• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/mpage.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains functions related to preparing and submitting BIOs which contain
8  * multiple pagecache pages.
9  *
10  * 15May2002	Andrew Morton
11  *		Initial version
12  * 27Jun2002	axboe@suse.de
13  *		use bio_add_page() to build bio's just the right size
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/mm.h>
19 #include <linux/kdev_t.h>
20 #include <linux/gfp.h>
21 #include <linux/bio.h>
22 #include <linux/fs.h>
23 #include <linux/buffer_head.h>
24 #include <linux/blkdev.h>
25 #include <linux/highmem.h>
26 #include <linux/prefetch.h>
27 #include <linux/mpage.h>
28 #include <linux/mm_inline.h>
29 #include <linux/writeback.h>
30 #include <linux/backing-dev.h>
31 #include <linux/pagevec.h>
32 #include <linux/cleancache.h>
33 #include "internal.h"
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/android_fs.h>
37 
38 EXPORT_TRACEPOINT_SYMBOL(android_fs_datawrite_start);
39 EXPORT_TRACEPOINT_SYMBOL(android_fs_datawrite_end);
40 EXPORT_TRACEPOINT_SYMBOL(android_fs_dataread_start);
41 EXPORT_TRACEPOINT_SYMBOL(android_fs_dataread_end);
42 
43 /*
44  * I/O completion handler for multipage BIOs.
45  *
46  * The mpage code never puts partial pages into a BIO (except for end-of-file).
47  * If a page does not map to a contiguous run of blocks then it simply falls
48  * back to block_read_full_page().
49  *
50  * Why is this?  If a page's completion depends on a number of different BIOs
51  * which can complete in any order (or at the same time) then determining the
52  * status of that page is hard.  See end_buffer_async_read() for the details.
53  * There is no point in duplicating all that complexity.
54  */
mpage_end_io(struct bio * bio)55 static void mpage_end_io(struct bio *bio)
56 {
57 	struct bio_vec *bv;
58 	struct bvec_iter_all iter_all;
59 
60 	if (trace_android_fs_dataread_end_enabled() &&
61 	    (bio_data_dir(bio) == READ)) {
62 		struct page *first_page = bio->bi_io_vec[0].bv_page;
63 
64 		if (first_page != NULL)
65 			trace_android_fs_dataread_end(first_page->mapping->host,
66 						      page_offset(first_page),
67 						      bio->bi_iter.bi_size);
68 	}
69 
70 	bio_for_each_segment_all(bv, bio, iter_all) {
71 		struct page *page = bv->bv_page;
72 		page_endio(page, bio_op(bio),
73 			   blk_status_to_errno(bio->bi_status));
74 	}
75 
76 	bio_put(bio);
77 }
78 
mpage_bio_submit(int op,int op_flags,struct bio * bio)79 static struct bio *mpage_bio_submit(int op, int op_flags, struct bio *bio)
80 {
81 	if (trace_android_fs_dataread_start_enabled() && (op == REQ_OP_READ)) {
82 		struct page *first_page = bio->bi_io_vec[0].bv_page;
83 
84 		if (first_page != NULL) {
85 			char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
86 
87 			path = android_fstrace_get_pathname(pathbuf,
88 						    MAX_TRACE_PATHBUF_LEN,
89 						    first_page->mapping->host);
90 			trace_android_fs_dataread_start(
91 				first_page->mapping->host,
92 				page_offset(first_page),
93 				bio->bi_iter.bi_size,
94 				current->pid,
95 				path,
96 				current->comm);
97 		}
98 	}
99 	bio->bi_end_io = mpage_end_io;
100 	bio_set_op_attrs(bio, op, op_flags);
101 	guard_bio_eod(bio);
102 	submit_bio(bio);
103 	return NULL;
104 }
105 
106 static struct bio *
mpage_alloc(struct block_device * bdev,sector_t first_sector,int nr_vecs,gfp_t gfp_flags)107 mpage_alloc(struct block_device *bdev,
108 		sector_t first_sector, int nr_vecs,
109 		gfp_t gfp_flags)
110 {
111 	struct bio *bio;
112 
113 	/* Restrict the given (page cache) mask for slab allocations */
114 	gfp_flags &= GFP_KERNEL;
115 	bio = bio_alloc(gfp_flags, nr_vecs);
116 
117 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
118 		while (!bio && (nr_vecs /= 2))
119 			bio = bio_alloc(gfp_flags, nr_vecs);
120 	}
121 
122 	if (bio) {
123 		bio_set_dev(bio, bdev);
124 		bio->bi_iter.bi_sector = first_sector;
125 	}
126 	return bio;
127 }
128 
129 /*
130  * support function for mpage_readpages.  The fs supplied get_block might
131  * return an up to date buffer.  This is used to map that buffer into
132  * the page, which allows readpage to avoid triggering a duplicate call
133  * to get_block.
