1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright 2004-2011 Red Hat, Inc.
5 */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/fs.h>
10 #include <linux/dlm.h>
11 #include <linux/slab.h>
12 #include <linux/types.h>
13 #include <linux/delay.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/sched/signal.h>
16
17 #include "incore.h"
18 #include "glock.h"
19 #include "util.h"
20 #include "sys.h"
21 #include "trace_gfs2.h"
22
23 /**
24 * gfs2_update_stats - Update time based stats
25 * @mv: Pointer to mean/variance structure to update
26 * @sample: New data to include
27 *
28 * @delta is the difference between the current rtt sample and the
29 * running average srtt. We add 1/8 of that to the srtt in order to
30 * update the current srtt estimate. The variance estimate is a bit
31 * more complicated. We subtract the current variance estimate from
32 * the abs value of the @delta and add 1/4 of that to the running
33 * total. That's equivalent to 3/4 of the current variance
34 * estimate plus 1/4 of the abs of @delta.
35 *
36 * Note that the index points at the array entry containing the smoothed
37 * mean value, and the variance is always in the following entry
38 *
39 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
40 * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
41 * they are not scaled fixed point.
42 */
43
gfs2_update_stats(struct gfs2_lkstats * s,unsigned index,s64 sample)44 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
45 s64 sample)
46 {
47 s64 delta = sample - s->stats[index];
48 s->stats[index] += (delta >> 3);
49 index++;
50 s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2;
51 }
52
53 /**
54 * gfs2_update_reply_times - Update locking statistics
55 * @gl: The glock to update
56 *
57 * This assumes that gl->gl_dstamp has been set earlier.
58 *
59 * The rtt (lock round trip time) is an estimate of the time
60 * taken to perform a dlm lock request. We update it on each
61 * reply from the dlm.
62 *
63 * The blocking flag is set on the glock for all dlm requests
64 * which may potentially block due to lock requests from other nodes.
65 * DLM requests where the current lock state is exclusive, the
66 * requested state is null (or unlocked) or where the TRY or
67 * TRY_1CB flags are set are classified as non-blocking. All
68 * other DLM requests are counted as (potentially) blocking.
69 */
gfs2_update_reply_times(struct gfs2_glock * gl)70 static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
71 {
72 struct gfs2_pcpu_lkstats *lks;
73 const unsigned gltype = gl->gl_name.ln_type;
74 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
75 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
76 s64 rtt;
77
78 preempt_disable();
79 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
80 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
81 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */
82 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */
83 preempt_enable();
84
85 trace_gfs2_glock_lock_time(gl, rtt);
86 }
87
88 /**
89 * gfs2_update_request_times - Update locking statistics
90 * @gl: The glock to update
91 *
92 * The irt (lock inter-request times) measures the average time
93 * between requests to the dlm. It is updated immediately before
94 * each dlm call.
95 */
96
gfs2_update_request_times(struct gfs2_glock * gl)97 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
98 {
99 struct gfs2_pcpu_lkstats *lks;
100 const unsigned gltype = gl->gl_name.ln_type;
101 ktime_t dstamp;
102 s64 irt;
103
104 preempt_disable();
105 dstamp = gl->gl_dstamp;
106 gl->gl_dstamp = ktime_get_real();
107 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
108 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
109 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */
110 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */
111 preempt_enable();
112 }
113
gdlm_ast(void * arg)114 static void gdlm_ast(void *arg)
115 {
116 struct gfs2_glock *gl = arg;
117 unsigned ret = gl->gl_state;
118
119 gfs2_update_reply_times(gl);
120 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
121
122 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
123 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
124
125 switch (gl->gl_lksb.sb_status) {
126 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
127 gfs2_glock_free(gl);
128 return;
129 case -DLM_ECANCEL: /* Cancel while getting lock */
130 ret |= LM_OUT_CANCELED;
131 goto out;
132 case -EAGAIN: /* Try lock fails */
133 case -EDEADLK: /* Deadlock detected */
134 goto out;
135 case -ETIMEDOUT: /* Canceled due to timeout */
136 ret |= LM_OUT_ERROR;
137 goto out;
138 case 0: /* Success */
139 break;
140 default: /* Something unexpected */
141 BUG();
142 }
143
144 ret = gl->gl_req;
145 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
146 if (gl->gl_req == LM_ST_SHARED)
147 ret = LM_ST_DEFERRED;
148 else if (gl->gl_req == LM_ST_DEFERRED)
149 ret = LM_ST_SHARED;
150 else
151 BUG();
152 }
153
154 set_bit(GLF_INITIAL, &gl->gl_flags);
155 gfs2_glock_complete(gl, ret);
156 return;
157 out:
158 if (!test_bit(GLF_INITIAL, &gl->gl_flags))
159 gl->gl_lksb.sb_lkid = 0;
160 gfs2_glock_complete(gl, ret);
161 }
162
gdlm_bast(void * arg,int mode)163 static void gdlm_bast(void *arg, int mode)
164 {
165 struct gfs2_glock *gl = arg;
166
167 switch (mode) {
168 case DLM_LOCK_EX:
169 gfs2_glock_cb(gl, LM_ST_UNLOCKED);
170 break;
171 case DLM_LOCK_CW:
172 gfs2_glock_cb(gl, LM_ST_DEFERRED);
