1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* -*- mode: c; c-basic-offset: 8; -*-
3 * vim: noexpandtab sw=8 ts=8 sts=0:
4 *
5 * file.c
6 *
7 * File open, close, extend, truncate
8 *
9 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 */
11
12 #include <linux/capability.h>
13 #include <linux/fs.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/highmem.h>
17 #include <linux/pagemap.h>
18 #include <linux/uio.h>
19 #include <linux/sched.h>
20 #include <linux/splice.h>
21 #include <linux/mount.h>
22 #include <linux/writeback.h>
23 #include <linux/falloc.h>
24 #include <linux/quotaops.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27
28 #include <cluster/masklog.h>
29
30 #include "ocfs2.h"
31
32 #include "alloc.h"
33 #include "aops.h"
34 #include "dir.h"
35 #include "dlmglue.h"
36 #include "extent_map.h"
37 #include "file.h"
38 #include "sysfile.h"
39 #include "inode.h"
40 #include "ioctl.h"
41 #include "journal.h"
42 #include "locks.h"
43 #include "mmap.h"
44 #include "suballoc.h"
45 #include "super.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "quota.h"
49 #include "refcounttree.h"
50 #include "ocfs2_trace.h"
51
52 #include "buffer_head_io.h"
53
ocfs2_init_file_private(struct inode * inode,struct file * file)54 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
55 {
56 struct ocfs2_file_private *fp;
57
58 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
59 if (!fp)
60 return -ENOMEM;
61
62 fp->fp_file = file;
63 mutex_init(&fp->fp_mutex);
64 ocfs2_file_lock_res_init(&fp->fp_flock, fp);
65 file->private_data = fp;
66
67 return 0;
68 }
69
ocfs2_free_file_private(struct inode * inode,struct file * file)70 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
71 {
72 struct ocfs2_file_private *fp = file->private_data;
73 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
74
75 if (fp) {
76 ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
77 ocfs2_lock_res_free(&fp->fp_flock);
78 kfree(fp);
79 file->private_data = NULL;
80 }
81 }
82
ocfs2_file_open(struct inode * inode,struct file * file)83 static int ocfs2_file_open(struct inode *inode, struct file *file)
84 {
85 int status;
86 int mode = file->f_flags;
87 struct ocfs2_inode_info *oi = OCFS2_I(inode);
88
89 trace_ocfs2_file_open(inode, file, file->f_path.dentry,
90 (unsigned long long)oi->ip_blkno,
91 file->f_path.dentry->d_name.len,
92 file->f_path.dentry->d_name.name, mode);
93
94 if (file->f_mode & FMODE_WRITE) {
95 status = dquot_initialize(inode);
96 if (status)
97 goto leave;
98 }
99
100 spin_lock(&oi->ip_lock);
101
102 /* Check that the inode hasn't been wiped from disk by another
103 * node. If it hasn't then we're safe as long as we hold the
104 * spin lock until our increment of open count. */
105 if (oi->ip_flags & OCFS2_INODE_DELETED) {
106 spin_unlock(&oi->ip_lock);
107
108 status = -ENOENT;
109 goto leave;
110 }
111
112 if (mode & O_DIRECT)
113 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
114
115 oi->ip_open_count++;
116 spin_unlock(&oi->ip_lock);
117
118 status = ocfs2_init_file_private(inode, file);
119 if (status) {
120 /*
121 * We want to set open count back if we're failing the
122 * open.
