1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/kernfs/dir.c - kernfs directory implementation
4 *
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 */
9
10 #include <linux/sched.h>
11 #include <linux/fs.h>
12 #include <linux/namei.h>
13 #include <linux/idr.h>
14 #include <linux/slab.h>
15 #include <linux/security.h>
16 #include <linux/hash.h>
17
18 #include "kernfs-internal.h"
19
20 DEFINE_MUTEX(kernfs_mutex);
21 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
22 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */
23 static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */
24
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
26
kernfs_active(struct kernfs_node * kn)27 static bool kernfs_active(struct kernfs_node *kn)
28 {
29 lockdep_assert_held(&kernfs_mutex);
30 return atomic_read(&kn->active) >= 0;
31 }
32
kernfs_lockdep(struct kernfs_node * kn)33 static bool kernfs_lockdep(struct kernfs_node *kn)
34 {
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 return kn->flags & KERNFS_LOCKDEP;
37 #else
38 return false;
39 #endif
40 }
41
kernfs_name_locked(struct kernfs_node * kn,char * buf,size_t buflen)42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43 {
44 if (!kn)
45 return strlcpy(buf, "(null)", buflen);
46
47 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
48 }
49
50 /* kernfs_node_depth - compute depth from @from to @to */
kernfs_depth(struct kernfs_node * from,struct kernfs_node * to)51 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
52 {
53 size_t depth = 0;
54
55 while (to->parent && to != from) {
56 depth++;
57 to = to->parent;
58 }
59 return depth;
60 }
61
kernfs_common_ancestor(struct kernfs_node * a,struct kernfs_node * b)62 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
63 struct kernfs_node *b)
64 {
65 size_t da, db;
66 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
67
68 if (ra != rb)
69 return NULL;
70
71 da = kernfs_depth(ra->kn, a);
72 db = kernfs_depth(rb->kn, b);
73
74 while (da > db) {
75 a = a->parent;
76 da--;
77 }
78 while (db > da) {
79 b = b->parent;
80 db--;
81 }
82
83 /* worst case b and a will be the same at root */
84 while (b != a) {
85 b = b->parent;
86 a = a->parent;
87 }
88
89 return a;
90 }
91
92 /**
93 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
94 * where kn_from is treated as root of the path.
95 * @kn_from: kernfs node which should be treated as root for the path
96 * @kn_to: kernfs node to which path is needed
97 * @buf: buffer to copy the path into
98 * @buflen: size of @buf
99 *
100 * We need to handle couple of scenarios here:
101 * [1] when @kn_from is an ancestor of @kn_to at some level
102 * kn_from: /n1/n2/n3
103 * kn_to: /n1/n2/n3/n4/n5
104 * result: /n4/n5
105 *
106 * [2] when @kn_from is on a different hierarchy and we need to find common
107 * ancestor between @kn_from and @kn_to.
108 * kn_from: /n1/n2/n3/n4
109 * kn_to: /n1/n2/n5
110 * result: /../../n5
111 * OR
112 * kn_from: /n1/n2/n3/n4/n5 [depth=5]
113 * kn_to: /n1/n2/n3 [depth=3]
114 * result: /../..
115 *
116 * [3] when @kn_to is NULL result will be "(null)"
117 *
118 * Returns the length of the full path. If the full length is equal to or
119 * greater than @buflen, @buf contains the truncated path with the trailing
120 * '\0'. On error, -errno is returned.
121 */
kernfs_path_from_node_locked(struct kernfs_node * kn_to,struct kernfs_node * kn_from,char * buf,size_t buflen)122 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
123 struct kernfs_node *kn_from,
124 char *buf, size_t buflen)
125 {
126 struct kernfs_node *kn, *common;
127 const char parent_str[] = "/..";
128 size_t depth_from, depth_to, len = 0;
129 int i, j;
130
131 if (!kn_to)
132 return strlcpy(buf, "(null)", buflen);
133
134 if (!kn_from)
135 kn_from = kernfs_root(kn_to)->kn;
136
137 if (kn_from == kn_to)
138 return strlcpy(buf, "/", buflen);
139
140 if (!buf)
141 return -EINVAL;
142
143 common = kernfs_common_ancestor(kn_from, kn_to);
144 if (WARN_ON(!common))
145 return -EINVAL;
146
147 depth_to = kernfs_depth(common, kn_to);
148 depth_from = kernfs_depth(common, kn_from);
149
150 buf[0] = '\0';
151
152 for (i = 0; i < depth_from; i++)
153 len += strlcpy(buf + len, parent_str,
154 len < buflen ? buflen - len : 0);
155
156 /* Calculate how many bytes we need for the rest */
157 for (i = depth_to - 1; i >= 0; i--) {
158 for (kn = kn_to, j = 0; j < i; j++)
159 kn = kn->parent;
160 len += strlcpy(buf + len, "/",
161 len < buflen ? buflen - len : 0);
162 len += strlcpy(buf + len, kn->name,
163 len < buflen ? buflen - len : 0);
164 }
165
166 return len;
167 }
168
169 /**
170 * kernfs_name - obtain the name of a given node
171 * @kn: kernfs_node of interest
172 * @buf: buffer to copy @kn's name into
173 * @buflen: size of @buf
174 *
175 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
176 * similar to strlcpy(). It returns the length of @kn's name and if @buf
177 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
178 *
179 * Fills buffer with "(null)" if @kn is NULL.
180 *
181 * This function can be called from any context.
182 */
kernfs_name(struct kernfs_node * kn,char * buf,size_t buflen)183 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
184 {
185 unsigned long flags;
186 int ret;
187
188 spin_lock_irqsave(&kernfs_rename_lock, flags);
189 ret = kernfs_name_locked(kn, buf, buflen);
190 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
191 return ret;
192 }
193
194 /**
195 * kernfs_path_from_node - build path of node @to relative to @from.
196 * @from: parent kernfs_node relative to which we need to build the path
197 * @to: kernfs_node of interest
198 * @buf: buffer to copy @to's path into
199 * @buflen: size of @buf
200 *
201 * Builds @to's path relative to @from in @buf. @from and @to must
202 * be on the same kernfs-root. If @from is not parent of @to, then a relative
203 * path (which includes '..'s) as needed to reach from @from to @to is
204 * returned.
205 *
206 * Returns the length of the full path. If the full length is equal to or
207 * greater than @buflen, @buf contains the truncated path with the trailing
208 * '\0'. On error, -errno is returned.
209 */
kernfs_path_from_node(struct kernfs_node * to,struct kernfs_node * from,char * buf,size_t buflen)210 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
211 char *buf, size_t buflen)
212 {
213 unsigned long flags;
214 int ret;
215
216 spin_lock_irqsave(&kernfs_rename_lock, flags);
217 ret = kernfs_path_from_node_locked(to, from, buf, buflen);
218 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
219 return ret;
220 }
221 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
222
223 /**
224 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
225 * @kn: kernfs_node of interest
226 *
227 * This function can be called from any context.
