1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* -*- mode: c; c-basic-offset: 8; -*-
3 * vim: noexpandtab sw=8 ts=8 sts=0:
4 *
5 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 */
7
8 #include <linux/fs.h>
9 #include <linux/slab.h>
10 #include <linux/highmem.h>
11 #include <linux/pagemap.h>
12 #include <asm/byteorder.h>
13 #include <linux/swap.h>
14 #include <linux/pipe_fs_i.h>
15 #include <linux/mpage.h>
16 #include <linux/quotaops.h>
17 #include <linux/blkdev.h>
18 #include <linux/uio.h>
19 #include <linux/mm.h>
20
21 #include <cluster/masklog.h>
22
23 #include "ocfs2.h"
24
25 #include "alloc.h"
26 #include "aops.h"
27 #include "dlmglue.h"
28 #include "extent_map.h"
29 #include "file.h"
30 #include "inode.h"
31 #include "journal.h"
32 #include "suballoc.h"
33 #include "super.h"
34 #include "symlink.h"
35 #include "refcounttree.h"
36 #include "ocfs2_trace.h"
37
38 #include "buffer_head_io.h"
39 #include "dir.h"
40 #include "namei.h"
41 #include "sysfile.h"
42
ocfs2_symlink_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)43 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
44 struct buffer_head *bh_result, int create)
45 {
46 int err = -EIO;
47 int status;
48 struct ocfs2_dinode *fe = NULL;
49 struct buffer_head *bh = NULL;
50 struct buffer_head *buffer_cache_bh = NULL;
51 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
52 void *kaddr;
53
54 trace_ocfs2_symlink_get_block(
55 (unsigned long long)OCFS2_I(inode)->ip_blkno,
56 (unsigned long long)iblock, bh_result, create);
57
58 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
59
60 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
61 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
62 (unsigned long long)iblock);
63 goto bail;
64 }
65
66 status = ocfs2_read_inode_block(inode, &bh);
67 if (status < 0) {
68 mlog_errno(status);
69 goto bail;
70 }
71 fe = (struct ocfs2_dinode *) bh->b_data;
72
73 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
74 le32_to_cpu(fe->i_clusters))) {
75 err = -ENOMEM;
76 mlog(ML_ERROR, "block offset is outside the allocated size: "
77 "%llu\n", (unsigned long long)iblock);
78 goto bail;
79 }
80
81 /* We don't use the page cache to create symlink data, so if
82 * need be, copy it over from the buffer cache. */
83 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
84 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
85 iblock;
86 buffer_cache_bh = sb_getblk(osb->sb, blkno);
87 if (!buffer_cache_bh) {
88 err = -ENOMEM;
89 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
90 goto bail;
91 }
92
93 /* we haven't locked out transactions, so a commit
94 * could've happened. Since we've got a reference on
95 * the bh, even if it commits while we're doing the
96 * copy, the data is still good. */
97 if (buffer_jbd(buffer_cache_bh)
98 && ocfs2_inode_is_new(inode)) {
99 kaddr = kmap_atomic(bh_result->b_page);
100 if (!kaddr) {
101 mlog(ML_ERROR, "couldn't kmap!\n");
102 goto bail;
103 }
104 memcpy(kaddr + (bh_result->b_size * iblock),
105 buffer_cache_bh->b_data,
106 bh_result->b_size);
107 kunmap_atomic(kaddr);
108 set_buffer_uptodate(bh_result);
109 }
110 brelse(buffer_cache_bh);
111 }
112
113 map_bh(bh_result, inode->i_sb,
114 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
115
116 err = 0;
117
118 bail:
119 brelse(bh);
120
121 return err;
122 }
123
ocfs2_lock_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)124 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
125 struct buffer_head *bh_result, int create)
126 {
127 int ret = 0;
128 struct ocfs2_inode_info *oi = OCFS2_I(inode);
129
130 down_read(&oi->ip_alloc_sem);
131 ret = ocfs2_get_block(inode, iblock, bh_result, create);
132 up_read(&oi->ip_alloc_sem);
133
134 return ret;
135 }
136
ocfs2_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)137 int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 struct buffer_head *bh_result, int create)
139 {
140 int err = 0;
141 unsigned int ext_flags;
142 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143 u64 p_blkno, count, past_eof;
144 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
145
146 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147 (unsigned long long)iblock, bh_result, create);
148
149 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151 inode, inode->i_ino);
152
153 if (S_ISLNK(inode->i_mode)) {
154 /* this always does I/O for some reason. */
155 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156 goto bail;
157 }
158
159 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
160 &ext_flags);
161 if (err) {
162 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
163 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164 (unsigned long long)p_blkno);
165 goto bail;
166 }
167
168 if (max_blocks < count)
169 count = max_blocks;
170
171 /*
172 * ocfs2 never allocates in this function - the only time we
173 * need to use BH_New is when we're extending i_size on a file
174 * system which doesn't support holes, in which case BH_New
175 * allows __block_write_begin() to zero.
176 *
177 * If we see this on a sparse file system, then a truncate has
178 * raced us and removed the cluster. In this case, we clear
179 * the buffers dirty and uptodate bits and let the buffer code
180 * ignore it as a hole.
181 */
182 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183 clear_buffer_dirty(bh_result);
184 clear_buffer_uptodate(bh_result);
185 goto bail;
186 }
187
188 /* Treat the unwritten extent as a hole for zeroing purposes. */
189 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
190 map_bh(bh_result, inode->i_sb, p_blkno);
191
192 bh_result->b_size = count << inode->i_blkbits;
193
194 if (!ocfs2_sparse_alloc(osb)) {
195 if (p_blkno == 0) {
196 err = -EIO;
197 mlog(ML_ERROR,
198 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199 (unsigned long long)iblock,
200 (unsigned long long)p_blkno,
201 (unsigned long long)OCFS2_I(inode)->ip_blkno);
202 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203 dump_stack();
204 goto bail;
205 }
206 }
207
208 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
209
210 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211 (unsigned long long)past_eof);
212 if (create && (iblock >= past_eof))
213 set_buffer_new(bh_result);
214
215 bail:
216 if (err < 0)
217 err = -EIO;
218
219 return err;
220 }
221
ocfs2_read_inline_data(struct inode * inode,struct page * page,struct buffer_head * di_bh)222 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223 struct buffer_head *di_bh)
224 {
225 void *kaddr;
226 loff_t size;
227 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228
229 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
231 (unsigned long long)OCFS2_I(inode)->ip_blkno);
232 return -EROFS;
233 }
234
235 size = i_size_read(inode);
236
237 if (size > PAGE_SIZE ||
238 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
239 ocfs2_error(inode->i_sb,
240 "Inode %llu has with inline data has bad size: %Lu\n",
241 (unsigned long long)OCFS2_I(inode)->ip_blkno,
242 (unsigned long long)size);
243 return -EROFS;
244 }
245
246 kaddr = kmap_atomic(page);
247 if (size)
248 memcpy(kaddr, di->id2.i_data.id_data, size);
249 /* Clear the remaining part of the page */
250 memset(kaddr + size, 0, PAGE_SIZE - size);
251 flush_dcache_page(page);
252 kunmap_atomic(kaddr);
253
254 SetPageUptodate(page);
255
256 return 0;
257 }
258
ocfs2_readpage_inline(struct inode * inode,struct page * page)259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260 {
261 int ret;
262 struct buffer_head *di_bh = NULL;
263
264 BUG_ON(!PageLocked(page));
265 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
266
267 ret = ocfs2_read_inode_block(inode, &di_bh);
268 if (ret) {
269 mlog_errno(ret);
270 goto out;
271 }
272
273 ret = ocfs2_read_inline_data(inode, page, di_bh);
274 out:
275 unlock_page(page);
276
277 brelse(di_bh);
278 return ret;
279 }
280
ocfs2_readpage(struct file * file,struct page * page)281 static int ocfs2_readpage(struct file *file, struct page *page)
282 {
283 struct inode *inode = page->mapping->host;
284 struct ocfs2_inode_info *oi = OCFS2_I(inode);
285 loff_t start = (loff_t)page->index << PAGE_SHIFT;
286 int ret, unlock = 1;
287
288 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289 (page ? page->index : 0));
290
291 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
292 if (ret != 0) {
293 if (ret == AOP_TRUNCATED_PAGE)
294 unlock = 0;
295 mlog_errno(ret);
296 goto out;
297 }
298
299 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
300 /*
301 * Unlock the page and cycle ip_alloc_sem so that we don't
302 * busyloop waiting for ip_alloc_sem to unlock
303 */
304 ret = AOP_TRUNCATED_PAGE;
305 unlock_page(page);
306 unlock = 0;
307 down_read(&oi->ip_alloc_sem);
308 up_read(&oi->ip_alloc_sem);
309 goto out_inode_unlock;
310 }
311
312 /*
313 * i_size might have just been updated as we grabed the meta lock. We
314 * might now be discovering a truncate that hit on another node.
315 * block_read_full_page->get_block freaks out if it is asked to read
316 * beyond the end of a file, so we check here. Callers
317 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
318 * and notice that the page they just read isn't needed.
319 *
320 * XXX sys_readahead() seems to get that wrong?
321 */
322 if (start >= i_size_read(inode)) {
323 zero_user(page, 0, PAGE_SIZE);
324 SetPageUptodate(page);
325 ret = 0;
326 goto out_alloc;
327 }
328
329 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330 ret = ocfs2_readpage_inline(inode, page);
331 else
332 ret = block_read_full_page(page, ocfs2_get_block);
333 unlock = 0;
334
335 out_alloc:
336 up_read(&oi->ip_alloc_sem);
337 out_inode_unlock:
338 ocfs2_inode_unlock(inode, 0);
339 out:
340 if (unlock)
341 unlock_page(page);
342 return ret;
343 }
344
345 /*
346 * This is used only for read-ahead. Failures or difficult to handle
347 * situations are safe to ignore.