173 break;
174 case DLM_LOCK_PR:
175 gfs2_glock_cb(gl, LM_ST_SHARED);
176 break;
177 default:
178 fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode);
179 BUG();
180 }
181 }
182
183 /* convert gfs lock-state to dlm lock-mode */
184
make_mode(struct gfs2_sbd * sdp,const unsigned int lmstate)185 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate)
186 {
187 switch (lmstate) {
188 case LM_ST_UNLOCKED:
189 return DLM_LOCK_NL;
190 case LM_ST_EXCLUSIVE:
191 return DLM_LOCK_EX;
192 case LM_ST_DEFERRED:
193 return DLM_LOCK_CW;
194 case LM_ST_SHARED:
195 return DLM_LOCK_PR;
196 }
197 fs_err(sdp, "unknown LM state %d\n", lmstate);
198 BUG();
199 return -1;
200 }
201
make_flags(struct gfs2_glock * gl,const unsigned int gfs_flags,const int req)202 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
203 const int req)
204 {
205 u32 lkf = 0;
206
207 if (gl->gl_lksb.sb_lvbptr)
208 lkf |= DLM_LKF_VALBLK;
209
210 if (gfs_flags & LM_FLAG_TRY)
211 lkf |= DLM_LKF_NOQUEUE;
212
213 if (gfs_flags & LM_FLAG_TRY_1CB) {
214 lkf |= DLM_LKF_NOQUEUE;
215 lkf |= DLM_LKF_NOQUEUEBAST;
216 }
217
218 if (gfs_flags & LM_FLAG_PRIORITY) {
219 lkf |= DLM_LKF_NOORDER;
220 lkf |= DLM_LKF_HEADQUE;
221 }
222
223 if (gfs_flags & LM_FLAG_ANY) {
224 if (req == DLM_LOCK_PR)
225 lkf |= DLM_LKF_ALTCW;
226 else if (req == DLM_LOCK_CW)
227 lkf |= DLM_LKF_ALTPR;
228 else
229 BUG();
230 }
231
232 if (gl->gl_lksb.sb_lkid != 0) {
233 lkf |= DLM_LKF_CONVERT;
234 if (test_bit(GLF_BLOCKING, &gl->gl_flags))
235 lkf |= DLM_LKF_QUECVT;
236 }
237
238 return lkf;
239 }
240
gfs2_reverse_hex(char * c,u64 value)241 static void gfs2_reverse_hex(char *c, u64 value)
242 {
243 *c = '0';
244 while (value) {
245 *c-- = hex_asc[value & 0x0f];
246 value >>= 4;
247 }
248 }
249
gdlm_lock(struct gfs2_glock * gl,unsigned int req_state,unsigned int flags)250 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
251 unsigned int flags)
252 {
253 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
254 int req;
255 u32 lkf;
256 char strname[GDLM_STRNAME_BYTES] = "";
257
258 req = make_mode(gl->gl_name.ln_sbd, req_state);
259 lkf = make_flags(gl, flags, req);
260 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
261 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
262 if (gl->gl_lksb.sb_lkid) {
263 gfs2_update_request_times(gl);
264 } else {
265 memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
266 strname[GDLM_STRNAME_BYTES - 1] = '\0';
267 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
268 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
269 gl->gl_dstamp = ktime_get_real();
270 }
271 /*
272 * Submit the actual lock request.
273 */
274
275 return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
276 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
277 }
278
gdlm_put_lock(struct gfs2_glock * gl)279 static void gdlm_put_lock(struct gfs2_glock *gl)
280 {
281 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
282 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
283 int lvb_needs_unlock = 0;
284 int error;
285
286 if (gl->gl_lksb.sb_lkid == 0) {
287 gfs2_glock_free(gl);
288 return;
289 }
290
291 clear_bit(GLF_BLOCKING, &gl->gl_flags);
292 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
293 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
294 gfs2_update_request_times(gl);
295
296 /* don't want to skip dlm_unlock writing the lvb when lock is ex */
297
298 if (gl->gl_lksb.sb_lvbptr && (gl->gl_state == LM_ST_EXCLUSIVE))
299 lvb_needs_unlock = 1;
300
301 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
302 !lvb_needs_unlock) {
303 gfs2_glock_free(gl);
304 return;
305 }
306
307 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
308 NULL, gl);
309 if (error) {
310 fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n",
311 gl->gl_name.ln_type,
312 (unsigned long long)gl->gl_name.ln_number, error);
313 return;
314 }
315 }
316
gdlm_cancel(struct gfs2_glock * gl)317 static void gdlm_cancel(struct gfs2_glock *gl)
318 {
319 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
320 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
321 }
322
323 /*
324 * dlm/gfs2 recovery coordination using dlm_recover callbacks
325 *
326 * 1. dlm_controld sees lockspace members change
327 * 2. dlm_controld blocks dlm-kernel locking activity
328 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
329 * 4. dlm_controld starts and finishes its own user level recovery
330 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
331 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
332 * 7. dlm_recoverd does its own lock recovery
333 * 8. dlm_recoverd unblocks dlm-kernel locking activity
334 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
335 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
336 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
337 * 12. gfs2_recover dequeues and recovers journals of failed nodes
338 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
339 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
340 * 15. gfs2_control unblocks normal locking when all journals are recovered
341 *
342 * - failures during recovery
343 *
344 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
345 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
346 * recovering for a prior failure. gfs2_control needs a way to detect
347 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using
348 * the recover_block and recover_start values.