134  *
135  * The idea is to avoid adding buffers to pages that don't already have
136  * them.  So when the buffer is up to date and the page size == block size,
137  * this marks the page up to date instead of adding new buffers.
138  */
139 static void
map_buffer_to_page(struct page * page,struct buffer_head * bh,int page_block)140 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block)
141 {
142 	struct inode *inode = page->mapping->host;
143 	struct buffer_head *page_bh, *head;
144 	int block = 0;
145 
146 	if (!page_has_buffers(page)) {
147 		/*
148 		 * don't make any buffers if there is only one buffer on
149 		 * the page and the page just needs to be set up to date
150 		 */
151 		if (inode->i_blkbits == PAGE_SHIFT &&
152 		    buffer_uptodate(bh)) {
153 			SetPageUptodate(page);
154 			return;
155 		}
156 		create_empty_buffers(page, i_blocksize(inode), 0);
157 	}
158 	head = page_buffers(page);
159 	page_bh = head;
160 	do {
161 		if (block == page_block) {
162 			page_bh->b_state = bh->b_state;
163 			page_bh->b_bdev = bh->b_bdev;
164 			page_bh->b_blocknr = bh->b_blocknr;
165 			break;
166 		}
167 		page_bh = page_bh->b_this_page;
168 		block++;
169 	} while (page_bh != head);
170 }
171 
172 struct mpage_readpage_args {
173 	struct bio *bio;
174 	struct page *page;
175 	unsigned int nr_pages;
176 	bool is_readahead;
177 	sector_t last_block_in_bio;
178 	struct buffer_head map_bh;
179 	unsigned long first_logical_block;
180 	get_block_t *get_block;
181 };
182 
183 /*
184  * This is the worker routine which does all the work of mapping the disk
185  * blocks and constructs largest possible bios, submits them for IO if the
186  * blocks are not contiguous on the disk.
187  *
188  * We pass a buffer_head back and forth and use its buffer_mapped() flag to
189  * represent the validity of its disk mapping and to decide when to do the next
190  * get_block() call.
191  */
do_mpage_readpage(struct mpage_readpage_args * args)192 static struct bio *do_mpage_readpage(struct mpage_readpage_args *args)
193 {
194 	struct page *page = args->page;
195 	struct inode *inode = page->mapping->host;
196 	const unsigned blkbits = inode->i_blkbits;
197 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
198 	const unsigned blocksize = 1 << blkbits;
199 	struct buffer_head *map_bh = &args->map_bh;
200 	sector_t block_in_file;
201 	sector_t last_block;
202 	sector_t last_block_in_file;
203 	sector_t blocks[MAX_BUF_PER_PAGE];
204 	unsigned page_block;
205 	unsigned first_hole = blocks_per_page;
206 	struct block_device *bdev = NULL;
207 	int length;
208 	int fully_mapped = 1;
209 	int op_flags;
210 	unsigned nblocks;
211 	unsigned relative_block;
212 	gfp_t gfp;
213 
214 	if (args->is_readahead) {
215 		op_flags = REQ_RAHEAD;
216 		gfp = readahead_gfp_mask(page->mapping);
217 	} else {
218 		op_flags = 0;
219 		gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
220 	}
221 
222 	if (page_has_buffers(page))
223 		goto confused;
224 
225 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
226 	last_block = block_in_file + args->nr_pages * blocks_per_page;
227 	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
228 	if (last_block > last_block_in_file)
229 		last_block = last_block_in_file;
230 	page_block = 0;
231 
232 	/*
233 	 * Map blocks using the result from the previous get_blocks call first.
