• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/fs/nfs/write.c
4  *
5  * Write file data over NFS.
6  *
7  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
8  */
9 
10 #include <linux/types.h>
11 #include <linux/slab.h>
12 #include <linux/mm.h>
13 #include <linux/pagemap.h>
14 #include <linux/file.h>
15 #include <linux/writeback.h>
16 #include <linux/swap.h>
17 #include <linux/migrate.h>
18 
19 #include <linux/sunrpc/clnt.h>
20 #include <linux/nfs_fs.h>
21 #include <linux/nfs_mount.h>
22 #include <linux/nfs_page.h>
23 #include <linux/backing-dev.h>
24 #include <linux/export.h>
25 #include <linux/freezer.h>
26 #include <linux/wait.h>
27 #include <linux/iversion.h>
28 
29 #include <linux/uaccess.h>
30 #include <linux/sched/mm.h>
31 
32 #include "delegation.h"
33 #include "internal.h"
34 #include "iostat.h"
35 #include "nfs4_fs.h"
36 #include "fscache.h"
37 #include "pnfs.h"
38 
39 #include "nfstrace.h"
40 
41 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
42 
43 #define MIN_POOL_WRITE		(32)
44 #define MIN_POOL_COMMIT		(4)
45 
46 struct nfs_io_completion {
47 	void (*complete)(void *data);
48 	void *data;
49 	struct kref refcount;
50 };
51 
52 /*
53  * Local function declarations
54  */
55 static void nfs_redirty_request(struct nfs_page *req);
56 static const struct rpc_call_ops nfs_commit_ops;
57 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops;
58 static const struct nfs_commit_completion_ops nfs_commit_completion_ops;
59 static const struct nfs_rw_ops nfs_rw_write_ops;
60 static void nfs_inode_remove_request(struct nfs_page *req);
61 static void nfs_clear_request_commit(struct nfs_page *req);
62 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
63 				      struct inode *inode);
64 static struct nfs_page *
65 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
66 						struct page *page);
67 
68 static struct kmem_cache *nfs_wdata_cachep;
69 static mempool_t *nfs_wdata_mempool;
70 static struct kmem_cache *nfs_cdata_cachep;
71 static mempool_t *nfs_commit_mempool;
72 
nfs_commitdata_alloc(bool never_fail)73 struct nfs_commit_data *nfs_commitdata_alloc(bool never_fail)
74 {
75 	struct nfs_commit_data *p;
76 
77 	if (never_fail)
78 		p = mempool_alloc(nfs_commit_mempool, GFP_NOIO);
79 	else {
80 		/* It is OK to do some reclaim, not no safe to wait
81 		 * for anything to be returned to the pool.
82 		 * mempool_alloc() cannot handle that particular combination,
83 		 * so we need two separate attempts.
84 		 */
85 		p = mempool_alloc(nfs_commit_mempool, GFP_NOWAIT);
86 		if (!p)
87 			p = kmem_cache_alloc(nfs_cdata_cachep, GFP_NOIO |
88 					     __GFP_NOWARN | __GFP_NORETRY);
89 		if (!p)
90 			return NULL;
91 	}
92 
93 	memset(p, 0, sizeof(*p));
94 	INIT_LIST_HEAD(&p->pages);
95 	return p;
96 }
97 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
98 
nfs_commit_free(struct nfs_commit_data * p)99 void nfs_commit_free(struct nfs_commit_data *p)
100 {
101 	mempool_free(p, nfs_commit_mempool);
102 }
103 EXPORT_SYMBOL_GPL(nfs_commit_free);
104 
nfs_writehdr_alloc(void)105 static struct nfs_pgio_header *nfs_writehdr_alloc(void)
106 {
107 	struct nfs_pgio_header *p = mempool_alloc(nfs_wdata_mempool, GFP_KERNEL);
108 
109 	memset(p, 0, sizeof(*p));
110 	p->rw_mode = FMODE_WRITE;
111 	return p;
112 }
113 
nfs_writehdr_free(struct nfs_pgio_header * hdr)114 static void nfs_writehdr_free(struct nfs_pgio_header *hdr)
115 {
116 	mempool_free(hdr, nfs_wdata_mempool);
117 }
118 
nfs_io_completion_alloc(gfp_t gfp_flags)119 static struct nfs_io_completion *nfs_io_completion_alloc(gfp_t gfp_flags)
120 {
121 	return kmalloc(sizeof(struct nfs_io_completion), gfp_flags);
122 }
123 
nfs_io_completion_init(struct nfs_io_completion * ioc,void (* complete)(void *),void * data)124 static void nfs_io_completion_init(struct nfs_io_completion *ioc,
125 		void (*complete)(void *), void *data)
126 {
127 	ioc->complete = complete;
128 	ioc->data = data;
129 	kref_init(&ioc->refcount);
130 }
131 
nfs_io_completion_release(struct kref * kref)132 static void nfs_io_completion_release(struct kref *kref)
133 {
134 	struct nfs_io_completion *ioc = container_of(kref,
135 			struct nfs_io_completion, refcount);
136 	ioc->complete(ioc->data);
137 	kfree(ioc);
138 }
139 
nfs_io_completion_get(struct nfs_io_completion * ioc)140 static void nfs_io_completion_get(struct nfs_io_completion *ioc)
141 {
142 	if (ioc != NULL)
143 		kref_get(&ioc->refcount);
144 }
145 
nfs_io_completion_put(struct nfs_io_completion * ioc)146 static void nfs_io_completion_put(struct nfs_io_completion *ioc)
147 {
148 	if (ioc != NULL)
149 		kref_put(&ioc->refcount, nfs_io_completion_release);
150 }
151 
152 static struct nfs_page *
nfs_page_private_request(struct page * page)153 nfs_page_private_request(struct page *page)
154 {
155 	if (!PagePrivate(page))
156 		return NULL;
157 	return (struct nfs_page *)page_private(page);
158 }
159 
160 /*
161  * nfs_page_find_head_request_locked - find head request associated with @page
162  *
163  * must be called while holding the inode lock.
164  *
165  * returns matching head request with reference held, or NULL if not found.
166  */
167 static struct nfs_page *
nfs_page_find_private_request(struct page * page)168 nfs_page_find_private_request(struct page *page)
169 {
170 	struct address_space *mapping = page_file_mapping(page);
171 	struct nfs_page *req;
172 
173 	if (!PagePrivate(page))
174 		return NULL;
175 	spin_lock(&mapping->private_lock);
176 	req = nfs_page_private_request(page);
177 	if (req) {
178 		WARN_ON_ONCE(req->wb_head != req);
179 		kref_get(&req->wb_kref);
180 	}
181 	spin_unlock(&mapping->private_lock);
182 	return req;
183 }
184 
185 static struct nfs_page *
nfs_page_find_swap_request(struct page * page)186 nfs_page_find_swap_request(struct page *page)
187 {
188 	struct inode *inode = page_file_mapping(page)->host;
189 	struct nfs_inode *nfsi = NFS_I(inode);
190 	struct nfs_page *req = NULL;
191 	if (!PageSwapCache(page))
192 		return NULL;
193 	mutex_lock(&nfsi->commit_mutex);
194 	if (PageSwapCache(page)) {
195 		req = nfs_page_search_commits_for_head_request_locked(nfsi,
196 			page);
197 		if (req) {
198 			WARN_ON_ONCE(req->wb_head != req);
199 			kref_get(&req->wb_kref);
200 		}
201 	}
202 	mutex_unlock(&nfsi->commit_mutex);
203 	return req;
204 }
205 
206 /*
207  * nfs_page_find_head_request - find head request associated with @page
208  *
209  * returns matching head request with reference held, or NULL if not found.
210  */
nfs_page_find_head_request(struct page * page)211 static struct nfs_page *nfs_page_find_head_request(struct page *page)
212 {
213 	struct nfs_page *req;
214 
215 	req = nfs_page_find_private_request(page);
216 	if (!req)
217 		req = nfs_page_find_swap_request(page);
218 	return req;
219 }
220 
221 /* Adjust the file length if we're writing beyond the end */
nfs_grow_file(struct page * page,unsigned int offset,unsigned int count)222 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
223 {
224 	struct inode *inode = page_file_mapping(page)->host;
225 	loff_t end, i_size;
226 	pgoff_t end_index;
227 
228 	spin_lock(&inode->i_lock);
229 	i_size = i_size_read(inode);
230 	end_index = (i_size - 1) >> PAGE_SHIFT;
231 	if (i_size > 0 && page_index(page) < end_index)
232 		goto out;
233 	end = page_file_offset(page) + ((loff_t)offset+count);
234 	if (i_size >= end)
235 		goto out;
236 	i_size_write(inode, end);
237 	NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_SIZE;
238 	nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
239 out:
240 	spin_unlock(&inode->i_lock);
241 }
242 
243 /* A writeback failed: mark the page as bad, and invalidate the page cache */
nfs_set_pageerror(struct address_space * mapping)244 static void nfs_set_pageerror(struct address_space *mapping)
245 {
246 	nfs_zap_mapping(mapping->host, mapping);
247 }
248 
nfs_mapping_set_error(struct page * page,int error)249 static void nfs_mapping_set_error(struct page *page, int error)
250 {
251 	SetPageError(page);
252 	mapping_set_error(page_file_mapping(page), error);
253 }
254 
255 /*
256  * nfs_page_group_search_locked
257  * @head - head request of page group
258  * @page_offset - offset into page
259  *
260  * Search page group with head @head to find a request that contains the
261  * page offset @page_offset.
262  *
263  * Returns a pointer to the first matching nfs request, or NULL if no
264  * match is found.
265  *
266  * Must be called with the page group lock held
267  */
268 static struct nfs_page *
nfs_page_group_search_locked(struct nfs_page * head,unsigned int page_offset)269 nfs_page_group_search_locked(struct nfs_page *head, unsigned int page_offset)
270 {
271 	struct nfs_page *req;
272 
273 	req = head;
274 	do {
275 		if (page_offset >= req->wb_pgbase &&
276 		    page_offset < (req->wb_pgbase + req->wb_bytes))
277 			return req;
278 
279 		req = req->wb_this_page;
280 	} while (req != head);
281 
282 	return NULL;
283 }
284 
285 /*
286  * nfs_page_group_covers_page
287  * @head - head request of page group
288  *
289  * Return true if the page group with head @head covers the whole page,
290  * returns false otherwise
291  */
nfs_page_group_covers_page(struct nfs_page * req)292 static bool nfs_page_group_covers_page(struct nfs_page *req)
293 {
294 	struct nfs_page *tmp;
295 	unsigned int pos = 0;
296 	unsigned int len = nfs_page_length(req->wb_page);
297 
298 	nfs_page_group_lock(req);
299 
300 	for (;;) {
301 		tmp = nfs_page_group_search_locked(req->wb_head, pos);
302 		if (!tmp)
303 			break;
304 		pos = tmp->wb_pgbase + tmp->wb_bytes;
305 	}
306 
307 	nfs_page_group_unlock(req);
308 	return pos >= len;
309 }
310 
311 /* We can set the PG_uptodate flag if we see that a write request
312  * covers the full page.