349 *
350 * recover_done() provides a new lockspace generation number each time it
351 * is called (step 9). This generation number is saved as recover_start.
352 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
353 * recover_block = recover_start. So, while recover_block is equal to
354 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must
355 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
356 *
357 * - more specific gfs2 steps in sequence above
358 *
359 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
360 * 6. recover_slot records any failed jids (maybe none)
361 * 9. recover_done sets recover_start = new generation number
362 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
363 * 12. gfs2_recover does journal recoveries for failed jids identified above
364 * 14. gfs2_control clears control_lock lvb bits for recovered jids
365 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
366 * again) then do nothing, otherwise if recover_start > recover_block
367 * then clear BLOCK_LOCKS.
368 *
369 * - parallel recovery steps across all nodes
370 *
371 * All nodes attempt to update the control_lock lvb with the new generation
372 * number and jid bits, but only the first to get the control_lock EX will
373 * do so; others will see that it's already done (lvb already contains new
374 * generation number.)
375 *
376 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
377 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
378 * . One node gets control_lock first and writes the lvb, others see it's done
379 * . All nodes attempt to recover jids for which they see control_lock bits set
380 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
381 * . All nodes will eventually see all lvb bits clear and unblock locks
382 *
383 * - is there a problem with clearing an lvb bit that should be set
384 * and missing a journal recovery?
385 *
386 * 1. jid fails
387 * 2. lvb bit set for step 1
388 * 3. jid recovered for step 1
389 * 4. jid taken again (new mount)
390 * 5. jid fails (for step 4)
391 * 6. lvb bit set for step 5 (will already be set)
392 * 7. lvb bit cleared for step 3
393 *
394 * This is not a problem because the failure in step 5 does not
395 * require recovery, because the mount in step 4 could not have
396 * progressed far enough to unblock locks and access the fs. The
397 * control_mount() function waits for all recoveries to be complete
398 * for the latest lockspace generation before ever unblocking locks
399 * and returning. The mount in step 4 waits until the recovery in
400 * step 1 is done.
401 *
402 * - special case of first mounter: first node to mount the fs
403 *
404 * The first node to mount a gfs2 fs needs to check all the journals
405 * and recover any that need recovery before other nodes are allowed
406 * to mount the fs. (Others may begin mounting, but they must wait
407 * for the first mounter to be done before taking locks on the fs
408 * or accessing the fs.) This has two parts:
409 *
410 * 1. The mounted_lock tells a node it's the first to mount the fs.
411 * Each node holds the mounted_lock in PR while it's mounted.
412 * Each node tries to acquire the mounted_lock in EX when it mounts.
413 * If a node is granted the mounted_lock EX it means there are no
414 * other mounted nodes (no PR locks exist), and it is the first mounter.
415 * The mounted_lock is demoted to PR when first recovery is done, so
416 * others will fail to get an EX lock, but will get a PR lock.
417 *
418 * 2. The control_lock blocks others in control_mount() while the first
419 * mounter is doing first mount recovery of all journals.
420 * A mounting node needs to acquire control_lock in EX mode before
421 * it can proceed. The first mounter holds control_lock in EX while doing
422 * the first mount recovery, blocking mounts from other nodes, then demotes
423 * control_lock to NL when it's done (others_may_mount/first_done),
424 * allowing other nodes to continue mounting.
425 *
426 * first mounter:
427 * control_lock EX/NOQUEUE success
428 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
429 * set first=1
430 * do first mounter recovery
431 * mounted_lock EX->PR
432 * control_lock EX->NL, write lvb generation
433 *
434 * other mounter:
435 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
436 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
437 * mounted_lock PR/NOQUEUE success
438 * read lvb generation
439 * control_lock EX->NL
440 * set first=0
441 *
442 * - mount during recovery
443 *
444 * If a node mounts while others are doing recovery (not first mounter),
445 * the mounting node will get its initial recover_done() callback without
446 * having seen any previous failures/callbacks.
447 *
448 * It must wait for all recoveries preceding its mount to be finished
449 * before it unblocks locks. It does this by repeating the "other mounter"
450 * steps above until the lvb generation number is >= its mount generation
451 * number (from initial recover_done) and all lvb bits are clear.
452 *
453 * - control_lock lvb format
454 *
455 * 4 bytes generation number: the latest dlm lockspace generation number
456 * from recover_done callback. Indicates the jid bitmap has been updated
457 * to reflect all slot failures through that generation.
458 * 4 bytes unused.
459 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
460 * that jid N needs recovery.
