struct address_space *mapping = page->mapping;
1802 struct inode *inode = mapping->host;
1803 struct fuse_conn *fc = get_fuse_conn(inode);
1804 struct fuse_inode *fi = get_fuse_inode(inode);
1805 struct fuse_writepage_args *wpa;
1806 struct fuse_args_pages *ap;
1807 struct page *tmp_page;
1808 int error = -ENOMEM;
1809
1810 set_page_writeback(page);
1811
1812 wpa = fuse_writepage_args_alloc();
1813 if (!wpa)
1814 goto err;
1815 ap = &wpa->ia.ap;
1816
1817 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1818 if (!tmp_page)
1819 goto err_free;
1820
1821 error = -EIO;
1822 wpa->ia.ff = fuse_write_file_get(fc, fi);
1823 if (!wpa->ia.ff)
1824 goto err_nofile;
1825
1826 fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0);
1827
1828 copy_highpage(tmp_page, page);
1829 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
1830 wpa->next = NULL;
1831 ap->args.in_pages = true;
1832 ap->num_pages = 1;
1833 ap->pages[0] = tmp_page;
1834 ap->descs[0].offset = 0;
1835 ap->descs[0].length = PAGE_SIZE;
1836 ap->args.end = fuse_writepage_end;
1837 wpa->inode = inode;
1838
1839 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1840 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1841
1842 spin_lock(&fi->lock);
1843 list_add(&wpa->writepages_entry, &fi->writepages);
1844 list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1845 fuse_flush_writepages(inode);
1846 spin_unlock(&fi->lock);
1847
1848 end_page_writeback(page);
1849
1850 return 0;
1851
1852 err_nofile:
1853 __free_page(tmp_page);
1854 err_free:
1855 kfree(wpa);
1856 err:
1857 mapping_set_error(page->mapping, error);
1858 end_page_writeback(page);
1859 return error;
1860 }
1861
fuse_writepage(struct page * page,struct writeback_control * wbc)1862 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1863 {
1864 int err;
1865
1866 if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1867 /*
1868 * ->writepages() should be called for sync() and friends. We
1869 * should only get here on direct reclaim and then we are
1870 * allowed to skip a page which is already in flight
1871 */
1872 WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1873
1874 redirty_page_for_writepage(wbc, page);
1875 unlock_page(page);
1876 return 0;
1877 }
1878
1879 err = fuse_writepage_locked(page);
1880 unlock_page(page);
1881
1882 return err;
1883 }
1884
1885 struct fuse_fill_wb_data {
1886 struct fuse_writepage_args *wpa;
1887 struct fuse_file *ff;
1888 struct inode *inode;
1889 struct page **orig_pages;
1890 unsigned int max_pages;
1891 };
1892
fuse_pages_realloc(struct fuse_fill_wb_data * data)1893 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data)
1894 {
1895 struct fuse_args_pages *ap = &data->wpa->ia.ap;
1896 struct fuse_conn *fc = get_fuse_conn(data->inode);
1897 struct page **pages;
1898 struct fuse_page_desc *descs;
1899 unsigned int npages = min_t(unsigned int,
1900 max_t(unsigned int, data->max_pages * 2,
1901 FUSE_DEFAULT_MAX_PAGES_PER_REQ),
1902 fc->max_pages);
1903 WARN_ON(npages <= data->max_pages);
1904
1905 pages = fuse_pages_alloc(npages, GFP_NOFS, &descs);
1906 if (!pages)
1907 return false;
1908
1909 memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages);
1910 memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages);
1911 kfree(ap->pages);
1912 ap->pages = pages;
1913 ap->descs = descs;
1914 data->max_pages = npages;
1915
1916 return true;
1917 }
1918
fuse_writepages_send(struct fuse_fill_wb_data * data)1919 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
1920 {
1921 struct fuse_writepage_args *wpa = data->wpa;
1922 struct inode *inode = data->inode;
1923 struct fuse_inode *fi = get_fuse_inode(inode);
1924 int num_pages = wpa->ia.ap.num_pages;
1925 int i;
1926
1927 wpa->ia.ff = fuse_file_get(data->ff);
1928 spin_lock(&fi->lock);
1929 list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1930 fuse_flush_writepages(inode);
1931 spin_unlock(&fi->lock);
1932
1933 for (i = 0; i < num_pages; i++)
1934 end_page_writeback(data->orig_pages[i]);
1935 }
1936
1937 /*
1938 * First recheck under fi->lock if the offending offset is still under
1939 * writeback. If yes, then iterate auxiliary write requests, to see if there's
1940 * one already added for a page at this offset. If there's none, then insert
1941 * this new request onto the auxiliary list, otherwise reuse the existing one by
1942 * copying the new page contents over to the old temporary page.
1943 */
fuse_writepage_in_flight(struct fuse_writepage_args * new_wpa,struct page * page)1944 static bool fuse_writepage_in_flight(struct fuse_writepage_args *new_wpa,
1945 struct page *page)
1946 {
1947 struct fuse_inode *fi = get_fuse_inode(new_wpa->inode);
1948 struct fuse_writepage_args *tmp;
1949 struct fuse_writepage_args *old_wpa;
1950 struct fuse_args_pages *new_ap = &new_wpa->ia.ap;
1951
1952 WARN_ON(new_ap->num_pages != 0);
1953
1954 spin_lock(&fi->lock);
1955 list_del(&new_wpa->writepages_entry);
1956 old_wpa = fuse_find_writeback(fi, page->index, page->index);
1957 if (!old_wpa) {
1958 list_add(&new_wpa->writepages_entry, &fi->writepages);
1959 spin_unlock(&fi->lock);
1960 return false;
1961 }
1962
1963 new_ap->num_pages = 1;
1964 for (tmp = old_wpa->next; tmp; tmp = tmp->next) {
1965 pgoff_t curr_index;
1966
1967 WARN_ON(tmp->inode != new_wpa->inode);
1968 curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT;
1969 if (curr_index == page->index) {
1970 WARN_ON(tmp->ia.ap.num_pages != 1);
1971 swap(tmp->ia.ap.pages[0], new_ap->pages[0]);
1972 break;
1973 }
1974 }
1975
1976 if (!tmp) {
1977 new_wpa->next = old_wpa->next;
1978 old_wpa->next = new_wpa;
1979 }
1980
1981 spin_unlock(&fi->lock);
1982
1983 if (tmp) {
1984 struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode);
1985
1986 dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1987 dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP);
1988 wb_writeout_inc(&bdi->wb);
1989 fuse_writepage_free(new_wpa);
1990 }
1991
1992 return true;
1993 }
1994
fuse_writepages_fill(struct page * page,struct writeback_control * wbc,void * _data)1995 static int fuse_writepages_fill(struct page *page,
1996 struct writeback_control *wbc, void *_data)
1997 {
1998 struct fuse_fill_wb_data *data = _data;
1999 struct fuse_writepage_args *wpa = data->wpa;
2000 struct fuse_args_pages *ap = &wpa->ia.ap;
2001 struct inode *inode = data->inode;
2002 struct fuse_inode *fi = get_fuse_inode(inode);
2003 struct fuse_conn *fc = get_fuse_conn(inode);
2004 struct page *tmp_page;
2005 bool is_writeback;
2006 int err;
2007
2008 if (!data->ff) {
2009 err = -EIO;
2010 data->ff = fuse_write_file_get(fc, fi);
2011 if (!data->ff)
2012 goto out_unlock;
2013 }
2014
2015 /*
2016 * Being under writeback is unlikely but possible. For example direct
2017 * read to an mmaped fuse file will set the page dirty twice; once when
2018 * the pages are faulted with get_user_pages(), and then after the read
2019 * completed.
