1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
5 */
6
7 #include <linux/slab.h>
8 #include <linux/spinlock.h>
9 #include <linux/compat.h>
10 #include <linux/completion.h>
11 #include <linux/buffer_head.h>
12 #include <linux/pagemap.h>
13 #include <linux/uio.h>
14 #include <linux/blkdev.h>
15 #include <linux/mm.h>
16 #include <linux/mount.h>
17 #include <linux/fs.h>
18 #include <linux/gfs2_ondisk.h>
19 #include <linux/falloc.h>
20 #include <linux/swap.h>
21 #include <linux/crc32.h>
22 #include <linux/writeback.h>
23 #include <linux/uaccess.h>
24 #include <linux/dlm.h>
25 #include <linux/dlm_plock.h>
26 #include <linux/delay.h>
27 #include <linux/backing-dev.h>
28
29 #include "gfs2.h"
30 #include "incore.h"
31 #include "bmap.h"
32 #include "aops.h"
33 #include "dir.h"
34 #include "glock.h"
35 #include "glops.h"
36 #include "inode.h"
37 #include "log.h"
38 #include "meta_io.h"
39 #include "quota.h"
40 #include "rgrp.h"
41 #include "trans.h"
42 #include "util.h"
43
44 /**
45 * gfs2_llseek - seek to a location in a file
46 * @file: the file
47 * @offset: the offset
48 * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
49 *
50 * SEEK_END requires the glock for the file because it references the
51 * file's size.
52 *
53 * Returns: The new offset, or errno
54 */
55
gfs2_llseek(struct file * file,loff_t offset,int whence)56 static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence)
57 {
58 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
59 struct gfs2_holder i_gh;
60 loff_t error;
61
62 switch (whence) {
63 case SEEK_END:
64 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
65 &i_gh);
66 if (!error) {
67 error = generic_file_llseek(file, offset, whence);
68 gfs2_glock_dq_uninit(&i_gh);
69 }
70 break;
71
72 case SEEK_DATA:
73 error = gfs2_seek_data(file, offset);
74 break;
75
76 case SEEK_HOLE:
77 error = gfs2_seek_hole(file, offset);
78 break;
79
80 case SEEK_CUR:
81 case SEEK_SET:
82 /*
83 * These don't reference inode->i_size and don't depend on the
84 * block mapping, so we don't need the glock.
85 */
86 error = generic_file_llseek(file, offset, whence);
87 break;
88 default:
89 error = -EINVAL;
90 }
91
92 return error;
93 }
94
95 /**
96 * gfs2_readdir - Iterator for a directory
97 * @file: The directory to read from
98 * @ctx: What to feed directory entries to
99 *
100 * Returns: errno
101 */
102
gfs2_readdir(struct file * file,struct dir_context * ctx)103 static int gfs2_readdir(struct file *file, struct dir_context *ctx)
104 {
105 struct inode *dir = file->f_mapping->host;
106 struct gfs2_inode *dip = GFS2_I(dir);
107 struct gfs2_holder d_gh;
108 int error;
109
110 error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh);
111 if (error)
112 return error;
113
114 error = gfs2_dir_read(dir, ctx, &file->f_ra);
115
116 gfs2_glock_dq_uninit(&d_gh);
117
118 return error;
119 }
120
121 /**
122 * fsflag_gfs2flag
123 *
124 * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories,
125 * and to GFS2_DIF_JDATA for non-directories.
126 */
127 static struct {
128 u32 fsflag;
129 u32 gfsflag;
130 } fsflag_gfs2flag[] = {
131 {FS_SYNC_FL, GFS2_DIF_SYNC},
132 {FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE},
133 {FS_APPEND_FL, GFS2_DIF_APPENDONLY},
134 {FS_NOATIME_FL, GFS2_DIF_NOATIME},
135 {FS_INDEX_FL, GFS2_DIF_EXHASH},
136 {FS_TOPDIR_FL, GFS2_DIF_TOPDIR},
137 {FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA},
138 };
139
gfs2_gfsflags_to_fsflags(struct inode * inode,u32 gfsflags)140 static inline u32 gfs2_gfsflags_to_fsflags(struct inode *inode, u32 gfsflags)
141 {
142 int i;
143 u32 fsflags = 0;
144
145 if (S_ISDIR(inode->i_mode))
146 gfsflags &= ~GFS2_DIF_JDATA;
147 else
148 gfsflags &= ~GFS2_DIF_INHERIT_JDATA;
149
150 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++)
151 if (gfsflags & fsflag_gfs2flag[i].gfsflag)
152 fsflags |= fsflag_gfs2flag[i].fsflag;
153 return fsflags;
154 }
155
gfs2_get_flags(struct file * filp,u32 __user * ptr)156 static int gfs2_get_flags(struct file *filp, u32 __user *ptr)
157 {
158 struct inode *inode = file_inode(filp);
159 struct gfs2_inode *ip = GFS2_I(inode);
160 struct gfs2_holder gh;
161 int error;
162 u32 fsflags;
163
164 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
165 error = gfs2_glock_nq(&gh);
166 if (error)
167 goto out_uninit;
168
169 fsflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags);
170
171 if (put_user(fsflags, ptr))
172 error = -EFAULT;
173
174 gfs2_glock_dq(&gh);
175 out_uninit:
176 gfs2_holder_uninit(&gh);
177 return error;
178 }
179
gfs2_set_inode_flags(struct inode * inode)180 void gfs2_set_inode_flags(struct inode *inode)
181 {
182 struct gfs2_inode *ip = GFS2_I(inode);
183 unsigned int flags = inode->i_flags;
184
185 flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC);
186 if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode))
187 flags |= S_NOSEC;
188 if (ip->i_diskflags & GFS2_DIF_IMMUTABLE)
189 flags |= S_IMMUTABLE;
190 if (ip->i_diskflags & GFS2_DIF_APPENDONLY)
191 flags |= S_APPEND;
192 if (ip->i_diskflags & GFS2_DIF_NOATIME)
193 flags |= S_NOATIME;
194 if (ip->i_diskflags & GFS2_DIF_SYNC)
195 flags |= S_SYNC;
196 inode->i_flags = flags;
197 }
198
199 /* Flags that can be set by user space */
200 #define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA| \
201 GFS2_DIF_IMMUTABLE| \
202 GFS2_DIF_APPENDONLY| \
203 GFS2_DIF_NOATIME| \
204 GFS2_DIF_SYNC| \
205 GFS2_DIF_TOPDIR| \
206 GFS2_DIF_INHERIT_JDATA)