123 */
124 spin_lock(&oi->ip_lock);
125 oi->ip_open_count--;
126 spin_unlock(&oi->ip_lock);
127 }
128
129 file->f_mode |= FMODE_NOWAIT;
130
131 leave:
132 return status;
133 }
134
ocfs2_file_release(struct inode * inode,struct file * file)135 static int ocfs2_file_release(struct inode *inode, struct file *file)
136 {
137 struct ocfs2_inode_info *oi = OCFS2_I(inode);
138
139 spin_lock(&oi->ip_lock);
140 if (!--oi->ip_open_count)
141 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
142
143 trace_ocfs2_file_release(inode, file, file->f_path.dentry,
144 oi->ip_blkno,
145 file->f_path.dentry->d_name.len,
146 file->f_path.dentry->d_name.name,
147 oi->ip_open_count);
148 spin_unlock(&oi->ip_lock);
149
150 ocfs2_free_file_private(inode, file);
151
152 return 0;
153 }
154
ocfs2_dir_open(struct inode * inode,struct file * file)155 static int ocfs2_dir_open(struct inode *inode, struct file *file)
156 {
157 return ocfs2_init_file_private(inode, file);
158 }
159
ocfs2_dir_release(struct inode * inode,struct file * file)160 static int ocfs2_dir_release(struct inode *inode, struct file *file)
161 {
162 ocfs2_free_file_private(inode, file);
163 return 0;
164 }
165
ocfs2_sync_file(struct file * file,loff_t start,loff_t end,int datasync)166 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
167 int datasync)
168 {
169 int err = 0;
170 struct inode *inode = file->f_mapping->host;
171 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
172 struct ocfs2_inode_info *oi = OCFS2_I(inode);
173 journal_t *journal = osb->journal->j_journal;
174 int ret;
175 tid_t commit_tid;
176 bool needs_barrier = false;
177
178 trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
179 oi->ip_blkno,
180 file->f_path.dentry->d_name.len,
181 file->f_path.dentry->d_name.name,
182 (unsigned long long)datasync);
183
184 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
185 return -EROFS;
186
187 err = file_write_and_wait_range(file, start, end);
188 if (err)
189 return err;
190
191 commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
192 if (journal->j_flags & JBD2_BARRIER &&
193 !jbd2_trans_will_send_data_barrier(journal, commit_tid))
194 needs_barrier = true;
195 err = jbd2_complete_transaction(journal, commit_tid);
196 if (needs_barrier) {
197 ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
198 if (!err)
199 err = ret;
200 }
201
202 if (err)
203 mlog_errno(err);
204
205 return (err < 0) ? -EIO : 0;
206 }
207
ocfs2_should_update_atime(struct inode * inode,struct vfsmount * vfsmnt)208 int ocfs2_should_update_atime(struct inode *inode,
209 struct vfsmount *vfsmnt)
210 {
211 struct timespec64 now;
212 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
213
214 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
215 return 0;
216
217 if ((inode->i_flags & S_NOATIME) ||
218 ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)))
219 return 0;
220
221 /*
222 * We can be called with no vfsmnt structure - NFSD will
223 * sometimes do this.
224 *
225 * Note that our action here is different than touch_atime() -
226 * if we can't tell whether this is a noatime mount, then we
227 * don't know whether to trust the value of s_atime_quantum.
228 */
229 if (vfsmnt == NULL)
230 return 0;
231
232 if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
233 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
234 return 0;
235
236 if (vfsmnt->mnt_flags & MNT_RELATIME) {
237 if ((timespec64_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
238 (timespec64_compare(&inode->i_atime, &inode->i_ctime) <= 0))
239 return 1;
240
241 return 0;
242 }
243
244 now = current_time(inode);
245 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
246 return 0;
247 else
248 return 1;
249 }
250
ocfs2_update_inode_atime(struct inode * inode,struct buffer_head * bh)251 int ocfs2_update_inode_atime(struct inode *inode,
252 struct buffer_head *bh)
253 {
254 int ret;
255 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
256 handle_t *handle;
257 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
258
259 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
260 if (IS_ERR(handle)) {
261 ret = PTR_ERR(handle);
262 mlog_errno(ret);
263 goto out;
264 }
265
266 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
267 OCFS2_JOURNAL_ACCESS_WRITE);
268 if (ret) {
269 mlog_errno(ret);
270 goto out_commit;
271 }
272
273 /*
274 * Don't use ocfs2_mark_inode_dirty() here as we don't always
275 * have i_mutex to guard against concurrent changes to other
276 * inode fields.