313  */
nfs_mark_uptodate(struct nfs_page * req)314 static void nfs_mark_uptodate(struct nfs_page *req)
315 {
316 	if (PageUptodate(req->wb_page))
317 		return;
318 	if (!nfs_page_group_covers_page(req))
319 		return;
320 	SetPageUptodate(req->wb_page);
321 }
322 
wb_priority(struct writeback_control * wbc)323 static int wb_priority(struct writeback_control *wbc)
324 {
325 	int ret = 0;
326 
327 	if (wbc->sync_mode == WB_SYNC_ALL)
328 		ret = FLUSH_COND_STABLE;
329 	return ret;
330 }
331 
332 /*
333  * NFS congestion control
334  */
335 
336 int nfs_congestion_kb;
337 
338 #define NFS_CONGESTION_ON_THRESH 	(nfs_congestion_kb >> (PAGE_SHIFT-10))
339 #define NFS_CONGESTION_OFF_THRESH	\
340 	(NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
341 
nfs_set_page_writeback(struct page * page)342 static void nfs_set_page_writeback(struct page *page)
343 {
344 	struct inode *inode = page_file_mapping(page)->host;
345 	struct nfs_server *nfss = NFS_SERVER(inode);
346 	int ret = test_set_page_writeback(page);
347 
348 	WARN_ON_ONCE(ret != 0);
349 
350 	if (atomic_long_inc_return(&nfss->writeback) >
351 			NFS_CONGESTION_ON_THRESH)
352 		set_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC);
353 }
354 
nfs_end_page_writeback(struct nfs_page * req)355 static void nfs_end_page_writeback(struct nfs_page *req)
356 {
357 	struct inode *inode = page_file_mapping(req->wb_page)->host;
358 	struct nfs_server *nfss = NFS_SERVER(inode);
359 	bool is_done;
360 
361 	is_done = nfs_page_group_sync_on_bit(req, PG_WB_END);
362 	nfs_unlock_request(req);
363 	if (!is_done)
364 		return;
365 
366 	end_page_writeback(req->wb_page);
367 	if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
368 		clear_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC);
369 }
370 
371 /*
372  * nfs_unroll_locks_and_wait -  unlock all newly locked reqs and wait on @req
373  *
374  * this is a helper function for nfs_lock_and_join_requests
375  *
376  * @inode - inode associated with request page group, must be holding inode lock
377  * @head  - head request of page group, must be holding head lock
378  * @req   - request that couldn't lock and needs to wait on the req bit lock
379  *
380  * NOTE: this must be called holding page_group bit lock
381  *       which will be released before returning.
382  *
383  * returns 0 on success, < 0 on error.
384  */
385 static void
nfs_unroll_locks(struct inode * inode,struct nfs_page * head,struct nfs_page * req)386 nfs_unroll_locks(struct inode *inode, struct nfs_page *head,
387 			  struct nfs_page *req)
388 {
389 	struct nfs_page *tmp;
390 
391 	/* relinquish all the locks successfully grabbed this run */
392 	for (tmp = head->wb_this_page ; tmp != req; tmp = tmp->wb_this_page) {
393 		if (!kref_read(&tmp->wb_kref))
394 			continue;
395 		nfs_unlock_and_release_request(tmp);
396 	}
397 }
398 
399 /*
400  * nfs_destroy_unlinked_subrequests - destroy recently unlinked subrequests
401  *
402  * @destroy_list - request list (using wb_this_page) terminated by @old_head
403  * @old_head - the old head of the list
404  *
405  * All subrequests must be locked and removed from all lists, so at this point
406  * they are only "active" in this function, and possibly in nfs_wait_on_request
407  * with a reference held by some other context.
408  */
409 static void
nfs_destroy_unlinked_subrequests(struct nfs_page * destroy_list,struct nfs_page * old_head,struct inode * inode)410 nfs_destroy_unlinked_subrequests(struct nfs_page *destroy_list,
411 				 struct nfs_page *old_head,
412 				 struct inode *inode)
413 {
414 	while (destroy_list) {
415 		struct nfs_page *subreq = destroy_list;
416 
417 		destroy_list = (subreq->wb_this_page == old_head) ?
418 				   NULL : subreq->wb_this_page;
419 
420 		WARN_ON_ONCE(old_head != subreq->wb_head);
421 
422 		/* make sure old group is not used */
423 		subreq->wb_this_page = subreq;
424 
425 		clear_bit(PG_REMOVE, &subreq->wb_flags);
426 
427 		/* Note: races with nfs_page_group_destroy() */
428 		if (!kref_read(&subreq->wb_kref)) {
429 			/* Check if we raced with nfs_page_group_destroy() */
430 			if (test_and_clear_bit(PG_TEARDOWN, &subreq->wb_flags))
431 				nfs_free_request(subreq);
432 			continue;
433 		}
434 
435 		subreq->wb_head = subreq;
436 
437 		if (test_and_clear_bit(PG_INODE_REF, &subreq->wb_flags)) {
438 			nfs_release_request(subreq);
439 			atomic_long_dec(&NFS_I(inode)->nrequests);
440 		}
441 
442 		/* subreq is now totally disconnected from page group or any
443 		 * write / commit lists. last chance to wake any waiters */
444 		nfs_unlock_and_release_request(subreq);
445 	}
446 }
447 
448 /*
449  * nfs_lock_and_join_requests - join all subreqs to the head req and return
450  *                              a locked reference, cancelling any pending
451  *                              operations for this page.
452  *
453  * @page - the page used to lookup the "page group" of nfs_page structures
454  *
455  * This function joins all sub requests to the head request by first
456  * locking all requests in the group, cancelling any pending operations
457  * and finally updating the head request to cover the whole range covered by
458  * the (former) group.  All subrequests are removed from any write or commit
459  * lists, unlinked from the group and destroyed.
460  *
461  * Returns a locked, referenced pointer to the head request - which after
462  * this call is guaranteed to be the only request associated with the page.
463  * Returns NULL if no requests are found for @page, or a ERR_PTR if an
464  * error was encountered.
465  */
466 static struct nfs_page *
nfs_lock_and_join_requests(struct page * page)467 nfs_lock_and_join_requests(struct page *page)
468 {
469 	struct inode *inode = page_file_mapping(page)->host;
470 	struct nfs_page *head, *subreq;
471 	struct nfs_page *destroy_list = NULL;
472 	unsigned int total_bytes;
473 	int ret;
474 
475 try_again:
476 	/*
477 	 * A reference is taken only on the head request which acts as a
478 	 * reference to the whole page group - the group will not be destroyed
479 	 * until the head reference is released.
480 	 */
481 	head = nfs_page_find_head_request(page);
482 	if (!head)
483 		return NULL;
484 
485 	/* lock the page head first in order to avoid an ABBA inefficiency */
486 	if (!nfs_lock_request(head)) {
487 		ret = nfs_wait_on_request(head);
488 		nfs_release_request(head);
489 		if (ret < 0)
490 			return ERR_PTR(ret);
491 		goto try_again;
492 	}
493 
494 	/* Ensure that nobody removed the request before we locked it */
495 	if (head != nfs_page_private_request(page) && !PageSwapCache(page)) {
496 		nfs_unlock_and_release_request(head);
497 		goto try_again;
498 	}
499 
500 	ret = nfs_page_group_lock(head);
501 	if (ret < 0)
502 		goto release_request;
503 
504 	/* lock each request in the page group */
505 	total_bytes = head->wb_bytes;
506 	for (subreq = head->wb_this_page; subreq != head;
507 			subreq = subreq->wb_this_page) {
508 
509 		if (!kref_get_unless_zero(&subreq->wb_kref)) {
510 			if (subreq->wb_offset == head->wb_offset + total_bytes)
511 				total_bytes += subreq->wb_bytes;
512 			continue;
513 		}
514 
515 		while (!nfs_lock_request(subreq)) {
516 			/*
517 			 * Unlock page to allow nfs_page_group_sync_on_bit()
518 			 * to succeed
519 			 */
520 			nfs_page_group_unlock(head);
521 			ret = nfs_wait_on_request(subreq);
522 			if (!ret)
523 				ret = nfs_page_group_lock(head);
524 			if (ret < 0) {
525 				nfs_unroll_locks(inode, head, subreq);
526 				nfs_release_request(subreq);
527 				goto release_request;
528 			}
529 		}
530 		/*
531 		 * Subrequests are always contiguous, non overlapping
532 		 * and in order - but may be repeated (mirrored writes).
533 		 */
534 		if (subreq->wb_offset == (head->wb_offset + total_bytes)) {
535 			/* keep track of how many bytes this group covers */
536 			total_bytes += subreq->wb_bytes;
537 		} else if (WARN_ON_ONCE(subreq->wb_offset < head->wb_offset ||
538 			    ((subreq->wb_offset + subreq->wb_bytes) >
539 			     (head->wb_offset + total_bytes)))) {
540 			nfs_page_group_unlock(head);
541 			nfs_unroll_locks(inode, head, subreq);
542 			nfs_unlock_and_release_request(subreq);
543 			ret = -EIO;
544 			goto release_request;
545 		}
546 	}
547 
548 	/* Now that all requests are locked, make sure they aren't on any list.
549 	 * Commit list removal accounting is done after locks are dropped */
550 	subreq = head;
551 	do {
552 		nfs_clear_request_commit(subreq);
553 		subreq = subreq->wb_this_page;
554 	} while (subreq != head);
555 
556 	/* unlink subrequests from head, destroy them later */
557 	if (head->wb_this_page != head) {
558 		/* destroy list will be terminated by head */
559 		destroy_list = head->wb_this_page;
560 		head->wb_this_page = head;
561 
562 		/* change head request to cover whole range that
563 		 * the former page group covered */
564 		head->wb_bytes = total_bytes;
565 	}
566 
567 	/* Postpone destruction of this request */
568 	if (test_and_clear_bit(PG_REMOVE, &head->wb_flags)) {
569 		set_bit(PG_INODE_REF, &head->wb_flags);
570 		kref_get(&head->wb_kref);
571 		atomic_long_inc(&NFS_I(inode)->nrequests);
572 	}
573 
574 	nfs_page_group_unlock(head);
575 
576 	nfs_destroy_unlinked_subrequests(destroy_list, head, inode);
577 
578 	/* Did we lose a race with nfs_inode_remove_request()? */
579 	if (!(PagePrivate(page) || PageSwapCache(page))) {
580 		nfs_unlock_and_release_request(head);
581 		return NULL;
582 	}
583 
584 	/* still holds ref on head from nfs_page_find_head_request
585 	 * and still has lock on head from lock loop */
586 	return head;
587 
588 release_request:
589 	nfs_unlock_and_release_request(head);
590 	return ERR_PTR(ret);
591 }
592 
nfs_write_error(struct nfs_page * req,int error)593 static void nfs_write_error(struct nfs_page *req, int error)
594 {
595 	nfs_set_pageerror(page_file_mapping(req->wb_page));
596 	nfs_mapping_set_error(req->wb_page, error);
597 	nfs_inode_remove_request(req);
598 	nfs_end_page_writeback(req);
599 	nfs_release_request(req);
600 }
601 
602 /*
603  * Find an associated nfs write request, and prepare to flush it out
604  * May return an error if the user signalled nfs_wait_on_request().