228 */
pr_cont_kernfs_name(struct kernfs_node * kn)229 void pr_cont_kernfs_name(struct kernfs_node *kn)
230 {
231 unsigned long flags;
232
233 spin_lock_irqsave(&kernfs_rename_lock, flags);
234
235 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
236 pr_cont("%s", kernfs_pr_cont_buf);
237
238 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
239 }
240
241 /**
242 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
243 * @kn: kernfs_node of interest
244 *
245 * This function can be called from any context.
246 */
pr_cont_kernfs_path(struct kernfs_node * kn)247 void pr_cont_kernfs_path(struct kernfs_node *kn)
248 {
249 unsigned long flags;
250 int sz;
251
252 spin_lock_irqsave(&kernfs_rename_lock, flags);
253
254 sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
255 sizeof(kernfs_pr_cont_buf));
256 if (sz < 0) {
257 pr_cont("(error)");
258 goto out;
259 }
260
261 if (sz >= sizeof(kernfs_pr_cont_buf)) {
262 pr_cont("(name too long)");
263 goto out;
264 }
265
266 pr_cont("%s", kernfs_pr_cont_buf);
267
268 out:
269 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
270 }
271
272 /**
273 * kernfs_get_parent - determine the parent node and pin it
274 * @kn: kernfs_node of interest
275 *
276 * Determines @kn's parent, pins and returns it. This function can be
277 * called from any context.
278 */
kernfs_get_parent(struct kernfs_node * kn)279 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
280 {
281 struct kernfs_node *parent;
282 unsigned long flags;
283
284 spin_lock_irqsave(&kernfs_rename_lock, flags);
285 parent = kn->parent;
286 kernfs_get(parent);
287 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
288
289 return parent;
290 }
291
292 /**
293 * kernfs_name_hash
294 * @name: Null terminated string to hash
295 * @ns: Namespace tag to hash
296 *
297 * Returns 31 bit hash of ns + name (so it fits in an off_t )
298 */
kernfs_name_hash(const char * name,const void * ns)299 static unsigned int kernfs_name_hash(const char *name, const void *ns)
300 {
301 unsigned long hash = init_name_hash(ns);
302 unsigned int len = strlen(name);
303 while (len--)
304 hash = partial_name_hash(*name++, hash);
305 hash = end_name_hash(hash);
306 hash &= 0x7fffffffU;
307 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
308 if (hash < 2)
309 hash += 2;
310 if (hash >= INT_MAX)
311 hash = INT_MAX - 1;
312 return hash;
313 }
314
kernfs_name_compare(unsigned int hash,const char * name,const void * ns,const struct kernfs_node * kn)315 static int kernfs_name_compare(unsigned int hash, const char *name,
316 const void *ns, const struct kernfs_node *kn)
317 {
318 if (hash < kn->hash)
319 return -1;
320 if (hash > kn->hash)
321 return 1;
322 if (ns < kn->ns)
323 return -1;
324 if (ns > kn->ns)
325 return 1;
326 return strcmp(name, kn->name);
327 }
328
kernfs_sd_compare(const struct kernfs_node * left,const struct kernfs_node * right)329 static int kernfs_sd_compare(const struct kernfs_node *left,
330 const struct kernfs_node *right)
331 {
332 return kernfs_name_compare(left->hash, left->name, left->ns, right);
333 }
334
335 /**
336 * kernfs_link_sibling - link kernfs_node into sibling rbtree
337 * @kn: kernfs_node of interest
338 *
339 * Link @kn into its sibling rbtree which starts from
340 * @kn->parent->dir.children.
341 *
342 * Locking:
343 * mutex_lock(kernfs_mutex)
344 *
345 * RETURNS:
346 * 0 on susccess -EEXIST on failure.
347 */
kernfs_link_sibling(struct kernfs_node * kn)348 static int kernfs_link_sibling(struct kernfs_node *kn)
349 {
350 struct rb_node **node = &kn->parent->dir.children.rb_node;
351 struct rb_node *parent = NULL;
352
353 while (*node) {
354 struct kernfs_node *pos;
355 int result;
356
357 pos = rb_to_kn(*node);
358 parent = *node;
359 result = kernfs_sd_compare(kn, pos);
360 if (result < 0)
361 node = &pos->rb.rb_left;
362 else if (result > 0)
363 node = &pos->rb.rb_right;
364 else
365 return -EEXIST;
366 }
367
368 /* add new node and rebalance the tree */
369 rb_link_node(&kn->rb, parent, node);
370 rb_insert_color(&kn->rb, &kn->parent->dir.children);
371
372 /* successfully added, account subdir number */
373 if (kernfs_type(kn) == KERNFS_DIR)
374 kn->parent->dir.subdirs++;
375
376 return 0;
377 }
378
379 /**
380 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
381 * @kn: kernfs_node of interest
382 *
383 * Try to unlink @kn from its sibling rbtree which starts from
384 * kn->parent->dir.children. Returns %true if @kn was actually
385 * removed, %false if @kn wasn't on the rbtree.
386 *
387 * Locking:
388 * mutex_lock(kernfs_mutex)
389 */
kernfs_unlink_sibling(struct kernfs_node * kn)390 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
391 {
392 if (RB_EMPTY_NODE(&kn->rb))
393 return false;
394
395 if (kernfs_type(kn) == KERNFS_DIR)
396 kn->parent->dir.subdirs--;
397
398 rb_erase(&kn->rb, &kn->parent->dir.children);
399 RB_CLEAR_NODE(&kn->rb);
400 return true;
401 }
402
403 /**
404 * kernfs_get_active - get an active reference to kernfs_node
405 * @kn: kernfs_node to get an active reference to
406 *
407 * Get an active reference of @kn. This function is noop if @kn
408 * is NULL.
409 *
410 * RETURNS:
411 * Pointer to @kn on success, NULL on failure.
412 */
kernfs_get_active(struct kernfs_node * kn)413 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
414 {
415 if (unlikely(!kn))
416 return NULL;
417
418 if (!atomic_inc_unless_negative(&kn->active))
419 return NULL;
420
421 if (kernfs_lockdep(kn))
422 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
423 return kn;
424 }
425
426 /**
427 * kernfs_put_active - put an active reference to kernfs_node
428 * @kn: kernfs_node to put an active reference to
429 *
430 * Put an active reference to @kn. This function is noop if @kn
431 * is NULL.