348 *
349 * Right now, we don't bother with BH_Boundary - in-inode extent lists
350 * are quite large (243 extents on 4k blocks), so most inodes don't
351 * grow out to a tree. If need be, detecting boundary extents could
352 * trivially be added in a future version of ocfs2_get_block().
353 */
ocfs2_readpages(struct file * filp,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355 struct list_head *pages, unsigned nr_pages)
356 {
357 int ret, err = -EIO;
358 struct inode *inode = mapping->host;
359 struct ocfs2_inode_info *oi = OCFS2_I(inode);
360 loff_t start;
361 struct page *last;
362
363 /*
364 * Use the nonblocking flag for the dlm code to avoid page
365 * lock inversion, but don't bother with retrying.
366 */
367 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368 if (ret)
369 return err;
370
371 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372 ocfs2_inode_unlock(inode, 0);
373 return err;
374 }
375
376 /*
377 * Don't bother with inline-data. There isn't anything
378 * to read-ahead in that case anyway...
379 */
380 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381 goto out_unlock;
382
383 /*
384 * Check whether a remote node truncated this file - we just
385 * drop out in that case as it's not worth handling here.
386 */
387 last = lru_to_page(pages);
388 start = (loff_t)last->index << PAGE_SHIFT;
389 if (start >= i_size_read(inode))
390 goto out_unlock;
391
392 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393
394 out_unlock:
395 up_read(&oi->ip_alloc_sem);
396 ocfs2_inode_unlock(inode, 0);
397
398 return err;
399 }
400
401 /* Note: Because we don't support holes, our allocation has
402 * already happened (allocation writes zeros to the file data)
403 * so we don't have to worry about ordered writes in
404 * ocfs2_writepage.
405 *
406 * ->writepage is called during the process of invalidating the page cache
407 * during blocked lock processing. It can't block on any cluster locks
408 * to during block mapping. It's relying on the fact that the block
409 * mapping can't have disappeared under the dirty pages that it is
410 * being asked to write back.
411 */
ocfs2_writepage(struct page * page,struct writeback_control * wbc)412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413 {
414 trace_ocfs2_writepage(
415 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416 page->index);
417
418 return block_write_full_page(page, ocfs2_get_block, wbc);
419 }
420
421 /* Taken from ext3. We don't necessarily need the full blown
422 * functionality yet, but IMHO it's better to cut and paste the whole
423 * thing so we can avoid introducing our own bugs (and easily pick up
424 * their fixes when they happen) --Mark */
walk_page_buffers(handle_t * handle,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct buffer_head * bh))425 int walk_page_buffers( handle_t *handle,
426 struct buffer_head *head,
427 unsigned from,
428 unsigned to,
429 int *partial,
430 int (*fn)( handle_t *handle,
431 struct buffer_head *bh))
432 {
433 struct buffer_head *bh;
434 unsigned block_start, block_end;
435 unsigned blocksize = head->b_size;
436 int err, ret = 0;
437 struct buffer_head *next;
438
439 for ( bh = head, block_start = 0;
440 ret == 0 && (bh != head || !block_start);
441 block_start = block_end, bh = next)
442 {
443 next = bh->b_this_page;
444 block_end = block_start + blocksize;
445 if (block_end <= from || block_start >= to) {
446 if (partial && !buffer_uptodate(bh))
447 *partial = 1;
448 continue;
449 }
450 err = (*fn)(handle, bh);
451 if (!ret)
452 ret = err;
453 }
454 return ret;
455 }
456
ocfs2_bmap(struct address_space * mapping,sector_t block)457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458 {
459 sector_t status;
460 u64 p_blkno = 0;
461 int err = 0;
462 struct inode *inode = mapping->host;
463
464 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465 (unsigned long long)block);
466
467 /*
468 * The swap code (ab-)uses ->bmap to get a block mapping and then
469 * bypasseѕ the file system for actual I/O. We really can't allow
470 * that on refcounted inodes, so we have to skip out here. And yes,
471 * 0 is the magic code for a bmap error..
472 */
473 if (ocfs2_is_refcount_inode(inode))
474 return 0;
475
476 /* We don't need to lock journal system files, since they aren't
477 * accessed concurrently from multiple nodes.
478 */
479 if (!INODE_JOURNAL(inode)) {
480 err = ocfs2_inode_lock(inode, NULL, 0);
481 if (err) {
482 if (err != -ENOENT)
483 mlog_errno(err);
484 goto bail;
485 }
486 down_read(&OCFS2_I(inode)->ip_alloc_sem);
487 }
488
489 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
490 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
491 NULL);
492
493 if (!INODE_JOURNAL(inode)) {
494 up_read(&OCFS2_I(inode)->ip_alloc_sem);
495 ocfs2_inode_unlock(inode, 0);
496 }
497
498 if (err) {
499 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
500 (unsigned long long)block);
501 mlog_errno(err);
502 goto bail;
503 }
504
505 bail:
506 status = err ? 0 : p_blkno;
507
508 return status;
509 }
510
ocfs2_releasepage(struct page * page,gfp_t wait)511 static int ocfs2_releasepage(struct page *page, gfp_t wait)
512 {
513 if (!page_has_buffers(page))
514 return 0;
515 return try_to_free_buffers(page);
516 }
517
ocfs2_figure_cluster_boundaries(struct ocfs2_super * osb,u32 cpos,unsigned int * start,unsigned int * end)518 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
519 u32 cpos,
520 unsigned int *start,
521 unsigned int *end)
522 {
523 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
524
525 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
526 unsigned int cpp;
527
528 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
529
530 cluster_start = cpos % cpp;
531 cluster_start = cluster_start << osb->s_clustersize_bits;
532
533 cluster_end = cluster_start + osb->s_clustersize;
534 }
535
536 BUG_ON(cluster_start > PAGE_SIZE);
537 BUG_ON(cluster_end > PAGE_SIZE);
538
539 if (start)
540 *start = cluster_start;
541 if (end)
542 *end = cluster_end;
543 }
544
545 /*
546 * 'from' and 'to' are the region in the page to avoid zeroing.
547 *
548 * If pagesize > clustersize, this function will avoid zeroing outside
549 * of the cluster boundary.
550 *
551 * from == to == 0 is code for "zero the entire cluster region"
552 */
ocfs2_clear_page_regions(struct page * page,struct ocfs2_super * osb,u32 cpos,unsigned from,unsigned to)553 static void ocfs2_clear_page_regions(struct page *page,
554 struct ocfs2_super *osb, u32 cpos,
555 unsigned from, unsigned to)
556 {
557 void *kaddr;
558 unsigned int cluster_start, cluster_end;
559
560 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
561
562 kaddr = kmap_atomic(page);
563
564 if (from || to) {
565 if (from > cluster_start)
566 memset(kaddr + cluster_start, 0, from - cluster_start);
567 if (to < cluster_end)
568 memset(kaddr + to, 0, cluster_end - to);
569 } else {
570 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
571 }
572
573 kunmap_atomic(kaddr);
574 }
575
576 /*
577 * Nonsparse file systems fully allocate before we get to the write
578 * code. This prevents ocfs2_write() from tagging the write as an
579 * allocating one, which means ocfs2_map_page_blocks() might try to
580 * read-in the blocks at the tail of our file. Avoid reading them by
581 * testing i_size against each block offset.
582 */
ocfs2_should_read_blk(struct inode * inode,struct page * page,unsigned int block_start)583 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
584 unsigned int block_start)
585 {
586 u64 offset = page_offset(page) + block_start;
587
588 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
589 return 1;
590
591 if (i_size_read(inode) > offset)
592 return 1;
593
594 return 0;
595 }
596
597 /*
598 * Some of this taken from __block_write_begin(). We already have our
599 * mapping by now though, and the entire write will be allocating or
600 * it won't, so not much need to use BH_New.
601 *
602 * This will also skip zeroing, which is handled externally.
603 */
ocfs2_map_page_blocks(struct page * page,u64 * p_blkno,struct inode * inode,unsigned int from,unsigned int to,int new)604 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
605 struct inode *inode, unsigned int from,
606 unsigned int to, int new)
607 {
608 int ret = 0;
609 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
610 unsigned int block_end, block_start;
611 unsigned int bsize = i_blocksize(inode);
612
613 if (!page_has_buffers(page))
614 create_empty_buffers(page, bsize, 0);
615
616 head = page_buffers(page);
617 for (bh = head, block_start = 0; bh != head || !block_start;
618 bh = bh->b_this_page, block_start += bsize) {
619 block_end = block_start + bsize;
620
621 clear_buffer_new(bh);
622
623 /*
624 * Ignore blocks outside of our i/o range -
625 * they may belong to unallocated clusters.
626 */
627 if (block_start >= to || block_end <= from) {
628 if (PageUptodate(page))
629 set_buffer_uptodate(bh);
630 continue;
631 }
632
633 /*
634 * For an allocating write with cluster size >= page
635 * size, we always write the entire page.
636 */
637 if (new)
638 set_buffer_new(bh);
639
640 if (!buffer_mapped(bh)) {
641 map_bh(bh, inode->i_sb, *p_blkno);
642 clean_bdev_bh_alias(bh);
643 }
644
645 if (PageUptodate(page)) {
646 if (!buffer_uptodate(bh))
647 set_buffer_uptodate(bh);
648 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
649 !buffer_new(bh) &&
650 ocfs2_should_read_blk(inode, page, block_start) &&
651 (block_start < from || block_end > to)) {
652 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
653 *wait_bh++=bh;
654 }
655
656 *p_blkno = *p_blkno + 1;
657 }
658
659 /*
660 * If we issued read requests - let them complete.