461 */
462
463 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
464
control_lvb_read(struct lm_lockstruct * ls,uint32_t * lvb_gen,char * lvb_bits)465 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
466 char *lvb_bits)
467 {
468 __le32 gen;
469 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
470 memcpy(&gen, lvb_bits, sizeof(__le32));
471 *lvb_gen = le32_to_cpu(gen);
472 }
473
control_lvb_write(struct lm_lockstruct * ls,uint32_t lvb_gen,char * lvb_bits)474 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
475 char *lvb_bits)
476 {
477 __le32 gen;
478 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
479 gen = cpu_to_le32(lvb_gen);
480 memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
481 }
482
all_jid_bits_clear(char * lvb)483 static int all_jid_bits_clear(char *lvb)
484 {
485 return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
486 GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
487 }
488
sync_wait_cb(void * arg)489 static void sync_wait_cb(void *arg)
490 {
491 struct lm_lockstruct *ls = arg;
492 complete(&ls->ls_sync_wait);
493 }
494
sync_unlock(struct gfs2_sbd * sdp,struct dlm_lksb * lksb,char * name)495 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
496 {
497 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
498 int error;
499
500 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
501 if (error) {
502 fs_err(sdp, "%s lkid %x error %d\n",
503 name, lksb->sb_lkid, error);
504 return error;
505 }
506
507 wait_for_completion(&ls->ls_sync_wait);
508
509 if (lksb->sb_status != -DLM_EUNLOCK) {
510 fs_err(sdp, "%s lkid %x status %d\n",
511 name, lksb->sb_lkid, lksb->sb_status);
512 return -1;
513 }
514 return 0;
515 }
516
sync_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags,unsigned int num,struct dlm_lksb * lksb,char * name)517 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
518 unsigned int num, struct dlm_lksb *lksb, char *name)
519 {
520 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
521 char strname[GDLM_STRNAME_BYTES];
522 int error, status;
523
524 memset(strname, 0, GDLM_STRNAME_BYTES);
525 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
526
527 error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
528 strname, GDLM_STRNAME_BYTES - 1,
529 0, sync_wait_cb, ls, NULL);
530 if (error) {
531 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
532 name, lksb->sb_lkid, flags, mode, error);
533 return error;
534 }
535
536 wait_for_completion(&ls->ls_sync_wait);
537
538 status = lksb->sb_status;
539
540 if (status && status != -EAGAIN) {
541 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
542 name, lksb->sb_lkid, flags, mode, status);
543 }
544
545 return status;
546 }
547
mounted_unlock(struct gfs2_sbd * sdp)548 static int mounted_unlock(struct gfs2_sbd *sdp)
549 {
550 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
551 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
552 }
553
mounted_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags)554 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
555 {
556 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
557 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
558 &ls->ls_mounted_lksb, "mounted_lock");
559 }
560
control_unlock(struct gfs2_sbd * sdp)561 static int control_unlock(struct gfs2_sbd *sdp)
562 {
563 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
564 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
565 }
566
control_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags)567 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
568 {
569 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
570 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
571 &ls->ls_control_lksb, "control_lock");
572 }
573
gfs2_control_func(struct work_struct * work)574 static void gfs2_control_func(struct work_struct *work)
575 {
576 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
577 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
578 uint32_t block_gen, start_gen, lvb_gen, flags;
579 int recover_set = 0;
580 int write_lvb = 0;
581 int recover_size;
582 int i, error;
583
584 spin_lock(&ls->ls_recover_spin);
585 /*
586 * No MOUNT_DONE means we're still mounting; control_mount()
587 * will set this flag, after which this thread will take over
588 * all further clearing of BLOCK_LOCKS.
589 *
590 * FIRST_MOUNT means this node is doing first mounter recovery,
591 * for which recovery control is handled by
592 * control_mount()/control_first_done(), not this thread.
593 */
594 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
595 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
596 spin_unlock(&ls->ls_recover_spin);
597 return;
598 }
599 block_gen = ls->ls_recover_block;
600 start_gen = ls->ls_recover_start;
601 spin_unlock(&ls->ls_recover_spin);
602
603 /*
604 * Equal block_gen and start_gen implies we are between
605 * recover_prep and recover_done callbacks, which means
606 * dlm recovery is in progress and dlm locking is blocked.
607 * There's no point trying to do any work until recover_done.
608 */
609
610 if (block_gen == start_gen)
611 return;
612
613 /*
614 * Propagate recover_submit[] and recover_result[] to lvb:
615 * dlm_recoverd adds to recover_submit[] jids needing recovery
616 * gfs2_recover adds to recover_result[] journal recovery results
617 *
618 * set lvb bit for jids in recover_submit[] if the lvb has not
619 * yet been updated for the generation of the failure
620 *
621 * clear lvb bit for jids in recover_result[] if the result of
622 * the journal recovery is SUCCESS
623 */
624
625 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
626 if (error) {
627 fs_err(sdp, "control lock EX error %d\n", error);
628 return;
629 }
630
631 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
632
633 spin_lock(&ls->ls_recover_spin);
634 if (block_gen != ls->ls_recover_block ||
635 start_gen != ls->ls_recover_start) {
636 fs_info(sdp, "recover generation %u block1 %u %u\n",
637 start_gen, block_gen, ls->ls_recover_block);
638 spin_unlock(&ls->ls_recover_spin);
639 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
640 return;
641 }
642
643 recover_size = ls->ls_recover_size;
644
645 if (lvb_gen <= start_gen) {
646 /*
647 * Clear lvb bits for jids we've successfully recovered.
648 * Because all nodes attempt to recover failed journals,
649 * a journal can be recovered multiple times successfully
650 * in succession. Only the first will really do recovery,
651 * the others find it clean, but still report a successful
652 * recovery. So, another node may have already recovered
653 * the jid and cleared the lvb bit for it.