207
208 /**
209 * do_gfs2_set_flags - set flags on an inode
210 * @filp: file pointer
211 * @reqflags: The flags to set
212 * @mask: Indicates which flags are valid
213 * @fsflags: The FS_* inode flags passed in
214 *
215 */
do_gfs2_set_flags(struct file * filp,u32 reqflags,u32 mask,const u32 fsflags)216 static int do_gfs2_set_flags(struct file *filp, u32 reqflags, u32 mask,
217 const u32 fsflags)
218 {
219 struct inode *inode = file_inode(filp);
220 struct gfs2_inode *ip = GFS2_I(inode);
221 struct gfs2_sbd *sdp = GFS2_SB(inode);
222 struct buffer_head *bh;
223 struct gfs2_holder gh;
224 int error;
225 u32 new_flags, flags, oldflags;
226
227 error = mnt_want_write_file(filp);
228 if (error)
229 return error;
230
231 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
232 if (error)
233 goto out_drop_write;
234
235 oldflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags);
236 error = vfs_ioc_setflags_prepare(inode, oldflags, fsflags);
237 if (error)
238 goto out;
239
240 error = -EACCES;
241 if (!inode_owner_or_capable(inode))
242 goto out;
243
244 error = 0;
245 flags = ip->i_diskflags;
246 new_flags = (flags & ~mask) | (reqflags & mask);
247 if ((new_flags ^ flags) == 0)
248 goto out;
249
250 error = -EPERM;
251 if (IS_IMMUTABLE(inode) && (new_flags & GFS2_DIF_IMMUTABLE))
252 goto out;
253 if (IS_APPEND(inode) && (new_flags & GFS2_DIF_APPENDONLY))
254 goto out;
255 if (((new_flags ^ flags) & GFS2_DIF_IMMUTABLE) &&
256 !capable(CAP_LINUX_IMMUTABLE))
257 goto out;
258 if (!IS_IMMUTABLE(inode)) {
259 error = gfs2_permission(inode, MAY_WRITE);
260 if (error)
261 goto out;
262 }
263 if ((flags ^ new_flags) & GFS2_DIF_JDATA) {
264 if (new_flags & GFS2_DIF_JDATA)
265 gfs2_log_flush(sdp, ip->i_gl,
266 GFS2_LOG_HEAD_FLUSH_NORMAL |
267 GFS2_LFC_SET_FLAGS);
268 error = filemap_fdatawrite(inode->i_mapping);
269 if (error)
270 goto out;
271 error = filemap_fdatawait(inode->i_mapping);
272 if (error)
273 goto out;
274 if (new_flags & GFS2_DIF_JDATA)
275 gfs2_ordered_del_inode(ip);
276 }
277 error = gfs2_trans_begin(sdp, RES_DINODE, 0);
278 if (error)
279 goto out;
280 error = gfs2_meta_inode_buffer(ip, &bh);
281 if (error)
282 goto out_trans_end;
283 inode->i_ctime = current_time(inode);
284 gfs2_trans_add_meta(ip->i_gl, bh);
285 ip->i_diskflags = new_flags;
286 gfs2_dinode_out(ip, bh->b_data);
287 brelse(bh);
288 gfs2_set_inode_flags(inode);
289 gfs2_set_aops(inode);
290 out_trans_end:
291 gfs2_trans_end(sdp);
292 out:
293 gfs2_glock_dq_uninit(&gh);
294 out_drop_write:
295 mnt_drop_write_file(filp);
296 return error;
297 }
298
gfs2_set_flags(struct file * filp,u32 __user * ptr)299 static int gfs2_set_flags(struct file *filp, u32 __user *ptr)
300 {
301 struct inode *inode = file_inode(filp);
302 u32 fsflags, gfsflags = 0;
303 u32 mask;
304 int i;
305
306 if (get_user(fsflags, ptr))
307 return -EFAULT;
308
309 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) {
310 if (fsflags & fsflag_gfs2flag[i].fsflag) {
311 fsflags &= ~fsflag_gfs2flag[i].fsflag;
312 gfsflags |= fsflag_gfs2flag[i].gfsflag;
313 }
314 }
315 if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET)
316 return -EINVAL;
317
318 mask = GFS2_FLAGS_USER_SET;
319 if (S_ISDIR(inode->i_mode)) {
320 mask &= ~GFS2_DIF_JDATA;
321 } else {
322 /* The GFS2_DIF_TOPDIR flag is only valid for directories. */
323 if (gfsflags & GFS2_DIF_TOPDIR)
324 return -EINVAL;
325 mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA);
326 }
327
328 return do_gfs2_set_flags(filp, gfsflags, mask, fsflags);
329 }
330
gfs2_getlabel(struct file * filp,char __user * label)331 static int gfs2_getlabel(struct file *filp, char __user *label)
332 {
333 struct inode *inode = file_inode(filp);
334 struct gfs2_sbd *sdp = GFS2_SB(inode);
335
336 if (copy_to_user(label, sdp->sd_sb.sb_locktable, GFS2_LOCKNAME_LEN))
337 return -EFAULT;
338
339 return 0;
340 }
341
gfs2_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)342 static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
343 {
344 switch(cmd) {
345 case FS_IOC_GETFLAGS:
346 return gfs2_get_flags(filp, (u32 __user *)arg);
347 case FS_IOC_SETFLAGS:
348 return gfs2_set_flags(filp, (u32 __user *)arg);
349 case FITRIM:
350 return gfs2_fitrim(filp, (void __user *)arg);
351 case FS_IOC_GETFSLABEL:
352 return gfs2_getlabel(filp, (char __user *)arg);
353 }
354
355 return -ENOTTY;
356 }
357
358 #ifdef CONFIG_COMPAT
gfs2_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)359 static long gfs2_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
360 {
361 switch(cmd) {
362 /* These are just misnamed, they actually get/put from/to user an int */
363 case FS_IOC32_GETFLAGS:
364 cmd = FS_IOC_GETFLAGS;
365 break;
366 case FS_IOC32_SETFLAGS:
367 cmd = FS_IOC_SETFLAGS;
368 break;
369 /* Keep this list in sync with gfs2_ioctl */
370 case FITRIM:
371 case FS_IOC_GETFSLABEL:
372 break;
373 default:
374 return -ENOIOCTLCMD;
375 }
376
377 return gfs2_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
378 }
379 #else
380 #define gfs2_compat_ioctl NULL
381 #endif
382
383 /**
384 * gfs2_size_hint - Give a hint to the size of a write request
385 * @filep: The struct file
386 * @offset: The file offset of the write
387 * @size: The length of the write
388 *
389 * When we are about to do a write, this function records the total
390 * write size in order to provide a suitable hint to the lower layers
391 * about how many blocks will be required.