2020 */
2021 is_writeback = fuse_page_is_writeback(inode, page->index);
2022
2023 if (wpa && ap->num_pages &&
2024 (is_writeback || ap->num_pages == fc->max_pages ||
2025 (ap->num_pages + 1) * PAGE_SIZE > fc->max_write ||
2026 data->orig_pages[ap->num_pages - 1]->index + 1 != page->index)) {
2027 fuse_writepages_send(data);
2028 data->wpa = NULL;
2029 } else if (wpa && ap->num_pages == data->max_pages) {
2030 if (!fuse_pages_realloc(data)) {
2031 fuse_writepages_send(data);
2032 data->wpa = NULL;
2033 }
2034 }
2035
2036 err = -ENOMEM;
2037 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2038 if (!tmp_page)
2039 goto out_unlock;
2040
2041 /*
2042 * The page must not be redirtied until the writeout is completed
2043 * (i.e. userspace has sent a reply to the write request). Otherwise
2044 * there could be more than one temporary page instance for each real
2045 * page.
2046 *
2047 * This is ensured by holding the page lock in page_mkwrite() while
2048 * checking fuse_page_is_writeback(). We already hold the page lock
2049 * since clear_page_dirty_for_io() and keep it held until we add the
2050 * request to the fi->writepages list and increment ap->num_pages.
2051 * After this fuse_page_is_writeback() will indicate that the page is
2052 * under writeback, so we can release the page lock.
2053 */
2054 if (data->wpa == NULL) {
2055 err = -ENOMEM;
2056 wpa = fuse_writepage_args_alloc();
2057 if (!wpa) {
2058 __free_page(tmp_page);
2059 goto out_unlock;
2060 }
2061 data->max_pages = 1;
2062
2063 ap = &wpa->ia.ap;
2064 fuse_write_args_fill(&wpa->ia, data->ff, page_offset(page), 0);
2065 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
2066 wpa->next = NULL;
2067 ap->args.in_pages = true;
2068 ap->args.end = fuse_writepage_end;
2069 ap->num_pages = 0;
2070 wpa->inode = inode;
2071
2072 spin_lock(&fi->lock);
2073 list_add(&wpa->writepages_entry, &fi->writepages);
2074 spin_unlock(&fi->lock);
2075
2076 data->wpa = wpa;
2077 }
2078 set_page_writeback(page);
2079
2080 copy_highpage(tmp_page, page);
2081 ap->pages[ap->num_pages] = tmp_page;
2082 ap->descs[ap->num_pages].offset = 0;
2083 ap->descs[ap->num_pages].length = PAGE_SIZE;
2084
2085 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
2086 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
2087
2088 err = 0;
2089 if (is_writeback && fuse_writepage_in_flight(wpa, page)) {
2090 end_page_writeback(page);
2091 data->wpa = NULL;
2092 goto out_unlock;
2093 }
2094 data->orig_pages[ap->num_pages] = page;
2095
2096 /*
2097 * Protected by fi->lock against concurrent access by
2098 * fuse_page_is_writeback().
2099 */
2100 spin_lock(&fi->lock);
2101 ap->num_pages++;
2102 spin_unlock(&fi->lock);
2103
2104 out_unlock:
2105 unlock_page(page);
2106
2107 return err;
2108 }
2109
fuse_writepages(struct address_space * mapping,struct writeback_control * wbc)2110 static int fuse_writepages(struct address_space *mapping,
2111 struct writeback_control *wbc)
2112 {
2113 struct inode *inode = mapping->host;
2114 struct fuse_conn *fc = get_fuse_conn(inode);
2115 struct fuse_fill_wb_data data;
2116 int err;
2117
2118 err = -EIO;
2119 if (is_bad_inode(inode))
2120 goto out;
2121
2122 data.inode = inode;
2123 data.wpa = NULL;
2124 data.ff = NULL;
2125
2126 err = -ENOMEM;
2127 data.orig_pages = kcalloc(fc->max_pages,
2128 sizeof(struct page *),
2129 GFP_NOFS);
2130 if (!data.orig_pages)
2131 goto out;
2132
2133 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
2134 if (data.wpa) {
2135 /* Ignore errors if we can write at least one page */
2136 WARN_ON(!data.wpa->ia.ap.num_pages);
2137 fuse_writepages_send(&data);
2138 err = 0;
2139 }
2140 if (data.ff)
2141 fuse_file_put(data.ff, false, false);
2142
2143 kfree(data.orig_pages);
2144 out:
2145 return err;
2146 }
2147
2148 /*
2149 * It's worthy to make sure that space is reserved on disk for the write,
2150 * but how to implement it without killing performance need more thinking.
2151 */
fuse_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2152 static int fuse_write_begin(struct file *file, struct address_space *mapping,
2153 loff_t pos, unsigned len, unsigned flags,
2154 struct page **pagep, void **fsdata)
2155 {
2156 pgoff_t index = pos >> PAGE_SHIFT;
2157 struct fuse_conn *fc = get_fuse_conn(file_inode(file));
2158 struct page *page;
2159 loff_t fsize;
2160 int err = -ENOMEM;
2161
2162 WARN_ON(!fc->writeback_cache);
2163
2164 page = grab_cache_page_write_begin(mapping, index, flags);
2165 if (!page)
2166 goto error;
2167
2168 fuse_wait_on_page_writeback(mapping->host, page->index);
2169
2170 if (PageUptodate(page) || len == PAGE_SIZE)
2171 goto success;
2172 /*
2173 * Check if the start this page comes after the end of file, in which
2174 * case the readpage can be optimized away.