432 */
kernfs_put_active(struct kernfs_node * kn)433 void kernfs_put_active(struct kernfs_node *kn)
434 {
435 int v;
436
437 if (unlikely(!kn))
438 return;
439
440 if (kernfs_lockdep(kn))
441 rwsem_release(&kn->dep_map, 1, _RET_IP_);
442 v = atomic_dec_return(&kn->active);
443 if (likely(v != KN_DEACTIVATED_BIAS))
444 return;
445
446 wake_up_all(&kernfs_root(kn)->deactivate_waitq);
447 }
448
449 /**
450 * kernfs_drain - drain kernfs_node
451 * @kn: kernfs_node to drain
452 *
453 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
454 * removers may invoke this function concurrently on @kn and all will
455 * return after draining is complete.
456 */
kernfs_drain(struct kernfs_node * kn)457 static void kernfs_drain(struct kernfs_node *kn)
458 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
459 {
460 struct kernfs_root *root = kernfs_root(kn);
461
462 lockdep_assert_held(&kernfs_mutex);
463 WARN_ON_ONCE(kernfs_active(kn));
464
465 mutex_unlock(&kernfs_mutex);
466
467 if (kernfs_lockdep(kn)) {
468 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
469 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
470 lock_contended(&kn->dep_map, _RET_IP_);
471 }
472
473 /* but everyone should wait for draining */
474 wait_event(root->deactivate_waitq,
475 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
476
477 if (kernfs_lockdep(kn)) {
478 lock_acquired(&kn->dep_map, _RET_IP_);
479 rwsem_release(&kn->dep_map, 1, _RET_IP_);
480 }
481
482 kernfs_drain_open_files(kn);
483
484 mutex_lock(&kernfs_mutex);
485 }
486
487 /**
488 * kernfs_get - get a reference count on a kernfs_node
489 * @kn: the target kernfs_node
490 */
kernfs_get(struct kernfs_node * kn)491 void kernfs_get(struct kernfs_node *kn)
492 {
493 if (kn) {
494 WARN_ON(!atomic_read(&kn->count));
495 atomic_inc(&kn->count);
496 }
497 }
498 EXPORT_SYMBOL_GPL(kernfs_get);
499
500 /**
501 * kernfs_put - put a reference count on a kernfs_node
502 * @kn: the target kernfs_node
503 *
504 * Put a reference count of @kn and destroy it if it reached zero.
505 */
kernfs_put(struct kernfs_node * kn)506 void kernfs_put(struct kernfs_node *kn)
507 {
508 struct kernfs_node *parent;
509 struct kernfs_root *root;
510
511 /*
512 * kernfs_node is freed with ->count 0, kernfs_find_and_get_node_by_ino
513 * depends on this to filter reused stale node
514 */
515 if (!kn || !atomic_dec_and_test(&kn->count))
516 return;
517 root = kernfs_root(kn);
518 repeat:
519 /*
520 * Moving/renaming is always done while holding reference.
521 * kn->parent won't change beneath us.
522 */
523 parent = kn->parent;
524
525 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
526 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
527 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
528
529 if (kernfs_type(kn) == KERNFS_LINK)
530 kernfs_put(kn->symlink.target_kn);
531
532 kfree_const(kn->name);
533
534 if (kn->iattr) {
535 simple_xattrs_free(&kn->iattr->xattrs);
536 kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
537 }
538 spin_lock(&kernfs_idr_lock);
539 idr_remove(&root->ino_idr, kn->id.ino);
540 spin_unlock(&kernfs_idr_lock);
541 kmem_cache_free(kernfs_node_cache, kn);
542
543 kn = parent;
544 if (kn) {
545 if (atomic_dec_and_test(&kn->count))
546 goto repeat;
547 } else {
548 /* just released the root kn, free @root too */
549 idr_destroy(&root->ino_idr);
550 kfree(root);
551 }
552 }
553 EXPORT_SYMBOL_GPL(kernfs_put);
554
kernfs_dop_revalidate(struct dentry * dentry,unsigned int flags)555 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
556 {
557 struct kernfs_node *kn;
558
559 if (flags & LOOKUP_RCU)
560 return -ECHILD;
561
562 /* Always perform fresh lookup for negatives */
563 if (d_really_is_negative(dentry))
564 goto out_bad_unlocked;
565
566 kn = kernfs_dentry_node(dentry);
567 mutex_lock(&kernfs_mutex);
568
569 /* The kernfs node has been deactivated */
570 if (!kernfs_active(kn))
571 goto out_bad;
572
573 /* The kernfs node has been moved? */
574 if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
575 goto out_bad;
576
577 /* The kernfs node has been renamed */
578 if (strcmp(dentry->d_name.name, kn->name) != 0)
579 goto out_bad;
580
581 /* The kernfs node has been moved to a different namespace */
582 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
583 kernfs_info(dentry->d_sb)->ns != kn->ns)
584 goto out_bad;
585
586 mutex_unlock(&kernfs_mutex);
587 return 1;
588 out_bad:
589 mutex_unlock(&kernfs_mutex);
590 out_bad_unlocked:
591 return 0;
592 }
593
594 const struct dentry_operations kernfs_dops = {
595 .d_revalidate = kernfs_dop_revalidate,
596 };
597
598 /**
599 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
600 * @dentry: the dentry in question
601 *
602 * Return the kernfs_node associated with @dentry. If @dentry is not a
603 * kernfs one, %NULL is returned.
604 *
605 * While the returned kernfs_node will stay accessible as long as @dentry
606 * is accessible, the returned node can be in any state and the caller is
607 * fully responsible for determining what's accessible.