234 	 */
235 	nblocks = map_bh->b_size >> blkbits;
236 	if (buffer_mapped(map_bh) &&
237 			block_in_file > args->first_logical_block &&
238 			block_in_file < (args->first_logical_block + nblocks)) {
239 		unsigned map_offset = block_in_file - args->first_logical_block;
240 		unsigned last = nblocks - map_offset;
241 
242 		for (relative_block = 0; ; relative_block++) {
243 			if (relative_block == last) {
244 				clear_buffer_mapped(map_bh);
245 				break;
246 			}
247 			if (page_block == blocks_per_page)
248 				break;
249 			blocks[page_block] = map_bh->b_blocknr + map_offset +
250 						relative_block;
251 			page_block++;
252 			block_in_file++;
253 		}
254 		bdev = map_bh->b_bdev;
255 	}
256 
257 	/*
258 	 * Then do more get_blocks calls until we are done with this page.
259 	 */
260 	map_bh->b_page = page;
261 	while (page_block < blocks_per_page) {
262 		map_bh->b_state = 0;
263 		map_bh->b_size = 0;
264 
265 		if (block_in_file < last_block) {
266 			map_bh->b_size = (last_block-block_in_file) << blkbits;
267 			if (args->get_block(inode, block_in_file, map_bh, 0))
268 				goto confused;
269 			args->first_logical_block = block_in_file;
270 		}
271 
272 		if (!buffer_mapped(map_bh)) {
273 			fully_mapped = 0;
274 			if (first_hole == blocks_per_page)
275 				first_hole = page_block;
276 			page_block++;
277 			block_in_file++;
278 			continue;
279 		}
280 
281 		/* some filesystems will copy data into the page during
282 		 * the get_block call, in which case we don't want to
283 		 * read it again.  map_buffer_to_page copies the data
284 		 * we just collected from get_block into the page's buffers
285 		 * so readpage doesn't have to repeat the get_block call
286 		 */
287 		if (buffer_uptodate(map_bh)) {
288 			map_buffer_to_page(page, map_bh, page_block);
289 			goto confused;
290 		}
291 
292 		if (first_hole != blocks_per_page)
293 			goto confused;		/* hole -> non-hole */
294 
295 		/* Contiguous blocks? */
296 		if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
297 			goto confused;
298 		nblocks = map_bh->b_size >> blkbits;
299 		for (relative_block = 0; ; relative_block++) {
300 			if (relative_block == nblocks) {
301 				clear_buffer_mapped(map_bh);
302 				break;
303 			} else if (page_block == blocks_per_page)
304 				break;
305 			blocks[page_block] = map_bh->b_blocknr+relative_block;
306 			page_block++;
307 			block_in_file++;
308 		}
309 		bdev = map_bh->b_bdev;
310 	}
311 
312 	if (first_hole != blocks_per_page) {
313 		zero_user_segment(page, first_hole << blkbits, PAGE_SIZE);
314 		if (first_hole == 0) {
315 			SetPageUptodate(page);
316 			unlock_page(page);
317 			goto out;
318 		}
319 	} else if (fully_mapped) {
320 		SetPageMappedToDisk(page);
321 	}
322 
323 	if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
324 	    cleancache_get_page(page) == 0) {
325 		SetPageUptodate(page);
326 		goto confused;
327 	}
328 
329 	/*
330 	 * This page will go to BIO.  Do we need to send this BIO off first?