277 */
278 inode->i_atime = current_time(inode);
279 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
280 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
281 ocfs2_update_inode_fsync_trans(handle, inode, 0);
282 ocfs2_journal_dirty(handle, bh);
283
284 out_commit:
285 ocfs2_commit_trans(osb, handle);
286 out:
287 return ret;
288 }
289
ocfs2_set_inode_size(handle_t * handle,struct inode * inode,struct buffer_head * fe_bh,u64 new_i_size)290 int ocfs2_set_inode_size(handle_t *handle,
291 struct inode *inode,
292 struct buffer_head *fe_bh,
293 u64 new_i_size)
294 {
295 int status;
296
297 i_size_write(inode, new_i_size);
298 inode->i_blocks = ocfs2_inode_sector_count(inode);
299 inode->i_ctime = inode->i_mtime = current_time(inode);
300
301 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
302 if (status < 0) {
303 mlog_errno(status);
304 goto bail;
305 }
306
307 bail:
308 return status;
309 }
310
ocfs2_simple_size_update(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size)311 int ocfs2_simple_size_update(struct inode *inode,
312 struct buffer_head *di_bh,
313 u64 new_i_size)
314 {
315 int ret;
316 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
317 handle_t *handle = NULL;
318
319 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
320 if (IS_ERR(handle)) {
321 ret = PTR_ERR(handle);
322 mlog_errno(ret);
323 goto out;
324 }
325
326 ret = ocfs2_set_inode_size(handle, inode, di_bh,
327 new_i_size);
328 if (ret < 0)
329 mlog_errno(ret);
330
331 ocfs2_update_inode_fsync_trans(handle, inode, 0);
332 ocfs2_commit_trans(osb, handle);
333 out:
334 return ret;
335 }
336
ocfs2_cow_file_pos(struct inode * inode,struct buffer_head * fe_bh,u64 offset)337 static int ocfs2_cow_file_pos(struct inode *inode,
338 struct buffer_head *fe_bh,
339 u64 offset)
340 {
341 int status;
342 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
343 unsigned int num_clusters = 0;
344 unsigned int ext_flags = 0;
345
346 /*
347 * If the new offset is aligned to the range of the cluster, there is
348 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
349 * CoW either.
350 */
351 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
352 return 0;
353
354 status = ocfs2_get_clusters(inode, cpos, &phys,
355 &num_clusters, &ext_flags);
356 if (status) {
357 mlog_errno(status);
358 goto out;
359 }
360
361 if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
362 goto out;
363
364 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
365
366 out:
367 return status;
368 }
369
ocfs2_orphan_for_truncate(struct ocfs2_super * osb,struct inode * inode,struct buffer_head * fe_bh,u64 new_i_size)370 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
371 struct inode *inode,
372 struct buffer_head *fe_bh,
373 u64 new_i_size)
374 {
375 int status;
376 handle_t *handle;
377 struct ocfs2_dinode *di;
378 u64 cluster_bytes;
379
380 /*
381 * We need to CoW the cluster contains the offset if it is reflinked
382 * since we will call ocfs2_zero_range_for_truncate later which will
383 * write "0" from offset to the end of the cluster.
384 */
385 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
386 if (status) {
387 mlog_errno(status);
388 return status;
389 }
390
391 /* TODO: This needs to actually orphan the inode in this
392 * transaction. */
393
394 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
395 if (IS_ERR(handle)) {
396 status = PTR_ERR(handle);
397 mlog_errno(status);
398 goto out;
399 }
400
401 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
402 OCFS2_JOURNAL_ACCESS_WRITE);
403 if (status < 0) {
404 mlog_errno(status);
405 goto out_commit;
406 }
407
408 /*
409 * Do this before setting i_size.