392 *
393 */
394
gfs2_size_hint(struct file * filep,loff_t offset,size_t size)395 static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size)
396 {
397 struct inode *inode = file_inode(filep);
398 struct gfs2_sbd *sdp = GFS2_SB(inode);
399 struct gfs2_inode *ip = GFS2_I(inode);
400 size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift;
401 int hint = min_t(size_t, INT_MAX, blks);
402
403 if (hint > atomic_read(&ip->i_sizehint))
404 atomic_set(&ip->i_sizehint, hint);
405 }
406
407 /**
408 * gfs2_allocate_page_backing - Allocate blocks for a write fault
409 * @page: The (locked) page to allocate backing for
410 * @length: Size of the allocation
411 *
412 * We try to allocate all the blocks required for the page in one go. This
413 * might fail for various reasons, so we keep trying until all the blocks to
414 * back this page are allocated. If some of the blocks are already allocated,
415 * that is ok too.
416 */
gfs2_allocate_page_backing(struct page * page,unsigned int length)417 static int gfs2_allocate_page_backing(struct page *page, unsigned int length)
418 {
419 u64 pos = page_offset(page);
420
421 do {
422 struct iomap iomap = { };
423
424 if (gfs2_iomap_get_alloc(page->mapping->host, pos, length, &iomap))
425 return -EIO;
426
427 if (length < iomap.length)
428 iomap.length = length;
429 length -= iomap.length;
430 pos += iomap.length;
431 } while (length > 0);
432
433 return 0;
434 }
435
436 /**
437 * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable
438 * @vma: The virtual memory area
439 * @vmf: The virtual memory fault containing the page to become writable
440 *
441 * When the page becomes writable, we need to ensure that we have
442 * blocks allocated on disk to back that page.
443 */
444
gfs2_page_mkwrite(struct vm_fault * vmf)445 static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf)
446 {
447 struct page *page = vmf->page;
448 struct inode *inode = file_inode(vmf->vma->vm_file);
449 struct gfs2_inode *ip = GFS2_I(inode);
450 struct gfs2_sbd *sdp = GFS2_SB(inode);
451 struct gfs2_alloc_parms ap = { .aflags = 0, };
452 unsigned long last_index;
453 u64 pos = page_offset(page);
454 unsigned int data_blocks, ind_blocks, rblocks;
455 struct gfs2_holder gh;
456 loff_t size;
457 int ret;
458
459 sb_start_pagefault(inode->i_sb);
460
461 ret = gfs2_rsqa_alloc(ip);
462 if (ret)
463 goto out;
464
465 gfs2_size_hint(vmf->vma->vm_file, pos, PAGE_SIZE);
466
467 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
468 ret = gfs2_glock_nq(&gh);
469 if (ret)
470 goto out_uninit;
471
472 /* Update file times before taking page lock */
473 file_update_time(vmf->vma->vm_file);
474
475 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
476 set_bit(GIF_SW_PAGED, &ip->i_flags);
477
478 if (!gfs2_write_alloc_required(ip, pos, PAGE_SIZE)) {
479 lock_page(page);
480 if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
481 ret = -EAGAIN;
482 unlock_page(page);
483 }
484 goto out_unlock;
485 }
486
487 ret = gfs2_rindex_update(sdp);
488 if (ret)
489 goto out_unlock;
490
491 gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
492 ap.target = data_blocks + ind_blocks;
493 ret = gfs2_quota_lock_check(ip, &ap);
494 if (ret)
495 goto out_unlock;
496 ret = gfs2_inplace_reserve(ip, &ap);
497 if (ret)
498 goto out_quota_unlock;
499
500 rblocks = RES_DINODE + ind_blocks;
501 if (gfs2_is_jdata(ip))
502 rblocks += data_blocks ? data_blocks : 1;
503 if (ind_blocks || data_blocks) {
504 rblocks += RES_STATFS + RES_QUOTA;
505 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
506 }
507 ret = gfs2_trans_begin(sdp, rblocks, 0);
508 if (ret)
509 goto out_trans_fail;
510
511 lock_page(page);
512 ret = -EINVAL;
513 size = i_size_read(inode);
514 last_index = (size - 1) >> PAGE_SHIFT;
515 /* Check page index against inode size */
516 if (size == 0 || (page->index > last_index))
517 goto out_trans_end;
518
519 ret = -EAGAIN;
520 /* If truncated, we must retry the operation, we may have raced
521 * with the glock demotion code.