605  */
nfs_page_async_flush(struct nfs_pageio_descriptor * pgio,struct page * page)606 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
607 				struct page *page)
608 {
609 	struct nfs_page *req;
610 	int ret = 0;
611 
612 	req = nfs_lock_and_join_requests(page);
613 	if (!req)
614 		goto out;
615 	ret = PTR_ERR(req);
616 	if (IS_ERR(req))
617 		goto out;
618 
619 	nfs_set_page_writeback(page);
620 	WARN_ON_ONCE(test_bit(PG_CLEAN, &req->wb_flags));
621 
622 	/* If there is a fatal error that covers this write, just exit */
623 	ret = pgio->pg_error;
624 	if (nfs_error_is_fatal_on_server(ret))
625 		goto out_launder;
626 
627 	ret = 0;
628 	if (!nfs_pageio_add_request(pgio, req)) {
629 		ret = pgio->pg_error;
630 		/*
631 		 * Remove the problematic req upon fatal errors on the server
632 		 */
633 		if (nfs_error_is_fatal(ret)) {
634 			if (nfs_error_is_fatal_on_server(ret))
635 				goto out_launder;
636 		} else
637 			ret = -EAGAIN;
638 		nfs_redirty_request(req);
639 		pgio->pg_error = 0;
640 	} else
641 		nfs_add_stats(page_file_mapping(page)->host,
642 				NFSIOS_WRITEPAGES, 1);
643 out:
644 	return ret;
645 out_launder:
646 	nfs_write_error(req, ret);
647 	return 0;
648 }
649 
nfs_do_writepage(struct page * page,struct writeback_control * wbc,struct nfs_pageio_descriptor * pgio)650 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc,
651 			    struct nfs_pageio_descriptor *pgio)
652 {
653 	int ret;
654 
655 	nfs_pageio_cond_complete(pgio, page_index(page));
656 	ret = nfs_page_async_flush(pgio, page);
657 	if (ret == -EAGAIN) {
658 		redirty_page_for_writepage(wbc, page);
659 		ret = AOP_WRITEPAGE_ACTIVATE;
660 	}
661 	return ret;
662 }
663 
664 /*
665  * Write an mmapped page to the server.
666  */
nfs_writepage_locked(struct page * page,struct writeback_control * wbc)667 static int nfs_writepage_locked(struct page *page,
668 				struct writeback_control *wbc)
669 {
670 	struct nfs_pageio_descriptor pgio;
671 	struct inode *inode = page_file_mapping(page)->host;
672 	int err;
673 
674 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
675 	nfs_pageio_init_write(&pgio, inode, 0,
676 				false, &nfs_async_write_completion_ops);
677 	err = nfs_do_writepage(page, wbc, &pgio);
678 	pgio.pg_error = 0;
679 	nfs_pageio_complete(&pgio);
680 	if (err < 0)
681 		return err;
682 	if (nfs_error_is_fatal(pgio.pg_error))
683 		return pgio.pg_error;
684 	return 0;
685 }
686 
nfs_writepage(struct page * page,struct writeback_control * wbc)687 int nfs_writepage(struct page *page, struct writeback_control *wbc)
688 {
689 	int ret;
690 
691 	ret = nfs_writepage_locked(page, wbc);
692 	if (ret != AOP_WRITEPAGE_ACTIVATE)
693 		unlock_page(page);
694 	return ret;
695 }
696 
nfs_writepages_callback(struct page * page,struct writeback_control * wbc,void * data)697 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
698 {
699 	int ret;
700 
701 	ret = nfs_do_writepage(page, wbc, data);
702 	if (ret != AOP_WRITEPAGE_ACTIVATE)
703 		unlock_page(page);
704 	return ret;
705 }
706 
nfs_io_completion_commit(void * inode)707 static void nfs_io_completion_commit(void *inode)
708 {
709 	nfs_commit_inode(inode, 0);
710 }
711 
nfs_writepages(struct address_space * mapping,struct writeback_control * wbc)712 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
713 {
714 	struct inode *inode = mapping->host;
715 	struct nfs_pageio_descriptor pgio;
716 	struct nfs_io_completion *ioc;
717 	int err;
718 
719 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
720 
721 	ioc = nfs_io_completion_alloc(GFP_KERNEL);
722 	if (ioc)
723 		nfs_io_completion_init(ioc, nfs_io_completion_commit, inode);
724 
725 	nfs_pageio_init_write(&pgio, inode, wb_priority(wbc), false,
726 				&nfs_async_write_completion_ops);
727 	pgio.pg_io_completion = ioc;
728 	err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
729 	pgio.pg_error = 0;
730 	nfs_pageio_complete(&pgio);
731 	nfs_io_completion_put(ioc);
732 
733 	if (err < 0)
734 		goto out_err;
735 	err = pgio.pg_error;
736 	if (nfs_error_is_fatal(err))
737 		goto out_err;
738 	return 0;
739 out_err:
740 	return err;
741 }
742 
743 /*
744  * Insert a write request into an inode
745  */
nfs_inode_add_request(struct inode * inode,struct nfs_page * req)746 static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
747 {
748 	struct address_space *mapping = page_file_mapping(req->wb_page);
749 	struct nfs_inode *nfsi = NFS_I(inode);
750 
751 	WARN_ON_ONCE(req->wb_this_page != req);
752 
753 	/* Lock the request! */
754 	nfs_lock_request(req);
755 
756 	/*
757 	 * Swap-space should not get truncated. Hence no need to plug the race
758 	 * with invalidate/truncate.
759 	 */
760 	spin_lock(&mapping->private_lock);
761 	if (!nfs_have_writebacks(inode) &&
762 	    NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
763 		inode_inc_iversion_raw(inode);
764 	if (likely(!PageSwapCache(req->wb_page))) {
765 		set_bit(PG_MAPPED, &req->wb_flags);
766 		SetPagePrivate(req->wb_page);
767 		set_page_private(req->wb_page, (unsigned long)req);
768 	}
769 	spin_unlock(&mapping->private_lock);
770 	atomic_long_inc(&nfsi->nrequests);
771 	/* this a head request for a page group - mark it as having an
772 	 * extra reference so sub groups can follow suit.
773 	 * This flag also informs pgio layer when to bump nrequests when
774 	 * adding subrequests. */
775 	WARN_ON(test_and_set_bit(PG_INODE_REF, &req->wb_flags));
776 	kref_get(&req->wb_kref);
777 }
778 
779 /*
780  * Remove a write request from an inode
781  */
nfs_inode_remove_request(struct nfs_page * req)782 static void nfs_inode_remove_request(struct nfs_page *req)
783 {
784 	struct address_space *mapping = page_file_mapping(req->wb_page);
785 	struct inode *inode = mapping->host;
786 	struct nfs_inode *nfsi = NFS_I(inode);
787 	struct nfs_page *head;
788 
789 	if (nfs_page_group_sync_on_bit(req, PG_REMOVE)) {
790 		head = req->wb_head;
791 
792 		spin_lock(&mapping->private_lock);
793 		if (likely(head->wb_page && !PageSwapCache(head->wb_page))) {
794 			set_page_private(head->wb_page, 0);
795 			ClearPagePrivate(head->wb_page);
796 			clear_bit(PG_MAPPED, &head->wb_flags);
797 		}
798 		spin_unlock(&mapping->private_lock);
799 	}
800 
801 	if (test_and_clear_bit(PG_INODE_REF, &req->wb_flags)) {
802 		nfs_release_request(req);
803 		atomic_long_dec(&nfsi->nrequests);
804 	}
805 }
806 
807 static void
nfs_mark_request_dirty(struct nfs_page * req)808 nfs_mark_request_dirty(struct nfs_page *req)
809 {
810 	if (req->wb_page)
811 		__set_page_dirty_nobuffers(req->wb_page);
812 }
813 
814 /*
815  * nfs_page_search_commits_for_head_request_locked
816  *
817  * Search through commit lists on @inode for the head request for @page.
818  * Must be called while holding the inode (which is cinfo) lock.
819  *
820  * Returns the head request if found, or NULL if not found.
821  */
822 static struct nfs_page *
nfs_page_search_commits_for_head_request_locked(struct nfs_inode * nfsi,struct page * page)823 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
824 						struct page *page)
825 {
826 	struct nfs_page *freq, *t;
827 	struct nfs_commit_info cinfo;
828 	struct inode *inode = &nfsi->vfs_inode;
829 
830 	nfs_init_cinfo_from_inode(&cinfo, inode);
831 
832 	/* search through pnfs commit lists */
833 	freq = pnfs_search_commit_reqs(inode, &cinfo, page);
834 	if (freq)
835 		return freq->wb_head;
836 
837 	/* Linearly search the commit list for the correct request */
838 	list_for_each_entry_safe(freq, t, &cinfo.mds->list, wb_list) {
839 		if (freq->wb_page == page)
840 			return freq->wb_head;
841 	}
842 
843 	return NULL;
844 }
845 
846 /**
847  * nfs_request_add_commit_list_locked - add request to a commit list
848  * @req: pointer to a struct nfs_page
849  * @dst: commit list head
850  * @cinfo: holds list lock and accounting info
851  *
852  * This sets the PG_CLEAN bit, updates the cinfo count of
853  * number of outstanding requests requiring a commit as well as
854  * the MM page stats.
855  *
856  * The caller must hold NFS_I(cinfo->inode)->commit_mutex, and the
857  * nfs_page lock.
858  */
859 void
nfs_request_add_commit_list_locked(struct nfs_page * req,struct list_head * dst,struct nfs_commit_info * cinfo)860 nfs_request_add_commit_list_locked(struct nfs_page *req, struct list_head *dst,
861 			    struct nfs_commit_info *cinfo)
862 {
863 	set_bit(PG_CLEAN, &req->wb_flags);
864 	nfs_list_add_request(req, dst);
865 	atomic_long_inc(&cinfo->mds->ncommit);
866 }
867 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list_locked);
868 
869 /**
870  * nfs_request_add_commit_list - add request to a commit list
871  * @req: pointer to a struct nfs_page
872  * @cinfo: holds list lock and accounting info
873  *
874  * This sets the PG_CLEAN bit, updates the cinfo count of
875  * number of outstanding requests requiring a commit as well as
876  * the MM page stats.
877  *
878  * The caller must _not_ hold the cinfo->lock, but must be
879  * holding the nfs_page lock.