331 	 */
332 	if (args->bio && (args->last_block_in_bio != blocks[0] - 1))
333 		args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
334 
335 alloc_new:
336 	if (args->bio == NULL) {
337 		if (first_hole == blocks_per_page) {
338 			if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
339 								page))
340 				goto out;
341 		}
342 		args->bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
343 					min_t(int, args->nr_pages,
344 					      BIO_MAX_PAGES),
345 					gfp);
346 		if (args->bio == NULL)
347 			goto confused;
348 	}
349 
350 	length = first_hole << blkbits;
351 	if (bio_add_page(args->bio, page, length, 0) < length) {
352 		args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
353 		goto alloc_new;
354 	}
355 
356 	relative_block = block_in_file - args->first_logical_block;
357 	nblocks = map_bh->b_size >> blkbits;
358 	if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
359 	    (first_hole != blocks_per_page))
360 		args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
361 	else
362 		args->last_block_in_bio = blocks[blocks_per_page - 1];
363 out:
364 	return args->bio;
365 
366 confused:
367 	if (args->bio)
368 		args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
369 	if (!PageUptodate(page))
370 		block_read_full_page(page, args->get_block);
371 	else
372 		unlock_page(page);
373 	goto out;
374 }
375 
376 /**
377  * mpage_readpages - populate an address space with some pages & start reads against them
378  * @mapping: the address_space
379  * @pages: The address of a list_head which contains the target pages.  These
380  *   pages have their ->index populated and are otherwise uninitialised.
381  *   The page at @pages->prev has the lowest file offset, and reads should be
382  *   issued in @pages->prev to @pages->next order.
383  * @nr_pages: The number of pages at *@pages
384  * @get_block: The filesystem's block mapper function.
385  *
386  * This function walks the pages and the blocks within each page, building and
387  * emitting large BIOs.
388  *
389  * If anything unusual happens, such as:
390  *
391  * - encountering a page which has buffers
392  * - encountering a page which has a non-hole after a hole
393  * - encountering a page with non-contiguous blocks
394  *
395  * then this code just gives up and calls the buffer_head-based read function.
396  * It does handle a page which has holes at the end - that is a common case:
397  * the end-of-file on blocksize < PAGE_SIZE setups.
398  *
399  * BH_Boundary explanation:
400  *
401  * There is a problem.  The mpage read code assembles several pages, gets all
402  * their disk mappings, and then submits them all.  That's fine, but obtaining
403  * the disk mappings may require I/O.  Reads of indirect blocks, for example.
404  *
405  * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
406  * submitted in the following order:
407  *
408  * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
409  *
410  * because the indirect block has to be read to get the mappings of blocks
411  * 13,14,15,16.  Obviously, this impacts performance.
412  *
413  * So what we do it to allow the filesystem's get_block() function to set
414  * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
415  * after this one will require I/O against a block which is probably close to
416  * this one.  So you should push what I/O you have currently accumulated.
417  *
418  * This all causes the disk requests to be issued in the correct order.
419  */
420 int
mpage_readpages(struct address_space * mapping,struct list_head * pages,unsigned nr_pages,get_block_t get_block)421 mpage_readpages(struct address_space *mapping, struct list_head *pages,
422 				unsigned nr_pages, get_block_t get_block)
423 {
424 	struct mpage_readpage_args args = {
425 		.get_block = get_block,
426 		.is_readahead = true,
427 	};
428 	unsigned page_idx;
429 
430 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
431 		struct page *page = lru_to_page(pages);
432 
433 		prefetchw(&page->flags);
434 		list_del(&page->lru);
435 		if (!add_to_page_cache_lru(page, mapping,
436 					page->index,
437 					readahead_gfp_mask(mapping))) {
438 			args.page = page;
439 			args.nr_pages = nr_pages - page_idx;
440 			args.bio = do_mpage_readpage(&args);
441 		}
442 		put_page(page);
443 	}
444 	BUG_ON(!list_empty(pages));
445 	if (args.bio)
446 		mpage_bio_submit(REQ_OP_READ, REQ_RAHEAD, args.bio);
447 	return 0;
448 }
449 EXPORT_SYMBOL(mpage_readpages);
450 
451 /*
452  * This isn't called much at all
453  */
mpage_readpage(struct page * page,get_block_t get_block)454 int mpage_readpage(struct page *page, get_block_t get_block)
455 {
456 	struct mpage_readpage_args args = {
457 		.page = page,
458 		.nr_pages = 1,
459 		.get_block = get_block,
460 	};
461 
462 	args.bio = do_mpage_readpage(&args);
463 	if (args.bio)
464 		mpage_bio_submit(REQ_OP_READ, 0, args.bio);
465 	return 0;
466 }
467 EXPORT_SYMBOL(mpage_readpage);
468 
469 /*
470  * Writing is not so simple.