522 */
523 if (!PageUptodate(page) || page->mapping != inode->i_mapping)
524 goto out_trans_end;
525
526 /* Unstuff, if required, and allocate backing blocks for page */
527 ret = 0;
528 if (gfs2_is_stuffed(ip))
529 ret = gfs2_unstuff_dinode(ip, page);
530 if (ret == 0)
531 ret = gfs2_allocate_page_backing(page, PAGE_SIZE);
532
533 out_trans_end:
534 if (ret)
535 unlock_page(page);
536 gfs2_trans_end(sdp);
537 out_trans_fail:
538 gfs2_inplace_release(ip);
539 out_quota_unlock:
540 gfs2_quota_unlock(ip);
541 out_unlock:
542 gfs2_glock_dq(&gh);
543 out_uninit:
544 gfs2_holder_uninit(&gh);
545 if (ret == 0) {
546 set_page_dirty(page);
547 wait_for_stable_page(page);
548 }
549 out:
550 sb_end_pagefault(inode->i_sb);
551 return block_page_mkwrite_return(ret);
552 }
553
554 static const struct vm_operations_struct gfs2_vm_ops = {
555 .fault = filemap_fault,
556 .map_pages = filemap_map_pages,
557 .page_mkwrite = gfs2_page_mkwrite,
558 };
559
560 /**
561 * gfs2_mmap -
562 * @file: The file to map
563 * @vma: The VMA which described the mapping
564 *
565 * There is no need to get a lock here unless we should be updating
566 * atime. We ignore any locking errors since the only consequence is
567 * a missed atime update (which will just be deferred until later).
568 *
569 * Returns: 0
570 */
571
gfs2_mmap(struct file * file,struct vm_area_struct * vma)572 static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
573 {
574 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
575
576 if (!(file->f_flags & O_NOATIME) &&
577 !IS_NOATIME(&ip->i_inode)) {
578 struct gfs2_holder i_gh;
579 int error;
580
581 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
582 &i_gh);
583 if (error)
584 return error;
585 /* grab lock to update inode */
586 gfs2_glock_dq_uninit(&i_gh);
587 file_accessed(file);
588 }
589 vma->vm_ops = &gfs2_vm_ops;
590
591 return 0;
592 }
593
594 /**
595 * gfs2_open_common - This is common to open and atomic_open
596 * @inode: The inode being opened
597 * @file: The file being opened
598 *
599 * This maybe called under a glock or not depending upon how it has
600 * been called. We must always be called under a glock for regular
601 * files, however. For other file types, it does not matter whether
602 * we hold the glock or not.
603 *
604 * Returns: Error code or 0 for success
605 */
606
gfs2_open_common(struct inode * inode,struct file * file)607 int gfs2_open_common(struct inode *inode, struct file *file)
608 {
609 struct gfs2_file *fp;
610 int ret;
611
612 if (S_ISREG(inode->i_mode)) {
613 ret = generic_file_open(inode, file);
614 if (ret)
615 return ret;
616 }
617
618 fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS);
619 if (!fp)
620 return -ENOMEM;
621
622 mutex_init(&fp->f_fl_mutex);
623
624 gfs2_assert_warn(GFS2_SB(inode), !file->private_data);
625 file->private_data = fp;
626 return 0;
627 }
628
629 /**
630 * gfs2_open - open a file
631 * @inode: the inode to open
632 * @file: the struct file for this opening
633 *
634 * After atomic_open, this function is only used for opening files
635 * which are already cached. We must still get the glock for regular
636 * files to ensure that we have the file size uptodate for the large
637 * file check which is in the common code. That is only an issue for
638 * regular files though.
639 *
640 * Returns: errno
641 */
642
gfs2_open(struct inode * inode,struct file * file)643 static int gfs2_open(struct inode *inode, struct file *file)
644 {
645 struct gfs2_inode *ip = GFS2_I(inode);
646 struct gfs2_holder i_gh;
647 int error;
648 bool need_unlock = false;
649
650 if (S_ISREG(ip->i_inode.i_mode)) {
651 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
652 &i_gh);
653 if (error)
654 return error;
655 need_unlock = true;
656 }
657
658 error = gfs2_open_common(inode, file);
659
660 if (need_unlock)
661 gfs2_glock_dq_uninit(&i_gh);
662
663 return error;
664 }
665
666 /**
667 * gfs2_release - called to close a struct file
668 * @inode: the inode the struct file belongs to
669 * @file: the struct file being closed
670 *
671 * Returns: errno
672 */
673
gfs2_release(struct inode * inode,struct file * file)674 static int gfs2_release(struct inode *inode, struct file *file)
675 {
676 struct gfs2_inode *ip = GFS2_I(inode);
677
678 kfree(file->private_data);
679 file->private_data = NULL;
680
681 if (!(file->f_mode & FMODE_WRITE))
682 return 0;
683
684 gfs2_rsqa_delete(ip, &inode->i_writecount);
685 return 0;
686 }
687
688 /**
689 * gfs2_fsync - sync the dirty data for a file (across the cluster)
690 * @file: the file that points to the dentry
691 * @start: the start position in the file to sync
692 * @end: the end position in the file to sync
693 * @datasync: set if we can ignore timestamp changes
694 *
695 * We split the data flushing here so that we don't wait for the data
696 * until after we've also sent the metadata to disk. Note that for
697 * data=ordered, we will write & wait for the data at the log flush
698 * stage anyway, so this is unlikely to make much of a difference
699 * except in the data=writeback case.
700 *
701 * If the fdatawrite fails due to any reason except -EIO, we will
702 * continue the remainder of the fsync, although we'll still report
703 * the error at the end. This is to match filemap_write_and_wait_range()
704 * behaviour.