661 */
662 while(wait_bh > wait) {
663 wait_on_buffer(*--wait_bh);
664 if (!buffer_uptodate(*wait_bh))
665 ret = -EIO;
666 }
667
668 if (ret == 0 || !new)
669 return ret;
670
671 /*
672 * If we get -EIO above, zero out any newly allocated blocks
673 * to avoid exposing stale data.
674 */
675 bh = head;
676 block_start = 0;
677 do {
678 block_end = block_start + bsize;
679 if (block_end <= from)
680 goto next_bh;
681 if (block_start >= to)
682 break;
683
684 zero_user(page, block_start, bh->b_size);
685 set_buffer_uptodate(bh);
686 mark_buffer_dirty(bh);
687
688 next_bh:
689 block_start = block_end;
690 bh = bh->b_this_page;
691 } while (bh != head);
692
693 return ret;
694 }
695
696 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
697 #define OCFS2_MAX_CTXT_PAGES 1
698 #else
699 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
700 #endif
701
702 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
703
704 struct ocfs2_unwritten_extent {
705 struct list_head ue_node;
706 struct list_head ue_ip_node;
707 u32 ue_cpos;
708 u32 ue_phys;
709 };
710
711 /*
712 * Describe the state of a single cluster to be written to.
713 */
714 struct ocfs2_write_cluster_desc {
715 u32 c_cpos;
716 u32 c_phys;
717 /*
718 * Give this a unique field because c_phys eventually gets
719 * filled.
720 */
721 unsigned c_new;
722 unsigned c_clear_unwritten;
723 unsigned c_needs_zero;
724 };
725
726 struct ocfs2_write_ctxt {
727 /* Logical cluster position / len of write */
728 u32 w_cpos;
729 u32 w_clen;
730
731 /* First cluster allocated in a nonsparse extend */
732 u32 w_first_new_cpos;
733
734 /* Type of caller. Must be one of buffer, mmap, direct. */
735 ocfs2_write_type_t w_type;
736
737 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
738
739 /*
740 * This is true if page_size > cluster_size.
741 *
742 * It triggers a set of special cases during write which might
743 * have to deal with allocating writes to partial pages.
744 */
745 unsigned int w_large_pages;
746
747 /*
748 * Pages involved in this write.
749 *
750 * w_target_page is the page being written to by the user.
751 *
752 * w_pages is an array of pages which always contains
753 * w_target_page, and in the case of an allocating write with
754 * page_size < cluster size, it will contain zero'd and mapped
755 * pages adjacent to w_target_page which need to be written
756 * out in so that future reads from that region will get
757 * zero's.
758 */
759 unsigned int w_num_pages;
760 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
761 struct page *w_target_page;
762
763 /*
764 * w_target_locked is used for page_mkwrite path indicating no unlocking
765 * against w_target_page in ocfs2_write_end_nolock.
766 */
767 unsigned int w_target_locked:1;
768
769 /*
770 * ocfs2_write_end() uses this to know what the real range to
771 * write in the target should be.
772 */
773 unsigned int w_target_from;
774 unsigned int w_target_to;
775
776 /*
777 * We could use journal_current_handle() but this is cleaner,
778 * IMHO -Mark
779 */
780 handle_t *w_handle;
781
782 struct buffer_head *w_di_bh;
783
784 struct ocfs2_cached_dealloc_ctxt w_dealloc;
785
786 struct list_head w_unwritten_list;
787 unsigned int w_unwritten_count;
788 };
789
ocfs2_unlock_and_free_pages(struct page ** pages,int num_pages)790 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
791 {
792 int i;
793
794 for(i = 0; i < num_pages; i++) {
795 if (pages[i]) {
796 unlock_page(pages[i]);
797 mark_page_accessed(pages[i]);
798 put_page(pages[i]);
799 }
800 }
801 }
802
ocfs2_unlock_pages(struct ocfs2_write_ctxt * wc)803 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
804 {
805 int i;
806
807 /*
808 * w_target_locked is only set to true in the page_mkwrite() case.
809 * The intent is to allow us to lock the target page from write_begin()
810 * to write_end(). The caller must hold a ref on w_target_page.
811 */
812 if (wc->w_target_locked) {
813 BUG_ON(!wc->w_target_page);
814 for (i = 0; i < wc->w_num_pages; i++) {
815 if (wc->w_target_page == wc->w_pages[i]) {
816 wc->w_pages[i] = NULL;
817 break;
818 }
819 }
820 mark_page_accessed(wc->w_target_page);
821 put_page(wc->w_target_page);
822 }
823 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
824 }
825
ocfs2_free_unwritten_list(struct inode * inode,struct list_head * head)826 static void ocfs2_free_unwritten_list(struct inode *inode,
827 struct list_head *head)
828 {
829 struct ocfs2_inode_info *oi = OCFS2_I(inode);
830 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
831
832 list_for_each_entry_safe(ue, tmp, head, ue_node) {
833 list_del(&ue->ue_node);
834 spin_lock(&oi->ip_lock);
835 list_del(&ue->ue_ip_node);
836 spin_unlock(&oi->ip_lock);
837 kfree(ue);
838 }
839 }
840
ocfs2_free_write_ctxt(struct inode * inode,struct ocfs2_write_ctxt * wc)841 static void ocfs2_free_write_ctxt(struct inode *inode,
842 struct ocfs2_write_ctxt *wc)
843 {
844 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
845 ocfs2_unlock_pages(wc);
846 brelse(wc->w_di_bh);
847 kfree(wc);
848 }
849
ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt ** wcp,struct ocfs2_super * osb,loff_t pos,unsigned len,ocfs2_write_type_t type,struct buffer_head * di_bh)850 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
851 struct ocfs2_super *osb, loff_t pos,
852 unsigned len, ocfs2_write_type_t type,
853 struct buffer_head *di_bh)
854 {
855 u32 cend;
856 struct ocfs2_write_ctxt *wc;
857
858 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
859 if (!wc)
860 return -ENOMEM;
861
862 wc->w_cpos = pos >> osb->s_clustersize_bits;
863 wc->w_first_new_cpos = UINT_MAX;
864 cend = (pos + len - 1) >> osb->s_clustersize_bits;
865 wc->w_clen = cend - wc->w_cpos + 1;
866 get_bh(di_bh);
867 wc->w_di_bh = di_bh;
868 wc->w_type = type;
869
870 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
871 wc->w_large_pages = 1;
872 else
873 wc->w_large_pages = 0;
874
875 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
876 INIT_LIST_HEAD(&wc->w_unwritten_list);
877
878 *wcp = wc;
879
880 return 0;
881 }
882
883 /*
884 * If a page has any new buffers, zero them out here, and mark them uptodate
885 * and dirty so they'll be written out (in order to prevent uninitialised
886 * block data from leaking). And clear the new bit.
887 */
ocfs2_zero_new_buffers(struct page * page,unsigned from,unsigned to)888 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
889 {
890 unsigned int block_start, block_end;
891 struct buffer_head *head, *bh;
892
893 BUG_ON(!PageLocked(page));
894 if (!page_has_buffers(page))
895 return;
896
897 bh = head = page_buffers(page);
898 block_start = 0;
899 do {
900 block_end = block_start + bh->b_size;
901
902 if (buffer_new(bh)) {
903 if (block_end > from && block_start < to) {
904 if (!PageUptodate(page)) {
905 unsigned start, end;
906
907 start = max(from, block_start);
908 end = min(to, block_end);
909
910 zero_user_segment(page, start, end);
911 set_buffer_uptodate(bh);
912 }
913
914 clear_buffer_new(bh);
915 mark_buffer_dirty(bh);
916 }
917 }
918
919 block_start = block_end;
920 bh = bh->b_this_page;
921 } while (bh != head);
922 }
923
924 /*
925 * Only called when we have a failure during allocating write to write
926 * zero's to the newly allocated region.
927 */
ocfs2_write_failure(struct inode * inode,struct ocfs2_write_ctxt * wc,loff_t user_pos,unsigned user_len)928 static void ocfs2_write_failure(struct inode *inode,
929 struct ocfs2_write_ctxt *wc,
930 loff_t user_pos, unsigned user_len)
931 {
932 int i;
933 unsigned from = user_pos & (PAGE_SIZE - 1),
934 to = user_pos + user_len;
935 struct page *tmppage;
936
937 if (wc->w_target_page)
938 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
939
940 for(i = 0; i < wc->w_num_pages; i++) {
941 tmppage = wc->w_pages[i];
942
943 if (tmppage && page_has_buffers(tmppage)) {
944 if (ocfs2_should_order_data(inode))
945 ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
946 user_pos, user_len);
947
948 block_commit_write(tmppage, from, to);
949 }
950 }
951 }
952
ocfs2_prepare_page_for_write(struct inode * inode,u64 * p_blkno,struct ocfs2_write_ctxt * wc,struct page * page,u32 cpos,loff_t user_pos,unsigned user_len,int new)953 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
954 struct ocfs2_write_ctxt *wc,
955 struct page *page, u32 cpos,
956 loff_t user_pos, unsigned user_len,
957 int new)
958 {
959 int ret;
960 unsigned int map_from = 0, map_to = 0;
961 unsigned int cluster_start, cluster_end;
962 unsigned int user_data_from = 0, user_data_to = 0;
963
964 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
965 &cluster_start, &cluster_end);
966
967 /* treat the write as new if the a hole/lseek spanned across
968 * the page boundary.