654 */
655 for (i = 0; i < recover_size; i++) {
656 if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
657 continue;
658
659 ls->ls_recover_result[i] = 0;
660
661 if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
662 continue;
663
664 __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
665 write_lvb = 1;
666 }
667 }
668
669 if (lvb_gen == start_gen) {
670 /*
671 * Failed slots before start_gen are already set in lvb.
672 */
673 for (i = 0; i < recover_size; i++) {
674 if (!ls->ls_recover_submit[i])
675 continue;
676 if (ls->ls_recover_submit[i] < lvb_gen)
677 ls->ls_recover_submit[i] = 0;
678 }
679 } else if (lvb_gen < start_gen) {
680 /*
681 * Failed slots before start_gen are not yet set in lvb.
682 */
683 for (i = 0; i < recover_size; i++) {
684 if (!ls->ls_recover_submit[i])
685 continue;
686 if (ls->ls_recover_submit[i] < start_gen) {
687 ls->ls_recover_submit[i] = 0;
688 __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
689 }
690 }
691 /* even if there are no bits to set, we need to write the
692 latest generation to the lvb */
693 write_lvb = 1;
694 } else {
695 /*
696 * we should be getting a recover_done() for lvb_gen soon
697 */
698 }
699 spin_unlock(&ls->ls_recover_spin);
700
701 if (write_lvb) {
702 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
703 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
704 } else {
705 flags = DLM_LKF_CONVERT;
706 }
707
708 error = control_lock(sdp, DLM_LOCK_NL, flags);
709 if (error) {
710 fs_err(sdp, "control lock NL error %d\n", error);
711 return;
712 }
713
714 /*
715 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
716 * and clear a jid bit in the lvb if the recovery is a success.
717 * Eventually all journals will be recovered, all jid bits will
718 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
719 */
720
721 for (i = 0; i < recover_size; i++) {
722 if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
723 fs_info(sdp, "recover generation %u jid %d\n",
724 start_gen, i);
725 gfs2_recover_set(sdp, i);
726 recover_set++;
727 }
728 }
729 if (recover_set)
730 return;
731
732 /*
733 * No more jid bits set in lvb, all recovery is done, unblock locks
734 * (unless a new recover_prep callback has occured blocking locks
735 * again while working above)
736 */
737
738 spin_lock(&ls->ls_recover_spin);
739 if (ls->ls_recover_block == block_gen &&
740 ls->ls_recover_start == start_gen) {
741 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
742 spin_unlock(&ls->ls_recover_spin);
743 fs_info(sdp, "recover generation %u done\n", start_gen);
744 gfs2_glock_thaw(sdp);
745 } else {
746 fs_info(sdp, "recover generation %u block2 %u %u\n",
747 start_gen, block_gen, ls->ls_recover_block);
748 spin_unlock(&ls->ls_recover_spin);
749 }
750 }
751
control_mount(struct gfs2_sbd * sdp)752 static int control_mount(struct gfs2_sbd *sdp)
753 {
754 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
755 uint32_t start_gen, block_gen, mount_gen, lvb_gen;
756 int mounted_mode;
757 int retries = 0;
758 int error;
759
760 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
761 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
762 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
763 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
764 init_completion(&ls->ls_sync_wait);
765
766 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
767
768 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
769 if (error) {
770 fs_err(sdp, "control_mount control_lock NL error %d\n", error);
771 return error;
772 }
773
774 error = mounted_lock(sdp, DLM_LOCK_NL, 0);
775 if (error) {
776 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
777 control_unlock(sdp);
778 return error;
779 }
780 mounted_mode = DLM_LOCK_NL;
781
782 restart:
783 if (retries++ && signal_pending(current)) {
784 error = -EINTR;
785 goto fail;
786 }
787
788 /*
789 * We always start with both locks in NL. control_lock is
790 * demoted to NL below so we don't need to do it here.
791 */
792
793 if (mounted_mode != DLM_LOCK_NL) {
794 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
795 if (error)
796 goto fail;
797 mounted_mode = DLM_LOCK_NL;
798 }
799
800 /*
801 * Other nodes need to do some work in dlm recovery and gfs2_control
802 * before the recover_done and control_lock will be ready for us below.
803 * A delay here is not required but often avoids having to retry.
804 */
805
806 msleep_interruptible(500);
807
808 /*
809 * Acquire control_lock in EX and mounted_lock in either EX or PR.
810 * control_lock lvb keeps track of any pending journal recoveries.
811 * mounted_lock indicates if any other nodes have the fs mounted.
812 */
813
814 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
815 if (error == -EAGAIN) {
816 goto restart;
817 } else if (error) {
818 fs_err(sdp, "control_mount control_lock EX error %d\n", error);
819 goto fail;
820 }
821
822 /**
823 * If we're a spectator, we don't want to take the lock in EX because
824 * we cannot do the first-mount responsibility it implies: recovery.
825 */
826 if (sdp->sd_args.ar_spectator)
827 goto locks_done;
828
829 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
830 if (!error) {
831 mounted_mode = DLM_LOCK_EX;
832 goto locks_done;
833 } else if (error != -EAGAIN) {
834 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
835 goto fail;
836 }
837
838 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
839 if (!error) {
840 mounted_mode = DLM_LOCK_PR;
841 goto locks_done;
842 } else {
843 /* not even -EAGAIN should happen here */
844 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
845 goto fail;
846 }
847
848 locks_done:
849 /*
850 * If we got both locks above in EX, then we're the first mounter.