705 *
706 * Returns: errno
707 */
708
gfs2_fsync(struct file * file,loff_t start,loff_t end,int datasync)709 static int gfs2_fsync(struct file *file, loff_t start, loff_t end,
710 int datasync)
711 {
712 struct address_space *mapping = file->f_mapping;
713 struct inode *inode = mapping->host;
714 int sync_state = inode->i_state & I_DIRTY_ALL;
715 struct gfs2_inode *ip = GFS2_I(inode);
716 int ret = 0, ret1 = 0;
717
718 if (mapping->nrpages) {
719 ret1 = filemap_fdatawrite_range(mapping, start, end);
720 if (ret1 == -EIO)
721 return ret1;
722 }
723
724 if (!gfs2_is_jdata(ip))
725 sync_state &= ~I_DIRTY_PAGES;
726 if (datasync)
727 sync_state &= ~(I_DIRTY_SYNC | I_DIRTY_TIME);
728
729 if (sync_state) {
730 ret = sync_inode_metadata(inode, 1);
731 if (ret)
732 return ret;
733 if (gfs2_is_jdata(ip))
734 ret = file_write_and_wait(file);
735 if (ret)
736 return ret;
737 gfs2_ail_flush(ip->i_gl, 1);
738 }
739
740 if (mapping->nrpages)
741 ret = file_fdatawait_range(file, start, end);
742
743 return ret ? ret : ret1;
744 }
745
gfs2_file_direct_read(struct kiocb * iocb,struct iov_iter * to)746 static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to)
747 {
748 struct file *file = iocb->ki_filp;
749 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
750 size_t count = iov_iter_count(to);
751 struct gfs2_holder gh;
752 ssize_t ret;
753
754 if (!count)
755 return 0; /* skip atime */
756
757 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
758 ret = gfs2_glock_nq(&gh);
759 if (ret)
760 goto out_uninit;
761
762 ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL);
763
764 gfs2_glock_dq(&gh);
765 out_uninit:
766 gfs2_holder_uninit(&gh);
767 return ret;
768 }
769
gfs2_file_direct_write(struct kiocb * iocb,struct iov_iter * from)770 static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
771 {
772 struct file *file = iocb->ki_filp;
773 struct inode *inode = file->f_mapping->host;
774 struct gfs2_inode *ip = GFS2_I(inode);
775 size_t len = iov_iter_count(from);
776 loff_t offset = iocb->ki_pos;
777 struct gfs2_holder gh;
778 ssize_t ret;
779
780 /*
781 * Deferred lock, even if its a write, since we do no allocation on
782 * this path. All we need to change is the atime, and this lock mode
783 * ensures that other nodes have flushed their buffered read caches
784 * (i.e. their page cache entries for this inode). We do not,
785 * unfortunately, have the option of only flushing a range like the
786 * VFS does.
787 */
788 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
789 ret = gfs2_glock_nq(&gh);
790 if (ret)
791 goto out_uninit;
792
793 /* Silently fall back to buffered I/O when writing beyond EOF */
794 if (offset + len > i_size_read(&ip->i_inode))
795 goto out;
796
797 ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL);
798
799 out:
800 gfs2_glock_dq(&gh);
801 out_uninit:
802 gfs2_holder_uninit(&gh);
803 return ret;
804 }
805
gfs2_file_read_iter(struct kiocb * iocb,struct iov_iter * to)806 static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
807 {
808 ssize_t ret;
809
810 if (iocb->ki_flags & IOCB_DIRECT) {
811 ret = gfs2_file_direct_read(iocb, to);
812 if (likely(ret != -ENOTBLK))
813 return ret;
814 iocb->ki_flags &= ~IOCB_DIRECT;
815 }
816 return generic_file_read_iter(iocb, to);
817 }
818
819 /**
820 * gfs2_file_write_iter - Perform a write to a file
821 * @iocb: The io context
822 * @from: The data to write
823 *
824 * We have to do a lock/unlock here to refresh the inode size for
825 * O_APPEND writes, otherwise we can land up writing at the wrong
826 * offset. There is still a race, but provided the app is using its
827 * own file locking, this will make O_APPEND work as expected.
828 *
829 */
830
gfs2_file_write_iter(struct kiocb * iocb,struct iov_iter * from)831 static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
832 {
833 struct file *file = iocb->ki_filp;
834 struct inode *inode = file_inode(file);
835 struct gfs2_inode *ip = GFS2_I(inode);
836 ssize_t written = 0, ret;
837
838 ret = gfs2_rsqa_alloc(ip);
839 if (ret)
840 return ret;
841
842 gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from));
843
844 if (iocb->ki_flags & IOCB_APPEND) {
845 struct gfs2_holder gh;
846
847 ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
848 if (ret)
849 return ret;
850 gfs2_glock_dq_uninit(&gh);
851 }
852
853 inode_lock(inode);
854 ret = generic_write_checks(iocb, from);
855 if (ret <= 0)
856 goto out;
857
858 /* We can write back this queue in page reclaim */
859 current->backing_dev_info = inode_to_bdi(inode);
860
861 ret = file_remove_privs(file);
862 if (ret)
863 goto out2;
864
865 ret = file_update_time(file);
866 if (ret)
867 goto out2;
868
869 if (iocb->ki_flags & IOCB_DIRECT) {
870 struct address_space *mapping = file->f_mapping;
871 loff_t pos, endbyte;
872 ssize_t buffered;
873
874 written = gfs2_file_direct_write(iocb, from);
875 if (written < 0 || !iov_iter_count(from))
876 goto out2;
877
878 ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
879 if (unlikely(ret < 0))
880 goto out2;
881 buffered = ret;
882
883 /*
884 * We need to ensure that the page cache pages are written to
885 * disk and invalidated to preserve the expected O_DIRECT
886 * semantics.