471  *
472  * If the page has buffers then they will be used for obtaining the disk
473  * mapping.  We only support pages which are fully mapped-and-dirty, with a
474  * special case for pages which are unmapped at the end: end-of-file.
475  *
476  * If the page has no buffers (preferred) then the page is mapped here.
477  *
478  * If all blocks are found to be contiguous then the page can go into the
479  * BIO.  Otherwise fall back to the mapping's writepage().
480  *
481  * FIXME: This code wants an estimate of how many pages are still to be
482  * written, so it can intelligently allocate a suitably-sized BIO.  For now,
483  * just allocate full-size (16-page) BIOs.
484  */
485 
486 struct mpage_data {
487 	struct bio *bio;
488 	sector_t last_block_in_bio;
489 	get_block_t *get_block;
490 	unsigned use_writepage;
491 };
492 
493 /*
494  * We have our BIO, so we can now mark the buffers clean.  Make
495  * sure to only clean buffers which we know we'll be writing.
496  */
clean_buffers(struct page * page,unsigned first_unmapped)497 static void clean_buffers(struct page *page, unsigned first_unmapped)
498 {
499 	unsigned buffer_counter = 0;
500 	struct buffer_head *bh, *head;
501 	if (!page_has_buffers(page))
502 		return;
503 	head = page_buffers(page);
504 	bh = head;
505 
506 	do {
507 		if (buffer_counter++ == first_unmapped)
508 			break;
509 		clear_buffer_dirty(bh);
510 		bh = bh->b_this_page;
511 	} while (bh != head);
512 
513 	/*
514 	 * we cannot drop the bh if the page is not uptodate or a concurrent
515 	 * readpage would fail to serialize with the bh and it would read from
516 	 * disk before we reach the platter.
517 	 */
518 	if (buffer_heads_over_limit && PageUptodate(page))
519 		try_to_free_buffers(page);
520 }
521 
522 /*
523  * For situations where we want to clean all buffers attached to a page.
524  * We don't need to calculate how many buffers are attached to the page,
525  * we just need to specify a number larger than the maximum number of buffers.
526  */
clean_page_buffers(struct page * page)527 void clean_page_buffers(struct page *page)
528 {
529 	clean_buffers(page, ~0U);
530 }
531 
__mpage_writepage(struct page * page,struct writeback_control * wbc,void * data)532 static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
533 		      void *data)
534 {
535 	struct mpage_data *mpd = data;
536 	struct bio *bio = mpd->bio;
537 	struct address_space *mapping = page->mapping;
538 	struct inode *inode = page->mapping->host;
539 	const unsigned blkbits = inode->i_blkbits;
540 	unsigned long end_index;
541 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
542 	sector_t last_block;
543 	sector_t block_in_file;
544 	sector_t blocks[MAX_BUF_PER_PAGE];
545 	unsigned page_block;
546 	unsigned first_unmapped = blocks_per_page;
547 	struct block_device *bdev = NULL;
548 	int boundary = 0;
549 	sector_t boundary_block = 0;
550 	struct block_device *boundary_bdev = NULL;
551 	int length;
552 	struct buffer_head map_bh;
553 	loff_t i_size = i_size_read(inode);
554 	int ret = 0;
555 	int op_flags = wbc_to_write_flags(wbc);
556 
557 	if (page_has_buffers(page)) {
558 		struct buffer_head *head = page_buffers(page);