851 * If not, then we need to wait for the control_lock lvb to be
852 * updated by other mounted nodes to reflect our mount generation.
853 *
854 * In simple first mounter cases, first mounter will see zero lvb_gen,
855 * but in cases where all existing nodes leave/fail before mounting
856 * nodes finish control_mount, then all nodes will be mounting and
857 * lvb_gen will be non-zero.
858 */
859
860 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
861
862 if (lvb_gen == 0xFFFFFFFF) {
863 /* special value to force mount attempts to fail */
864 fs_err(sdp, "control_mount control_lock disabled\n");
865 error = -EINVAL;
866 goto fail;
867 }
868
869 if (mounted_mode == DLM_LOCK_EX) {
870 /* first mounter, keep both EX while doing first recovery */
871 spin_lock(&ls->ls_recover_spin);
872 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
873 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
874 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
875 spin_unlock(&ls->ls_recover_spin);
876 fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
877 return 0;
878 }
879
880 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
881 if (error)
882 goto fail;
883
884 /*
885 * We are not first mounter, now we need to wait for the control_lock
886 * lvb generation to be >= the generation from our first recover_done
887 * and all lvb bits to be clear (no pending journal recoveries.)
888 */
889
890 if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
891 /* journals need recovery, wait until all are clear */
892 fs_info(sdp, "control_mount wait for journal recovery\n");
893 goto restart;
894 }
895
896 spin_lock(&ls->ls_recover_spin);
897 block_gen = ls->ls_recover_block;
898 start_gen = ls->ls_recover_start;
899 mount_gen = ls->ls_recover_mount;
900
901 if (lvb_gen < mount_gen) {
902 /* wait for mounted nodes to update control_lock lvb to our
903 generation, which might include new recovery bits set */
904 if (sdp->sd_args.ar_spectator) {
905 fs_info(sdp, "Recovery is required. Waiting for a "
906 "non-spectator to mount.\n");
907 msleep_interruptible(1000);
908 } else {
909 fs_info(sdp, "control_mount wait1 block %u start %u "
910 "mount %u lvb %u flags %lx\n", block_gen,
911 start_gen, mount_gen, lvb_gen,
912 ls->ls_recover_flags);
913 }
914 spin_unlock(&ls->ls_recover_spin);
915 goto restart;
916 }
917
918 if (lvb_gen != start_gen) {
919 /* wait for mounted nodes to update control_lock lvb to the
920 latest recovery generation */
921 fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
922 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
923 lvb_gen, ls->ls_recover_flags);
924 spin_unlock(&ls->ls_recover_spin);
925 goto restart;
926 }
927
928 if (block_gen == start_gen) {
929 /* dlm recovery in progress, wait for it to finish */
930 fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
931 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
932 lvb_gen, ls->ls_recover_flags);
933 spin_unlock(&ls->ls_recover_spin);
934 goto restart;
935 }
936
937 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
938 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
939 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
940 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
941 spin_unlock(&ls->ls_recover_spin);
942 return 0;
943
944 fail:
945 mounted_unlock(sdp);
946 control_unlock(sdp);
947 return error;
948 }
949
control_first_done(struct gfs2_sbd * sdp)950 static int control_first_done(struct gfs2_sbd *sdp)
951 {
952 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
953 uint32_t start_gen, block_gen;
954 int error;
955
956 restart:
957 spin_lock(&ls->ls_recover_spin);
958 start_gen = ls->ls_recover_start;
959 block_gen = ls->ls_recover_block;
960
961 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
962 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
963 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
964 /* sanity check, should not happen */
965 fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
966 start_gen, block_gen, ls->ls_recover_flags);
967 spin_unlock(&ls->ls_recover_spin);
968 control_unlock(sdp);
969 return -1;
970 }
971
972 if (start_gen == block_gen) {
973 /*
974 * Wait for the end of a dlm recovery cycle to switch from
975 * first mounter recovery. We can ignore any recover_slot
976 * callbacks between the recover_prep and next recover_done
977 * because we are still the first mounter and any failed nodes
978 * have not fully mounted, so they don't need recovery.