887 */
888 pos = iocb->ki_pos;
889 endbyte = pos + buffered - 1;
890 ret = filemap_write_and_wait_range(mapping, pos, endbyte);
891 if (!ret) {
892 iocb->ki_pos += buffered;
893 written += buffered;
894 invalidate_mapping_pages(mapping,
895 pos >> PAGE_SHIFT,
896 endbyte >> PAGE_SHIFT);
897 } else {
898 /*
899 * We don't know how much we wrote, so just return
900 * the number of bytes which were direct-written
901 */
902 }
903 } else {
904 ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
905 if (likely(ret > 0))
906 iocb->ki_pos += ret;
907 }
908
909 out2:
910 current->backing_dev_info = NULL;
911 out:
912 inode_unlock(inode);
913 if (likely(ret > 0)) {
914 /* Handle various SYNC-type writes */
915 ret = generic_write_sync(iocb, ret);
916 }
917 return written ? written : ret;
918 }
919
fallocate_chunk(struct inode * inode,loff_t offset,loff_t len,int mode)920 static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len,
921 int mode)
922 {
923 struct super_block *sb = inode->i_sb;
924 struct gfs2_inode *ip = GFS2_I(inode);
925 loff_t end = offset + len;
926 struct buffer_head *dibh;
927 int error;
928
929 error = gfs2_meta_inode_buffer(ip, &dibh);
930 if (unlikely(error))
931 return error;
932
933 gfs2_trans_add_meta(ip->i_gl, dibh);
934
935 if (gfs2_is_stuffed(ip)) {
936 error = gfs2_unstuff_dinode(ip, NULL);
937 if (unlikely(error))
938 goto out;
939 }
940
941 while (offset < end) {
942 struct iomap iomap = { };
943
944 error = gfs2_iomap_get_alloc(inode, offset, end - offset,
945 &iomap);
946 if (error)
947 goto out;
948 offset = iomap.offset + iomap.length;
949 if (!(iomap.flags & IOMAP_F_NEW))
950 continue;
951 error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits,
952 iomap.length >> inode->i_blkbits,
953 GFP_NOFS);
954 if (error) {
955 fs_err(GFS2_SB(inode), "Failed to zero data buffers\n");
956 goto out;
957 }
958 }
959 out:
960 brelse(dibh);
961 return error;
962 }
963 /**
964 * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of
965 * blocks, determine how many bytes can be written.
966 * @ip: The inode in question.
967 * @len: Max cap of bytes. What we return in *len must be <= this.
968 * @data_blocks: Compute and return the number of data blocks needed
969 * @ind_blocks: Compute and return the number of indirect blocks needed
970 * @max_blocks: The total blocks available to work with.
971 *
972 * Returns: void, but @len, @data_blocks and @ind_blocks are filled in.
973 */
calc_max_reserv(struct gfs2_inode * ip,loff_t * len,unsigned int * data_blocks,unsigned int * ind_blocks,unsigned int max_blocks)974 static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len,
975 unsigned int *data_blocks, unsigned int *ind_blocks,
976 unsigned int max_blocks)
977 {
978 loff_t max = *len;
979 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
980 unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1);
981
982 for (tmp = max_data; tmp > sdp->sd_diptrs;) {
983 tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs);
984 max_data -= tmp;
985 }
986
987 *data_blocks = max_data;
988 *ind_blocks = max_blocks - max_data;
989 *len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift;
990 if (*len > max) {
991 *len = max;
992 gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks);
993 }
994 }
995
__gfs2_fallocate(struct file * file,int mode,loff_t offset,loff_t len)996 static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
997 {
998 struct inode *inode = file_inode(file);
999 struct gfs2_sbd *sdp = GFS2_SB(inode);
1000 struct gfs2_inode *ip = GFS2_I(inode);
1001 struct gfs2_alloc_parms ap = { .aflags = 0, };
1002 unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
1003 loff_t bytes, max_bytes, max_blks;
1004 int error;
1005 const loff_t pos = offset;
1006 const loff_t count = len;
1007 loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1);
1008 loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift;
1009 loff_t max_chunk_size = UINT_MAX & bsize_mask;
1010
1011 next = (next + 1) << sdp->sd_sb.sb_bsize_shift;
1012
1013 offset &= bsize_mask;
1014
1015 len = next - offset;
1016 bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2;
1017 if (!bytes)
1018 bytes = UINT_MAX;
1019 bytes &= bsize_mask;
1020 if (bytes == 0)
1021 bytes = sdp->sd_sb.sb_bsize;
1022
1023 gfs2_size_hint(file, offset, len);
1024
1025 gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
1026 ap.min_target = data_blocks + ind_blocks;
1027
1028 while (len > 0) {
1029 if (len < bytes)
1030 bytes = len;
1031 if (!gfs2_write_alloc_required(ip, offset, bytes)) {
1032 len -= bytes;
1033 offset += bytes;
1034 continue;
1035 }
1036
1037 /* We need to determine how many bytes we can actually
1038 * fallocate without exceeding quota or going over the
1039 * end of the fs. We start off optimistically by assuming
1040 * we can write max_bytes */
1041 max_bytes = (len > max_chunk_size) ? max_chunk_size : len;
1042
1043 /* Since max_bytes is most likely a theoretical max, we
1044 * calculate a more realistic 'bytes' to serve as a good