410 */
411 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
412 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
413 cluster_bytes);
414 if (status) {
415 mlog_errno(status);
416 goto out_commit;
417 }
418
419 i_size_write(inode, new_i_size);
420 inode->i_ctime = inode->i_mtime = current_time(inode);
421
422 di = (struct ocfs2_dinode *) fe_bh->b_data;
423 di->i_size = cpu_to_le64(new_i_size);
424 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
425 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
426 ocfs2_update_inode_fsync_trans(handle, inode, 0);
427
428 ocfs2_journal_dirty(handle, fe_bh);
429
430 out_commit:
431 ocfs2_commit_trans(osb, handle);
432 out:
433 return status;
434 }
435
ocfs2_truncate_file(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size)436 int ocfs2_truncate_file(struct inode *inode,
437 struct buffer_head *di_bh,
438 u64 new_i_size)
439 {
440 int status = 0;
441 struct ocfs2_dinode *fe = NULL;
442 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
443
444 /* We trust di_bh because it comes from ocfs2_inode_lock(), which
445 * already validated it */
446 fe = (struct ocfs2_dinode *) di_bh->b_data;
447
448 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
449 (unsigned long long)le64_to_cpu(fe->i_size),
450 (unsigned long long)new_i_size);
451
452 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
453 "Inode %llu, inode i_size = %lld != di "
454 "i_size = %llu, i_flags = 0x%x\n",
455 (unsigned long long)OCFS2_I(inode)->ip_blkno,
456 i_size_read(inode),
457 (unsigned long long)le64_to_cpu(fe->i_size),
458 le32_to_cpu(fe->i_flags));
459
460 if (new_i_size > le64_to_cpu(fe->i_size)) {
461 trace_ocfs2_truncate_file_error(
462 (unsigned long long)le64_to_cpu(fe->i_size),
463 (unsigned long long)new_i_size);
464 status = -EINVAL;
465 mlog_errno(status);
466 goto bail;
467 }
468
469 down_write(&OCFS2_I(inode)->ip_alloc_sem);
470
471 ocfs2_resv_discard(&osb->osb_la_resmap,
472 &OCFS2_I(inode)->ip_la_data_resv);
473
474 /*
475 * The inode lock forced other nodes to sync and drop their
476 * pages, which (correctly) happens even if we have a truncate
477 * without allocation change - ocfs2 cluster sizes can be much
478 * greater than page size, so we have to truncate them
479 * anyway.
480 */
481 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
482 truncate_inode_pages(inode->i_mapping, new_i_size);
483
484 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
485 status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
486 i_size_read(inode), 1);
487 if (status)
488 mlog_errno(status);
489
490 goto bail_unlock_sem;
491 }
492
493 /* alright, we're going to need to do a full blown alloc size
494 * change. Orphan the inode so that recovery can complete the
495 * truncate if necessary. This does the task of marking
496 * i_size. */
497 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
498 if (status < 0) {
499 mlog_errno(status);
500 goto bail_unlock_sem;
501 }
502
503 status = ocfs2_commit_truncate(osb, inode, di_bh);
504 if (status < 0) {
505 mlog_errno(status);
506 goto bail_unlock_sem;
507 }
508
509 /* TODO: orphan dir cleanup here. */
510 bail_unlock_sem:
511 up_write(&OCFS2_I(inode)->ip_alloc_sem);
512
513 bail:
514 if (!status && OCFS2_I(inode)->ip_clusters == 0)
515 status = ocfs2_try_remove_refcount_tree(inode, di_bh);
516
517 return status;
518 }
519
520 /*
521 * extend file allocation only here.
522 * we'll update all the disk stuff, and oip->alloc_size
523 *
524 * expect stuff to be locked, a transaction started and enough data /
525 * metadata reservations in the contexts.
526 *
527 * Will return -EAGAIN, and a reason if a restart is needed.
528 * If passed in, *reason will always be set, even in error.
529 */
ocfs2_add_inode_data(struct ocfs2_super * osb,struct inode * inode,u32 * logical_offset,u32 clusters_to_add,int mark_unwritten,struct buffer_head * fe_bh,handle_t * handle,struct ocfs2_alloc_context * data_ac,struct ocfs2_alloc_context * meta_ac,enum ocfs2_alloc_restarted * reason_ret)530 int ocfs2_add_inode_data(struct ocfs2_super *osb,
531 struct inode *inode,
532 u32 *logical_offset,
533 u32 clusters_to_add,
534 int mark_unwritten,
535 struct buffer_head *fe_bh,
536 handle_t *handle,
537 struct ocfs2_alloc_context *data_ac,
538 struct ocfs2_alloc_context *meta_ac,
539 enum ocfs2_alloc_restarted *reason_ret)
540 {
541 int ret;
542 struct ocfs2_extent_tree et;
543
544 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
545 ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
546 clusters_to_add, mark_unwritten,
547 data_ac, meta_ac, reason_ret);
548
549 return ret;
550 }
551
ocfs2_extend_allocation(struct inode * inode,u32 logical_start,u32 clusters_to_add,int mark_unwritten)552 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
553 u32 clusters_to_add, int mark_unwritten)
554 {
555 int status = 0;
556 int restart_func = 0;
557 int credits;
558 u32 prev_clusters;
559 struct buffer_head *bh = NULL;
560 struct ocfs2_dinode *fe = NULL;
561 handle_t *handle = NULL;
562 struct ocfs2_alloc_context *data_ac = NULL;
563 struct ocfs2_alloc_context *meta_ac = NULL;
564 enum ocfs2_alloc_restarted why = RESTART_NONE;
565 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
566 struct ocfs2_extent_tree et;
567 int did_quota = 0;
568
569 /*
570 * Unwritten extent only exists for file systems which
571 * support holes.