969 */
970 new = new | ((i_size_read(inode) <= page_offset(page)) &&
971 (page_offset(page) <= user_pos));
972
973 if (page == wc->w_target_page) {
974 map_from = user_pos & (PAGE_SIZE - 1);
975 map_to = map_from + user_len;
976
977 if (new)
978 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
979 cluster_start, cluster_end,
980 new);
981 else
982 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
983 map_from, map_to, new);
984 if (ret) {
985 mlog_errno(ret);
986 goto out;
987 }
988
989 user_data_from = map_from;
990 user_data_to = map_to;
991 if (new) {
992 map_from = cluster_start;
993 map_to = cluster_end;
994 }
995 } else {
996 /*
997 * If we haven't allocated the new page yet, we
998 * shouldn't be writing it out without copying user
999 * data. This is likely a math error from the caller.
1000 */
1001 BUG_ON(!new);
1002
1003 map_from = cluster_start;
1004 map_to = cluster_end;
1005
1006 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1007 cluster_start, cluster_end, new);
1008 if (ret) {
1009 mlog_errno(ret);
1010 goto out;
1011 }
1012 }
1013
1014 /*
1015 * Parts of newly allocated pages need to be zero'd.
1016 *
1017 * Above, we have also rewritten 'to' and 'from' - as far as
1018 * the rest of the function is concerned, the entire cluster
1019 * range inside of a page needs to be written.
1020 *
1021 * We can skip this if the page is up to date - it's already
1022 * been zero'd from being read in as a hole.
1023 */
1024 if (new && !PageUptodate(page))
1025 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1026 cpos, user_data_from, user_data_to);
1027
1028 flush_dcache_page(page);
1029
1030 out:
1031 return ret;
1032 }
1033
1034 /*
1035 * This function will only grab one clusters worth of pages.
1036 */
ocfs2_grab_pages_for_write(struct address_space * mapping,struct ocfs2_write_ctxt * wc,u32 cpos,loff_t user_pos,unsigned user_len,int new,struct page * mmap_page)1037 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1038 struct ocfs2_write_ctxt *wc,
1039 u32 cpos, loff_t user_pos,
1040 unsigned user_len, int new,
1041 struct page *mmap_page)
1042 {
1043 int ret = 0, i;
1044 unsigned long start, target_index, end_index, index;
1045 struct inode *inode = mapping->host;
1046 loff_t last_byte;
1047
1048 target_index = user_pos >> PAGE_SHIFT;
1049
1050 /*
1051 * Figure out how many pages we'll be manipulating here. For
1052 * non allocating write, we just change the one
1053 * page. Otherwise, we'll need a whole clusters worth. If we're
1054 * writing past i_size, we only need enough pages to cover the
1055 * last page of the write.
1056 */
1057 if (new) {
1058 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1059 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1060 /*
1061 * We need the index *past* the last page we could possibly
1062 * touch. This is the page past the end of the write or
1063 * i_size, whichever is greater.
1064 */
1065 last_byte = max(user_pos + user_len, i_size_read(inode));
1066 BUG_ON(last_byte < 1);
1067 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1068 if ((start + wc->w_num_pages) > end_index)
1069 wc->w_num_pages = end_index - start;
1070 } else {
1071 wc->w_num_pages = 1;
1072 start = target_index;
1073 }
1074 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1075
1076 for(i = 0; i < wc->w_num_pages; i++) {
1077 index = start + i;
1078
1079 if (index >= target_index && index <= end_index &&
1080 wc->w_type == OCFS2_WRITE_MMAP) {
1081 /*
1082 * ocfs2_pagemkwrite() is a little different
1083 * and wants us to directly use the page
1084 * passed in.
1085 */
1086 lock_page(mmap_page);
1087
1088 /* Exit and let the caller retry */
1089 if (mmap_page->mapping != mapping) {
1090 WARN_ON(mmap_page->mapping);
1091 unlock_page(mmap_page);
1092 ret = -EAGAIN;
1093 goto out;
1094 }
1095
1096 get_page(mmap_page);
1097 wc->w_pages[i] = mmap_page;
1098 wc->w_target_locked = true;
1099 } else if (index >= target_index && index <= end_index &&
1100 wc->w_type == OCFS2_WRITE_DIRECT) {
1101 /* Direct write has no mapping page. */
1102 wc->w_pages[i] = NULL;
1103 continue;
1104 } else {
1105 wc->w_pages[i] = find_or_create_page(mapping, index,
1106 GFP_NOFS);
1107 if (!wc->w_pages[i]) {
1108 ret = -ENOMEM;
1109 mlog_errno(ret);
1110 goto out;
1111 }
1112 }
1113 wait_for_stable_page(wc->w_pages[i]);
1114
1115 if (index == target_index)
1116 wc->w_target_page = wc->w_pages[i];
1117 }
1118 out:
1119 if (ret)
1120 wc->w_target_locked = false;
1121 return ret;
1122 }
1123
1124 /*
1125 * Prepare a single cluster for write one cluster into the file.
1126 */
ocfs2_write_cluster(struct address_space * mapping,u32 * phys,unsigned int new,unsigned int clear_unwritten,unsigned int should_zero,struct ocfs2_alloc_context * data_ac,struct ocfs2_alloc_context * meta_ac,struct ocfs2_write_ctxt * wc,u32 cpos,loff_t user_pos,unsigned user_len)1127 static int ocfs2_write_cluster(struct address_space *mapping,
1128 u32 *phys, unsigned int new,
1129 unsigned int clear_unwritten,
1130 unsigned int should_zero,
1131 struct ocfs2_alloc_context *data_ac,
1132 struct ocfs2_alloc_context *meta_ac,
1133 struct ocfs2_write_ctxt *wc, u32 cpos,
1134 loff_t user_pos, unsigned user_len)
1135 {
1136 int ret, i;
1137 u64 p_blkno;
1138 struct inode *inode = mapping->host;
1139 struct ocfs2_extent_tree et;
1140 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1141
1142 if (new) {
1143 u32 tmp_pos;
1144
1145 /*
1146 * This is safe to call with the page locks - it won't take
1147 * any additional semaphores or cluster locks.
1148 */
1149 tmp_pos = cpos;
1150 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1151 &tmp_pos, 1, !clear_unwritten,
1152 wc->w_di_bh, wc->w_handle,
1153 data_ac, meta_ac, NULL);
1154 /*
1155 * This shouldn't happen because we must have already
1156 * calculated the correct meta data allocation required. The
1157 * internal tree allocation code should know how to increase
1158 * transaction credits itself.
1159 *
1160 * If need be, we could handle -EAGAIN for a
1161 * RESTART_TRANS here.
1162 */
1163 mlog_bug_on_msg(ret == -EAGAIN,
1164 "Inode %llu: EAGAIN return during allocation.\n",
1165 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1166 if (ret < 0) {
1167 mlog_errno(ret);
1168 goto out;
1169 }
1170 } else if (clear_unwritten) {
1171 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1172 wc->w_di_bh);
1173 ret = ocfs2_mark_extent_written(inode, &et,
1174 wc->w_handle, cpos, 1, *phys,
1175 meta_ac, &wc->w_dealloc);
1176 if (ret < 0) {
1177 mlog_errno(ret);
1178 goto out;
1179 }
1180 }
1181
1182 /*
1183 * The only reason this should fail is due to an inability to
1184 * find the extent added.
1185 */
1186 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1187 if (ret < 0) {
1188 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1189 "at logical cluster %u",
1190 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1191 goto out;
1192 }
1193
1194 BUG_ON(*phys == 0);
1195
1196 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1197 if (!should_zero)
1198 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1199
1200 for(i = 0; i < wc->w_num_pages; i++) {
1201 int tmpret;
1202
1203 /* This is the direct io target page. */
1204 if (wc->w_pages[i] == NULL) {
1205 p_blkno++;
1206 continue;
1207 }
1208
1209 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1210 wc->w_pages[i], cpos,
1211 user_pos, user_len,
1212 should_zero);
1213 if (tmpret) {
1214 mlog_errno(tmpret);
1215 if (ret == 0)
1216 ret = tmpret;
1217 }
1218 }
1219
1220 /*
1221 * We only have cleanup to do in case of allocating write.
1222 */
1223 if (ret && new)
1224 ocfs2_write_failure(inode, wc, user_pos, user_len);
1225
1226 out:
1227
1228 return ret;
1229 }
1230
ocfs2_write_cluster_by_desc(struct address_space * mapping,struct ocfs2_alloc_context * data_ac,struct ocfs2_alloc_context * meta_ac,struct ocfs2_write_ctxt * wc,loff_t pos,unsigned len)1231 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1232 struct ocfs2_alloc_context *data_ac,
1233 struct ocfs2_alloc_context *meta_ac,
1234 struct ocfs2_write_ctxt *wc,
1235 loff_t pos, unsigned len)
1236 {
1237 int ret, i;
1238 loff_t cluster_off;
1239 unsigned int local_len = len;
1240 struct ocfs2_write_cluster_desc *desc;
1241 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1242
1243 for (i = 0; i < wc->w_clen; i++) {
1244 desc = &wc->w_desc[i];
1245
1246 /*
1247 * We have to make sure that the total write passed in
1248 * doesn't extend past a single cluster.