880  */
881 void
nfs_request_add_commit_list(struct nfs_page * req,struct nfs_commit_info * cinfo)882 nfs_request_add_commit_list(struct nfs_page *req, struct nfs_commit_info *cinfo)
883 {
884 	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
885 	nfs_request_add_commit_list_locked(req, &cinfo->mds->list, cinfo);
886 	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
887 	if (req->wb_page)
888 		nfs_mark_page_unstable(req->wb_page, cinfo);
889 }
890 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list);
891 
892 /**
893  * nfs_request_remove_commit_list - Remove request from a commit list
894  * @req: pointer to a nfs_page
895  * @cinfo: holds list lock and accounting info
896  *
897  * This clears the PG_CLEAN bit, and updates the cinfo's count of
898  * number of outstanding requests requiring a commit
899  * It does not update the MM page stats.
900  *
901  * The caller _must_ hold the cinfo->lock and the nfs_page lock.
902  */
903 void
nfs_request_remove_commit_list(struct nfs_page * req,struct nfs_commit_info * cinfo)904 nfs_request_remove_commit_list(struct nfs_page *req,
905 			       struct nfs_commit_info *cinfo)
906 {
907 	if (!test_and_clear_bit(PG_CLEAN, &(req)->wb_flags))
908 		return;
909 	nfs_list_remove_request(req);
910 	atomic_long_dec(&cinfo->mds->ncommit);
911 }
912 EXPORT_SYMBOL_GPL(nfs_request_remove_commit_list);
913 
nfs_init_cinfo_from_inode(struct nfs_commit_info * cinfo,struct inode * inode)914 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
915 				      struct inode *inode)
916 {
917 	cinfo->inode = inode;
918 	cinfo->mds = &NFS_I(inode)->commit_info;
919 	cinfo->ds = pnfs_get_ds_info(inode);
920 	cinfo->dreq = NULL;
921 	cinfo->completion_ops = &nfs_commit_completion_ops;
922 }
923 
nfs_init_cinfo(struct nfs_commit_info * cinfo,struct inode * inode,struct nfs_direct_req * dreq)924 void nfs_init_cinfo(struct nfs_commit_info *cinfo,
925 		    struct inode *inode,
926 		    struct nfs_direct_req *dreq)
927 {
928 	if (dreq)
929 		nfs_init_cinfo_from_dreq(cinfo, dreq);
930 	else
931 		nfs_init_cinfo_from_inode(cinfo, inode);
932 }
933 EXPORT_SYMBOL_GPL(nfs_init_cinfo);
934 
935 /*
936  * Add a request to the inode's commit list.
937  */
938 void
nfs_mark_request_commit(struct nfs_page * req,struct pnfs_layout_segment * lseg,struct nfs_commit_info * cinfo,u32 ds_commit_idx)939 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg,
940 			struct nfs_commit_info *cinfo, u32 ds_commit_idx)
941 {
942 	if (pnfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx))
943 		return;
944 	nfs_request_add_commit_list(req, cinfo);
945 }
946 
947 static void
nfs_clear_page_commit(struct page * page)948 nfs_clear_page_commit(struct page *page)
949 {
950 	dec_node_page_state(page, NR_UNSTABLE_NFS);
951 	dec_wb_stat(&inode_to_bdi(page_file_mapping(page)->host)->wb,
952 		    WB_RECLAIMABLE);
953 }
954 
955 /* Called holding the request lock on @req */
956 static void
nfs_clear_request_commit(struct nfs_page * req)957 nfs_clear_request_commit(struct nfs_page *req)
958 {
959 	if (test_bit(PG_CLEAN, &req->wb_flags)) {
960 		struct nfs_open_context *ctx = nfs_req_openctx(req);
961 		struct inode *inode = d_inode(ctx->dentry);
962 		struct nfs_commit_info cinfo;
963 
964 		nfs_init_cinfo_from_inode(&cinfo, inode);
965 		mutex_lock(&NFS_I(inode)->commit_mutex);
966 		if (!pnfs_clear_request_commit(req, &cinfo)) {
967 			nfs_request_remove_commit_list(req, &cinfo);
968 		}
969 		mutex_unlock(&NFS_I(inode)->commit_mutex);
970 		nfs_clear_page_commit(req->wb_page);
971 	}
972 }
973 
nfs_write_need_commit(struct nfs_pgio_header * hdr)974 int nfs_write_need_commit(struct nfs_pgio_header *hdr)
975 {
976 	if (hdr->verf.committed == NFS_DATA_SYNC)
977 		return hdr->lseg == NULL;
978 	return hdr->verf.committed != NFS_FILE_SYNC;
979 }
980 
nfs_async_write_init(struct nfs_pgio_header * hdr)981 static void nfs_async_write_init(struct nfs_pgio_header *hdr)
982 {
983 	nfs_io_completion_get(hdr->io_completion);
984 }
985 
nfs_write_completion(struct nfs_pgio_header * hdr)986 static void nfs_write_completion(struct nfs_pgio_header *hdr)
987 {
988 	struct nfs_commit_info cinfo;
989 	unsigned long bytes = 0;
990 
991 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
992 		goto out;
993 	nfs_init_cinfo_from_inode(&cinfo, hdr->inode);
994 	while (!list_empty(&hdr->pages)) {
995 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
996 
997 		bytes += req->wb_bytes;
998 		nfs_list_remove_request(req);
999 		if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) &&
1000 		    (hdr->good_bytes < bytes)) {
1001 			nfs_set_pageerror(page_file_mapping(req->wb_page));
1002 			nfs_mapping_set_error(req->wb_page, hdr->error);
1003 			goto remove_req;
1004 		}
1005 		if (nfs_write_need_commit(hdr)) {
1006 			/* Reset wb_nio, since the write was successful. */
1007 			req->wb_nio = 0;
1008 			memcpy(&req->wb_verf, &hdr->verf.verifier, sizeof(req->wb_verf));
1009 			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
1010 				hdr->pgio_mirror_idx);
1011 			goto next;
1012 		}
1013 remove_req:
1014 		nfs_inode_remove_request(req);
1015 next:
1016 		nfs_end_page_writeback(req);
1017 		nfs_release_request(req);
1018 	}
1019 out:
1020 	nfs_io_completion_put(hdr->io_completion);
1021 	hdr->release(hdr);
1022 }
1023 
1024 unsigned long
nfs_reqs_to_commit(struct nfs_commit_info * cinfo)1025 nfs_reqs_to_commit(struct nfs_commit_info *cinfo)
1026 {
1027 	return atomic_long_read(&cinfo->mds->ncommit);
1028 }
1029 
1030 /* NFS_I(cinfo->inode)->commit_mutex held by caller */
1031 int
nfs_scan_commit_list(struct list_head * src,struct list_head * dst,struct nfs_commit_info * cinfo,int max)1032 nfs_scan_commit_list(struct list_head *src, struct list_head *dst,
1033 		     struct nfs_commit_info *cinfo, int max)
1034 {
1035 	struct nfs_page *req, *tmp;
1036 	int ret = 0;
1037 
1038 restart:
1039 	list_for_each_entry_safe(req, tmp, src, wb_list) {
1040 		kref_get(&req->wb_kref);
1041 		if (!nfs_lock_request(req)) {
1042 			int status;
1043 
1044 			/* Prevent deadlock with nfs_lock_and_join_requests */
1045 			if (!list_empty(dst)) {
1046 				nfs_release_request(req);
1047 				continue;
1048 			}
1049 			/* Ensure we make progress to prevent livelock */
1050 			mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
1051 			status = nfs_wait_on_request(req);
1052 			nfs_release_request(req);
1053 			mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
1054 			if (status < 0)
1055 				break;
1056 			goto restart;
1057 		}
1058 		nfs_request_remove_commit_list(req, cinfo);
1059 		clear_bit(PG_COMMIT_TO_DS, &req->wb_flags);
1060 		nfs_list_add_request(req, dst);
1061 		ret++;
1062 		if ((ret == max) && !cinfo->dreq)
1063 			break;
1064 		cond_resched();
1065 	}
1066 	return ret;
1067 }
1068 EXPORT_SYMBOL_GPL(nfs_scan_commit_list);
1069 
1070 /*
1071  * nfs_scan_commit - Scan an inode for commit requests
1072  * @inode: NFS inode to scan
1073  * @dst: mds destination list
1074  * @cinfo: mds and ds lists of reqs ready to commit
1075  *
1076  * Moves requests from the inode's 'commit' request list.
1077  * The requests are *not* checked to ensure that they form a contiguous set.
1078  */
1079 int
nfs_scan_commit(struct inode * inode,struct list_head * dst,struct nfs_commit_info * cinfo)1080 nfs_scan_commit(struct inode *inode, struct list_head *dst,
1081 		struct nfs_commit_info *cinfo)
1082 {
1083 	int ret = 0;
1084 
1085 	if (!atomic_long_read(&cinfo->mds->ncommit))
1086 		return 0;
1087 	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
1088 	if (atomic_long_read(&cinfo->mds->ncommit) > 0) {
1089 		const int max = INT_MAX;
1090 
1091 		ret = nfs_scan_commit_list(&cinfo->mds->list, dst,
1092 					   cinfo, max);
1093 		ret += pnfs_scan_commit_lists(inode, cinfo, max - ret);
1094 	}
1095 	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
1096 	return ret;
1097 }
1098 
1099 /*
1100  * Search for an existing write request, and attempt to update
1101  * it to reflect a new dirty region on a given page.
1102  *
1103  * If the attempt fails, then the existing request is flushed out
1104  * to disk.
1105  */
nfs_try_to_update_request(struct inode * inode,struct page * page,unsigned int offset,unsigned int bytes)1106 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
1107 		struct page *page,
1108 		unsigned int offset,
1109 		unsigned int bytes)
1110 {
1111 	struct nfs_page *req;
1112 	unsigned int rqend;
1113 	unsigned int end;
1114 	int error;
1115 
1116 	end = offset + bytes;
1117 
1118 	req = nfs_lock_and_join_requests(page);
1119 	if (IS_ERR_OR_NULL(req))
1120 		return req;
1121 
1122 	rqend = req->wb_offset + req->wb_bytes;
1123 	/*
1124 	 * Tell the caller to flush out the request if
1125 	 * the offsets are non-contiguous.
1126 	 * Note: nfs_flush_incompatible() will already
1127 	 * have flushed out requests having wrong owners.
1128 	 */
1129 	if (offset > rqend || end < req->wb_offset)
1130 		goto out_flushme;
1131 
1132 	/* Okay, the request matches. Update the region */
1133 	if (offset < req->wb_offset) {
1134 		req->wb_offset = offset;
1135 		req->wb_pgbase = offset;
1136 	}
1137 	if (end > rqend)
1138 		req->wb_bytes = end - req->wb_offset;
1139 	else
1140 		req->wb_bytes = rqend - req->wb_offset;
1141 	req->wb_nio = 0;
1142 	return req;
1143 out_flushme:
1144 	/*
1145 	 * Note: we mark the request dirty here because
1146 	 * nfs_lock_and_join_requests() cannot preserve
1147 	 * commit flags, so we have to replay the write.