572 */
573 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
574
575 status = ocfs2_read_inode_block(inode, &bh);
576 if (status < 0) {
577 mlog_errno(status);
578 goto leave;
579 }
580 fe = (struct ocfs2_dinode *) bh->b_data;
581
582 restart_all:
583 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
584
585 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
586 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
587 &data_ac, &meta_ac);
588 if (status) {
589 mlog_errno(status);
590 goto leave;
591 }
592
593 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
594 handle = ocfs2_start_trans(osb, credits);
595 if (IS_ERR(handle)) {
596 status = PTR_ERR(handle);
597 handle = NULL;
598 mlog_errno(status);
599 goto leave;
600 }
601
602 restarted_transaction:
603 trace_ocfs2_extend_allocation(
604 (unsigned long long)OCFS2_I(inode)->ip_blkno,
605 (unsigned long long)i_size_read(inode),
606 le32_to_cpu(fe->i_clusters), clusters_to_add,
607 why, restart_func);
608
609 status = dquot_alloc_space_nodirty(inode,
610 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
611 if (status)
612 goto leave;
613 did_quota = 1;
614
615 /* reserve a write to the file entry early on - that we if we
616 * run out of credits in the allocation path, we can still
617 * update i_size. */
618 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
619 OCFS2_JOURNAL_ACCESS_WRITE);
620 if (status < 0) {
621 mlog_errno(status);
622 goto leave;
623 }
624
625 prev_clusters = OCFS2_I(inode)->ip_clusters;
626
627 status = ocfs2_add_inode_data(osb,
628 inode,
629 &logical_start,
630 clusters_to_add,
631 mark_unwritten,
632 bh,
633 handle,
634 data_ac,
635 meta_ac,
636 &why);
637 if ((status < 0) && (status != -EAGAIN)) {
638 if (status != -ENOSPC)
639 mlog_errno(status);
640 goto leave;
641 }
642 ocfs2_update_inode_fsync_trans(handle, inode, 1);
643 ocfs2_journal_dirty(handle, bh);
644
645 spin_lock(&OCFS2_I(inode)->ip_lock);
646 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
647 spin_unlock(&OCFS2_I(inode)->ip_lock);
648 /* Release unused quota reservation */
649 dquot_free_space(inode,
650 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
651 did_quota = 0;
652
653 if (why != RESTART_NONE && clusters_to_add) {
654 if (why == RESTART_META) {
655 restart_func = 1;
656 status = 0;
657 } else {
658 BUG_ON(why != RESTART_TRANS);
659
660 status = ocfs2_allocate_extend_trans(handle, 1);
661 if (status < 0) {
662 /* handle still has to be committed at
663 * this point. */
664 status = -ENOMEM;
665 mlog_errno(status);
666 goto leave;
667 }
668 goto restarted_transaction;
669 }
670 }
671
672 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
673 le32_to_cpu(fe->i_clusters),
674 (unsigned long long)le64_to_cpu(fe->i_size),
675 OCFS2_I(inode)->ip_clusters,
676 (unsigned long long)i_size_read(inode));
677
678 leave:
679 if (status < 0 && did_quota)
680 dquot_free_space(inode,
681 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
682 if (handle) {
683 ocfs2_commit_trans(osb, handle);
684 handle = NULL;
685 }
686 if (data_ac) {
687 ocfs2_free_alloc_context(data_ac);
688 data_ac = NULL;
689 }
690 if (meta_ac) {
691 ocfs2_free_alloc_context(meta_ac);
692 meta_ac = NULL;
693 }
694 if ((!status) && restart_func) {
695 restart_func = 0;
696 goto restart_all;
697 }
698 brelse(bh);
699 bh = NULL;
700
701 return status;
702 }
703
704 /*
705 * While a write will already be ordering the data, a truncate will not.