1249 */
1250 local_len = len;
1251 cluster_off = pos & (osb->s_clustersize - 1);
1252 if ((cluster_off + local_len) > osb->s_clustersize)
1253 local_len = osb->s_clustersize - cluster_off;
1254
1255 ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1256 desc->c_new,
1257 desc->c_clear_unwritten,
1258 desc->c_needs_zero,
1259 data_ac, meta_ac,
1260 wc, desc->c_cpos, pos, local_len);
1261 if (ret) {
1262 mlog_errno(ret);
1263 goto out;
1264 }
1265
1266 len -= local_len;
1267 pos += local_len;
1268 }
1269
1270 ret = 0;
1271 out:
1272 return ret;
1273 }
1274
1275 /*
1276 * ocfs2_write_end() wants to know which parts of the target page it
1277 * should complete the write on. It's easiest to compute them ahead of
1278 * time when a more complete view of the write is available.
1279 */
ocfs2_set_target_boundaries(struct ocfs2_super * osb,struct ocfs2_write_ctxt * wc,loff_t pos,unsigned len,int alloc)1280 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1281 struct ocfs2_write_ctxt *wc,
1282 loff_t pos, unsigned len, int alloc)
1283 {
1284 struct ocfs2_write_cluster_desc *desc;
1285
1286 wc->w_target_from = pos & (PAGE_SIZE - 1);
1287 wc->w_target_to = wc->w_target_from + len;
1288
1289 if (alloc == 0)
1290 return;
1291
1292 /*
1293 * Allocating write - we may have different boundaries based
1294 * on page size and cluster size.
1295 *
1296 * NOTE: We can no longer compute one value from the other as
1297 * the actual write length and user provided length may be
1298 * different.
1299 */
1300
1301 if (wc->w_large_pages) {
1302 /*
1303 * We only care about the 1st and last cluster within
1304 * our range and whether they should be zero'd or not. Either
1305 * value may be extended out to the start/end of a
1306 * newly allocated cluster.
1307 */
1308 desc = &wc->w_desc[0];
1309 if (desc->c_needs_zero)
1310 ocfs2_figure_cluster_boundaries(osb,
1311 desc->c_cpos,
1312 &wc->w_target_from,
1313 NULL);
1314
1315 desc = &wc->w_desc[wc->w_clen - 1];
1316 if (desc->c_needs_zero)
1317 ocfs2_figure_cluster_boundaries(osb,
1318 desc->c_cpos,
1319 NULL,
1320 &wc->w_target_to);
1321 } else {
1322 wc->w_target_from = 0;
1323 wc->w_target_to = PAGE_SIZE;
1324 }
1325 }
1326
1327 /*
1328 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1329 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1330 * by the direct io procedure.
1331 * If this is a new extent that allocated by direct io, we should mark it in
1332 * the ip_unwritten_list.
1333 */
ocfs2_unwritten_check(struct inode * inode,struct ocfs2_write_ctxt * wc,struct ocfs2_write_cluster_desc * desc)1334 static int ocfs2_unwritten_check(struct inode *inode,
1335 struct ocfs2_write_ctxt *wc,
1336 struct ocfs2_write_cluster_desc *desc)
1337 {
1338 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1339 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1340 int ret = 0;
1341
1342 if (!desc->c_needs_zero)
1343 return 0;
1344
1345 retry:
1346 spin_lock(&oi->ip_lock);
1347 /* Needs not to zero no metter buffer or direct. The one who is zero
1348 * the cluster is doing zero. And he will clear unwritten after all
1349 * cluster io finished. */
1350 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1351 if (desc->c_cpos == ue->ue_cpos) {
1352 BUG_ON(desc->c_new);
1353 desc->c_needs_zero = 0;
1354 desc->c_clear_unwritten = 0;
1355 goto unlock;
1356 }
1357 }
1358
1359 if (wc->w_type != OCFS2_WRITE_DIRECT)
1360 goto unlock;
1361
1362 if (new == NULL) {
1363 spin_unlock(&oi->ip_lock);
1364 new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1365 GFP_NOFS);
1366 if (new == NULL) {
1367 ret = -ENOMEM;
1368 goto out;
1369 }
1370 goto retry;
1371 }
1372 /* This direct write will doing zero. */
1373 new->ue_cpos = desc->c_cpos;
1374 new->ue_phys = desc->c_phys;
1375 desc->c_clear_unwritten = 0;
1376 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1377 list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1378 wc->w_unwritten_count++;
1379 new = NULL;
1380 unlock:
1381 spin_unlock(&oi->ip_lock);
1382 out:
1383 kfree(new);
1384 return ret;
1385 }
1386
1387 /*
1388 * Populate each single-cluster write descriptor in the write context
1389 * with information about the i/o to be done.
1390 *
1391 * Returns the number of clusters that will have to be allocated, as
1392 * well as a worst case estimate of the number of extent records that
1393 * would have to be created during a write to an unwritten region.
1394 */
ocfs2_populate_write_desc(struct inode * inode,struct ocfs2_write_ctxt * wc,unsigned int * clusters_to_alloc,unsigned int * extents_to_split)1395 static int ocfs2_populate_write_desc(struct inode *inode,
1396 struct ocfs2_write_ctxt *wc,
1397 unsigned int *clusters_to_alloc,
1398 unsigned int *extents_to_split)
1399 {
1400 int ret;
1401 struct ocfs2_write_cluster_desc *desc;
1402 unsigned int num_clusters = 0;
1403 unsigned int ext_flags = 0;
1404 u32 phys = 0;
1405 int i;
1406
1407 *clusters_to_alloc = 0;
1408 *extents_to_split = 0;
1409
1410 for (i = 0; i < wc->w_clen; i++) {
1411 desc = &wc->w_desc[i];
1412 desc->c_cpos = wc->w_cpos + i;
1413
1414 if (num_clusters == 0) {
1415 /*
1416 * Need to look up the next extent record.
1417 */
1418 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1419 &num_clusters, &ext_flags);
1420 if (ret) {
1421 mlog_errno(ret);
1422 goto out;
1423 }
1424
1425 /* We should already CoW the refcountd extent. */
1426 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1427
1428 /*
1429 * Assume worst case - that we're writing in
1430 * the middle of the extent.
1431 *
1432 * We can assume that the write proceeds from
1433 * left to right, in which case the extent
1434 * insert code is smart enough to coalesce the
1435 * next splits into the previous records created.
1436 */
1437 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1438 *extents_to_split = *extents_to_split + 2;
1439 } else if (phys) {
1440 /*
1441 * Only increment phys if it doesn't describe
1442 * a hole.
1443 */
1444 phys++;
1445 }
1446
1447 /*
1448 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1449 * file that got extended. w_first_new_cpos tells us
1450 * where the newly allocated clusters are so we can
1451 * zero them.
1452 */
1453 if (desc->c_cpos >= wc->w_first_new_cpos) {
1454 BUG_ON(phys == 0);
1455 desc->c_needs_zero = 1;
1456 }
1457
1458 desc->c_phys = phys;
1459 if (phys == 0) {
1460 desc->c_new = 1;
1461 desc->c_needs_zero = 1;
1462 desc->c_clear_unwritten = 1;
1463 *clusters_to_alloc = *clusters_to_alloc + 1;
1464 }
1465
1466 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1467 desc->c_clear_unwritten = 1;
1468 desc->c_needs_zero = 1;
1469 }
1470
1471 ret = ocfs2_unwritten_check(inode, wc, desc);
1472 if (ret) {
1473 mlog_errno(ret);
1474 goto out;
1475 }
1476
1477 num_clusters--;
1478 }
1479
1480 ret = 0;
1481 out:
1482 return ret;
1483 }
1484
ocfs2_write_begin_inline(struct address_space * mapping,struct inode * inode,struct ocfs2_write_ctxt * wc)1485 static int ocfs2_write_begin_inline(struct address_space *mapping,
1486 struct inode *inode,
1487 struct ocfs2_write_ctxt *wc)
1488 {
1489 int ret;
1490 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1491 struct page *page;
1492 handle_t *handle;
1493 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1494
1495 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1496 if (IS_ERR(handle)) {
1497 ret = PTR_ERR(handle);
1498 mlog_errno(ret);
1499 goto out;
1500 }
1501
1502 page = find_or_create_page(mapping, 0, GFP_NOFS);
1503 if (!page) {
1504 ocfs2_commit_trans(osb, handle);
1505 ret = -ENOMEM;
1506 mlog_errno(ret);
1507 goto out;
1508 }
1509 /*
1510 * If we don't set w_num_pages then this page won't get unlocked
1511 * and freed on cleanup of the write context.
1512 */
1513 wc->w_pages[0] = wc->w_target_page = page;
1514 wc->w_num_pages = 1;
1515
1516 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1517 OCFS2_JOURNAL_ACCESS_WRITE);
1518 if (ret) {
1519 ocfs2_commit_trans(osb, handle);
1520
1521 mlog_errno(ret);
1522 goto out;
1523 }
1524
1525 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1526 ocfs2_set_inode_data_inline(inode, di);
1527
1528 if (!PageUptodate(page)) {
1529 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1530 if (ret) {
1531 ocfs2_commit_trans(osb, handle);
1532
1533 goto out;
1534 }
1535 }
1536
1537 wc->w_handle = handle;
1538 out:
1539 return ret;
1540 }
1541
ocfs2_size_fits_inline_data(struct buffer_head * di_bh,u64 new_size)1542 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1543 {
1544 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1545
1546 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1547 return 1;
1548 return 0;
1549 }
1550
ocfs2_try_to_write_inline_data(struct address_space * mapping,struct inode * inode,loff_t pos,unsigned len,struct page * mmap_page,struct ocfs2_write_ctxt * wc)1551 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1552 struct inode *inode, loff_t pos,
1553 unsigned len, struct page *mmap_page,
1554 struct ocfs2_write_ctxt *wc)
1555 {
1556 int ret, written = 0;
1557 loff_t end = pos + len;
1558 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1559 struct ocfs2_dinode *di = NULL;
1560
1561 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1562 len, (unsigned long long)pos,
1563 oi->ip_dyn_features);
1564
1565 /*
1566 * Handle inodes which already have inline data 1st.