608 */
kernfs_node_from_dentry(struct dentry * dentry)609 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
610 {
611 if (dentry->d_sb->s_op == &kernfs_sops &&
612 !d_really_is_negative(dentry))
613 return kernfs_dentry_node(dentry);
614 return NULL;
615 }
616
__kernfs_new_node(struct kernfs_root * root,struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,unsigned flags)617 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
618 struct kernfs_node *parent,
619 const char *name, umode_t mode,
620 kuid_t uid, kgid_t gid,
621 unsigned flags)
622 {
623 struct kernfs_node *kn;
624 u32 gen;
625 int ret;
626
627 name = kstrdup_const(name, GFP_KERNEL);
628 if (!name)
629 return NULL;
630
631 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
632 if (!kn)
633 goto err_out1;
634
635 idr_preload(GFP_KERNEL);
636 spin_lock(&kernfs_idr_lock);
637 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
638 if (ret >= 0 && ret < root->last_ino)
639 root->next_generation++;
640 gen = root->next_generation;
641 root->last_ino = ret;
642 spin_unlock(&kernfs_idr_lock);
643 idr_preload_end();
644 if (ret < 0)
645 goto err_out2;
646 kn->id.ino = ret;
647 kn->id.generation = gen;
648
649 /*
650 * set ino first. This RELEASE is paired with atomic_inc_not_zero in
651 * kernfs_find_and_get_node_by_ino
652 */
653 atomic_set_release(&kn->count, 1);
654 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
655 RB_CLEAR_NODE(&kn->rb);
656
657 kn->name = name;
658 kn->mode = mode;
659 kn->flags = flags;
660
661 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
662 struct iattr iattr = {
663 .ia_valid = ATTR_UID | ATTR_GID,
664 .ia_uid = uid,
665 .ia_gid = gid,
666 };
667
668 ret = __kernfs_setattr(kn, &iattr);
669 if (ret < 0)
670 goto err_out3;
671 }
672
673 if (parent) {
674 ret = security_kernfs_init_security(parent, kn);
675 if (ret)
676 goto err_out3;
677 }
678
679 return kn;
680
681 err_out3:
682 idr_remove(&root->ino_idr, kn->id.ino);
683 err_out2:
684 kmem_cache_free(kernfs_node_cache, kn);
685 err_out1:
686 kfree_const(name);
687 return NULL;
688 }
689
kernfs_new_node(struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,unsigned flags)690 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
691 const char *name, umode_t mode,
692 kuid_t uid, kgid_t gid,
693 unsigned flags)
694 {
695 struct kernfs_node *kn;
696
697 kn = __kernfs_new_node(kernfs_root(parent), parent,
698 name, mode, uid, gid, flags);
699 if (kn) {
700 kernfs_get(parent);
701 kn->parent = parent;
702 }
703 return kn;
704 }
705
706 /*
707 * kernfs_find_and_get_node_by_ino - get kernfs_node from inode number
708 * @root: the kernfs root
709 * @ino: inode number
710 *
711 * RETURNS:
712 * NULL on failure. Return a kernfs node with reference counter incremented
713 */
kernfs_find_and_get_node_by_ino(struct kernfs_root * root,unsigned int ino)714 struct kernfs_node *kernfs_find_and_get_node_by_ino(struct kernfs_root *root,
715 unsigned int ino)
716 {
717 struct kernfs_node *kn;
718
719 rcu_read_lock();
720 kn = idr_find(&root->ino_idr, ino);
721 if (!kn)
722 goto out;
723
724 /*
725 * Since kernfs_node is freed in RCU, it's possible an old node for ino
726 * is freed, but reused before RCU grace period. But a freed node (see
727 * kernfs_put) or an incompletedly initialized node (see
728 * __kernfs_new_node) should have 'count' 0. We can use this fact to
729 * filter out such node.
730 */
731 if (!atomic_inc_not_zero(&kn->count)) {
732 kn = NULL;
733 goto out;
734 }
735
736 /*
737 * The node could be a new node or a reused node. If it's a new node,
738 * we are ok. If it's reused because of RCU (because of
739 * SLAB_TYPESAFE_BY_RCU), the __kernfs_new_node always sets its 'ino'
740 * before 'count'. So if 'count' is uptodate, 'ino' should be uptodate,
741 * hence we can use 'ino' to filter stale node.
742 */
743 if (kn->id.ino != ino)
744 goto out;
745 rcu_read_unlock();
746
747 return kn;
748 out:
749 rcu_read_unlock();
750 kernfs_put(kn);
751 return NULL;
752 }
753
754 /**
755 * kernfs_add_one - add kernfs_node to parent without warning
756 * @kn: kernfs_node to be added
757 *
758 * The caller must already have initialized @kn->parent. This
759 * function increments nlink of the parent's inode if @kn is a
760 * directory and link into the children list of the parent.
761 *
762 * RETURNS:
763 * 0 on success, -EEXIST if entry with the given name already
764 * exists.
765 */
kernfs_add_one(struct kernfs_node * kn)766 int kernfs_add_one(struct kernfs_node *kn)
767 {
768 struct kernfs_node *parent = kn->parent;
769 struct kernfs_iattrs *ps_iattr;
770 bool has_ns;
771 int ret;
772
773 mutex_lock(&kernfs_mutex);
774
775 ret = -EINVAL;
776 has_ns = kernfs_ns_enabled(parent);
777 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
778 has_ns ? "required" : "invalid", parent->name, kn->name))
779 goto out_unlock;
780
781 if (kernfs_type(parent) != KERNFS_DIR)
782 goto out_unlock;
783
784 ret = -ENOENT;
785 if (parent->flags & KERNFS_EMPTY_DIR)
786 goto out_unlock;
787
788 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
789 goto out_unlock;
790
791 kn->hash = kernfs_name_hash(kn->name, kn->ns);
792
793 ret = kernfs_link_sibling(kn);
794 if (ret)
795 goto out_unlock;
796
797 /* Update timestamps on the parent */
798 ps_iattr = parent->iattr;
799 if (ps_iattr) {
800 ktime_get_real_ts64(&ps_iattr->ia_ctime);
801 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
802 }
803
804 mutex_unlock(&kernfs_mutex);
805
806 /*
807 * Activate the new node unless CREATE_DEACTIVATED is requested.
808 * If not activated here, the kernfs user is responsible for
809 * activating the node with kernfs_activate(). A node which hasn't
810 * been activated is not visible to userland and its removal won't
811 * trigger deactivation.
812 */
813 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
814 kernfs_activate(kn);
815 return 0;
816
817 out_unlock:
818 mutex_unlock(&kernfs_mutex);
819 return ret;
820 }
821
822 /**
823 * kernfs_find_ns - find kernfs_node with the given name
824 * @parent: kernfs_node to search under
825 * @name: name to look for
826 * @ns: the namespace tag to use
827 *
828 * Look for kernfs_node with name @name under @parent. Returns pointer to
829 * the found kernfs_node on success, %NULL on failure.
830 */
kernfs_find_ns(struct kernfs_node * parent,const unsigned char * name,const void * ns)831 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
832 const unsigned char *name,
833 const void *ns)
834 {
835 struct rb_node *node = parent->dir.children.rb_node;
836 bool has_ns = kernfs_ns_enabled(parent);
837 unsigned int hash;
838
839 lockdep_assert_held(&kernfs_mutex);
840
841 if (has_ns != (bool)ns) {
842 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
843 has_ns ? "required" : "invalid", parent->name, name);
844 return NULL;
845 }
846
847 hash = kernfs_name_hash(name, ns);
848 while (node) {
849 struct kernfs_node *kn;
850 int result;
851
852 kn = rb_to_kn(node);
853 result = kernfs_name_compare(hash, name, ns, kn);
854 if (result < 0)
855 node = node->rb_left;
856 else if (result > 0)
857 node = node->rb_right;
858 else
859 return kn;
860 }
861 return NULL;
862 }
863
kernfs_walk_ns(struct kernfs_node * parent,const unsigned char * path,const void * ns)864 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
865 const unsigned char *path,
866 const void *ns)
867 {
868 size_t len;
869 char *p, *name;
870
871 lockdep_assert_held(&kernfs_mutex);
872
873 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
874 spin_lock_irq(&kernfs_rename_lock);
875
876 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
877
878 if (len >= sizeof(kernfs_pr_cont_buf)) {
879 spin_unlock_irq(&kernfs_rename_lock);
880 return NULL;
881 }
882
883 p = kernfs_pr_cont_buf;
884
885 while ((name = strsep(&p, "/")) && parent) {
886 if (*name == '\0')
887 continue;
888 parent = kernfs_find_ns(parent, name, ns);
889 }
890
891 spin_unlock_irq(&kernfs_rename_lock);
892
893 return parent;
894 }
895
896 /**
897 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
898 * @parent: kernfs_node to search under
899 * @name: name to look for
900 * @ns: the namespace tag to use
901 *
902 * Look for kernfs_node with name @name under @parent and get a reference
903 * if found. This function may sleep and returns pointer to the found
904 * kernfs_node on success, %NULL on failure.