559 		struct buffer_head *bh = head;
560 
561 		/* If they're all mapped and dirty, do it */
562 		page_block = 0;
563 		do {
564 			BUG_ON(buffer_locked(bh));
565 			if (!buffer_mapped(bh)) {
566 				/*
567 				 * unmapped dirty buffers are created by
568 				 * __set_page_dirty_buffers -> mmapped data
569 				 */
570 				if (buffer_dirty(bh))
571 					goto confused;
572 				if (first_unmapped == blocks_per_page)
573 					first_unmapped = page_block;
574 				continue;
575 			}
576 
577 			if (first_unmapped != blocks_per_page)
578 				goto confused;	/* hole -> non-hole */
579 
580 			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
581 				goto confused;
582 			if (page_block) {
583 				if (bh->b_blocknr != blocks[page_block-1] + 1)
584 					goto confused;
585 			}
586 			blocks[page_block++] = bh->b_blocknr;
587 			boundary = buffer_boundary(bh);
588 			if (boundary) {
589 				boundary_block = bh->b_blocknr;
590 				boundary_bdev = bh->b_bdev;
591 			}
592 			bdev = bh->b_bdev;
593 		} while ((bh = bh->b_this_page) != head);
594 
595 		if (first_unmapped)
596 			goto page_is_mapped;
597 
598 		/*
599 		 * Page has buffers, but they are all unmapped. The page was
600 		 * created by pagein or read over a hole which was handled by
601 		 * block_read_full_page().  If this address_space is also
602 		 * using mpage_readpages then this can rarely happen.
603 		 */
604 		goto confused;
605 	}
606 
607 	/*
608 	 * The page has no buffers: map it to disk
609 	 */
610 	BUG_ON(!PageUptodate(page));
611 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
612 	last_block = (i_size - 1) >> blkbits;
613 	map_bh.b_page = page;
614 	for (page_block = 0; page_block < blocks_per_page; ) {
615 
616 		map_bh.b_state = 0;
617 		map_bh.b_size = 1 << blkbits;
618 		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
619 			goto confused;
620 		if (buffer_new(&map_bh))
621 			clean_bdev_bh_alias(&map_bh);
622 		if (buffer_boundary(&map_bh)) {
623 			boundary_block = map_bh.b_blocknr;
624 			boundary_bdev = map_bh.b_bdev;
625 		}
626 		if (page_block) {
627 			if (map_bh.b_blocknr != blocks[page_block-1] + 1)
628 				goto confused;
629 		}
630 		blocks[page_block++] = map_bh.b_blocknr;
631 		boundary = buffer_boundary(&map_bh);
632 		bdev = map_bh.b_bdev;
633 		if (block_in_file == last_block)
634 			break;
635 		block_in_file++;
636 	}
637 	BUG_ON(page_block == 0);
638 
639 	first_unmapped = page_block;
640 
641 page_is_mapped:
642 	end_index = i_size >> PAGE_SHIFT;
643 	if (page->index >= end_index) {
644 		/*
645 		 * The page straddles i_size.  It must be zeroed out on each
646 		 * and every writepage invocation because it may be mmapped.
647 		 * "A file is mapped in multiples of the page size.  For a file
648 		 * that is not a multiple of the page size, the remaining memory
649 		 * is zeroed when mapped, and writes to that region are not
650 		 * written out to the file."
651 		 */
652 		unsigned offset = i_size & (PAGE_SIZE - 1);
653 
654 		if (page->index > end_index || !offset)
655 			goto confused;
656 		zero_user_segment(page, offset, PAGE_SIZE);
657 	}
658 
659 	/*
660 	 * This page will go to BIO.  Do we need to send this BIO off first?