1045 * starting point for the number of bytes we may be able
1046 * to write */
1047 gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks);
1048 ap.target = data_blocks + ind_blocks;
1049
1050 error = gfs2_quota_lock_check(ip, &ap);
1051 if (error)
1052 return error;
1053 /* ap.allowed tells us how many blocks quota will allow
1054 * us to write. Check if this reduces max_blks */
1055 max_blks = UINT_MAX;
1056 if (ap.allowed)
1057 max_blks = ap.allowed;
1058
1059 error = gfs2_inplace_reserve(ip, &ap);
1060 if (error)
1061 goto out_qunlock;
1062
1063 /* check if the selected rgrp limits our max_blks further */
1064 if (ap.allowed && ap.allowed < max_blks)
1065 max_blks = ap.allowed;
1066
1067 /* Almost done. Calculate bytes that can be written using
1068 * max_blks. We also recompute max_bytes, data_blocks and
1069 * ind_blocks */
1070 calc_max_reserv(ip, &max_bytes, &data_blocks,
1071 &ind_blocks, max_blks);
1072
1073 rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA +
1074 RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1075 if (gfs2_is_jdata(ip))
1076 rblocks += data_blocks ? data_blocks : 1;
1077
1078 error = gfs2_trans_begin(sdp, rblocks,
1079 PAGE_SIZE >> inode->i_blkbits);
1080 if (error)
1081 goto out_trans_fail;
1082
1083 error = fallocate_chunk(inode, offset, max_bytes, mode);
1084 gfs2_trans_end(sdp);
1085
1086 if (error)
1087 goto out_trans_fail;
1088
1089 len -= max_bytes;
1090 offset += max_bytes;
1091 gfs2_inplace_release(ip);
1092 gfs2_quota_unlock(ip);
1093 }
1094
1095 if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size)
1096 i_size_write(inode, pos + count);
1097 file_update_time(file);
1098 mark_inode_dirty(inode);
1099
1100 if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host))
1101 return vfs_fsync_range(file, pos, pos + count - 1,
1102 (file->f_flags & __O_SYNC) ? 0 : 1);
1103 return 0;
1104
1105 out_trans_fail:
1106 gfs2_inplace_release(ip);
1107 out_qunlock:
1108 gfs2_quota_unlock(ip);
1109 return error;
1110 }
1111
gfs2_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1112 static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1113 {
1114 struct inode *inode = file_inode(file);
1115 struct gfs2_sbd *sdp = GFS2_SB(inode);
1116 struct gfs2_inode *ip = GFS2_I(inode);
1117 struct gfs2_holder gh;
1118 int ret;
1119
1120 if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE))
1121 return -EOPNOTSUPP;
1122 /* fallocate is needed by gfs2_grow to reserve space in the rindex */
1123 if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex)
1124 return -EOPNOTSUPP;
1125
1126 inode_lock(inode);
1127
1128 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
1129 ret = gfs2_glock_nq(&gh);
1130 if (ret)
1131 goto out_uninit;
1132
1133 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1134 (offset + len) > inode->i_size) {
1135 ret = inode_newsize_ok(inode, offset + len);
1136 if (ret)
1137 goto out_unlock;
1138 }
1139
1140 ret = get_write_access(inode);
1141 if (ret)
1142 goto out_unlock;
1143
1144 if (mode & FALLOC_FL_PUNCH_HOLE) {
1145 ret = __gfs2_punch_hole(file, offset, len);
1146 } else {
1147 ret = gfs2_rsqa_alloc(ip);
1148 if (ret)
1149 goto out_putw;
1150
1151 ret = __gfs2_fallocate(file, mode, offset, len);
1152
1153 if (ret)
1154 gfs2_rs_deltree(&ip->i_res);
1155 }
1156
1157 out_putw:
1158 put_write_access(inode);
1159 out_unlock:
1160 gfs2_glock_dq(&gh);
1161 out_uninit:
1162 gfs2_holder_uninit(&gh);
1163 inode_unlock(inode);
1164 return ret;
1165 }
1166
gfs2_file_splice_write(struct pipe_inode_info * pipe,struct file * out,loff_t * ppos,size_t len,unsigned int flags)1167 static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe,
1168 struct file *out, loff_t *ppos,
1169 size_t len, unsigned int flags)
1170 {
1171 int error;
1172 struct gfs2_inode *ip = GFS2_I(out->f_mapping->host);
1173
1174 error = gfs2_rsqa_alloc(ip);
1175 if (error)
1176 return (ssize_t)error;
1177
1178 gfs2_size_hint(out, *ppos, len);
1179
1180 return iter_file_splice_write(pipe, out, ppos, len, flags);
1181 }
1182
1183 #ifdef CONFIG_GFS2_FS_LOCKING_DLM
1184
1185 /**
1186 * gfs2_lock - acquire/release a posix lock on a file
1187 * @file: the file pointer
1188 * @cmd: either modify or retrieve lock state, possibly wait
1189 * @fl: type and range of lock
1190 *
1191 * Returns: errno
1192 */
1193
gfs2_lock(struct file * file,int cmd,struct file_lock * fl)1194 static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl)
1195 {
1196 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
1197 struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
1198 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1199
1200 if (!(fl->fl_flags & FL_POSIX))
1201 return -ENOLCK;
1202 if (__mandatory_lock(&ip->i_inode) && fl->fl_type != F_UNLCK)
1203 return -ENOLCK;
1204
1205 if (cmd == F_CANCELLK) {
1206 /* Hack: */
1207 cmd = F_SETLK;
1208 fl->fl_type = F_UNLCK;
1209 }
1210 if (unlikely(test_bit(SDF_WITHDRAWN, &sdp->sd_flags))) {
1211 if (fl->fl_type == F_UNLCK)
1212 locks_lock_file_wait(file, fl);