905 */
kernfs_find_and_get_ns(struct kernfs_node * parent,const char * name,const void * ns)906 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
907 const char *name, const void *ns)
908 {
909 struct kernfs_node *kn;
910
911 mutex_lock(&kernfs_mutex);
912 kn = kernfs_find_ns(parent, name, ns);
913 kernfs_get(kn);
914 mutex_unlock(&kernfs_mutex);
915
916 return kn;
917 }
918 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
919
920 /**
921 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
922 * @parent: kernfs_node to search under
923 * @path: path to look for
924 * @ns: the namespace tag to use
925 *
926 * Look for kernfs_node with path @path under @parent and get a reference
927 * if found. This function may sleep and returns pointer to the found
928 * kernfs_node on success, %NULL on failure.
929 */
kernfs_walk_and_get_ns(struct kernfs_node * parent,const char * path,const void * ns)930 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
931 const char *path, const void *ns)
932 {
933 struct kernfs_node *kn;
934
935 mutex_lock(&kernfs_mutex);
936 kn = kernfs_walk_ns(parent, path, ns);
937 kernfs_get(kn);
938 mutex_unlock(&kernfs_mutex);
939
940 return kn;
941 }
942
943 /**
944 * kernfs_create_root - create a new kernfs hierarchy
945 * @scops: optional syscall operations for the hierarchy
946 * @flags: KERNFS_ROOT_* flags
947 * @priv: opaque data associated with the new directory
948 *
949 * Returns the root of the new hierarchy on success, ERR_PTR() value on
950 * failure.
951 */
kernfs_create_root(struct kernfs_syscall_ops * scops,unsigned int flags,void * priv)952 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
953 unsigned int flags, void *priv)
954 {
955 struct kernfs_root *root;
956 struct kernfs_node *kn;
957
958 root = kzalloc(sizeof(*root), GFP_KERNEL);
959 if (!root)
960 return ERR_PTR(-ENOMEM);
961
962 idr_init(&root->ino_idr);
963 INIT_LIST_HEAD(&root->supers);
964 root->next_generation = 1;
965
966 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
967 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
968 KERNFS_DIR);
969 if (!kn) {
970 idr_destroy(&root->ino_idr);
971 kfree(root);
972 return ERR_PTR(-ENOMEM);
973 }
974
975 kn->priv = priv;
976 kn->dir.root = root;
977
978 root->syscall_ops = scops;
979 root->flags = flags;
980 root->kn = kn;
981 init_waitqueue_head(&root->deactivate_waitq);
982
983 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
984 kernfs_activate(kn);
985
986 return root;
987 }
988
989 /**
990 * kernfs_destroy_root - destroy a kernfs hierarchy
991 * @root: root of the hierarchy to destroy
992 *
993 * Destroy the hierarchy anchored at @root by removing all existing
994 * directories and destroying @root.
995 */
kernfs_destroy_root(struct kernfs_root * root)996 void kernfs_destroy_root(struct kernfs_root *root)
997 {
998 kernfs_remove(root->kn); /* will also free @root */
999 }
1000
1001 /**
1002 * kernfs_create_dir_ns - create a directory
1003 * @parent: parent in which to create a new directory
1004 * @name: name of the new directory
1005 * @mode: mode of the new directory
1006 * @uid: uid of the new directory
1007 * @gid: gid of the new directory
1008 * @priv: opaque data associated with the new directory
1009 * @ns: optional namespace tag of the directory
1010 *
1011 * Returns the created node on success, ERR_PTR() value on failure.
1012 */
kernfs_create_dir_ns(struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,void * priv,const void * ns)1013 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1014 const char *name, umode_t mode,
1015 kuid_t uid, kgid_t gid,
1016 void *priv, const void *ns)
1017 {
1018 struct kernfs_node *kn;
1019 int rc;
1020
1021 /* allocate */
1022 kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1023 uid, gid, KERNFS_DIR);
1024 if (!kn)
1025 return ERR_PTR(-ENOMEM);
1026
1027 kn->dir.root = parent->dir.root;
1028 kn->ns = ns;
1029 kn->priv = priv;
1030
1031 /* link in */
1032 rc = kernfs_add_one(kn);
1033 if (!rc)
1034 return kn;
1035
1036 kernfs_put(kn);
1037 return ERR_PTR(rc);
1038 }
1039
1040 /**
1041 * kernfs_create_empty_dir - create an always empty directory
1042 * @parent: parent in which to create a new directory
1043 * @name: name of the new directory
1044 *
1045 * Returns the created node on success, ERR_PTR() value on failure.