2175 */
2176 fsize = i_size_read(mapping->host);
2177 if (fsize <= (pos & PAGE_MASK)) {
2178 size_t off = pos & ~PAGE_MASK;
2179 if (off)
2180 zero_user_segment(page, 0, off);
2181 goto success;
2182 }
2183 err = fuse_do_readpage(file, page);
2184 if (err)
2185 goto cleanup;
2186 success:
2187 *pagep = page;
2188 return 0;
2189
2190 cleanup:
2191 unlock_page(page);
2192 put_page(page);
2193 error:
2194 return err;
2195 }
2196
fuse_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2197 static int fuse_write_end(struct file *file, struct address_space *mapping,
2198 loff_t pos, unsigned len, unsigned copied,
2199 struct page *page, void *fsdata)
2200 {
2201 struct inode *inode = page->mapping->host;
2202
2203 /* Haven't copied anything? Skip zeroing, size extending, dirtying. */
2204 if (!copied)
2205 goto unlock;
2206
2207 if (!PageUptodate(page)) {
2208 /* Zero any unwritten bytes at the end of the page */
2209 size_t endoff = (pos + copied) & ~PAGE_MASK;
2210 if (endoff)
2211 zero_user_segment(page, endoff, PAGE_SIZE);
2212 SetPageUptodate(page);
2213 }
2214
2215 fuse_write_update_size(inode, pos + copied);
2216 set_page_dirty(page);
2217
2218 unlock:
2219 unlock_page(page);
2220 put_page(page);
2221
2222 return copied;
2223 }
2224
fuse_launder_page(struct page * page)2225 static int fuse_launder_page(struct page *page)
2226 {
2227 int err = 0;
2228 if (clear_page_dirty_for_io(page)) {
2229 struct inode *inode = page->mapping->host;
2230 err = fuse_writepage_locked(page);
2231 if (!err)
2232 fuse_wait_on_page_writeback(inode, page->index);
2233 }
2234 return err;
2235 }
2236
2237 /*
2238 * Write back dirty pages now, because there may not be any suitable
2239 * open files later
2240 */
fuse_vma_close(struct vm_area_struct * vma)2241 static void fuse_vma_close(struct vm_area_struct *vma)
2242 {
2243 filemap_write_and_wait(vma->vm_file->f_mapping);
2244 }
2245
2246 /*
2247 * Wait for writeback against this page to complete before allowing it
2248 * to be marked dirty again, and hence written back again, possibly
2249 * before the previous writepage completed.
2250 *
2251 * Block here, instead of in ->writepage(), so that the userspace fs
2252 * can only block processes actually operating on the filesystem.
2253 *
2254 * Otherwise unprivileged userspace fs would be able to block
2255 * unrelated:
2256 *
2257 * - page migration
2258 * - sync(2)
2259 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2260 */
fuse_page_mkwrite(struct vm_fault * vmf)2261 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2262 {
2263 struct page *page = vmf->page;
2264 struct inode *inode = file_inode(vmf->vma->vm_file);
2265
2266 file_update_time(vmf->vma->vm_file);
2267 lock_page(page);
2268 if (page->mapping != inode->i_mapping) {
2269 unlock_page(page);
2270 return VM_FAULT_NOPAGE;
2271 }
2272
2273 fuse_wait_on_page_writeback(inode, page->index);
2274 return VM_FAULT_LOCKED;
2275 }
2276
2277 static const struct vm_operations_struct fuse_file_vm_ops = {
2278 .close = fuse_vma_close,
2279 .fault = filemap_fault,
2280 .map_pages = filemap_map_pages,
2281 .page_mkwrite = fuse_page_mkwrite,
2282 };
2283
fuse_file_mmap(struct file * file,struct vm_area_struct * vma)2284 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2285 {
2286 struct fuse_file *ff = file->private_data;
2287
2288 if (ff->open_flags & FOPEN_DIRECT_IO) {
2289 /* Can't provide the coherency needed for MAP_SHARED */
2290 if (vma->vm_flags & VM_MAYSHARE)
2291 return -ENODEV;
2292
2293 invalidate_inode_pages2(file->f_mapping);
2294
2295 return generic_file_mmap(file, vma);
2296 }
2297
2298 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2299 fuse_link_write_file(file);
2300
2301 file_accessed(file);
2302 vma->vm_ops = &fuse_file_vm_ops;
2303 return 0;
2304 }
2305
convert_fuse_file_lock(struct fuse_conn * fc,const struct fuse_file_lock * ffl,struct file_lock * fl)2306 static int convert_fuse_file_lock(struct fuse_conn *fc,
2307 const struct fuse_file_lock *ffl,
2308 struct file_lock *fl)
2309 {
2310 switch (ffl->type) {
2311 case F_UNLCK:
2312 break;
2313
2314 case F_RDLCK:
2315 case F_WRLCK:
2316 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2317 ffl->end < ffl->start)
2318 return -EIO;
2319
2320 fl->fl_start = ffl->start;
2321 fl->fl_end = ffl->end;
2322
2323 /*
2324 * Convert pid into init's pid namespace. The locks API will
2325 * translate it into the caller's pid namespace.
2326 */
2327 rcu_read_lock();
2328 fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2329 rcu_read_unlock();
2330 break;
2331
2332 default:
2333 return -EIO;
2334 }
2335 fl->fl_type = ffl->type;
2336 return 0;
2337 }
2338
fuse_lk_fill(struct fuse_args * args,struct file * file,const struct file_lock * fl,int opcode,pid_t pid,int flock,struct fuse_lk_in * inarg)2339 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2340 const struct file_lock *fl, int opcode, pid_t pid,
2341 int flock, struct fuse_lk_in *inarg)
2342 {
2343 struct inode *inode = file_inode(file);
2344 struct fuse_conn *fc = get_fuse_conn(inode);
2345 struct fuse_file *ff = file->private_data;
2346
2347 memset(inarg, 0, sizeof(*inarg));
2348 inarg->fh = ff->fh;
2349 inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2350 inarg->lk.start = fl->fl_start;
2351 inarg->lk.end = fl->fl_end;
2352 inarg->lk.type = fl->fl_type;
2353 inarg->lk.pid = pid;
2354 if (flock)
2355 inarg->lk_flags |= FUSE_LK_FLOCK;
2356 args->opcode = opcode;
2357 args->nodeid = get_node_id(inode);
2358 args->in_numargs = 1;
2359 args->in_args[0].size = sizeof(*inarg);
2360 args->in_args[0].value = inarg;
2361 }
2362
fuse_getlk(struct file * file,struct file_lock * fl)2363 static int fuse_getlk(struct file *file, struct file_lock *fl)
2364 {
2365 struct inode *inode = file_inode(file);