1567 */
1568 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1569 if (mmap_page == NULL &&
1570 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1571 goto do_inline_write;
1572
1573 /*
1574 * The write won't fit - we have to give this inode an
1575 * inline extent list now.
1576 */
1577 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1578 if (ret)
1579 mlog_errno(ret);
1580 goto out;
1581 }
1582
1583 /*
1584 * Check whether the inode can accept inline data.
1585 */
1586 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1587 return 0;
1588
1589 /*
1590 * Check whether the write can fit.
1591 */
1592 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1593 if (mmap_page ||
1594 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1595 return 0;
1596
1597 do_inline_write:
1598 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1599 if (ret) {
1600 mlog_errno(ret);
1601 goto out;
1602 }
1603
1604 /*
1605 * This signals to the caller that the data can be written
1606 * inline.
1607 */
1608 written = 1;
1609 out:
1610 return written ? written : ret;
1611 }
1612
1613 /*
1614 * This function only does anything for file systems which can't
1615 * handle sparse files.
1616 *
1617 * What we want to do here is fill in any hole between the current end
1618 * of allocation and the end of our write. That way the rest of the
1619 * write path can treat it as an non-allocating write, which has no
1620 * special case code for sparse/nonsparse files.
1621 */
ocfs2_expand_nonsparse_inode(struct inode * inode,struct buffer_head * di_bh,loff_t pos,unsigned len,struct ocfs2_write_ctxt * wc)1622 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1623 struct buffer_head *di_bh,
1624 loff_t pos, unsigned len,
1625 struct ocfs2_write_ctxt *wc)
1626 {
1627 int ret;
1628 loff_t newsize = pos + len;
1629
1630 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1631
1632 if (newsize <= i_size_read(inode))
1633 return 0;
1634
1635 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1636 if (ret)
1637 mlog_errno(ret);
1638
1639 /* There is no wc if this is call from direct. */
1640 if (wc)
1641 wc->w_first_new_cpos =
1642 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1643
1644 return ret;
1645 }
1646
ocfs2_zero_tail(struct inode * inode,struct buffer_head * di_bh,loff_t pos)1647 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1648 loff_t pos)
1649 {
1650 int ret = 0;
1651
1652 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1653 if (pos > i_size_read(inode))
1654 ret = ocfs2_zero_extend(inode, di_bh, pos);
1655
1656 return ret;
1657 }
1658
ocfs2_write_begin_nolock(struct address_space * mapping,loff_t pos,unsigned len,ocfs2_write_type_t type,struct page ** pagep,void ** fsdata,struct buffer_head * di_bh,struct page * mmap_page)1659 int ocfs2_write_begin_nolock(struct address_space *mapping,
1660 loff_t pos, unsigned len, ocfs2_write_type_t type,
1661 struct page **pagep, void **fsdata,
1662 struct buffer_head *di_bh, struct page *mmap_page)
1663 {
1664 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1665 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1666 struct ocfs2_write_ctxt *wc;
1667 struct inode *inode = mapping->host;
1668 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1669 struct ocfs2_dinode *di;
1670 struct ocfs2_alloc_context *data_ac = NULL;
1671 struct ocfs2_alloc_context *meta_ac = NULL;
1672 handle_t *handle;
1673 struct ocfs2_extent_tree et;
1674 int try_free = 1, ret1;
1675
1676 try_again:
1677 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1678 if (ret) {
1679 mlog_errno(ret);
1680 return ret;
1681 }
1682
1683 if (ocfs2_supports_inline_data(osb)) {
1684 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1685 mmap_page, wc);
1686 if (ret == 1) {
1687 ret = 0;
1688 goto success;
1689 }
1690 if (ret < 0) {
1691 mlog_errno(ret);
1692 goto out;
1693 }
1694 }
1695
1696 /* Direct io change i_size late, should not zero tail here. */
1697 if (type != OCFS2_WRITE_DIRECT) {
1698 if (ocfs2_sparse_alloc(osb))
1699 ret = ocfs2_zero_tail(inode, di_bh, pos);
1700 else
1701 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1702 len, wc);
1703 if (ret) {
1704 mlog_errno(ret);
1705 goto out;
1706 }
1707 }
1708
1709 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1710 if (ret < 0) {
1711 mlog_errno(ret);
1712 goto out;
1713 } else if (ret == 1) {
1714 clusters_need = wc->w_clen;
1715 ret = ocfs2_refcount_cow(inode, di_bh,
1716 wc->w_cpos, wc->w_clen, UINT_MAX);
1717 if (ret) {
1718 mlog_errno(ret);
1719 goto out;
1720 }
1721 }
1722
1723 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1724 &extents_to_split);
1725 if (ret) {
1726 mlog_errno(ret);
1727 goto out;
1728 }
1729 clusters_need += clusters_to_alloc;
1730
1731 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1732
1733 trace_ocfs2_write_begin_nolock(
1734 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1735 (long long)i_size_read(inode),
1736 le32_to_cpu(di->i_clusters),
1737 pos, len, type, mmap_page,
1738 clusters_to_alloc, extents_to_split);
1739
1740 /*
1741 * We set w_target_from, w_target_to here so that
1742 * ocfs2_write_end() knows which range in the target page to
1743 * write out. An allocation requires that we write the entire
1744 * cluster range.
1745 */
1746 if (clusters_to_alloc || extents_to_split) {
1747 /*
1748 * XXX: We are stretching the limits of
1749 * ocfs2_lock_allocators(). It greatly over-estimates
1750 * the work to be done.
1751 */
1752 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1753 wc->w_di_bh);
1754 ret = ocfs2_lock_allocators(inode, &et,
1755 clusters_to_alloc, extents_to_split,
1756 &data_ac, &meta_ac);
1757 if (ret) {
1758 mlog_errno(ret);
1759 goto out;
1760 }
1761
1762 if (data_ac)
1763 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1764
1765 credits = ocfs2_calc_extend_credits(inode->i_sb,
1766 &di->id2.i_list);
1767 } else if (type == OCFS2_WRITE_DIRECT)
1768 /* direct write needs not to start trans if no extents alloc. */
1769 goto success;
1770
1771 /*
1772 * We have to zero sparse allocated clusters, unwritten extent clusters,
1773 * and non-sparse clusters we just extended. For non-sparse writes,
1774 * we know zeros will only be needed in the first and/or last cluster.
1775 */
1776 if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1777 wc->w_desc[wc->w_clen - 1].c_needs_zero))
1778 cluster_of_pages = 1;
1779 else
1780 cluster_of_pages = 0;
1781
1782 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1783
1784 handle = ocfs2_start_trans(osb, credits);
1785 if (IS_ERR(handle)) {
1786 ret = PTR_ERR(handle);
1787 mlog_errno(ret);
1788 goto out;
1789 }
1790
1791 wc->w_handle = handle;
1792
1793 if (clusters_to_alloc) {
1794 ret = dquot_alloc_space_nodirty(inode,
1795 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1796 if (ret)
1797 goto out_commit;
1798 }
1799
1800 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1801 OCFS2_JOURNAL_ACCESS_WRITE);
1802 if (ret) {
1803 mlog_errno(ret);
1804 goto out_quota;
1805 }
1806
1807 /*
1808 * Fill our page array first. That way we've grabbed enough so
1809 * that we can zero and flush if we error after adding the
1810 * extent.
1811 */
1812 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1813 cluster_of_pages, mmap_page);
1814 if (ret && ret != -EAGAIN) {
1815 mlog_errno(ret);
1816 goto out_quota;
1817 }
1818
1819 /*
1820 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1821 * the target page. In this case, we exit with no error and no target
1822 * page. This will trigger the caller, page_mkwrite(), to re-try
1823 * the operation.
1824 */
1825 if (ret == -EAGAIN) {
1826 BUG_ON(wc->w_target_page);
1827 ret = 0;
1828 goto out_quota;
1829 }
1830
1831 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1832 len);
1833 if (ret) {
1834 mlog_errno(ret);
1835 goto out_quota;
1836 }
1837
1838 if (data_ac)
1839 ocfs2_free_alloc_context(data_ac);
1840 if (meta_ac)
1841 ocfs2_free_alloc_context(meta_ac);
1842
1843 success:
1844 if (pagep)
1845 *pagep = wc->w_target_page;
1846 *fsdata = wc;
1847 return 0;
1848 out_quota:
1849 if (clusters_to_alloc)
1850 dquot_free_space(inode,
1851 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1852 out_commit:
1853 ocfs2_commit_trans(osb, handle);
1854
1855 out:
1856 /*
1857 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1858 * even in case of error here like ENOSPC and ENOMEM. So, we need
1859 * to unlock the target page manually to prevent deadlocks when
1860 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1861 * to VM code.
1862 */
1863 if (wc->w_target_locked)
1864 unlock_page(mmap_page);
1865
1866 ocfs2_free_write_ctxt(inode, wc);
1867
1868 if (data_ac) {
1869 ocfs2_free_alloc_context(data_ac);
1870 data_ac = NULL;
1871 }
1872 if (meta_ac) {
1873 ocfs2_free_alloc_context(meta_ac);
1874 meta_ac = NULL;
1875 }
1876
1877 if (ret == -ENOSPC && try_free) {
1878 /*
1879 * Try to free some truncate log so that we can have enough
1880 * clusters to allocate.