1046 */
kernfs_create_empty_dir(struct kernfs_node * parent,const char * name)1047 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1048 const char *name)
1049 {
1050 struct kernfs_node *kn;
1051 int rc;
1052
1053 /* allocate */
1054 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1055 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1056 if (!kn)
1057 return ERR_PTR(-ENOMEM);
1058
1059 kn->flags |= KERNFS_EMPTY_DIR;
1060 kn->dir.root = parent->dir.root;
1061 kn->ns = NULL;
1062 kn->priv = NULL;
1063
1064 /* link in */
1065 rc = kernfs_add_one(kn);
1066 if (!rc)
1067 return kn;
1068
1069 kernfs_put(kn);
1070 return ERR_PTR(rc);
1071 }
1072
kernfs_iop_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1073 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1074 struct dentry *dentry,
1075 unsigned int flags)
1076 {
1077 struct dentry *ret;
1078 struct kernfs_node *parent = dir->i_private;
1079 struct kernfs_node *kn;
1080 struct inode *inode;
1081 const void *ns = NULL;
1082
1083 mutex_lock(&kernfs_mutex);
1084
1085 if (kernfs_ns_enabled(parent))
1086 ns = kernfs_info(dir->i_sb)->ns;
1087
1088 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1089
1090 /* no such entry */
1091 if (!kn || !kernfs_active(kn)) {
1092 ret = NULL;
1093 goto out_unlock;
1094 }
1095
1096 /* attach dentry and inode */
1097 inode = kernfs_get_inode(dir->i_sb, kn);
1098 if (!inode) {
1099 ret = ERR_PTR(-ENOMEM);
1100 goto out_unlock;
1101 }
1102
1103 /* instantiate and hash dentry */
1104 ret = d_splice_alias(inode, dentry);
1105 out_unlock:
1106 mutex_unlock(&kernfs_mutex);
1107 return ret;
1108 }
1109
kernfs_iop_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)1110 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
1111 umode_t mode)
1112 {
1113 struct kernfs_node *parent = dir->i_private;
1114 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1115 int ret;
1116
1117 if (!scops || !scops->mkdir)
1118 return -EPERM;
1119
1120 if (!kernfs_get_active(parent))
1121 return -ENODEV;
1122
1123 ret = scops->mkdir(parent, dentry->d_name.name, mode);
1124
1125 kernfs_put_active(parent);
1126 return ret;
1127 }
1128
kernfs_iop_rmdir(struct inode * dir,struct dentry * dentry)1129 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1130 {
1131 struct kernfs_node *kn = kernfs_dentry_node(dentry);
1132 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1133 int ret;
1134
1135 if (!scops || !scops->rmdir)
1136 return -EPERM;
1137
1138 if (!kernfs_get_active(kn))
1139 return -ENODEV;
1140
1141 ret = scops->rmdir(kn);
1142
1143 kernfs_put_active(kn);
1144 return ret;
1145 }
1146
kernfs_iop_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)1147 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1148 struct inode *new_dir, struct dentry *new_dentry,
1149 unsigned int flags)
1150 {
1151 struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1152 struct kernfs_node *new_parent = new_dir->i_private;
1153 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1154 int ret;
1155
1156 if (flags)
1157 return -EINVAL;
1158
1159 if (!scops || !scops->rename)
1160 return -EPERM;
1161
1162 if (!kernfs_get_active(kn))
1163 return -ENODEV;
1164
1165 if (!kernfs_get_active(new_parent)) {
1166 kernfs_put_active(kn);
1167 return -ENODEV;
1168 }
1169
1170 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1171
1172 kernfs_put_active(new_parent);
1173 kernfs_put_active(kn);
1174 return ret;
1175 }
1176
1177 const struct inode_operations kernfs_dir_iops = {
1178 .lookup = kernfs_iop_lookup,
1179 .permission = kernfs_iop_permission,
1180 .setattr = kernfs_iop_setattr,
1181 .getattr = kernfs_iop_getattr,
1182 .listxattr = kernfs_iop_listxattr,
1183
1184 .mkdir = kernfs_iop_mkdir,
1185 .rmdir = kernfs_iop_rmdir,
1186 .rename = kernfs_iop_rename,
1187 };
1188
kernfs_leftmost_descendant(struct kernfs_node * pos)1189 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1190 {
1191 struct kernfs_node *last;
1192
1193 while (true) {
1194 struct rb_node *rbn;
1195
1196 last = pos;
1197
1198 if (kernfs_type(pos) != KERNFS_DIR)
1199 break;
1200
1201 rbn = rb_first(&pos->dir.children);
1202 if (!rbn)
1203 break;
1204
1205 pos = rb_to_kn(rbn);
1206 }
1207
1208 return last;
1209 }
1210
1211 /**
1212 * kernfs_next_descendant_post - find the next descendant for post-order walk
1213 * @pos: the current position (%NULL to initiate traversal)
1214 * @root: kernfs_node whose descendants to walk
1215 *
1216 * Find the next descendant to visit for post-order traversal of @root's
1217 * descendants. @root is included in the iteration and the last node to be
1218 * visited.
1219 */
kernfs_next_descendant_post(struct kernfs_node * pos,struct kernfs_node * root)1220 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1221 struct kernfs_node *root)
1222 {
1223 struct rb_node *rbn;
1224
1225 lockdep_assert_held(&kernfs_mutex);
1226
1227 /* if first iteration, visit leftmost descendant which may be root */
1228 if (!pos)
1229 return kernfs_leftmost_descendant(root);
1230
1231 /* if we visited @root, we're done */
1232 if (pos == root)
1233 return NULL;
1234
1235 /* if there's an unvisited sibling, visit its leftmost descendant */
1236 rbn = rb_next(&pos->rb);
1237 if (rbn)
1238 return kernfs_leftmost_descendant(rb_to_kn(rbn));
1239
1240 /* no sibling left, visit parent */
1241 return pos->parent;
1242 }
1243
1244 /**
1245 * kernfs_activate - activate a node which started deactivated
1246 * @kn: kernfs_node whose subtree is to be activated
1247 *
1248 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1249 * needs to be explicitly activated. A node which hasn't been activated
1250 * isn't visible to userland and deactivation is skipped during its
1251 * removal. This is useful to construct atomic init sequences where
1252 * creation of multiple nodes should either succeed or fail atomically.
1253 *
1254 * The caller is responsible for ensuring that this function is not called
1255 * after kernfs_remove*() is invoked on @kn.
1256 */
kernfs_activate(struct kernfs_node * kn)1257 void kernfs_activate(struct kernfs_node *kn)
1258 {
1259 struct kernfs_node *pos;
1260
1261 mutex_lock(&kernfs_mutex);
1262
1263 pos = NULL;
1264 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1265 if (!pos || (pos->flags & KERNFS_ACTIVATED))
1266 continue;
1267
1268 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1269 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1270
1271 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1272 pos->flags |= KERNFS_ACTIVATED;
1273 }
1274
1275 mutex_unlock(&kernfs_mutex);
1276 }
1277
__kernfs_remove(struct kernfs_node * kn)1278 static void __kernfs_remove(struct kernfs_node *kn)
1279 {
1280 struct kernfs_node *pos;
1281
1282 lockdep_assert_held(&kernfs_mutex);
1283
1284 /*
1285 * Short-circuit if non-root @kn has already finished removal.
1286 * This is for kernfs_remove_self() which plays with active ref
1287 * after removal.
1288 */
1289 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1290 return;
1291
1292 pr_debug("kernfs %s: removing\n", kn->name);
1293
1294 /* prevent any new usage under @kn by deactivating all nodes */
1295 pos = NULL;
1296 while ((pos = kernfs_next_descendant_post(pos, kn)))
1297 if (kernfs_active(pos))
1298 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1299
1300 /* deactivate and unlink the subtree node-by-node */
1301 do {
1302 pos = kernfs_leftmost_descendant(kn);
1303
1304 /*
1305 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1306 * base ref could have been put by someone else by the time
1307 * the function returns. Make sure it doesn't go away
1308 * underneath us.