2366 struct fuse_conn *fc = get_fuse_conn(inode);
2367 FUSE_ARGS(args);
2368 struct fuse_lk_in inarg;
2369 struct fuse_lk_out outarg;
2370 int err;
2371
2372 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2373 args.out_numargs = 1;
2374 args.out_args[0].size = sizeof(outarg);
2375 args.out_args[0].value = &outarg;
2376 err = fuse_simple_request(fc, &args);
2377 if (!err)
2378 err = convert_fuse_file_lock(fc, &outarg.lk, fl);
2379
2380 return err;
2381 }
2382
fuse_setlk(struct file * file,struct file_lock * fl,int flock)2383 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2384 {
2385 struct inode *inode = file_inode(file);
2386 struct fuse_conn *fc = get_fuse_conn(inode);
2387 FUSE_ARGS(args);
2388 struct fuse_lk_in inarg;
2389 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2390 struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL;
2391 pid_t pid_nr = pid_nr_ns(pid, fc->pid_ns);
2392 int err;
2393
2394 if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2395 /* NLM needs asynchronous locks, which we don't support yet */
2396 return -ENOLCK;
2397 }
2398
2399 /* Unlock on close is handled by the flush method */
2400 if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX)
2401 return 0;
2402
2403 fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2404 err = fuse_simple_request(fc, &args);
2405
2406 /* locking is restartable */
2407 if (err == -EINTR)
2408 err = -ERESTARTSYS;
2409
2410 return err;
2411 }
2412
fuse_file_lock(struct file * file,int cmd,struct file_lock * fl)2413 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2414 {
2415 struct inode *inode = file_inode(file);
2416 struct fuse_conn *fc = get_fuse_conn(inode);
2417 int err;
2418
2419 if (cmd == F_CANCELLK) {
2420 err = 0;
2421 } else if (cmd == F_GETLK) {
2422 if (fc->no_lock) {
2423 posix_test_lock(file, fl);
2424 err = 0;
2425 } else
2426 err = fuse_getlk(file, fl);
2427 } else {
2428 if (fc->no_lock)
2429 err = posix_lock_file(file, fl, NULL);
2430 else
2431 err = fuse_setlk(file, fl, 0);
2432 }
2433 return err;
2434 }
2435
fuse_file_flock(struct file * file,int cmd,struct file_lock * fl)2436 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2437 {
2438 struct inode *inode = file_inode(file);
2439 struct fuse_conn *fc = get_fuse_conn(inode);
2440 int err;
2441
2442 if (fc->no_flock) {
2443 err = locks_lock_file_wait(file, fl);
2444 } else {
2445 struct fuse_file *ff = file->private_data;
2446
2447 /* emulate flock with POSIX locks */
2448 ff->flock = true;
2449 err = fuse_setlk(file, fl, 1);
2450 }
2451
2452 return err;
2453 }
2454
fuse_bmap(struct address_space * mapping,sector_t block)2455 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2456 {
2457 struct inode *inode = mapping->host;
2458 struct fuse_conn *fc = get_fuse_conn(inode);
2459 FUSE_ARGS(args);
2460 struct fuse_bmap_in inarg;
2461 struct fuse_bmap_out outarg;
2462 int err;
2463
2464 if (!inode->i_sb->s_bdev || fc->no_bmap)
2465 return 0;
2466
2467 memset(&inarg, 0, sizeof(inarg));
2468 inarg.block = block;
2469 inarg.blocksize = inode->i_sb->s_blocksize;
2470 args.opcode = FUSE_BMAP;
2471 args.nodeid = get_node_id(inode);
2472 args.in_numargs = 1;
2473 args.in_args[0].size = sizeof(inarg);
2474 args.in_args[0].value = &inarg;
2475 args.out_numargs = 1;
2476 args.out_args[0].size = sizeof(outarg);
2477 args.out_args[0].value = &outarg;
2478 err = fuse_simple_request(fc, &args);
2479 if (err == -ENOSYS)
2480 fc->no_bmap = 1;
2481
2482 return err ? 0 : outarg.block;
2483 }
2484
fuse_lseek(struct file * file,loff_t offset,int whence)2485 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2486 {
2487 struct inode *inode = file->f_mapping->host;
2488 struct fuse_conn *fc = get_fuse_conn(inode);
2489 struct fuse_file *ff = file->private_data;
2490 FUSE_ARGS(args);
2491 struct fuse_lseek_in inarg = {
2492 .fh = ff->fh,
2493 .offset = offset,
2494 .whence = whence
2495 };
2496 struct fuse_lseek_out outarg;
2497 int err;
2498
2499 if (fc->no_lseek)
2500 goto fallback;
2501
2502 args.opcode = FUSE_LSEEK;
2503 args.nodeid = ff->nodeid;
2504 args.in_numargs = 1;
2505 args.in_args[0].size = sizeof(inarg);
2506 args.in_args[0].value = &inarg;
2507 args.out_numargs = 1;
2508 args.out_args[0].size = sizeof(outarg);
2509 args.out_args[0].value = &outarg;
2510 err = fuse_simple_request(fc, &args);
2511 if (err) {
2512 if (err == -ENOSYS) {
2513 fc->no_lseek = 1;
2514 goto fallback;
2515 }
2516 return err;
2517 }
2518
2519 return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2520
2521 fallback:
2522 err = fuse_update_attributes(inode, file);
2523 if (!err)
2524 return generic_file_llseek(file, offset, whence);
2525 else
2526 return err;
2527 }
2528
fuse_file_llseek(struct file * file,loff_t offset,int whence)2529 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2530 {
2531 loff_t retval;
2532 struct inode *inode = file_inode(file);
2533
2534 switch (whence) {
2535 case SEEK_SET:
2536 case SEEK_CUR:
2537 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2538 retval = generic_file_llseek(file, offset, whence);
2539 break;
2540 case SEEK_END:
2541 inode_lock(inode);
2542 retval = fuse_update_attributes(inode, file);
2543 if (!retval)
2544 retval = generic_file_llseek(file, offset, whence);
2545 inode_unlock(inode);
2546 break;
2547 case SEEK_HOLE:
2548 case SEEK_DATA:
2549 inode_lock(inode);
2550 retval = fuse_lseek(file, offset, whence);
2551 inode_unlock(inode);
2552 break;
2553 default:
2554 retval = -EINVAL;
2555 }
2556
2557 return retval;
2558 }
2559
2560 /*
2561 * CUSE servers compiled on 32bit broke on 64bit kernels because the
2562 * ABI was defined to be 'struct iovec' which is different on 32bit
2563 * and 64bit. Fortunately we can determine which structure the server
2564 * used from the size of the reply.