1213 return -EIO;
1214 }
1215 if (IS_GETLK(cmd))
1216 return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl);
1217 else if (fl->fl_type == F_UNLCK)
1218 return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl);
1219 else
1220 return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl);
1221 }
1222
do_flock(struct file * file,int cmd,struct file_lock * fl)1223 static int do_flock(struct file *file, int cmd, struct file_lock *fl)
1224 {
1225 struct gfs2_file *fp = file->private_data;
1226 struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1227 struct gfs2_inode *ip = GFS2_I(file_inode(file));
1228 struct gfs2_glock *gl;
1229 unsigned int state;
1230 u16 flags;
1231 int error = 0;
1232 int sleeptime;
1233
1234 state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED;
1235 flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY_1CB) | GL_EXACT;
1236
1237 mutex_lock(&fp->f_fl_mutex);
1238
1239 if (gfs2_holder_initialized(fl_gh)) {
1240 struct file_lock request;
1241 if (fl_gh->gh_state == state)
1242 goto out;
1243 locks_init_lock(&request);
1244 request.fl_type = F_UNLCK;
1245 request.fl_flags = FL_FLOCK;
1246 locks_lock_file_wait(file, &request);
1247 gfs2_glock_dq(fl_gh);
1248 gfs2_holder_reinit(state, flags, fl_gh);
1249 } else {
1250 error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr,
1251 &gfs2_flock_glops, CREATE, &gl);
1252 if (error)
1253 goto out;
1254 gfs2_holder_init(gl, state, flags, fl_gh);
1255 gfs2_glock_put(gl);
1256 }
1257 for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) {
1258 error = gfs2_glock_nq(fl_gh);
1259 if (error != GLR_TRYFAILED)
1260 break;
1261 fl_gh->gh_flags = LM_FLAG_TRY | GL_EXACT;
1262 fl_gh->gh_error = 0;
1263 msleep(sleeptime);
1264 }
1265 if (error) {
1266 gfs2_holder_uninit(fl_gh);
1267 if (error == GLR_TRYFAILED)
1268 error = -EAGAIN;
1269 } else {
1270 error = locks_lock_file_wait(file, fl);
1271 gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error);
1272 }
1273
1274 out:
1275 mutex_unlock(&fp->f_fl_mutex);
1276 return error;
1277 }
1278
do_unflock(struct file * file,struct file_lock * fl)1279 static void do_unflock(struct file *file, struct file_lock *fl)
1280 {
1281 struct gfs2_file *fp = file->private_data;
1282 struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1283
1284 mutex_lock(&fp->f_fl_mutex);
1285 locks_lock_file_wait(file, fl);
1286 if (gfs2_holder_initialized(fl_gh)) {
1287 gfs2_glock_dq(fl_gh);
1288 gfs2_holder_uninit(fl_gh);
1289 }
1290 mutex_unlock(&fp->f_fl_mutex);
1291 }
1292
1293 /**
1294 * gfs2_flock - acquire/release a flock lock on a file
1295 * @file: the file pointer
1296 * @cmd: either modify or retrieve lock state, possibly wait
1297 * @fl: type and range of lock
1298 *
1299 * Returns: errno
1300 */
1301
gfs2_flock(struct file * file,int cmd,struct file_lock * fl)1302 static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl)
1303 {
1304 if (!(fl->fl_flags & FL_FLOCK))
1305 return -ENOLCK;
1306 if (fl->fl_type & LOCK_MAND)
1307 return -EOPNOTSUPP;
1308
1309 if (fl->fl_type == F_UNLCK) {
1310 do_unflock(file, fl);
1311 return 0;
1312 } else {
1313 return do_flock(file, cmd, fl);
1314 }
1315 }
1316
1317 const struct file_operations gfs2_file_fops = {
1318 .llseek = gfs2_llseek,
1319 .read_iter = gfs2_file_read_iter,
1320 .write_iter = gfs2_file_write_iter,
1321 .iopoll = iomap_dio_iopoll,
1322 .unlocked_ioctl = gfs2_ioctl,
1323 .compat_ioctl = gfs2_compat_ioctl,
1324 .mmap = gfs2_mmap,
1325 .open = gfs2_open,
1326 .release = gfs2_release,
1327 .fsync = gfs2_fsync,
1328 .lock = gfs2_lock,
1329 .flock = gfs2_flock,
1330 .splice_read = generic_file_splice_read,
1331 .splice_write = gfs2_file_splice_write,
1332 .setlease = simple_nosetlease,
1333 .fallocate = gfs2_fallocate,
1334 };
1335
1336 const struct file_operations gfs2_dir_fops = {
1337 .iterate_shared = gfs2_readdir,
1338 .unlocked_ioctl = gfs2_ioctl,
1339 .compat_ioctl = gfs2_compat_ioctl,
1340 .open = gfs2_open,
1341 .release = gfs2_release,
1342 .fsync = gfs2_fsync,
1343 .lock = gfs2_lock,
1344 .flock = gfs2_flock,
1345 .llseek = default_llseek,
1346 };
1347
1348 #endif /* CONFIG_GFS2_FS_LOCKING_DLM */
1349
1350 const struct file_operations gfs2_file_fops_nolock = {
1351 .llseek = gfs2_llseek,
1352 .read_iter = gfs2_file_read_iter,
1353 .write_iter = gfs2_file_write_iter,
1354 .iopoll = iomap_dio_iopoll,
1355 .unlocked_ioctl = gfs2_ioctl,
1356 .compat_ioctl = gfs2_compat_ioctl,
1357 .mmap = gfs2_mmap,
1358 .open = gfs2_open,
1359 .release = gfs2_release,
1360 .fsync = gfs2_fsync,
1361 .splice_read = generic_file_splice_read,
1362 .splice_write = gfs2_file_splice_write,
1363 .setlease = generic_setlease,
1364 .fallocate = gfs2_fallocate,
1365 };
1366
1367 const struct file_operations gfs2_dir_fops_nolock = {
1368 .iterate_shared = gfs2_readdir,
1369 .unlocked_ioctl = gfs2_ioctl,
1370 .compat_ioctl = gfs2_compat_ioctl,
1371 .open = gfs2_open,
1372 .release = gfs2_release,
1373 .fsync = gfs2_fsync,
1374 .llseek = default_llseek,
1375 };
1376
1377