1148 	 */
1149 	nfs_mark_request_dirty(req);
1150 	nfs_unlock_and_release_request(req);
1151 	error = nfs_wb_page(inode, page);
1152 	return (error < 0) ? ERR_PTR(error) : NULL;
1153 }
1154 
1155 /*
1156  * Try to update an existing write request, or create one if there is none.
1157  *
1158  * Note: Should always be called with the Page Lock held to prevent races
1159  * if we have to add a new request. Also assumes that the caller has
1160  * already called nfs_flush_incompatible() if necessary.
1161  */
nfs_setup_write_request(struct nfs_open_context * ctx,struct page * page,unsigned int offset,unsigned int bytes)1162 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
1163 		struct page *page, unsigned int offset, unsigned int bytes)
1164 {
1165 	struct inode *inode = page_file_mapping(page)->host;
1166 	struct nfs_page	*req;
1167 
1168 	req = nfs_try_to_update_request(inode, page, offset, bytes);
1169 	if (req != NULL)
1170 		goto out;
1171 	req = nfs_create_request(ctx, page, offset, bytes);
1172 	if (IS_ERR(req))
1173 		goto out;
1174 	nfs_inode_add_request(inode, req);
1175 out:
1176 	return req;
1177 }
1178 
nfs_writepage_setup(struct nfs_open_context * ctx,struct page * page,unsigned int offset,unsigned int count)1179 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
1180 		unsigned int offset, unsigned int count)
1181 {
1182 	struct nfs_page	*req;
1183 
1184 	req = nfs_setup_write_request(ctx, page, offset, count);
1185 	if (IS_ERR(req))
1186 		return PTR_ERR(req);
1187 	/* Update file length */
1188 	nfs_grow_file(page, offset, count);
1189 	nfs_mark_uptodate(req);
1190 	nfs_mark_request_dirty(req);
1191 	nfs_unlock_and_release_request(req);
1192 	return 0;
1193 }
1194 
nfs_flush_incompatible(struct file * file,struct page * page)1195 int nfs_flush_incompatible(struct file *file, struct page *page)
1196 {
1197 	struct nfs_open_context *ctx = nfs_file_open_context(file);
1198 	struct nfs_lock_context *l_ctx;
1199 	struct file_lock_context *flctx = file_inode(file)->i_flctx;
1200 	struct nfs_page	*req;
1201 	int do_flush, status;
1202 	/*
1203 	 * Look for a request corresponding to this page. If there
1204 	 * is one, and it belongs to another file, we flush it out
1205 	 * before we try to copy anything into the page. Do this
1206 	 * due to the lack of an ACCESS-type call in NFSv2.
1207 	 * Also do the same if we find a request from an existing
1208 	 * dropped page.
1209 	 */
1210 	do {
1211 		req = nfs_page_find_head_request(page);
1212 		if (req == NULL)
1213 			return 0;
1214 		l_ctx = req->wb_lock_context;
1215 		do_flush = req->wb_page != page ||
1216 			!nfs_match_open_context(nfs_req_openctx(req), ctx);
1217 		if (l_ctx && flctx &&
1218 		    !(list_empty_careful(&flctx->flc_posix) &&
1219 		      list_empty_careful(&flctx->flc_flock))) {
1220 			do_flush |= l_ctx->lockowner != current->files;
1221 		}
1222 		nfs_release_request(req);
1223 		if (!do_flush)
1224 			return 0;
1225 		status = nfs_wb_page(page_file_mapping(page)->host, page);
1226 	} while (status == 0);
1227 	return status;
1228 }
1229 
1230 /*
1231  * Avoid buffered writes when a open context credential's key would
1232  * expire soon.
1233  *
1234  * Returns -EACCES if the key will expire within RPC_KEY_EXPIRE_FAIL.
1235  *
1236  * Return 0 and set a credential flag which triggers the inode to flush
1237  * and performs  NFS_FILE_SYNC writes if the key will expired within
1238  * RPC_KEY_EXPIRE_TIMEO.
1239  */
1240 int
nfs_key_timeout_notify(struct file * filp,struct inode * inode)1241 nfs_key_timeout_notify(struct file *filp, struct inode *inode)
1242 {
1243 	struct nfs_open_context *ctx = nfs_file_open_context(filp);
1244 
1245 	if (nfs_ctx_key_to_expire(ctx, inode) &&
1246 	    !ctx->ll_cred)
1247 		/* Already expired! */
1248 		return -EACCES;
1249 	return 0;
1250 }
1251 
1252 /*
1253  * Test if the open context credential key is marked to expire soon.
1254  */
nfs_ctx_key_to_expire(struct nfs_open_context * ctx,struct inode * inode)1255 bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx, struct inode *inode)
1256 {
1257 	struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth;
1258 	struct rpc_cred *cred = ctx->ll_cred;
1259 	struct auth_cred acred = {
1260 		.cred = ctx->cred,
1261 	};
1262 
1263 	if (cred && !cred->cr_ops->crmatch(&acred, cred, 0)) {
1264 		put_rpccred(cred);
1265 		ctx->ll_cred = NULL;
1266 		cred = NULL;
1267 	}
1268 	if (!cred)
1269 		cred = auth->au_ops->lookup_cred(auth, &acred, 0);
1270 	if (!cred || IS_ERR(cred))
1271 		return true;
1272 	ctx->ll_cred = cred;
1273 	return !!(cred->cr_ops->crkey_timeout &&
1274 		  cred->cr_ops->crkey_timeout(cred));
1275 }
1276 
1277 /*
1278  * If the page cache is marked as unsafe or invalid, then we can't rely on
1279  * the PageUptodate() flag. In this case, we will need to turn off
1280  * write optimisations that depend on the page contents being correct.
1281  */
nfs_write_pageuptodate(struct page * page,struct inode * inode)1282 static bool nfs_write_pageuptodate(struct page *page, struct inode *inode)
1283 {
1284 	struct nfs_inode *nfsi = NFS_I(inode);
1285 
1286 	if (nfs_have_delegated_attributes(inode))
1287 		goto out;
1288 	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
1289 		return false;
1290 	smp_rmb();
1291 	if (test_bit(NFS_INO_INVALIDATING, &nfsi->flags))
1292 		return false;
1293 out:
1294 	if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
1295 		return false;
1296 	return PageUptodate(page) != 0;
1297 }
1298 
1299 static bool
is_whole_file_wrlock(struct file_lock * fl)1300 is_whole_file_wrlock(struct file_lock *fl)
1301 {
1302 	return fl->fl_start == 0 && fl->fl_end == OFFSET_MAX &&
1303 			fl->fl_type == F_WRLCK;
1304 }
1305 
1306 /* If we know the page is up to date, and we're not using byte range locks (or
1307  * if we have the whole file locked for writing), it may be more efficient to
1308  * extend the write to cover the entire page in order to avoid fragmentation
1309  * inefficiencies.
1310  *
1311  * If the file is opened for synchronous writes then we can just skip the rest
1312  * of the checks.
1313  */
nfs_can_extend_write(struct file * file,struct page * page,struct inode * inode)1314 static int nfs_can_extend_write(struct file *file, struct page *page, struct inode *inode)
1315 {
1316 	int ret;
1317 	struct file_lock_context *flctx = inode->i_flctx;
1318 	struct file_lock *fl;
1319 
1320 	if (file->f_flags & O_DSYNC)
1321 		return 0;
1322 	if (!nfs_write_pageuptodate(page, inode))
1323 		return 0;
1324 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
1325 		return 1;
1326 	if (!flctx || (list_empty_careful(&flctx->flc_flock) &&
1327 		       list_empty_careful(&flctx->flc_posix)))
1328 		return 1;
1329 
1330 	/* Check to see if there are whole file write locks */
1331 	ret = 0;
1332 	spin_lock(&flctx->flc_lock);
1333 	if (!list_empty(&flctx->flc_posix)) {
1334 		fl = list_first_entry(&flctx->flc_posix, struct file_lock,
1335 					fl_list);
1336 		if (is_whole_file_wrlock(fl))
1337 			ret = 1;
1338 	} else if (!list_empty(&flctx->flc_flock)) {
1339 		fl = list_first_entry(&flctx->flc_flock, struct file_lock,
1340 					fl_list);
1341 		if (fl->fl_type == F_WRLCK)
1342 			ret = 1;
1343 	}
1344 	spin_unlock(&flctx->flc_lock);
1345 	return ret;
1346 }
1347 
1348 /*
1349  * Update and possibly write a cached page of an NFS file.
1350  *
1351  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
1352  * things with a page scheduled for an RPC call (e.g. invalidate it).
1353  */
nfs_updatepage(struct file * file,struct page * page,unsigned int offset,unsigned int count)1354 int nfs_updatepage(struct file *file, struct page *page,
1355 		unsigned int offset, unsigned int count)
1356 {
1357 	struct nfs_open_context *ctx = nfs_file_open_context(file);
1358 	struct address_space *mapping = page_file_mapping(page);
1359 	struct inode	*inode = mapping->host;
1360 	int		status = 0;
1361 
1362 	nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
1363 
1364 	dprintk("NFS:       nfs_updatepage(%pD2 %d@%lld)\n",
1365 		file, count, (long long)(page_file_offset(page) + offset));
1366 
1367 	if (!count)
1368 		goto out;
1369 
1370 	if (nfs_can_extend_write(file, page, inode)) {
1371 		count = max(count + offset, nfs_page_length(page));
1372 		offset = 0;
1373 	}
1374 
1375 	status = nfs_writepage_setup(ctx, page, offset, count);
1376 	if (status < 0)
1377 		nfs_set_pageerror(mapping);
1378 	else
1379 		__set_page_dirty_nobuffers(page);
1380 out:
1381 	dprintk("NFS:       nfs_updatepage returns %d (isize %lld)\n",
1382 			status, (long long)i_size_read(inode));
1383 	return status;
1384 }
1385 
flush_task_priority(int how)1386 static int flush_task_priority(int how)
1387 {
1388 	switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
1389 		case FLUSH_HIGHPRI:
1390 			return RPC_PRIORITY_HIGH;
1391 		case FLUSH_LOWPRI:
1392 			return RPC_PRIORITY_LOW;
1393 	}
1394 	return RPC_PRIORITY_NORMAL;
1395 }
1396 
nfs_initiate_write(struct nfs_pgio_header * hdr,struct rpc_message * msg,const struct nfs_rpc_ops * rpc_ops,struct rpc_task_setup * task_setup_data,int how)1397 static void nfs_initiate_write(struct nfs_pgio_header *hdr,
1398 			       struct rpc_message *msg,
1399 			       const struct nfs_rpc_ops *rpc_ops,
1400 			       struct rpc_task_setup *task_setup_data, int how)
1401 {
1402 	int priority = flush_task_priority(how);
1403 
1404 	task_setup_data->priority = priority;
1405 	rpc_ops->write_setup(hdr, msg, &task_setup_data->rpc_client);
1406 	trace_nfs_initiate_write(hdr->inode, hdr->io_start, hdr->good_bytes,
1407 				 hdr->args.stable);
1408 }
1409 
1410 /* If a nfs_flush_* function fails, it should remove reqs from @head and
1411  * call this on each, which will prepare them to be retried on next
1412  * writeback using standard nfs.