2565 */
fuse_copy_ioctl_iovec_old(struct iovec * dst,void * src,size_t transferred,unsigned count,bool is_compat)2566 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src,
2567 size_t transferred, unsigned count,
2568 bool is_compat)
2569 {
2570 #ifdef CONFIG_COMPAT
2571 if (count * sizeof(struct compat_iovec) == transferred) {
2572 struct compat_iovec *ciov = src;
2573 unsigned i;
2574
2575 /*
2576 * With this interface a 32bit server cannot support
2577 * non-compat (i.e. ones coming from 64bit apps) ioctl
2578 * requests
2579 */
2580 if (!is_compat)
2581 return -EINVAL;
2582
2583 for (i = 0; i < count; i++) {
2584 dst[i].iov_base = compat_ptr(ciov[i].iov_base);
2585 dst[i].iov_len = ciov[i].iov_len;
2586 }
2587 return 0;
2588 }
2589 #endif
2590
2591 if (count * sizeof(struct iovec) != transferred)
2592 return -EIO;
2593
2594 memcpy(dst, src, transferred);
2595 return 0;
2596 }
2597
2598 /* Make sure iov_length() won't overflow */
fuse_verify_ioctl_iov(struct fuse_conn * fc,struct iovec * iov,size_t count)2599 static int fuse_verify_ioctl_iov(struct fuse_conn *fc, struct iovec *iov,
2600 size_t count)
2601 {
2602 size_t n;
2603 u32 max = fc->max_pages << PAGE_SHIFT;
2604
2605 for (n = 0; n < count; n++, iov++) {
2606 if (iov->iov_len > (size_t) max)
2607 return -ENOMEM;
2608 max -= iov->iov_len;
2609 }
2610 return 0;
2611 }
2612
fuse_copy_ioctl_iovec(struct fuse_conn * fc,struct iovec * dst,void * src,size_t transferred,unsigned count,bool is_compat)2613 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst,
2614 void *src, size_t transferred, unsigned count,
2615 bool is_compat)
2616 {
2617 unsigned i;
2618 struct fuse_ioctl_iovec *fiov = src;
2619
2620 if (fc->minor < 16) {
2621 return fuse_copy_ioctl_iovec_old(dst, src, transferred,
2622 count, is_compat);
2623 }
2624
2625 if (count * sizeof(struct fuse_ioctl_iovec) != transferred)
2626 return -EIO;
2627
2628 for (i = 0; i < count; i++) {
2629 /* Did the server supply an inappropriate value? */
2630 if (fiov[i].base != (unsigned long) fiov[i].base ||
2631 fiov[i].len != (unsigned long) fiov[i].len)
2632 return -EIO;
2633
2634 dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base;
2635 dst[i].iov_len = (size_t) fiov[i].len;
2636
2637 #ifdef CONFIG_COMPAT
2638 if (is_compat &&
2639 (ptr_to_compat(dst[i].iov_base) != fiov[i].base ||
2640 (compat_size_t) dst[i].iov_len != fiov[i].len))
2641 return -EIO;
2642 #endif
2643 }
2644
2645 return 0;
2646 }
2647
2648
2649 /*
2650 * For ioctls, there is no generic way to determine how much memory
2651 * needs to be read and/or written. Furthermore, ioctls are allowed
2652 * to dereference the passed pointer, so the parameter requires deep
2653 * copying but FUSE has no idea whatsoever about what to copy in or
2654 * out.
2655 *
2656 * This is solved by allowing FUSE server to retry ioctl with
2657 * necessary in/out iovecs. Let's assume the ioctl implementation
2658 * needs to read in the following structure.
2659 *
2660 * struct a {
2661 * char *buf;
2662 * size_t buflen;
2663 * }
2664 *
2665 * On the first callout to FUSE server, inarg->in_size and
2666 * inarg->out_size will be NULL; then, the server completes the ioctl
2667 * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
2668 * the actual iov array to
2669 *
2670 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) } }
2671 *
2672 * which tells FUSE to copy in the requested area and retry the ioctl.
2673 * On the second round, the server has access to the structure and
2674 * from that it can tell what to look for next, so on the invocation,
2675 * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
2676 *
2677 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) },
2678 * { .iov_base = a.buf, .iov_len = a.buflen } }
2679 *
2680 * FUSE will copy both struct a and the pointed buffer from the
2681 * process doing the ioctl and retry ioctl with both struct a and the
2682 * buffer.
2683 *
2684 * This time, FUSE server has everything it needs and completes ioctl
2685 * without FUSE_IOCTL_RETRY which finishes the ioctl call.
2686 *
2687 * Copying data out works the same way.
2688 *
2689 * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
2690 * automatically initializes in and out iovs by decoding @cmd with
2691 * _IOC_* macros and the server is not allowed to request RETRY. This
2692 * limits ioctl data transfers to well-formed ioctls and is the forced
2693 * behavior for all FUSE servers.
2694 */
fuse_do_ioctl(struct file * file,unsigned int cmd,unsigned long arg,unsigned int flags)2695 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
2696 unsigned int flags)
2697 {
2698 struct fuse_file *ff = file->private_data;
2699 struct fuse_conn *fc = ff->fc;
2700 struct fuse_ioctl_in inarg = {
2701 .fh = ff->fh,
2702 .cmd = cmd,
2703 .arg = arg,
2704 .flags = flags
2705 };
2706 struct fuse_ioctl_out outarg;
2707 struct iovec *iov_page = NULL;
2708 struct iovec *in_iov = NULL, *out_iov = NULL;
2709 unsigned int in_iovs = 0, out_iovs = 0, max_pages;
2710 size_t in_size, out_size, c;
2711 ssize_t transferred;
2712 int err, i;
2713 struct iov_iter ii;
2714 struct fuse_args_pages ap = {};
2715
2716 #if BITS_PER_LONG == 32
2717 inarg.flags |= FUSE_IOCTL_32BIT;
2718 #else
2719 if (flags & FUSE_IOCTL_COMPAT) {
2720 inarg.flags |= FUSE_IOCTL_32BIT;
2721 #ifdef CONFIG_X86_X32
2722 if (in_x32_syscall())
2723 inarg.flags |= FUSE_IOCTL_COMPAT_X32;
2724 #endif
2725 }
2726 #endif
2727
2728 /* assume all the iovs returned by client always fits in a page */
2729 BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
2730
2731 err = -ENOMEM;
2732 ap.pages = fuse_pages_alloc(fc->max_pages, GFP_KERNEL, &ap.descs);
2733 iov_page = (struct iovec *) __get_free_page(GFP_KERNEL);
2734 if (!ap.pages || !iov_page)
2735 goto out;
2736
2737 fuse_page_descs_length_init(ap.descs, 0, fc->max_pages);
2738
2739 /*
2740 * If restricted, initialize IO parameters as encoded in @cmd.
2741 * RETRY from server is not allowed.
2742 */
2743 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
2744 struct iovec *iov = iov_page;
2745
2746 iov->iov_base = (void __user *)arg;
2747 iov->iov_len = _IOC_SIZE(cmd);
2748
2749 if (_IOC_DIR(cmd) & _IOC_WRITE) {
2750 in_iov = iov;
2751 in_iovs = 1;
2752 }
2753
2754 if (_IOC_DIR(cmd) & _IOC_READ) {
2755 out_iov = iov;
2756 out_iovs = 1;
2757 }
2758 }
2759
2760 retry:
2761 inarg.in_size = in_size = iov_length(in_iov, in_iovs);
2762 inarg.out_size = out_size = iov_length(out_iov, out_iovs);
2763
2764 /*
2765 * Out data can be used either for actual out data or iovs,
2766 * make sure there always is at least one page.