979 */
980 spin_unlock(&ls->ls_recover_spin);
981 fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
982
983 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
984 TASK_UNINTERRUPTIBLE);
985 goto restart;
986 }
987
988 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
989 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
990 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
991 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
992 spin_unlock(&ls->ls_recover_spin);
993
994 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
995 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
996
997 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
998 if (error)
999 fs_err(sdp, "control_first_done mounted PR error %d\n", error);
1000
1001 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
1002 if (error)
1003 fs_err(sdp, "control_first_done control NL error %d\n", error);
1004
1005 return error;
1006 }
1007
1008 /*
1009 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1010 * to accomodate the largest slot number. (NB dlm slot numbers start at 1,
1011 * gfs2 jids start at 0, so jid = slot - 1)
1012 */
1013
1014 #define RECOVER_SIZE_INC 16
1015
set_recover_size(struct gfs2_sbd * sdp,struct dlm_slot * slots,int num_slots)1016 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1017 int num_slots)
1018 {
1019 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1020 uint32_t *submit = NULL;
1021 uint32_t *result = NULL;
1022 uint32_t old_size, new_size;
1023 int i, max_jid;
1024
1025 if (!ls->ls_lvb_bits) {
1026 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1027 if (!ls->ls_lvb_bits)
1028 return -ENOMEM;
1029 }
1030
1031 max_jid = 0;
1032 for (i = 0; i < num_slots; i++) {
1033 if (max_jid < slots[i].slot - 1)
1034 max_jid = slots[i].slot - 1;
1035 }
1036
1037 old_size = ls->ls_recover_size;
1038 new_size = old_size;
1039 while (new_size < max_jid + 1)
1040 new_size += RECOVER_SIZE_INC;
1041 if (new_size == old_size)
1042 return 0;
1043
1044 submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1045 result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1046 if (!submit || !result) {
1047 kfree(submit);
1048 kfree(result);
1049 return -ENOMEM;
1050 }
1051
1052 spin_lock(&ls->ls_recover_spin);
1053 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1054 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1055 kfree(ls->ls_recover_submit);
1056 kfree(ls->ls_recover_result);
1057 ls->ls_recover_submit = submit;
1058 ls->ls_recover_result = result;
1059 ls->ls_recover_size = new_size;
1060 spin_unlock(&ls->ls_recover_spin);
1061 return 0;
1062 }
1063
free_recover_size(struct lm_lockstruct * ls)1064 static void free_recover_size(struct lm_lockstruct *ls)
1065 {
1066 kfree(ls->ls_lvb_bits);
1067 kfree(ls->ls_recover_submit);
1068 kfree(ls->ls_recover_result);
1069 ls->ls_recover_submit = NULL;
1070 ls->ls_recover_result = NULL;
1071 ls->ls_recover_size = 0;
1072 ls->ls_lvb_bits = NULL;
1073 }
1074
1075 /* dlm calls before it does lock recovery */
1076
gdlm_recover_prep(void * arg)1077 static void gdlm_recover_prep(void *arg)
1078 {
1079 struct gfs2_sbd *sdp = arg;
1080 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1081
1082 spin_lock(&ls->ls_recover_spin);
1083 ls->ls_recover_block = ls->ls_recover_start;
1084 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1085
1086 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1087 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1088 spin_unlock(&ls->ls_recover_spin);
1089 return;
1090 }
1091 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1092 spin_unlock(&ls->ls_recover_spin);
1093 }
1094
1095 /* dlm calls after recover_prep has been completed on all lockspace members;
1096 identifies slot/jid of failed member */
1097
gdlm_recover_slot(void * arg,struct dlm_slot * slot)1098 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1099 {
1100 struct gfs2_sbd *sdp = arg;
1101 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1102 int jid = slot->slot - 1;
1103
1104 spin_lock(&ls->ls_recover_spin);
1105 if (ls->ls_recover_size < jid + 1) {
1106 fs_err(sdp, "recover_slot jid %d gen %u short size %d\n",
1107 jid, ls->ls_recover_block, ls->ls_recover_size);
1108 spin_unlock(&ls->ls_recover_spin);
1109 return;
1110 }
1111
1112 if (ls->ls_recover_submit[jid]) {
1113 fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1114 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1115 }
1116 ls->ls_recover_submit[jid] = ls->ls_recover_block;
1117 spin_unlock(&ls->ls_recover_spin);
1118 }
1119
1120 /* dlm calls after recover_slot and after it completes lock recovery */
1121
gdlm_recover_done(void * arg,struct dlm_slot * slots,int num_slots,int our_slot,uint32_t generation)1122 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1123 int our_slot, uint32_t generation)
1124 {
1125 struct gfs2_sbd *sdp = arg;
1126 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1127
1128 /* ensure the ls jid arrays are large enough */
1129 set_recover_size(sdp, slots, num_slots);
1130
1131 spin_lock(&ls->ls_recover_spin);
1132 ls->ls_recover_start = generation;
1133
1134 if (!ls->ls_recover_mount) {
1135 ls->ls_recover_mount = generation;
1136 ls->ls_jid = our_slot - 1;
1137 }
1138
1139 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1140 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1141
1142 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1143 smp_mb__after_atomic();
1144 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1145 spin_unlock(&ls->ls_recover_spin);
1146 }
1147
1148 /* gfs2_recover thread has a journal recovery result */
1149
gdlm_recovery_result(struct gfs2_sbd * sdp,unsigned int jid,unsigned int result)1150 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1151 unsigned int result)