661 	 */
662 	if (bio && mpd->last_block_in_bio != blocks[0] - 1)
663 		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
664 
665 alloc_new:
666 	if (bio == NULL) {
667 		if (first_unmapped == blocks_per_page) {
668 			if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
669 								page, wbc))
670 				goto out;
671 		}
672 		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
673 				BIO_MAX_PAGES, GFP_NOFS|__GFP_HIGH);
674 		if (bio == NULL)
675 			goto confused;
676 
677 		wbc_init_bio(wbc, bio);
678 		bio->bi_write_hint = inode->i_write_hint;
679 	}
680 
681 	/*
682 	 * Must try to add the page before marking the buffer clean or
683 	 * the confused fail path above (OOM) will be very confused when
684 	 * it finds all bh marked clean (i.e. it will not write anything)
685 	 */
686 	wbc_account_cgroup_owner(wbc, page, PAGE_SIZE);
687 	length = first_unmapped << blkbits;
688 	if (bio_add_page(bio, page, length, 0) < length) {
689 		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
690 		goto alloc_new;
691 	}
692 
693 	clean_buffers(page, first_unmapped);
694 
695 	BUG_ON(PageWriteback(page));
696 	set_page_writeback(page);
697 	unlock_page(page);
698 	if (boundary || (first_unmapped != blocks_per_page)) {
699 		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
700 		if (boundary_block) {
701 			write_boundary_block(boundary_bdev,
702 					boundary_block, 1 << blkbits);
703 		}
704 	} else {
705 		mpd->last_block_in_bio = blocks[blocks_per_page - 1];
706 	}
707 	goto out;
708 
709 confused:
710 	if (bio)
711 		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
712 
713 	if (mpd->use_writepage) {
714 		ret = mapping->a_ops->writepage(page, wbc);
715 	} else {
716 		ret = -EAGAIN;
717 		goto out;
718 	}
719 	/*
720 	 * The caller has a ref on the inode, so *mapping is stable
721 	 */
722 	mapping_set_error(mapping, ret);
723 out:
724 	mpd->bio = bio;
725 	return ret;
726 }
727 
728 /**
729  * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
730  * @mapping: address space structure to write
731  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
732  * @get_block: the filesystem's block mapper function.
733  *             If this is NULL then use a_ops->writepage.  Otherwise, go
734  *             direct-to-BIO.
735  *
736  * This is a library function, which implements the writepages()
737  * address_space_operation.
738  *
739  * If a page is already under I/O, generic_writepages() skips it, even
740  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
741  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
742  * and msync() need to guarantee that all the data which was dirty at the time
743  * the call was made get new I/O started against them.  If wbc->sync_mode is
744  * WB_SYNC_ALL then we were called for data integrity and we must wait for
745  * existing IO to complete.
746  */
747 int
mpage_writepages(struct address_space * mapping,struct writeback_control * wbc,get_block_t get_block)748 mpage_writepages(struct address_space *mapping,
749 		struct writeback_control *wbc, get_block_t get_block)
750 {
751 	struct blk_plug plug;
752 	int ret;
753 
754 	blk_start_plug(&plug);
755 
756 	if (!get_block)
757 		ret = generic_writepages(mapping, wbc);
758 	else {
759 		struct mpage_data mpd = {
760 			.bio = NULL,
761 			.last_block_in_bio = 0,
762 			.get_block = get_block,
763 			.use_writepage = 1,
764 		};
765 
766 		ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
767 		if (mpd.bio) {
768 			int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
769 				  REQ_SYNC : 0);
770 			mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
771 		}
772 	}
773 	blk_finish_plug(&plug);
774 	return ret;
775 }
776 EXPORT_SYMBOL(mpage_writepages);
777 
mpage_writepage(struct page * page,get_block_t get_block,struct writeback_control * wbc)778 int mpage_writepage(struct page *page, get_block_t get_block,
779 	struct writeback_control *wbc)
780 {
781 	struct mpage_data mpd = {
782 		.bio = NULL,
783 		.last_block_in_bio = 0,
784 		.get_block = get_block,
785 		.use_writepage = 0,
786 	};
787 	int ret = __mpage_writepage(page, wbc, &mpd);
788 	if (mpd.bio) {
789 		int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
790 			  REQ_SYNC : 0);
791 		mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
792 	}
793 	return ret;
794 }
795 EXPORT_SYMBOL(mpage_writepage);
796