2767 */
2768 out_size = max_t(size_t, out_size, PAGE_SIZE);
2769 max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
2770
2771 /* make sure there are enough buffer pages and init request with them */
2772 err = -ENOMEM;
2773 if (max_pages > fc->max_pages)
2774 goto out;
2775 while (ap.num_pages < max_pages) {
2776 ap.pages[ap.num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2777 if (!ap.pages[ap.num_pages])
2778 goto out;
2779 ap.num_pages++;
2780 }
2781
2782
2783 /* okay, let's send it to the client */
2784 ap.args.opcode = FUSE_IOCTL;
2785 ap.args.nodeid = ff->nodeid;
2786 ap.args.in_numargs = 1;
2787 ap.args.in_args[0].size = sizeof(inarg);
2788 ap.args.in_args[0].value = &inarg;
2789 if (in_size) {
2790 ap.args.in_numargs++;
2791 ap.args.in_args[1].size = in_size;
2792 ap.args.in_pages = true;
2793
2794 err = -EFAULT;
2795 iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size);
2796 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2797 c = copy_page_from_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2798 if (c != PAGE_SIZE && iov_iter_count(&ii))
2799 goto out;
2800 }
2801 }
2802
2803 ap.args.out_numargs = 2;
2804 ap.args.out_args[0].size = sizeof(outarg);
2805 ap.args.out_args[0].value = &outarg;
2806 ap.args.out_args[1].size = out_size;
2807 ap.args.out_pages = true;
2808 ap.args.out_argvar = true;
2809
2810 transferred = fuse_simple_request(fc, &ap.args);
2811 err = transferred;
2812 if (transferred < 0)
2813 goto out;
2814
2815 /* did it ask for retry? */
2816 if (outarg.flags & FUSE_IOCTL_RETRY) {
2817 void *vaddr;
2818
2819 /* no retry if in restricted mode */
2820 err = -EIO;
2821 if (!(flags & FUSE_IOCTL_UNRESTRICTED))
2822 goto out;
2823
2824 in_iovs = outarg.in_iovs;
2825 out_iovs = outarg.out_iovs;
2826
2827 /*
2828 * Make sure things are in boundary, separate checks
2829 * are to protect against overflow.
2830 */
2831 err = -ENOMEM;
2832 if (in_iovs > FUSE_IOCTL_MAX_IOV ||
2833 out_iovs > FUSE_IOCTL_MAX_IOV ||
2834 in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
2835 goto out;
2836
2837 vaddr = kmap_atomic(ap.pages[0]);
2838 err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr,
2839 transferred, in_iovs + out_iovs,
2840 (flags & FUSE_IOCTL_COMPAT) != 0);
2841 kunmap_atomic(vaddr);
2842 if (err)
2843 goto out;
2844
2845 in_iov = iov_page;
2846 out_iov = in_iov + in_iovs;
2847
2848 err = fuse_verify_ioctl_iov(fc, in_iov, in_iovs);
2849 if (err)
2850 goto out;
2851
2852 err = fuse_verify_ioctl_iov(fc, out_iov, out_iovs);
2853 if (err)
2854 goto out;
2855
2856 goto retry;
2857 }
2858
2859 err = -EIO;
2860 if (transferred > inarg.out_size)
2861 goto out;
2862
2863 err = -EFAULT;
2864 iov_iter_init(&ii, READ, out_iov, out_iovs, transferred);
2865 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2866 c = copy_page_to_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2867 if (c != PAGE_SIZE && iov_iter_count(&ii))
2868 goto out;
2869 }
2870 err = 0;
2871 out:
2872 free_page((unsigned long) iov_page);
2873 while (ap.num_pages)
2874 __free_page(ap.pages[--ap.num_pages]);
2875 kfree(ap.pages);
2876
2877 return err ? err : outarg.result;
2878 }
2879 EXPORT_SYMBOL_GPL(fuse_do_ioctl);
2880
fuse_ioctl_common(struct file * file,unsigned int cmd,unsigned long arg,unsigned int flags)2881 long fuse_ioctl_common(struct file *file, unsigned int cmd,
2882 unsigned long arg, unsigned int flags)
2883 {
2884 struct inode *inode = file_inode(file);
2885 struct fuse_conn *fc = get_fuse_conn(inode);
2886
2887 if (!fuse_allow_current_process(fc))
2888 return -EACCES;
2889
2890 if (is_bad_inode(inode))
2891 return -EIO;
2892
2893 return fuse_do_ioctl(file, cmd, arg, flags);
2894 }
2895
fuse_file_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2896 static long fuse_file_ioctl(struct file *file, unsigned int cmd,
2897 unsigned long arg)
2898 {
2899 return fuse_ioctl_common(file, cmd, arg, 0);
2900 }
2901
fuse_file_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2902 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
2903 unsigned long arg)
2904 {
2905 return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
2906 }
2907
2908 /*
2909 * All files which have been polled are linked to RB tree
2910 * fuse_conn->polled_files which is indexed by kh. Walk the tree and
2911 * find the matching one.
2912 */
fuse_find_polled_node(struct fuse_conn * fc,u64 kh,struct rb_node ** parent_out)2913 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2914 struct rb_node **parent_out)
2915 {
2916 struct rb_node **link = &fc->polled_files.rb_node;
2917 struct rb_node *last = NULL;
2918
2919 while (*link) {
2920 struct fuse_file *ff;
2921
2922 last = *link;
2923 ff = rb_entry(last, struct fuse_file, polled_node);
2924
2925 if (kh < ff->kh)
2926 link = &last->rb_left;
2927 else if (kh > ff->kh)
2928 link = &last->rb_right;
2929 else
2930 return link;
2931 }
2932
2933 if (parent_out)
2934 *parent_out = last;
2935 return link;
2936 }
2937
2938 /*
2939 * The file is about to be polled. Make sure it's on the polled_files
2940 * RB tree. Note that files once added to the polled_files tree are
2941 * not removed before the file is released. This is because a file
2942 * polled once is likely to be polled again.
2943 */
fuse_register_polled_file(struct fuse_conn * fc,struct fuse_file * ff)2944 static void fuse_register_polled_file(struct fuse_conn *fc,
2945 struct fuse_file *ff)
2946 {
2947 spin_lock(&fc->lock);
2948 if (RB_EMPTY_NODE(&ff->polled_node)) {
2949 struct rb_node **link, *uninitialized_var(parent);
2950
2951 link = fuse_find_polled_node(fc, ff->kh, &parent);
2952 BUG_ON(*link);
2953 rb_link_node(&ff->polled_node, parent, link);
2954 rb_insert_color(&ff->polled_node, &fc->polled_files);
2955 }
2956 spin_unlock(&fc->lock);
2957 }
2958
fuse_file_poll(struct file * file,poll_table * wait)2959 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
2960 {
2961 struct fuse_file *ff = file->private_data;
2962 struct fuse_conn *fc = ff->fc;
2963 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
2964 struct fuse_poll_out outarg;
2965 FUSE_ARGS(args);
2966 int err;
2967
2968 if (fc->no_poll)
2969 return DEFAULT_POLLMASK;
2970
2971 poll_wait(file, &ff->poll_wait, wait);
2972 inarg.events = mangle_poll(poll_requested_events(wait));
2973
2974 /*
2975 * Ask for notification iff there's someone waiting for it.
2976 * The client may ignore the flag and always notify.