1309 */
1310 kernfs_get(pos);
1311
1312 /*
1313 * Drain iff @kn was activated. This avoids draining and
1314 * its lockdep annotations for nodes which have never been
1315 * activated and allows embedding kernfs_remove() in create
1316 * error paths without worrying about draining.
1317 */
1318 if (kn->flags & KERNFS_ACTIVATED)
1319 kernfs_drain(pos);
1320 else
1321 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1322
1323 /*
1324 * kernfs_unlink_sibling() succeeds once per node. Use it
1325 * to decide who's responsible for cleanups.
1326 */
1327 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1328 struct kernfs_iattrs *ps_iattr =
1329 pos->parent ? pos->parent->iattr : NULL;
1330
1331 /* update timestamps on the parent */
1332 if (ps_iattr) {
1333 ktime_get_real_ts64(&ps_iattr->ia_ctime);
1334 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1335 }
1336
1337 kernfs_put(pos);
1338 }
1339
1340 kernfs_put(pos);
1341 } while (pos != kn);
1342 }
1343
1344 /**
1345 * kernfs_remove - remove a kernfs_node recursively
1346 * @kn: the kernfs_node to remove
1347 *
1348 * Remove @kn along with all its subdirectories and files.
1349 */
kernfs_remove(struct kernfs_node * kn)1350 void kernfs_remove(struct kernfs_node *kn)
1351 {
1352 mutex_lock(&kernfs_mutex);
1353 __kernfs_remove(kn);
1354 mutex_unlock(&kernfs_mutex);
1355 }
1356
1357 /**
1358 * kernfs_break_active_protection - break out of active protection
1359 * @kn: the self kernfs_node
1360 *
1361 * The caller must be running off of a kernfs operation which is invoked
1362 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1363 * this function must also be matched with an invocation of
1364 * kernfs_unbreak_active_protection().
1365 *
1366 * This function releases the active reference of @kn the caller is
1367 * holding. Once this function is called, @kn may be removed at any point
1368 * and the caller is solely responsible for ensuring that the objects it
1369 * dereferences are accessible.
1370 */
kernfs_break_active_protection(struct kernfs_node * kn)1371 void kernfs_break_active_protection(struct kernfs_node *kn)
1372 {
1373 /*
1374 * Take out ourself out of the active ref dependency chain. If
1375 * we're called without an active ref, lockdep will complain.
1376 */
1377 kernfs_put_active(kn);
1378 }
1379
1380 /**
1381 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1382 * @kn: the self kernfs_node
1383 *
1384 * If kernfs_break_active_protection() was called, this function must be
1385 * invoked before finishing the kernfs operation. Note that while this
1386 * function restores the active reference, it doesn't and can't actually
1387 * restore the active protection - @kn may already or be in the process of
1388 * being removed. Once kernfs_break_active_protection() is invoked, that
1389 * protection is irreversibly gone for the kernfs operation instance.
1390 *
1391 * While this function may be called at any point after
1392 * kernfs_break_active_protection() is invoked, its most useful location
1393 * would be right before the enclosing kernfs operation returns.
1394 */
kernfs_unbreak_active_protection(struct kernfs_node * kn)1395 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1396 {
1397 /*
1398 * @kn->active could be in any state; however, the increment we do
1399 * here will be undone as soon as the enclosing kernfs operation
1400 * finishes and this temporary bump can't break anything. If @kn
1401 * is alive, nothing changes. If @kn is being deactivated, the
1402 * soon-to-follow put will either finish deactivation or restore
1403 * deactivated state. If @kn is already removed, the temporary
1404 * bump is guaranteed to be gone before @kn is released.
1405 */
1406 atomic_inc(&kn->active);
1407 if (kernfs_lockdep(kn))
1408 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1409 }
1410
1411 /**
1412 * kernfs_remove_self - remove a kernfs_node from its own method
1413 * @kn: the self kernfs_node to remove
1414 *
1415 * The caller must be running off of a kernfs operation which is invoked
1416 * with an active reference - e.g. one of kernfs_ops. This can be used to
1417 * implement a file operation which deletes itself.
1418 *
1419 * For example, the "delete" file for a sysfs device directory can be
1420 * implemented by invoking kernfs_remove_self() on the "delete" file
1421 * itself. This function breaks the circular dependency of trying to
1422 * deactivate self while holding an active ref itself. It isn't necessary
1423 * to modify the usual removal path to use kernfs_remove_self(). The
1424 * "delete" implementation can simply invoke kernfs_remove_self() on self
1425 * before proceeding with the usual removal path. kernfs will ignore later
1426 * kernfs_remove() on self.
1427 *
1428 * kernfs_remove_self() can be called multiple times concurrently on the
1429 * same kernfs_node. Only the first one actually performs removal and
1430 * returns %true. All others will wait until the kernfs operation which
1431 * won self-removal finishes and return %false. Note that the losers wait
1432 * for the completion of not only the winning kernfs_remove_self() but also
1433 * the whole kernfs_ops which won the arbitration. This can be used to
1434 * guarantee, for example, all concurrent writes to a "delete" file to
1435 * finish only after the whole operation is complete.
1436 */
kernfs_remove_self(struct kernfs_node * kn)1437 bool kernfs_remove_self(struct kernfs_node *kn)
1438 {
1439 bool ret;
1440
1441 mutex_lock(&kernfs_mutex);
1442 kernfs_break_active_protection(kn);
1443
1444 /*
1445 * SUICIDAL is used to arbitrate among competing invocations. Only
1446 * the first one will actually perform removal. When the removal
1447 * is complete, SUICIDED is set and the active ref is restored
1448 * while holding kernfs_mutex. The ones which lost arbitration
1449 * waits for SUICDED && drained which can happen only after the
1450 * enclosing kernfs operation which executed the winning instance
1451 * of kernfs_remove_self() finished.
1452 */
1453 if (!(kn->flags & KERNFS_SUICIDAL)) {
1454 kn->flags |= KERNFS_SUICIDAL;
1455 __kernfs_remove(kn);
1456 kn->flags |= KERNFS_SUICIDED;
1457 ret = true;
1458 } else {
1459 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1460 DEFINE_WAIT(wait);
1461
1462 while (true) {
1463 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1464
1465 if ((kn->flags & KERNFS_SUICIDED) &&
1466 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1467 break;
1468
1469 mutex_unlock(&kernfs_mutex);
1470 schedule();
1471 mutex_lock(&kernfs_mutex);
1472 }
1473 finish_wait(waitq, &wait);
1474 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1475 ret = false;
1476 }
1477
1478 /*
1479 * This must be done while holding kernfs_mutex; otherwise, waiting
1480 * for SUICIDED && deactivated could finish prematurely.