1413  */
nfs_redirty_request(struct nfs_page * req)1414 static void nfs_redirty_request(struct nfs_page *req)
1415 {
1416 	/* Bump the transmission count */
1417 	req->wb_nio++;
1418 	nfs_mark_request_dirty(req);
1419 	set_bit(NFS_CONTEXT_RESEND_WRITES, &nfs_req_openctx(req)->flags);
1420 	nfs_end_page_writeback(req);
1421 	nfs_release_request(req);
1422 }
1423 
nfs_async_write_error(struct list_head * head,int error)1424 static void nfs_async_write_error(struct list_head *head, int error)
1425 {
1426 	struct nfs_page	*req;
1427 
1428 	while (!list_empty(head)) {
1429 		req = nfs_list_entry(head->next);
1430 		nfs_list_remove_request(req);
1431 		if (nfs_error_is_fatal(error))
1432 			nfs_write_error(req, error);
1433 		else
1434 			nfs_redirty_request(req);
1435 	}
1436 }
1437 
nfs_async_write_reschedule_io(struct nfs_pgio_header * hdr)1438 static void nfs_async_write_reschedule_io(struct nfs_pgio_header *hdr)
1439 {
1440 	nfs_async_write_error(&hdr->pages, 0);
1441 	filemap_fdatawrite_range(hdr->inode->i_mapping, hdr->args.offset,
1442 			hdr->args.offset + hdr->args.count - 1);
1443 }
1444 
1445 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops = {
1446 	.init_hdr = nfs_async_write_init,
1447 	.error_cleanup = nfs_async_write_error,
1448 	.completion = nfs_write_completion,
1449 	.reschedule_io = nfs_async_write_reschedule_io,
1450 };
1451 
nfs_pageio_init_write(struct nfs_pageio_descriptor * pgio,struct inode * inode,int ioflags,bool force_mds,const struct nfs_pgio_completion_ops * compl_ops)1452 void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1453 			       struct inode *inode, int ioflags, bool force_mds,
1454 			       const struct nfs_pgio_completion_ops *compl_ops)
1455 {
1456 	struct nfs_server *server = NFS_SERVER(inode);
1457 	const struct nfs_pageio_ops *pg_ops = &nfs_pgio_rw_ops;
1458 
1459 #ifdef CONFIG_NFS_V4_1
1460 	if (server->pnfs_curr_ld && !force_mds)
1461 		pg_ops = server->pnfs_curr_ld->pg_write_ops;
1462 #endif
1463 	nfs_pageio_init(pgio, inode, pg_ops, compl_ops, &nfs_rw_write_ops,
1464 			server->wsize, ioflags);
1465 }
1466 EXPORT_SYMBOL_GPL(nfs_pageio_init_write);
1467 
nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor * pgio)1468 void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio)
1469 {
1470 	struct nfs_pgio_mirror *mirror;
1471 
1472 	if (pgio->pg_ops && pgio->pg_ops->pg_cleanup)
1473 		pgio->pg_ops->pg_cleanup(pgio);
1474 
1475 	pgio->pg_ops = &nfs_pgio_rw_ops;
1476 
1477 	nfs_pageio_stop_mirroring(pgio);
1478 
1479 	mirror = &pgio->pg_mirrors[0];
1480 	mirror->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize;
1481 }
1482 EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds);
1483 
1484 
nfs_commit_prepare(struct rpc_task * task,void * calldata)1485 void nfs_commit_prepare(struct rpc_task *task, void *calldata)
1486 {
1487 	struct nfs_commit_data *data = calldata;
1488 
1489 	NFS_PROTO(data->inode)->commit_rpc_prepare(task, data);
1490 }
1491 
1492 /*
1493  * Special version of should_remove_suid() that ignores capabilities.
1494  */
nfs_should_remove_suid(const struct inode * inode)1495 static int nfs_should_remove_suid(const struct inode *inode)
1496 {
1497 	umode_t mode = inode->i_mode;
1498 	int kill = 0;
1499 
1500 	/* suid always must be killed */
1501 	if (unlikely(mode & S_ISUID))
1502 		kill = ATTR_KILL_SUID;
1503 
1504 	/*
1505 	 * sgid without any exec bits is just a mandatory locking mark; leave
1506 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1507 	 */
1508 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1509 		kill |= ATTR_KILL_SGID;
1510 
1511 	if (unlikely(kill && S_ISREG(mode)))
1512 		return kill;
1513 
1514 	return 0;
1515 }
1516 
nfs_writeback_check_extend(struct nfs_pgio_header * hdr,struct nfs_fattr * fattr)1517 static void nfs_writeback_check_extend(struct nfs_pgio_header *hdr,
1518 		struct nfs_fattr *fattr)
1519 {
1520 	struct nfs_pgio_args *argp = &hdr->args;
1521 	struct nfs_pgio_res *resp = &hdr->res;
1522 	u64 size = argp->offset + resp->count;
1523 
1524 	if (!(fattr->valid & NFS_ATTR_FATTR_SIZE))
1525 		fattr->size = size;
1526 	if (nfs_size_to_loff_t(fattr->size) < i_size_read(hdr->inode)) {
1527 		fattr->valid &= ~NFS_ATTR_FATTR_SIZE;
1528 		return;
1529 	}
1530 	if (size != fattr->size)
1531 		return;
1532 	/* Set attribute barrier */
1533 	nfs_fattr_set_barrier(fattr);
1534 	/* ...and update size */
1535 	fattr->valid |= NFS_ATTR_FATTR_SIZE;
1536 }
1537 
nfs_writeback_update_inode(struct nfs_pgio_header * hdr)1538 void nfs_writeback_update_inode(struct nfs_pgio_header *hdr)
1539 {
1540 	struct nfs_fattr *fattr = &hdr->fattr;
1541 	struct inode *inode = hdr->inode;
1542 
1543 	spin_lock(&inode->i_lock);
1544 	nfs_writeback_check_extend(hdr, fattr);
1545 	nfs_post_op_update_inode_force_wcc_locked(inode, fattr);
1546 	spin_unlock(&inode->i_lock);
1547 }
1548 EXPORT_SYMBOL_GPL(nfs_writeback_update_inode);
1549 
1550 /*
1551  * This function is called when the WRITE call is complete.
1552  */
nfs_writeback_done(struct rpc_task * task,struct nfs_pgio_header * hdr,struct inode * inode)1553 static int nfs_writeback_done(struct rpc_task *task,
1554 			      struct nfs_pgio_header *hdr,
1555 			      struct inode *inode)
1556 {
1557 	int status;
1558 
1559 	/*
1560 	 * ->write_done will attempt to use post-op attributes to detect
1561 	 * conflicting writes by other clients.  A strict interpretation
1562 	 * of close-to-open would allow us to continue caching even if
1563 	 * another writer had changed the file, but some applications
1564 	 * depend on tighter cache coherency when writing.
1565 	 */
1566 	status = NFS_PROTO(inode)->write_done(task, hdr);
1567 	if (status != 0)
1568 		return status;
1569 
1570 	nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, hdr->res.count);
1571 	trace_nfs_writeback_done(inode, task->tk_status,
1572 				 hdr->args.offset, hdr->res.verf);
1573 
1574 	if (hdr->res.verf->committed < hdr->args.stable &&
1575 	    task->tk_status >= 0) {
1576 		/* We tried a write call, but the server did not
1577 		 * commit data to stable storage even though we
1578 		 * requested it.
1579 		 * Note: There is a known bug in Tru64 < 5.0 in which
1580 		 *	 the server reports NFS_DATA_SYNC, but performs
1581 		 *	 NFS_FILE_SYNC. We therefore implement this checking
1582 		 *	 as a dprintk() in order to avoid filling syslog.
1583 		 */
1584 		static unsigned long    complain;
1585 
1586 		/* Note this will print the MDS for a DS write */
1587 		if (time_before(complain, jiffies)) {
1588 			dprintk("NFS:       faulty NFS server %s:"
1589 				" (committed = %d) != (stable = %d)\n",
1590 				NFS_SERVER(inode)->nfs_client->cl_hostname,
1591 				hdr->res.verf->committed, hdr->args.stable);
1592 			complain = jiffies + 300 * HZ;
1593 		}
1594 	}
1595 
1596 	/* Deal with the suid/sgid bit corner case */
1597 	if (nfs_should_remove_suid(inode)) {
1598 		spin_lock(&inode->i_lock);
1599 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_OTHER;
1600 		spin_unlock(&inode->i_lock);
1601 	}
1602 	return 0;
1603 }
1604 
1605 /*
1606  * This function is called when the WRITE call is complete.
1607  */
nfs_writeback_result(struct rpc_task * task,struct nfs_pgio_header * hdr)1608 static void nfs_writeback_result(struct rpc_task *task,
1609 				 struct nfs_pgio_header *hdr)
1610 {
1611 	struct nfs_pgio_args	*argp = &hdr->args;
1612 	struct nfs_pgio_res	*resp = &hdr->res;
1613 
1614 	if (resp->count < argp->count) {
1615 		static unsigned long    complain;
1616 
1617 		/* This a short write! */
1618 		nfs_inc_stats(hdr->inode, NFSIOS_SHORTWRITE);
1619 
1620 		/* Has the server at least made some progress? */
1621 		if (resp->count == 0) {
1622 			if (time_before(complain, jiffies)) {
1623 				printk(KERN_WARNING
1624 				       "NFS: Server wrote zero bytes, expected %u.\n",
1625 				       argp->count);
1626 				complain = jiffies + 300 * HZ;
1627 			}
1628 			nfs_set_pgio_error(hdr, -EIO, argp->offset);
1629 			task->tk_status = -EIO;
1630 			return;
1631 		}
1632 
1633 		/* For non rpc-based layout drivers, retry-through-MDS */
1634 		if (!task->tk_ops) {
1635 			hdr->pnfs_error = -EAGAIN;
1636 			return;
1637 		}
1638 
1639 		/* Was this an NFSv2 write or an NFSv3 stable write? */
1640 		if (resp->verf->committed != NFS_UNSTABLE) {
1641 			/* Resend from where the server left off */
1642 			hdr->mds_offset += resp->count;
1643 			argp->offset += resp->count;
1644 			argp->pgbase += resp->count;
1645 			argp->count -= resp->count;
1646 		} else {
1647 			/* Resend as a stable write in order to avoid
1648 			 * headaches in the case of a server crash.