2977 */
2978 if (waitqueue_active(&ff->poll_wait)) {
2979 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
2980 fuse_register_polled_file(fc, ff);
2981 }
2982
2983 args.opcode = FUSE_POLL;
2984 args.nodeid = ff->nodeid;
2985 args.in_numargs = 1;
2986 args.in_args[0].size = sizeof(inarg);
2987 args.in_args[0].value = &inarg;
2988 args.out_numargs = 1;
2989 args.out_args[0].size = sizeof(outarg);
2990 args.out_args[0].value = &outarg;
2991 err = fuse_simple_request(fc, &args);
2992
2993 if (!err)
2994 return demangle_poll(outarg.revents);
2995 if (err == -ENOSYS) {
2996 fc->no_poll = 1;
2997 return DEFAULT_POLLMASK;
2998 }
2999 return EPOLLERR;
3000 }
3001 EXPORT_SYMBOL_GPL(fuse_file_poll);
3002
3003 /*
3004 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
3005 * wakes up the poll waiters.
3006 */
fuse_notify_poll_wakeup(struct fuse_conn * fc,struct fuse_notify_poll_wakeup_out * outarg)3007 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
3008 struct fuse_notify_poll_wakeup_out *outarg)
3009 {
3010 u64 kh = outarg->kh;
3011 struct rb_node **link;
3012
3013 spin_lock(&fc->lock);
3014
3015 link = fuse_find_polled_node(fc, kh, NULL);
3016 if (*link) {
3017 struct fuse_file *ff;
3018
3019 ff = rb_entry(*link, struct fuse_file, polled_node);
3020 wake_up_interruptible_sync(&ff->poll_wait);
3021 }
3022
3023 spin_unlock(&fc->lock);
3024 return 0;
3025 }
3026
fuse_do_truncate(struct file * file)3027 static void fuse_do_truncate(struct file *file)
3028 {
3029 struct inode *inode = file->f_mapping->host;
3030 struct iattr attr;
3031
3032 attr.ia_valid = ATTR_SIZE;
3033 attr.ia_size = i_size_read(inode);
3034
3035 attr.ia_file = file;
3036 attr.ia_valid |= ATTR_FILE;
3037
3038 fuse_do_setattr(file_dentry(file), &attr, file);
3039 }
3040
fuse_round_up(struct fuse_conn * fc,loff_t off)3041 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
3042 {
3043 return round_up(off, fc->max_pages << PAGE_SHIFT);
3044 }
3045
3046 static ssize_t
fuse_direct_IO(struct kiocb * iocb,struct iov_iter * iter)3047 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3048 {
3049 DECLARE_COMPLETION_ONSTACK(wait);
3050 ssize_t ret = 0;
3051 struct file *file = iocb->ki_filp;
3052 struct fuse_file *ff = file->private_data;
3053 bool async_dio = ff->fc->async_dio;
3054 loff_t pos = 0;
3055 struct inode *inode;
3056 loff_t i_size;
3057 size_t count = iov_iter_count(iter);
3058 loff_t offset = iocb->ki_pos;
3059 struct fuse_io_priv *io;
3060
3061 pos = offset;
3062 inode = file->f_mapping->host;
3063 i_size = i_size_read(inode);
3064
3065 if ((iov_iter_rw(iter) == READ) && (offset > i_size))
3066 return 0;
3067
3068 /* optimization for short read */
3069 if (async_dio && iov_iter_rw(iter) != WRITE && offset + count > i_size) {
3070 if (offset >= i_size)
3071 return 0;
3072 iov_iter_truncate(iter, fuse_round_up(ff->fc, i_size - offset));
3073 count = iov_iter_count(iter);
3074 }
3075
3076 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
3077 if (!io)
3078 return -ENOMEM;
3079 spin_lock_init(&io->lock);
3080 kref_init(&io->refcnt);
3081 io->reqs = 1;
3082 io->bytes = -1;
3083 io->size = 0;
3084 io->offset = offset;
3085 io->write = (iov_iter_rw(iter) == WRITE);
3086 io->err = 0;
3087 /*
3088 * By default, we want to optimize all I/Os with async request
3089 * submission to the client filesystem if supported.
3090 */
3091 io->async = async_dio;
3092 io->iocb = iocb;
3093 io->blocking = is_sync_kiocb(iocb);
3094
3095 /*
3096 * We cannot asynchronously extend the size of a file.
3097 * In such case the aio will behave exactly like sync io.
3098 */
3099 if ((offset + count > i_size) && iov_iter_rw(iter) == WRITE)
3100 io->blocking = true;
3101
3102 if (io->async && io->blocking) {
3103 /*
3104 * Additional reference to keep io around after
3105 * calling fuse_aio_complete()
3106 */
3107 kref_get(&io->refcnt);
3108 io->done = &wait;
3109 }
3110
3111 if (iov_iter_rw(iter) == WRITE) {
3112 ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
3113 fuse_invalidate_attr(inode);
3114 } else {
3115 ret = __fuse_direct_read(io, iter, &pos);
3116 }
3117
3118 if (io->async) {
3119 bool blocking = io->blocking;
3120
3121 fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
3122
3123 /* we have a non-extending, async request, so return */
3124 if (!blocking)
3125 return -EIOCBQUEUED;
3126
3127 wait_for_completion(&wait);
3128 ret = fuse_get_res_by_io(io);
3129 }
3130
3131 kref_put(&io->refcnt, fuse_io_release);
3132
3133 if (iov_iter_rw(iter) == WRITE) {
3134 if (ret > 0)
3135 fuse_write_update_size(inode, pos);
3136 else if (ret < 0 && offset + count > i_size)
3137 fuse_do_truncate(file);
3138 }
3139
3140 return ret;
3141 }
3142
fuse_writeback_range(struct inode * inode,loff_t start,loff_t end)3143 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end)
3144 {
3145 int err = filemap_write_and_wait_range(inode->i_mapping, start, end);
3146
3147 if (!err)
3148 fuse_sync_writes(inode);
3149
3150 return err;
3151 }
3152
fuse_file_fallocate(struct file * file,int mode,loff_t offset,loff_t length)3153 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
3154 loff_t length)
3155 {
3156 struct fuse_file *ff = file->private_data;
3157 struct inode *inode = file_inode(file);
3158 struct fuse_inode *fi = get_fuse_inode(inode);
3159 struct fuse_conn *fc = ff->fc;
3160 FUSE_ARGS(args);
3161 struct fuse_fallocate_in inarg = {
3162 .fh = ff->fh,
3163 .offset = offset,
3164 .length = length,
3165 .mode = mode
3166 };
3167 int err;
3168 bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) ||
3169 (mode & FALLOC_FL_PUNCH_HOLE);
3170
3171 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3172 return -EOPNOTSUPP;
3173
3174 if (fc->no_fallocate)
3175 return -EOPNOTSUPP;
3176
3177 if (lock_inode) {
3178 inode_lock(inode);
3179 if (mode & FALLOC_FL_PUNCH_HOLE) {
3180 loff_t endbyte = offset + length - 1;
3181
3182 err = fuse_writeback_range(inode, offset, endbyte);
3183 if (err)
3184 goto out;