1881 */
1882 try_free = 0;
1883
1884 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1885 if (ret1 == 1)
1886 goto try_again;
1887
1888 if (ret1 < 0)
1889 mlog_errno(ret1);
1890 }
1891
1892 return ret;
1893 }
1894
ocfs2_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)1895 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1896 loff_t pos, unsigned len, unsigned flags,
1897 struct page **pagep, void **fsdata)
1898 {
1899 int ret;
1900 struct buffer_head *di_bh = NULL;
1901 struct inode *inode = mapping->host;
1902
1903 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1904 if (ret) {
1905 mlog_errno(ret);
1906 return ret;
1907 }
1908
1909 /*
1910 * Take alloc sem here to prevent concurrent lookups. That way
1911 * the mapping, zeroing and tree manipulation within
1912 * ocfs2_write() will be safe against ->readpage(). This
1913 * should also serve to lock out allocation from a shared
1914 * writeable region.
1915 */
1916 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1917
1918 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1919 pagep, fsdata, di_bh, NULL);
1920 if (ret) {
1921 mlog_errno(ret);
1922 goto out_fail;
1923 }
1924
1925 brelse(di_bh);
1926
1927 return 0;
1928
1929 out_fail:
1930 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1931
1932 brelse(di_bh);
1933 ocfs2_inode_unlock(inode, 1);
1934
1935 return ret;
1936 }
1937
ocfs2_write_end_inline(struct inode * inode,loff_t pos,unsigned len,unsigned * copied,struct ocfs2_dinode * di,struct ocfs2_write_ctxt * wc)1938 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1939 unsigned len, unsigned *copied,
1940 struct ocfs2_dinode *di,
1941 struct ocfs2_write_ctxt *wc)
1942 {
1943 void *kaddr;
1944
1945 if (unlikely(*copied < len)) {
1946 if (!PageUptodate(wc->w_target_page)) {
1947 *copied = 0;
1948 return;
1949 }
1950 }
1951
1952 kaddr = kmap_atomic(wc->w_target_page);
1953 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1954 kunmap_atomic(kaddr);
1955
1956 trace_ocfs2_write_end_inline(
1957 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1958 (unsigned long long)pos, *copied,
1959 le16_to_cpu(di->id2.i_data.id_count),
1960 le16_to_cpu(di->i_dyn_features));
1961 }
1962
ocfs2_write_end_nolock(struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,void * fsdata)1963 int ocfs2_write_end_nolock(struct address_space *mapping,
1964 loff_t pos, unsigned len, unsigned copied, void *fsdata)
1965 {
1966 int i, ret;
1967 unsigned from, to, start = pos & (PAGE_SIZE - 1);
1968 struct inode *inode = mapping->host;
1969 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1970 struct ocfs2_write_ctxt *wc = fsdata;
1971 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1972 handle_t *handle = wc->w_handle;
1973 struct page *tmppage;
1974
1975 BUG_ON(!list_empty(&wc->w_unwritten_list));
1976
1977 if (handle) {
1978 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1979 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1980 if (ret) {
1981 copied = ret;
1982 mlog_errno(ret);
1983 goto out;
1984 }
1985 }
1986
1987 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1988 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1989 goto out_write_size;
1990 }
1991
1992 if (unlikely(copied < len) && wc->w_target_page) {
1993 if (!PageUptodate(wc->w_target_page))
1994 copied = 0;
1995
1996 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1997 start+len);
1998 }
1999 if (wc->w_target_page)
2000 flush_dcache_page(wc->w_target_page);
2001
2002 for(i = 0; i < wc->w_num_pages; i++) {
2003 tmppage = wc->w_pages[i];
2004
2005 /* This is the direct io target page. */
2006 if (tmppage == NULL)
2007 continue;
2008
2009 if (tmppage == wc->w_target_page) {
2010 from = wc->w_target_from;
2011 to = wc->w_target_to;
2012
2013 BUG_ON(from > PAGE_SIZE ||
2014 to > PAGE_SIZE ||
2015 to < from);
2016 } else {
2017 /*
2018 * Pages adjacent to the target (if any) imply
2019 * a hole-filling write in which case we want
2020 * to flush their entire range.
2021 */
2022 from = 0;
2023 to = PAGE_SIZE;
2024 }
2025
2026 if (page_has_buffers(tmppage)) {
2027 if (handle && ocfs2_should_order_data(inode)) {
2028 loff_t start_byte =
2029 ((loff_t)tmppage->index << PAGE_SHIFT) +
2030 from;
2031 loff_t length = to - from;
2032 ocfs2_jbd2_inode_add_write(handle, inode,
2033 start_byte, length);
2034 }
2035 block_commit_write(tmppage, from, to);
2036 }
2037 }
2038
2039 out_write_size:
2040 /* Direct io do not update i_size here. */
2041 if (wc->w_type != OCFS2_WRITE_DIRECT) {
2042 pos += copied;
2043 if (pos > i_size_read(inode)) {
2044 i_size_write(inode, pos);
2045 mark_inode_dirty(inode);
2046 }
2047 inode->i_blocks = ocfs2_inode_sector_count(inode);
2048 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2049 inode->i_mtime = inode->i_ctime = current_time(inode);
2050 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2051 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2052 if (handle)
2053 ocfs2_update_inode_fsync_trans(handle, inode, 1);
2054 }
2055 if (handle)
2056 ocfs2_journal_dirty(handle, wc->w_di_bh);
2057
2058 out:
2059 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2060 * lock, or it will cause a deadlock since journal commit threads holds
2061 * this lock and will ask for the page lock when flushing the data.
2062 * put it here to preserve the unlock order.
2063 */
2064 ocfs2_unlock_pages(wc);
2065
2066 if (handle)
2067 ocfs2_commit_trans(osb, handle);
2068
2069 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2070
2071 brelse(wc->w_di_bh);
2072 kfree(wc);
2073
2074 return copied;
2075 }
2076
ocfs2_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2077 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2078 loff_t pos, unsigned len, unsigned copied,
2079 struct page *page, void *fsdata)
2080 {
2081 int ret;
2082 struct inode *inode = mapping->host;
2083
2084 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2085
2086 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2087 ocfs2_inode_unlock(inode, 1);
2088
2089 return ret;
2090 }
2091
2092 struct ocfs2_dio_write_ctxt {
2093 struct list_head dw_zero_list;
2094 unsigned dw_zero_count;
2095 int dw_orphaned;
2096 pid_t dw_writer_pid;
2097 };
2098
2099 static struct ocfs2_dio_write_ctxt *
ocfs2_dio_alloc_write_ctx(struct buffer_head * bh,int * alloc)2100 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2101 {
2102 struct ocfs2_dio_write_ctxt *dwc = NULL;
2103
2104 if (bh->b_private)
2105 return bh->b_private;
2106
2107 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2108 if (dwc == NULL)
2109 return NULL;
2110 INIT_LIST_HEAD(&dwc->dw_zero_list);
2111 dwc->dw_zero_count = 0;
2112 dwc->dw_orphaned = 0;
2113 dwc->dw_writer_pid = task_pid_nr(current);
2114 bh->b_private = dwc;
2115 *alloc = 1;
2116
2117 return dwc;
2118 }
2119
ocfs2_dio_free_write_ctx(struct inode * inode,struct ocfs2_dio_write_ctxt * dwc)2120 static void ocfs2_dio_free_write_ctx(struct inode *inode,
2121 struct ocfs2_dio_write_ctxt *dwc)
2122 {
2123 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2124 kfree(dwc);
2125 }
2126
2127 /*
2128 * TODO: Make this into a generic get_blocks function.
2129 *
2130 * From do_direct_io in direct-io.c:
2131 * "So what we do is to permit the ->get_blocks function to populate
2132 * bh.b_size with the size of IO which is permitted at this offset and
2133 * this i_blkbits."
2134 *
2135 * This function is called directly from get_more_blocks in direct-io.c.
2136 *
2137 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2138 * fs_count, map_bh, dio->rw == WRITE);
2139 */
ocfs2_dio_wr_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)2140 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2141 struct buffer_head *bh_result, int create)
2142 {
2143 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2144 struct ocfs2_inode_info *oi = OCFS2_I(inode);
2145 struct ocfs2_write_ctxt *wc;
2146 struct ocfs2_write_cluster_desc *desc = NULL;
2147 struct ocfs2_dio_write_ctxt *dwc = NULL;
2148 struct buffer_head *di_bh = NULL;
2149 u64 p_blkno;
2150 unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2151 loff_t pos = iblock << i_blkbits;
2152 sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
2153 unsigned len, total_len = bh_result->b_size;
2154 int ret = 0, first_get_block = 0;
2155
2156 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2157 len = min(total_len, len);
2158
2159 /*
2160 * bh_result->b_size is count in get_more_blocks according to write
2161 * "pos" and "end", we need map twice to return different buffer state:
2162 * 1. area in file size, not set NEW;
2163 * 2. area out file size, set NEW.
2164 *
2165 * iblock endblk
2166 * |--------|---------|---------|---------
2167 * |<-------area in file------->|
2168 */
2169
2170 if ((iblock <= endblk) &&
2171 ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2172 len = (endblk - iblock + 1) << i_blkbits;
2173
2174 mlog(0, "get block of %lu at %llu:%u req %u\n",
2175 inode->i_ino, pos, len, total_len);
2176
2177 /*
2178 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2179 * we may need to add it to orphan dir. So can not fall to fast path
2180 * while file size will be changed.
2181 */
2182 if (pos + total_len <= i_size_read(inode)) {
2183
2184 /* This is the fast path for re-write. */
2185 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2186 if (buffer_mapped(bh_result) &&
2187 !buffer_new(bh_result) &&
2188 ret == 0)
2189 goto out;
2190
2191 /* Clear state set by ocfs2_get_block. */
2192 bh_result->b_state = 0;
2193 }
2194
2195 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2196 if (unlikely(dwc == NULL)) {
2197 ret = -ENOMEM;
2198 mlog_errno(ret);
2199 goto out;
2200 }
2201
2202 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2203 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2204 !dwc->dw_orphaned) {
2205 /*
2206 * when we are going to alloc extents beyond file size, add the
2207 * inode to orphan dir, so we can recall those spaces when
2208 * system crashed during write.