1649 			 */
1650 			argp->stable = NFS_FILE_SYNC;
1651 		}
1652 		rpc_restart_call_prepare(task);
1653 	}
1654 }
1655 
wait_on_commit(struct nfs_mds_commit_info * cinfo)1656 static int wait_on_commit(struct nfs_mds_commit_info *cinfo)
1657 {
1658 	return wait_var_event_killable(&cinfo->rpcs_out,
1659 				       !atomic_read(&cinfo->rpcs_out));
1660 }
1661 
nfs_commit_begin(struct nfs_mds_commit_info * cinfo)1662 static void nfs_commit_begin(struct nfs_mds_commit_info *cinfo)
1663 {
1664 	atomic_inc(&cinfo->rpcs_out);
1665 }
1666 
nfs_commit_end(struct nfs_mds_commit_info * cinfo)1667 static void nfs_commit_end(struct nfs_mds_commit_info *cinfo)
1668 {
1669 	if (atomic_dec_and_test(&cinfo->rpcs_out))
1670 		wake_up_var(&cinfo->rpcs_out);
1671 }
1672 
nfs_commitdata_release(struct nfs_commit_data * data)1673 void nfs_commitdata_release(struct nfs_commit_data *data)
1674 {
1675 	put_nfs_open_context(data->context);
1676 	nfs_commit_free(data);
1677 }
1678 EXPORT_SYMBOL_GPL(nfs_commitdata_release);
1679 
nfs_initiate_commit(struct rpc_clnt * clnt,struct nfs_commit_data * data,const struct nfs_rpc_ops * nfs_ops,const struct rpc_call_ops * call_ops,int how,int flags)1680 int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data,
1681 			const struct nfs_rpc_ops *nfs_ops,
1682 			const struct rpc_call_ops *call_ops,
1683 			int how, int flags)
1684 {
1685 	struct rpc_task *task;
1686 	int priority = flush_task_priority(how);
1687 	struct rpc_message msg = {
1688 		.rpc_argp = &data->args,
1689 		.rpc_resp = &data->res,
1690 		.rpc_cred = data->cred,
1691 	};
1692 	struct rpc_task_setup task_setup_data = {
1693 		.task = &data->task,
1694 		.rpc_client = clnt,
1695 		.rpc_message = &msg,
1696 		.callback_ops = call_ops,
1697 		.callback_data = data,
1698 		.workqueue = nfsiod_workqueue,
1699 		.flags = RPC_TASK_ASYNC | flags,
1700 		.priority = priority,
1701 	};
1702 	/* Set up the initial task struct.  */
1703 	nfs_ops->commit_setup(data, &msg, &task_setup_data.rpc_client);
1704 	trace_nfs_initiate_commit(data);
1705 
1706 	dprintk("NFS: initiated commit call\n");
1707 
1708 	task = rpc_run_task(&task_setup_data);
1709 	if (IS_ERR(task))
1710 		return PTR_ERR(task);
1711 	if (how & FLUSH_SYNC)
1712 		rpc_wait_for_completion_task(task);
1713 	rpc_put_task(task);
1714 	return 0;
1715 }
1716 EXPORT_SYMBOL_GPL(nfs_initiate_commit);
1717 
nfs_get_lwb(struct list_head * head)1718 static loff_t nfs_get_lwb(struct list_head *head)
1719 {
1720 	loff_t lwb = 0;
1721 	struct nfs_page *req;
1722 
1723 	list_for_each_entry(req, head, wb_list)
1724 		if (lwb < (req_offset(req) + req->wb_bytes))
1725 			lwb = req_offset(req) + req->wb_bytes;
1726 
1727 	return lwb;
1728 }
1729 
1730 /*
1731  * Set up the argument/result storage required for the RPC call.
1732  */
nfs_init_commit(struct nfs_commit_data * data,struct list_head * head,struct pnfs_layout_segment * lseg,struct nfs_commit_info * cinfo)1733 void nfs_init_commit(struct nfs_commit_data *data,
1734 		     struct list_head *head,
1735 		     struct pnfs_layout_segment *lseg,
1736 		     struct nfs_commit_info *cinfo)
1737 {
1738 	struct nfs_page *first = nfs_list_entry(head->next);
1739 	struct nfs_open_context *ctx = nfs_req_openctx(first);
1740 	struct inode *inode = d_inode(ctx->dentry);
1741 
1742 	/* Set up the RPC argument and reply structs
1743 	 * NB: take care not to mess about with data->commit et al. */
1744 
1745 	list_splice_init(head, &data->pages);
1746 
1747 	data->inode	  = inode;
1748 	data->cred	  = ctx->cred;
1749 	data->lseg	  = lseg; /* reference transferred */
1750 	/* only set lwb for pnfs commit */
1751 	if (lseg)
1752 		data->lwb = nfs_get_lwb(&data->pages);
1753 	data->mds_ops     = &nfs_commit_ops;
1754 	data->completion_ops = cinfo->completion_ops;
1755 	data->dreq	  = cinfo->dreq;
1756 
1757 	data->args.fh     = NFS_FH(data->inode);
1758 	/* Note: we always request a commit of the entire inode */
1759 	data->args.offset = 0;
1760 	data->args.count  = 0;
1761 	data->context     = get_nfs_open_context(ctx);
1762 	data->res.fattr   = &data->fattr;
1763 	data->res.verf    = &data->verf;
1764 	nfs_fattr_init(&data->fattr);
1765 }
1766 EXPORT_SYMBOL_GPL(nfs_init_commit);
1767 
nfs_retry_commit(struct list_head * page_list,struct pnfs_layout_segment * lseg,struct nfs_commit_info * cinfo,u32 ds_commit_idx)1768 void nfs_retry_commit(struct list_head *page_list,
1769 		      struct pnfs_layout_segment *lseg,
1770 		      struct nfs_commit_info *cinfo,
1771 		      u32 ds_commit_idx)
1772 {
1773 	struct nfs_page *req;
1774 
1775 	while (!list_empty(page_list)) {
1776 		req = nfs_list_entry(page_list->next);
1777 		nfs_list_remove_request(req);
1778 		nfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx);
1779 		if (!cinfo->dreq)
1780 			nfs_clear_page_commit(req->wb_page);
1781 		nfs_unlock_and_release_request(req);
1782 	}
1783 }
1784 EXPORT_SYMBOL_GPL(nfs_retry_commit);
1785 
1786 static void
nfs_commit_resched_write(struct nfs_commit_info * cinfo,struct nfs_page * req)1787 nfs_commit_resched_write(struct nfs_commit_info *cinfo,
1788 		struct nfs_page *req)
1789 {
1790 	__set_page_dirty_nobuffers(req->wb_page);
1791 }
1792 
1793 /*
1794  * Commit dirty pages
1795  */
1796 static int
nfs_commit_list(struct inode * inode,struct list_head * head,int how,struct nfs_commit_info * cinfo)1797 nfs_commit_list(struct inode *inode, struct list_head *head, int how,
1798 		struct nfs_commit_info *cinfo)
1799 {
1800 	struct nfs_commit_data	*data;
1801 
1802 	/* another commit raced with us */
1803 	if (list_empty(head))
1804 		return 0;
1805 
1806 	data = nfs_commitdata_alloc(true);
1807 
1808 	/* Set up the argument struct */
1809 	nfs_init_commit(data, head, NULL, cinfo);
1810 	atomic_inc(&cinfo->mds->rpcs_out);
1811 	return nfs_initiate_commit(NFS_CLIENT(inode), data, NFS_PROTO(inode),
1812 				   data->mds_ops, how, 0);
1813 }
1814 
1815 /*
1816  * COMMIT call returned
1817  */
nfs_commit_done(struct rpc_task * task,void * calldata)1818 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1819 {
1820 	struct nfs_commit_data	*data = calldata;
1821 
1822         dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1823                                 task->tk_pid, task->tk_status);
1824 
1825 	/* Call the NFS version-specific code */
1826 	NFS_PROTO(data->inode)->commit_done(task, data);
1827 	trace_nfs_commit_done(data);
1828 }
1829 
nfs_commit_release_pages(struct nfs_commit_data * data)1830 static void nfs_commit_release_pages(struct nfs_commit_data *data)
1831 {
1832 	struct nfs_page	*req;
1833 	int status = data->task.tk_status;
1834 	struct nfs_commit_info cinfo;
1835 	struct nfs_server *nfss;
1836 
1837 	while (!list_empty(&data->pages)) {
1838 		req = nfs_list_entry(data->pages.next);
1839 		nfs_list_remove_request(req);
1840 		if (req->wb_page)
1841 			nfs_clear_page_commit(req->wb_page);
1842 
1843 		dprintk("NFS:       commit (%s/%llu %d@%lld)",
1844 			nfs_req_openctx(req)->dentry->d_sb->s_id,
1845 			(unsigned long long)NFS_FILEID(d_inode(nfs_req_openctx(req)->dentry)),
1846 			req->wb_bytes,
1847 			(long long)req_offset(req));
1848 		if (status < 0) {
1849 			if (req->wb_page) {
1850 				nfs_mapping_set_error(req->wb_page, status);
1851 				nfs_inode_remove_request(req);
1852 			}
1853 			dprintk_cont(", error = %d\n", status);
1854 			goto next;
1855 		}
1856 
1857 		/* Okay, COMMIT succeeded, apparently. Check the verifier
1858 		 * returned by the server against all stored verfs. */
1859 		if (!nfs_write_verifier_cmp(&req->wb_verf, &data->verf.verifier)) {
1860 			/* We have a match */
1861 			if (req->wb_page)
1862 				nfs_inode_remove_request(req);
1863 			dprintk_cont(" OK\n");
1864 			goto next;
1865 		}
1866 		/* We have a mismatch. Write the page again */
1867 		dprintk_cont(" mismatch\n");
1868 		nfs_mark_request_dirty(req);
1869 		set_bit(NFS_CONTEXT_RESEND_WRITES, &nfs_req_openctx(req)->flags);
1870 	next:
1871 		nfs_unlock_and_release_request(req);
1872 		/* Latency breaker */
1873 		cond_resched();
1874 	}
1875 	nfss = NFS_SERVER(data->inode);
1876 	if (atomic_long_read(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
1877 		clear_bdi_congested(inode_to_bdi(data->inode), BLK_RW_ASYNC);
1878 
1879 	nfs_init_cinfo(&cinfo, data->inode, data->dreq);
1880 	nfs_commit_end(cinfo.mds);
1881 }
1882 
nfs_commit_release(void * calldata)1883 static void nfs_commit_release(void *calldata)
1884 {
1885 	struct nfs_commit_data *data = calldata;
1886 
1887 	data->completion_ops->completion(data);
1888 	nfs_commitdata_release(calldata);
1889 }
1890 
1891 static const struct rpc_call_ops nfs_commit_ops = {
1892 	.rpc_call_prepare = nfs_commit_prepare,
1893 	.rpc_call_done = nfs_commit_done,
1894 	.rpc_release = nfs_commit_release,
1895 };
1896 
1897 static const struct nfs_commit_completion_ops nfs_commit_completion_ops = {
1898 	.completion = nfs_commit_release_pages,
1899 	.resched_write = nfs_commit_resched_write,
1900 };
1901 
nfs_generic_commit_list(struct inode * inode,struct list_head * head,int how,struct nfs_commit_info * cinfo)1902 int nfs_generic_commit_list(struct inode *inode, struct list_head *head,
1903 			    int how, struct nfs_commit_info *cinfo)
1904 {
1905 	int status;
1906 
1907 	status = pnfs_commit_list(inode, head, how, cinfo);
1908 	if (status == PNFS_NOT_ATTEMPTED)
1909 		status = nfs_commit_list(inode, head, how, cinfo);
1910 	return status;
1911 }
1912 
__nfs_commit_inode(struct inode * inode,int how,struct writeback_control * wbc)1913 static int __nfs_commit_inode(struct inode *inode, int how,
1914 		struct writeback_control *wbc)
1915 {
1916 	LIST_HEAD(head);
1917 	struct nfs_commit_info cinfo;
1918 	int may_wait = how & FLUSH_SYNC;
1919 	int ret, nscan;
1920 
1921 	nfs_init_cinfo_from_inode(&cinfo, inode);
1922 	nfs_commit_begin(cinfo.mds);
1923 	for (;;) {
1924 		ret = nscan = nfs_scan_commit(inode, &head, &cinfo);
1925 		if (ret <= 0)
1926 			break;
1927 		ret = nfs_generic_commit_list(inode, &head, how, &cinfo);
1928 		if (ret < 0)
1929 			break;
1930 		ret = 0;
1931 		if (wbc && wbc->sync_mode == WB_SYNC_NONE) {
1932 			if (nscan < wbc->nr_to_write)
1933 				wbc->nr_to_write -= nscan;
1934 			else
1935 				wbc->nr_to_write = 0;
1936 		}
1937 		if (nscan < INT_MAX)
1938 			break;
1939 		cond_resched();
1940 	}
1941 	nfs_commit_end(cinfo.mds);
1942 	if (ret || !may_wait)
1943 		return ret;
1944 	return wait_on_commit(cinfo.mds);
1945 }
1946 
nfs_commit_inode(struct inode * inode,int how)1947 int nfs_commit_inode(struct inode *inode, int how)
1948 {
1949 	return __nfs_commit_inode(inode, how, NULL);
1950 }
1951 EXPORT_SYMBOL_GPL(nfs_commit_inode);
1952 
nfs_write_inode(struct inode * inode,struct writeback_control * wbc)1953 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1954 {
1955 	struct nfs_inode *nfsi = NFS_I(inode);
1956 	int flags = FLUSH_SYNC;
1957 	int ret = 0;
1958 
1959 	if (wbc->sync_mode == WB_SYNC_NONE) {
1960 		/* no commits means nothing needs to be done */
1961 		if (!atomic_long_read(&nfsi->commit_info.ncommit))
1962 			goto check_requests_outstanding;
1963 
1964 		/* Don't commit yet if this is a non-blocking flush and there
1965 		 * are a lot of outstanding writes for this mapping.