3185 }
3186 }
3187
3188 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
3189 offset + length > i_size_read(inode)) {
3190 err = inode_newsize_ok(inode, offset + length);
3191 if (err)
3192 goto out;
3193 }
3194
3195 if (!(mode & FALLOC_FL_KEEP_SIZE))
3196 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3197
3198 args.opcode = FUSE_FALLOCATE;
3199 args.nodeid = ff->nodeid;
3200 args.in_numargs = 1;
3201 args.in_args[0].size = sizeof(inarg);
3202 args.in_args[0].value = &inarg;
3203 err = fuse_simple_request(fc, &args);
3204 if (err == -ENOSYS) {
3205 fc->no_fallocate = 1;
3206 err = -EOPNOTSUPP;
3207 }
3208 if (err)
3209 goto out;
3210
3211 /* we could have extended the file */
3212 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3213 bool changed = fuse_write_update_size(inode, offset + length);
3214
3215 if (changed && fc->writeback_cache)
3216 file_update_time(file);
3217 }
3218
3219 if (mode & FALLOC_FL_PUNCH_HOLE)
3220 truncate_pagecache_range(inode, offset, offset + length - 1);
3221
3222 fuse_invalidate_attr(inode);
3223
3224 out:
3225 if (!(mode & FALLOC_FL_KEEP_SIZE))
3226 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3227
3228 if (lock_inode)
3229 inode_unlock(inode);
3230
3231 return err;
3232 }
3233
__fuse_copy_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,size_t len,unsigned int flags)3234 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3235 struct file *file_out, loff_t pos_out,
3236 size_t len, unsigned int flags)
3237 {
3238 struct fuse_file *ff_in = file_in->private_data;
3239 struct fuse_file *ff_out = file_out->private_data;
3240 struct inode *inode_in = file_inode(file_in);
3241 struct inode *inode_out = file_inode(file_out);
3242 struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3243 struct fuse_conn *fc = ff_in->fc;
3244 FUSE_ARGS(args);
3245 struct fuse_copy_file_range_in inarg = {
3246 .fh_in = ff_in->fh,
3247 .off_in = pos_in,
3248 .nodeid_out = ff_out->nodeid,
3249 .fh_out = ff_out->fh,
3250 .off_out = pos_out,
3251 .len = len,
3252 .flags = flags
3253 };
3254 struct fuse_write_out outarg;
3255 ssize_t err;
3256 /* mark unstable when write-back is not used, and file_out gets
3257 * extended */
3258 bool is_unstable = (!fc->writeback_cache) &&
3259 ((pos_out + len) > inode_out->i_size);
3260
3261 if (fc->no_copy_file_range)
3262 return -EOPNOTSUPP;
3263
3264 if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb)
3265 return -EXDEV;
3266
3267 if (fc->writeback_cache) {
3268 inode_lock(inode_in);
3269 err = fuse_writeback_range(inode_in, pos_in, pos_in + len);
3270 inode_unlock(inode_in);
3271 if (err)
3272 return err;
3273 }
3274
3275 inode_lock(inode_out);
3276
3277 err = file_modified(file_out);
3278 if (err)
3279 goto out;
3280
3281 if (fc->writeback_cache) {
3282 err = fuse_writeback_range(inode_out, pos_out, pos_out + len);
3283 if (err)
3284 goto out;
3285 }
3286
3287 if (is_unstable)
3288 set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3289
3290 args.opcode = FUSE_COPY_FILE_RANGE;
3291 args.nodeid = ff_in->nodeid;
3292 args.in_numargs = 1;
3293 args.in_args[0].size = sizeof(inarg);
3294 args.in_args[0].value = &inarg;
3295 args.out_numargs = 1;
3296 args.out_args[0].size = sizeof(outarg);
3297 args.out_args[0].value = &outarg;
3298 err = fuse_simple_request(fc, &args);
3299 if (err == -ENOSYS) {
3300 fc->no_copy_file_range = 1;
3301 err = -EOPNOTSUPP;
3302 }
3303 if (err)
3304 goto out;
3305
3306 if (fc->writeback_cache) {
3307 fuse_write_update_size(inode_out, pos_out + outarg.size);
3308 file_update_time(file_out);
3309 }
3310
3311 fuse_invalidate_attr(inode_out);
3312
3313 err = outarg.size;
3314 out:
3315 if (is_unstable)
3316 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3317
3318 inode_unlock(inode_out);
3319 file_accessed(file_in);
3320
3321 return err;
3322 }
3323
fuse_copy_file_range(struct file * src_file,loff_t src_off,struct file * dst_file,loff_t dst_off,size_t len,unsigned int flags)3324 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off,
3325 struct file *dst_file, loff_t dst_off,
3326 size_t len, unsigned int flags)
3327 {
3328 ssize_t ret;
3329
3330 ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off,
3331 len, flags);
3332
3333 if (ret == -EOPNOTSUPP || ret == -EXDEV)
3334 ret = generic_copy_file_range(src_file, src_off, dst_file,
3335 dst_off, len, flags);
3336 return ret;
3337 }
3338
3339 static const struct file_operations fuse_file_operations = {
3340 .llseek = fuse_file_llseek,
3341 .read_iter = fuse_file_read_iter,
3342 .write_iter = fuse_file_write_iter,
3343 .mmap = fuse_file_mmap,
3344 .open = fuse_open,
3345 .flush = fuse_flush,
3346 .release = fuse_release,
3347 .fsync = fuse_fsync,
3348 .lock = fuse_file_lock,
3349 .flock = fuse_file_flock,
3350 .splice_read = generic_file_splice_read,
3351 .splice_write = iter_file_splice_write,
3352 .unlocked_ioctl = fuse_file_ioctl,
3353 .compat_ioctl = fuse_file_compat_ioctl,
3354 .poll = fuse_file_poll,
3355 .fallocate = fuse_file_fallocate,
3356 .copy_file_range = fuse_copy_file_range,
3357 };
3358
3359 static const struct address_space_operations fuse_file_aops = {
3360 .readpage = fuse_readpage,
3361 .writepage = fuse_writepage,
3362 .writepages = fuse_writepages,
3363 .launder_page = fuse_launder_page,
3364 .readpages = fuse_readpages,
3365 .set_page_dirty = __set_page_dirty_nobuffers,
3366 .bmap = fuse_bmap,
3367 .direct_IO = fuse_direct_IO,
3368 .write_begin = fuse_write_begin,
3369 .write_end = fuse_write_end,
3370 };
3371
fuse_init_file_inode(struct inode * inode)3372 void fuse_init_file_inode(struct inode *inode)
3373 {
3374 struct fuse_inode *fi = get_fuse_inode(inode);
3375
3376 inode->i_fop = &fuse_file_operations;
3377 inode->i_data.a_ops = &fuse_file_aops;
3378
3379 INIT_LIST_HEAD(&fi->write_files);
3380 INIT_LIST_HEAD(&fi->queued_writes);
3381 fi->writectr = 0;
3382 init_waitqueue_head(&fi->page_waitq);
3383 INIT_LIST_HEAD(&fi->writepages);
3384 }
3385