2209 */
2210 ret = ocfs2_add_inode_to_orphan(osb, inode);
2211 if (ret < 0) {
2212 mlog_errno(ret);
2213 goto out;
2214 }
2215 dwc->dw_orphaned = 1;
2216 }
2217
2218 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2219 if (ret) {
2220 mlog_errno(ret);
2221 goto out;
2222 }
2223
2224 down_write(&oi->ip_alloc_sem);
2225
2226 if (first_get_block) {
2227 if (ocfs2_sparse_alloc(osb))
2228 ret = ocfs2_zero_tail(inode, di_bh, pos);
2229 else
2230 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2231 total_len, NULL);
2232 if (ret < 0) {
2233 mlog_errno(ret);
2234 goto unlock;
2235 }
2236 }
2237
2238 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2239 OCFS2_WRITE_DIRECT, NULL,
2240 (void **)&wc, di_bh, NULL);
2241 if (ret) {
2242 mlog_errno(ret);
2243 goto unlock;
2244 }
2245
2246 desc = &wc->w_desc[0];
2247
2248 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2249 BUG_ON(p_blkno == 0);
2250 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2251
2252 map_bh(bh_result, inode->i_sb, p_blkno);
2253 bh_result->b_size = len;
2254 if (desc->c_needs_zero)
2255 set_buffer_new(bh_result);
2256
2257 if (iblock > endblk)
2258 set_buffer_new(bh_result);
2259
2260 /* May sleep in end_io. It should not happen in a irq context. So defer
2261 * it to dio work queue. */
2262 set_buffer_defer_completion(bh_result);
2263
2264 if (!list_empty(&wc->w_unwritten_list)) {
2265 struct ocfs2_unwritten_extent *ue = NULL;
2266
2267 ue = list_first_entry(&wc->w_unwritten_list,
2268 struct ocfs2_unwritten_extent,
2269 ue_node);
2270 BUG_ON(ue->ue_cpos != desc->c_cpos);
2271 /* The physical address may be 0, fill it. */
2272 ue->ue_phys = desc->c_phys;
2273
2274 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2275 dwc->dw_zero_count += wc->w_unwritten_count;
2276 }
2277
2278 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2279 BUG_ON(ret != len);
2280 ret = 0;
2281 unlock:
2282 up_write(&oi->ip_alloc_sem);
2283 ocfs2_inode_unlock(inode, 1);
2284 brelse(di_bh);
2285 out:
2286 if (ret < 0)
2287 ret = -EIO;
2288 return ret;
2289 }
2290
ocfs2_dio_end_io_write(struct inode * inode,struct ocfs2_dio_write_ctxt * dwc,loff_t offset,ssize_t bytes)2291 static int ocfs2_dio_end_io_write(struct inode *inode,
2292 struct ocfs2_dio_write_ctxt *dwc,
2293 loff_t offset,
2294 ssize_t bytes)
2295 {
2296 struct ocfs2_cached_dealloc_ctxt dealloc;
2297 struct ocfs2_extent_tree et;
2298 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2299 struct ocfs2_inode_info *oi = OCFS2_I(inode);
2300 struct ocfs2_unwritten_extent *ue = NULL;
2301 struct buffer_head *di_bh = NULL;
2302 struct ocfs2_dinode *di;
2303 struct ocfs2_alloc_context *data_ac = NULL;
2304 struct ocfs2_alloc_context *meta_ac = NULL;
2305 handle_t *handle = NULL;
2306 loff_t end = offset + bytes;
2307 int ret = 0, credits = 0, locked = 0;
2308
2309 ocfs2_init_dealloc_ctxt(&dealloc);
2310
2311 /* We do clear unwritten, delete orphan, change i_size here. If neither
2312 * of these happen, we can skip all this. */
2313 if (list_empty(&dwc->dw_zero_list) &&
2314 end <= i_size_read(inode) &&
2315 !dwc->dw_orphaned)
2316 goto out;
2317
2318 /* ocfs2_file_write_iter will get i_mutex, so we need not lock if we
2319 * are in that context. */
2320 if (dwc->dw_writer_pid != task_pid_nr(current)) {
2321 inode_lock(inode);
2322 locked = 1;
2323 }
2324
2325 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2326 if (ret < 0) {
2327 mlog_errno(ret);
2328 goto out;
2329 }
2330
2331 down_write(&oi->ip_alloc_sem);
2332
2333 /* Delete orphan before acquire i_mutex. */
2334 if (dwc->dw_orphaned) {
2335 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2336
2337 end = end > i_size_read(inode) ? end : 0;
2338
2339 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2340 !!end, end);
2341 if (ret < 0)
2342 mlog_errno(ret);
2343 }
2344
2345 di = (struct ocfs2_dinode *)di_bh->b_data;
2346
2347 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2348
2349 /* Attach dealloc with extent tree in case that we may reuse extents
2350 * which are already unlinked from current extent tree due to extent
2351 * rotation and merging.
2352 */
2353 et.et_dealloc = &dealloc;
2354
2355 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2356 &data_ac, &meta_ac);
2357 if (ret) {
2358 mlog_errno(ret);
2359 goto unlock;
2360 }
2361
2362 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2363
2364 handle = ocfs2_start_trans(osb, credits);
2365 if (IS_ERR(handle)) {
2366 ret = PTR_ERR(handle);
2367 mlog_errno(ret);
2368 goto unlock;
2369 }
2370 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2371 OCFS2_JOURNAL_ACCESS_WRITE);
2372 if (ret) {
2373 mlog_errno(ret);
2374 goto commit;
2375 }
2376
2377 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2378 ret = ocfs2_mark_extent_written(inode, &et, handle,
2379 ue->ue_cpos, 1,
2380 ue->ue_phys,
2381 meta_ac, &dealloc);
2382 if (ret < 0) {
2383 mlog_errno(ret);
2384 break;
2385 }
2386 }
2387
2388 if (end > i_size_read(inode)) {
2389 ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2390 if (ret < 0)
2391 mlog_errno(ret);
2392 }
2393 commit:
2394 ocfs2_commit_trans(osb, handle);
2395 unlock:
2396 up_write(&oi->ip_alloc_sem);
2397 ocfs2_inode_unlock(inode, 1);
2398 brelse(di_bh);
2399 out:
2400 if (data_ac)
2401 ocfs2_free_alloc_context(data_ac);
2402 if (meta_ac)
2403 ocfs2_free_alloc_context(meta_ac);
2404 ocfs2_run_deallocs(osb, &dealloc);
2405 if (locked)
2406 inode_unlock(inode);
2407 ocfs2_dio_free_write_ctx(inode, dwc);
2408
2409 return ret;
2410 }
2411
2412 /*
2413 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
2414 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
2415 * to protect io on one node from truncation on another.
2416 */
ocfs2_dio_end_io(struct kiocb * iocb,loff_t offset,ssize_t bytes,void * private)2417 static int ocfs2_dio_end_io(struct kiocb *iocb,
2418 loff_t offset,
2419 ssize_t bytes,
2420 void *private)
2421 {
2422 struct inode *inode = file_inode(iocb->ki_filp);
2423 int level;
2424 int ret = 0;
2425
2426 /* this io's submitter should not have unlocked this before we could */
2427 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2428
2429 if (bytes <= 0)
2430 mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2431 (long long)bytes);
2432 if (private) {
2433 if (bytes > 0)
2434 ret = ocfs2_dio_end_io_write(inode, private, offset,
2435 bytes);
2436 else
2437 ocfs2_dio_free_write_ctx(inode, private);
2438 }
2439
2440 ocfs2_iocb_clear_rw_locked(iocb);
2441
2442 level = ocfs2_iocb_rw_locked_level(iocb);
2443 ocfs2_rw_unlock(inode, level);
2444 return ret;
2445 }
2446
ocfs2_direct_IO(struct kiocb * iocb,struct iov_iter * iter)2447 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2448 {
2449 struct file *file = iocb->ki_filp;
2450 struct inode *inode = file->f_mapping->host;
2451 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2452 get_block_t *get_block;
2453
2454 /*
2455 * Fallback to buffered I/O if we see an inode without
2456 * extents.
2457 */
2458 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2459 return 0;
2460
2461 /* Fallback to buffered I/O if we do not support append dio. */
2462 if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2463 !ocfs2_supports_append_dio(osb))
2464 return 0;
2465
2466 if (iov_iter_rw(iter) == READ)
2467 get_block = ocfs2_lock_get_block;
2468 else
2469 get_block = ocfs2_dio_wr_get_block;
2470
2471 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2472 iter, get_block,
2473 ocfs2_dio_end_io, NULL, 0);
2474 }
2475
2476 const struct address_space_operations ocfs2_aops = {
2477 .readpage = ocfs2_readpage,
2478 .readpages = ocfs2_readpages,
2479 .writepage = ocfs2_writepage,
2480 .write_begin = ocfs2_write_begin,
2481 .write_end = ocfs2_write_end,
2482 .bmap = ocfs2_bmap,
2483 .direct_IO = ocfs2_direct_IO,
2484 .invalidatepage = block_invalidatepage,
2485 .releasepage = ocfs2_releasepage,
2486 .migratepage = buffer_migrate_page,
2487 .is_partially_uptodate = block_is_partially_uptodate,
2488 .error_remove_page = generic_error_remove_page,
2489 };
2490