1152 {
1153 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1154
1155 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1156 return;
1157
1158 /* don't care about the recovery of own journal during mount */
1159 if (jid == ls->ls_jid)
1160 return;
1161
1162 spin_lock(&ls->ls_recover_spin);
1163 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1164 spin_unlock(&ls->ls_recover_spin);
1165 return;
1166 }
1167 if (ls->ls_recover_size < jid + 1) {
1168 fs_err(sdp, "recovery_result jid %d short size %d\n",
1169 jid, ls->ls_recover_size);
1170 spin_unlock(&ls->ls_recover_spin);
1171 return;
1172 }
1173
1174 fs_info(sdp, "recover jid %d result %s\n", jid,
1175 result == LM_RD_GAVEUP ? "busy" : "success");
1176
1177 ls->ls_recover_result[jid] = result;
1178
1179 /* GAVEUP means another node is recovering the journal; delay our
1180 next attempt to recover it, to give the other node a chance to
1181 finish before trying again */
1182
1183 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1184 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1185 result == LM_RD_GAVEUP ? HZ : 0);
1186 spin_unlock(&ls->ls_recover_spin);
1187 }
1188
1189 static const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1190 .recover_prep = gdlm_recover_prep,
1191 .recover_slot = gdlm_recover_slot,
1192 .recover_done = gdlm_recover_done,
1193 };
1194
gdlm_mount(struct gfs2_sbd * sdp,const char * table)1195 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1196 {
1197 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1198 char cluster[GFS2_LOCKNAME_LEN];
1199 const char *fsname;
1200 uint32_t flags;
1201 int error, ops_result;
1202
1203 /*
1204 * initialize everything
1205 */
1206
1207 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1208 spin_lock_init(&ls->ls_recover_spin);
1209 ls->ls_recover_flags = 0;
1210 ls->ls_recover_mount = 0;
1211 ls->ls_recover_start = 0;
1212 ls->ls_recover_block = 0;
1213 ls->ls_recover_size = 0;
1214 ls->ls_recover_submit = NULL;
1215 ls->ls_recover_result = NULL;
1216 ls->ls_lvb_bits = NULL;
1217
1218 error = set_recover_size(sdp, NULL, 0);
1219 if (error)
1220 goto fail;
1221
1222 /*
1223 * prepare dlm_new_lockspace args
1224 */
1225
1226 fsname = strchr(table, ':');
1227 if (!fsname) {
1228 fs_info(sdp, "no fsname found\n");
1229 error = -EINVAL;
1230 goto fail_free;
1231 }
1232 memset(cluster, 0, sizeof(cluster));
1233 memcpy(cluster, table, strlen(table) - strlen(fsname));
1234 fsname++;
1235
1236 flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
1237
1238 /*
1239 * create/join lockspace
1240 */
1241
1242 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1243 &gdlm_lockspace_ops, sdp, &ops_result,
1244 &ls->ls_dlm);
1245 if (error) {
1246 fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1247 goto fail_free;
1248 }
1249
1250 if (ops_result < 0) {
1251 /*
1252 * dlm does not support ops callbacks,
1253 * old dlm_controld/gfs_controld are used, try without ops.
1254 */
1255 fs_info(sdp, "dlm lockspace ops not used\n");
1256 free_recover_size(ls);
1257 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1258 return 0;
1259 }
1260
1261 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1262 fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1263 error = -EINVAL;
1264 goto fail_release;
1265 }
1266
1267 /*
1268 * control_mount() uses control_lock to determine first mounter,
1269 * and for later mounts, waits for any recoveries to be cleared.
1270 */
1271
1272 error = control_mount(sdp);
1273 if (error) {
1274 fs_err(sdp, "mount control error %d\n", error);
1275 goto fail_release;
1276 }
1277
1278 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1279 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1280 smp_mb__after_atomic();
1281 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1282 return 0;
1283
1284 fail_release:
1285 dlm_release_lockspace(ls->ls_dlm, 2);
1286 fail_free:
1287 free_recover_size(ls);
1288 fail:
1289 return error;
1290 }
1291
gdlm_first_done(struct gfs2_sbd * sdp)1292 static void gdlm_first_done(struct gfs2_sbd *sdp)
1293 {
1294 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1295 int error;
1296
1297 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1298 return;
1299
1300 error = control_first_done(sdp);
1301 if (error)
1302 fs_err(sdp, "mount first_done error %d\n", error);
1303 }
1304
gdlm_unmount(struct gfs2_sbd * sdp)1305 static void gdlm_unmount(struct gfs2_sbd *sdp)
1306 {
1307 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1308
1309 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1310 goto release;
1311
1312 /* wait for gfs2_control_wq to be done with this mount */
1313
1314 spin_lock(&ls->ls_recover_spin);
1315 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1316 spin_unlock(&ls->ls_recover_spin);
1317 flush_delayed_work(&sdp->sd_control_work);
1318
1319 /* mounted_lock and control_lock will be purged in dlm recovery */
1320 release:
1321 if (ls->ls_dlm) {
1322 dlm_release_lockspace(ls->ls_dlm, 2);
1323 ls->ls_dlm = NULL;
1324 }
1325
1326 free_recover_size(ls);
1327 }
1328
1329 static const match_table_t dlm_tokens = {
1330 { Opt_jid, "jid=%d"},
1331 { Opt_id, "id=%d"},
1332 { Opt_first, "first=%d"},
1333 { Opt_nodir, "nodir=%d"},
1334 { Opt_err, NULL },
1335 };
1336
1337 const struct lm_lockops gfs2_dlm_ops = {
1338 .lm_proto_name = "lock_dlm",
1339 .lm_mount = gdlm_mount,
1340 .lm_first_done = gdlm_first_done,
1341 .lm_recovery_result = gdlm_recovery_result,
1342 .lm_unmount = gdlm_unmount,
1343 .lm_put_lock = gdlm_put_lock,
1344 .lm_lock = gdlm_lock,
1345 .lm_cancel = gdlm_cancel,
1346 .lm_tokens = &dlm_tokens,
1347 };
1348
1349