1481 */
1482 kernfs_unbreak_active_protection(kn);
1483
1484 mutex_unlock(&kernfs_mutex);
1485 return ret;
1486 }
1487
1488 /**
1489 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1490 * @parent: parent of the target
1491 * @name: name of the kernfs_node to remove
1492 * @ns: namespace tag of the kernfs_node to remove
1493 *
1494 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1495 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1496 */
kernfs_remove_by_name_ns(struct kernfs_node * parent,const char * name,const void * ns)1497 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1498 const void *ns)
1499 {
1500 struct kernfs_node *kn;
1501
1502 if (!parent) {
1503 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1504 name);
1505 return -ENOENT;
1506 }
1507
1508 mutex_lock(&kernfs_mutex);
1509
1510 kn = kernfs_find_ns(parent, name, ns);
1511 if (kn)
1512 __kernfs_remove(kn);
1513
1514 mutex_unlock(&kernfs_mutex);
1515
1516 if (kn)
1517 return 0;
1518 else
1519 return -ENOENT;
1520 }
1521
1522 /**
1523 * kernfs_rename_ns - move and rename a kernfs_node
1524 * @kn: target node
1525 * @new_parent: new parent to put @sd under
1526 * @new_name: new name
1527 * @new_ns: new namespace tag
1528 */
kernfs_rename_ns(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name,const void * new_ns)1529 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1530 const char *new_name, const void *new_ns)
1531 {
1532 struct kernfs_node *old_parent;
1533 const char *old_name = NULL;
1534 int error;
1535
1536 /* can't move or rename root */
1537 if (!kn->parent)
1538 return -EINVAL;
1539
1540 mutex_lock(&kernfs_mutex);
1541
1542 error = -ENOENT;
1543 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1544 (new_parent->flags & KERNFS_EMPTY_DIR))
1545 goto out;
1546
1547 error = 0;
1548 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1549 (strcmp(kn->name, new_name) == 0))
1550 goto out; /* nothing to rename */
1551
1552 error = -EEXIST;
1553 if (kernfs_find_ns(new_parent, new_name, new_ns))
1554 goto out;
1555
1556 /* rename kernfs_node */
1557 if (strcmp(kn->name, new_name) != 0) {
1558 error = -ENOMEM;
1559 new_name = kstrdup_const(new_name, GFP_KERNEL);
1560 if (!new_name)
1561 goto out;
1562 } else {
1563 new_name = NULL;
1564 }
1565
1566 /*
1567 * Move to the appropriate place in the appropriate directories rbtree.
1568 */
1569 kernfs_unlink_sibling(kn);
1570 kernfs_get(new_parent);
1571
1572 /* rename_lock protects ->parent and ->name accessors */
1573 spin_lock_irq(&kernfs_rename_lock);
1574
1575 old_parent = kn->parent;
1576 kn->parent = new_parent;
1577
1578 kn->ns = new_ns;
1579 if (new_name) {
1580 old_name = kn->name;
1581 kn->name = new_name;
1582 }
1583
1584 spin_unlock_irq(&kernfs_rename_lock);
1585
1586 kn->hash = kernfs_name_hash(kn->name, kn->ns);
1587 kernfs_link_sibling(kn);
1588
1589 kernfs_put(old_parent);
1590 kfree_const(old_name);
1591
1592 error = 0;
1593 out:
1594 mutex_unlock(&kernfs_mutex);
1595 return error;
1596 }
1597
1598 /* Relationship between s_mode and the DT_xxx types */
dt_type(struct kernfs_node * kn)1599 static inline unsigned char dt_type(struct kernfs_node *kn)
1600 {
1601 return (kn->mode >> 12) & 15;
1602 }
1603
kernfs_dir_fop_release(struct inode * inode,struct file * filp)1604 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1605 {
1606 kernfs_put(filp->private_data);
1607 return 0;
1608 }
1609
kernfs_dir_pos(const void * ns,struct kernfs_node * parent,loff_t hash,struct kernfs_node * pos)1610 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1611 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1612 {
1613 if (pos) {
1614 int valid = kernfs_active(pos) &&
1615 pos->parent == parent && hash == pos->hash;
1616 kernfs_put(pos);
1617 if (!valid)
1618 pos = NULL;
1619 }
1620 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1621 struct rb_node *node = parent->dir.children.rb_node;
1622 while (node) {
1623 pos = rb_to_kn(node);
1624
1625 if (hash < pos->hash)
1626 node = node->rb_left;
1627 else if (hash > pos->hash)
1628 node = node->rb_right;
1629 else
1630 break;
1631 }
1632 }
1633 /* Skip over entries which are dying/dead or in the wrong namespace */
1634 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1635 struct rb_node *node = rb_next(&pos->rb);
1636 if (!node)
1637 pos = NULL;
1638 else
1639 pos = rb_to_kn(node);
1640 }
1641 return pos;
1642 }
1643
kernfs_dir_next_pos(const void * ns,struct kernfs_node * parent,ino_t ino,struct kernfs_node * pos)1644 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1645 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1646 {
1647 pos = kernfs_dir_pos(ns, parent, ino, pos);
1648 if (pos) {
1649 do {
1650 struct rb_node *node = rb_next(&pos->rb);
1651 if (!node)
1652 pos = NULL;
1653 else
1654 pos = rb_to_kn(node);
1655 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1656 }
1657 return pos;
1658 }
1659
kernfs_fop_readdir(struct file * file,struct dir_context * ctx)1660 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1661 {
1662 struct dentry *dentry = file->f_path.dentry;
1663 struct kernfs_node *parent = kernfs_dentry_node(dentry);
1664 struct kernfs_node *pos = file->private_data;
1665 const void *ns = NULL;
1666
1667 if (!dir_emit_dots(file, ctx))
1668 return 0;
1669 mutex_lock(&kernfs_mutex);
1670
1671 if (kernfs_ns_enabled(parent))
1672 ns = kernfs_info(dentry->d_sb)->ns;
1673
1674 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1675 pos;
1676 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1677 const char *name = pos->name;
1678 unsigned int type = dt_type(pos);
1679 int len = strlen(name);
1680 ino_t ino = pos->id.ino;
1681
1682 ctx->pos = pos->hash;
1683 file->private_data = pos;
1684 kernfs_get(pos);
1685
1686 mutex_unlock(&kernfs_mutex);
1687 if (!dir_emit(ctx, name, len, ino, type))
1688 return 0;
1689 mutex_lock(&kernfs_mutex);
1690 }
1691 mutex_unlock(&kernfs_mutex);
1692 file->private_data = NULL;
1693 ctx->pos = INT_MAX;
1694 return 0;
1695 }
1696
1697 const struct file_operations kernfs_dir_fops = {
1698 .read = generic_read_dir,
1699 .iterate_shared = kernfs_fop_readdir,
1700 .release = kernfs_dir_fop_release,
1701 .llseek = generic_file_llseek,
1702 };
1703