1966 		 */
1967 		if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))
1968 			goto out_mark_dirty;
1969 
1970 		/* don't wait for the COMMIT response */
1971 		flags = 0;
1972 	}
1973 
1974 	ret = __nfs_commit_inode(inode, flags, wbc);
1975 	if (!ret) {
1976 		if (flags & FLUSH_SYNC)
1977 			return 0;
1978 	} else if (atomic_long_read(&nfsi->commit_info.ncommit))
1979 		goto out_mark_dirty;
1980 
1981 check_requests_outstanding:
1982 	if (!atomic_read(&nfsi->commit_info.rpcs_out))
1983 		return ret;
1984 out_mark_dirty:
1985 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1986 	return ret;
1987 }
1988 EXPORT_SYMBOL_GPL(nfs_write_inode);
1989 
1990 /*
1991  * Wrapper for filemap_write_and_wait_range()
1992  *
1993  * Needed for pNFS in order to ensure data becomes visible to the
1994  * client.
1995  */
nfs_filemap_write_and_wait_range(struct address_space * mapping,loff_t lstart,loff_t lend)1996 int nfs_filemap_write_and_wait_range(struct address_space *mapping,
1997 		loff_t lstart, loff_t lend)
1998 {
1999 	int ret;
2000 
2001 	ret = filemap_write_and_wait_range(mapping, lstart, lend);
2002 	if (ret == 0)
2003 		ret = pnfs_sync_inode(mapping->host, true);
2004 	return ret;
2005 }
2006 EXPORT_SYMBOL_GPL(nfs_filemap_write_and_wait_range);
2007 
2008 /*
2009  * flush the inode to disk.
2010  */
nfs_wb_all(struct inode * inode)2011 int nfs_wb_all(struct inode *inode)
2012 {
2013 	int ret;
2014 
2015 	trace_nfs_writeback_inode_enter(inode);
2016 
2017 	ret = filemap_write_and_wait(inode->i_mapping);
2018 	if (ret)
2019 		goto out;
2020 	ret = nfs_commit_inode(inode, FLUSH_SYNC);
2021 	if (ret < 0)
2022 		goto out;
2023 	pnfs_sync_inode(inode, true);
2024 	ret = 0;
2025 
2026 out:
2027 	trace_nfs_writeback_inode_exit(inode, ret);
2028 	return ret;
2029 }
2030 EXPORT_SYMBOL_GPL(nfs_wb_all);
2031 
nfs_wb_page_cancel(struct inode * inode,struct page * page)2032 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
2033 {
2034 	struct nfs_page *req;
2035 	int ret = 0;
2036 
2037 	wait_on_page_writeback(page);
2038 
2039 	/* blocking call to cancel all requests and join to a single (head)
2040 	 * request */
2041 	req = nfs_lock_and_join_requests(page);
2042 
2043 	if (IS_ERR(req)) {
2044 		ret = PTR_ERR(req);
2045 	} else if (req) {
2046 		/* all requests from this page have been cancelled by
2047 		 * nfs_lock_and_join_requests, so just remove the head
2048 		 * request from the inode / page_private pointer and
2049 		 * release it */
2050 		nfs_inode_remove_request(req);
2051 		nfs_unlock_and_release_request(req);
2052 	}
2053 
2054 	return ret;
2055 }
2056 
2057 /*
2058  * Write back all requests on one page - we do this before reading it.
2059  */
nfs_wb_page(struct inode * inode,struct page * page)2060 int nfs_wb_page(struct inode *inode, struct page *page)
2061 {
2062 	loff_t range_start = page_file_offset(page);
2063 	loff_t range_end = range_start + (loff_t)(PAGE_SIZE - 1);
2064 	struct writeback_control wbc = {
2065 		.sync_mode = WB_SYNC_ALL,
2066 		.nr_to_write = 0,
2067 		.range_start = range_start,
2068 		.range_end = range_end,
2069 	};
2070 	int ret;
2071 
2072 	trace_nfs_writeback_page_enter(inode);
2073 
2074 	for (;;) {
2075 		wait_on_page_writeback(page);
2076 		if (clear_page_dirty_for_io(page)) {
2077 			ret = nfs_writepage_locked(page, &wbc);
2078 			if (ret < 0)
2079 				goto out_error;
2080 			continue;
2081 		}
2082 		ret = 0;
2083 		if (!PagePrivate(page))
2084 			break;
2085 		ret = nfs_commit_inode(inode, FLUSH_SYNC);
2086 		if (ret < 0)
2087 			goto out_error;
2088 	}
2089 out_error:
2090 	trace_nfs_writeback_page_exit(inode, ret);
2091 	return ret;
2092 }
2093 
2094 #ifdef CONFIG_MIGRATION
nfs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)2095 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
2096 		struct page *page, enum migrate_mode mode)
2097 {
2098 	/*
2099 	 * If PagePrivate is set, then the page is currently associated with
2100 	 * an in-progress read or write request. Don't try to migrate it.
2101 	 *
2102 	 * FIXME: we could do this in principle, but we'll need a way to ensure
2103 	 *        that we can safely release the inode reference while holding
2104 	 *        the page lock.
2105 	 */
2106 	if (PagePrivate(page))
2107 		return -EBUSY;
2108 
2109 	if (!nfs_fscache_release_page(page, GFP_KERNEL))
2110 		return -EBUSY;
2111 
2112 	return migrate_page(mapping, newpage, page, mode);
2113 }
2114 #endif
2115 
nfs_init_writepagecache(void)2116 int __init nfs_init_writepagecache(void)
2117 {
2118 	nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
2119 					     sizeof(struct nfs_pgio_header),
2120 					     0, SLAB_HWCACHE_ALIGN,
2121 					     NULL);
2122 	if (nfs_wdata_cachep == NULL)
2123 		return -ENOMEM;
2124 
2125 	nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
2126 						     nfs_wdata_cachep);
2127 	if (nfs_wdata_mempool == NULL)
2128 		goto out_destroy_write_cache;
2129 
2130 	nfs_cdata_cachep = kmem_cache_create("nfs_commit_data",
2131 					     sizeof(struct nfs_commit_data),
2132 					     0, SLAB_HWCACHE_ALIGN,
2133 					     NULL);
2134 	if (nfs_cdata_cachep == NULL)
2135 		goto out_destroy_write_mempool;
2136 
2137 	nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
2138 						      nfs_cdata_cachep);
2139 	if (nfs_commit_mempool == NULL)
2140 		goto out_destroy_commit_cache;
2141 
2142 	/*
2143 	 * NFS congestion size, scale with available memory.
2144 	 *
2145 	 *  64MB:    8192k
2146 	 * 128MB:   11585k
2147 	 * 256MB:   16384k
2148 	 * 512MB:   23170k
2149 	 *   1GB:   32768k
2150 	 *   2GB:   46340k
2151 	 *   4GB:   65536k
2152 	 *   8GB:   92681k
2153 	 *  16GB:  131072k
2154 	 *
2155 	 * This allows larger machines to have larger/more transfers.
2156 	 * Limit the default to 256M
2157 	 */
2158 	nfs_congestion_kb = (16*int_sqrt(totalram_pages())) << (PAGE_SHIFT-10);
2159 	if (nfs_congestion_kb > 256*1024)
2160 		nfs_congestion_kb = 256*1024;
2161 
2162 	return 0;
2163 
2164 out_destroy_commit_cache:
2165 	kmem_cache_destroy(nfs_cdata_cachep);
2166 out_destroy_write_mempool:
2167 	mempool_destroy(nfs_wdata_mempool);
2168 out_destroy_write_cache:
2169 	kmem_cache_destroy(nfs_wdata_cachep);
2170 	return -ENOMEM;
2171 }
2172 
nfs_destroy_writepagecache(void)2173 void nfs_destroy_writepagecache(void)
2174 {
2175 	mempool_destroy(nfs_commit_mempool);
2176 	kmem_cache_destroy(nfs_cdata_cachep);
2177 	mempool_destroy(nfs_wdata_mempool);
2178 	kmem_cache_destroy(nfs_wdata_cachep);
2179 }
2180 
2181 static const struct nfs_rw_ops nfs_rw_write_ops = {
2182 	.rw_alloc_header	= nfs_writehdr_alloc,
2183 	.rw_free_header		= nfs_writehdr_free,
2184 	.rw_done		= nfs_writeback_done,
2185 	.rw_result		= nfs_writeback_result,
2186 	.rw_initiate		= nfs_initiate_write,
2187 };
2188