706 * Thus, we need to explicitly order the zeroed pages.
707 */
ocfs2_zero_start_ordered_transaction(struct inode * inode,struct buffer_head * di_bh,loff_t start_byte,loff_t length)708 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
709 struct buffer_head *di_bh,
710 loff_t start_byte,
711 loff_t length)
712 {
713 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
714 handle_t *handle = NULL;
715 int ret = 0;
716
717 if (!ocfs2_should_order_data(inode))
718 goto out;
719
720 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
721 if (IS_ERR(handle)) {
722 ret = -ENOMEM;
723 mlog_errno(ret);
724 goto out;
725 }
726
727 ret = ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length);
728 if (ret < 0) {
729 mlog_errno(ret);
730 goto out;
731 }
732
733 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
734 OCFS2_JOURNAL_ACCESS_WRITE);
735 if (ret)
736 mlog_errno(ret);
737 ocfs2_update_inode_fsync_trans(handle, inode, 1);
738
739 out:
740 if (ret) {
741 if (!IS_ERR(handle))
742 ocfs2_commit_trans(osb, handle);
743 handle = ERR_PTR(ret);
744 }
745 return handle;
746 }
747
748 /* Some parts of this taken from generic_cont_expand, which turned out
749 * to be too fragile to do exactly what we need without us having to
750 * worry about recursive locking in ->write_begin() and ->write_end(). */
ocfs2_write_zero_page(struct inode * inode,u64 abs_from,u64 abs_to,struct buffer_head * di_bh)751 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
752 u64 abs_to, struct buffer_head *di_bh)
753 {
754 struct address_space *mapping = inode->i_mapping;
755 struct page *page;
756 unsigned long index = abs_from >> PAGE_SHIFT;
757 handle_t *handle;
758 int ret = 0;
759 unsigned zero_from, zero_to, block_start, block_end;
760 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
761
762 BUG_ON(abs_from >= abs_to);
763 BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT));
764 BUG_ON(abs_from & (inode->i_blkbits - 1));
765
766 handle = ocfs2_zero_start_ordered_transaction(inode, di_bh,
767 abs_from,
768 abs_to - abs_from);
769 if (IS_ERR(handle)) {
770 ret = PTR_ERR(handle);
771 goto out;
772 }
773
774 page = find_or_create_page(mapping, index, GFP_NOFS);
775 if (!page) {
776 ret = -ENOMEM;
777 mlog_errno(ret);
778 goto out_commit_trans;
779 }
780
781 /* Get the offsets within the page that we want to zero */
782 zero_from = abs_from & (PAGE_SIZE - 1);
783 zero_to = abs_to & (PAGE_SIZE - 1);
784 if (!zero_to)
785 zero_to = PAGE_SIZE;
786
787 trace_ocfs2_write_zero_page(
788 (unsigned long long)OCFS2_I(inode)->ip_blkno,
789 (unsigned long long)abs_from,
790 (unsigned long long)abs_to,
791 index, zero_from, zero_to);
792
793 /* We know that zero_from is block aligned */
794 for (block_start = zero_from; block_start < zero_to;
795 block_start = block_end) {
796 block_end = block_start + i_blocksize(inode);
797
798 /*
799 * block_start is block-aligned. Bump it by one to force
800 * __block_write_begin and block_commit_write to zero the
801 * whole block.
802 */
803 ret = __block_write_begin(page, block_start + 1, 0,
804 ocfs2_get_block);
805 if (ret < 0) {
806 mlog_errno(ret);
807 goto out_unlock;
808 }
809
810
811 /* must not update i_size! */
812 ret = block_commit_write(page, block_start + 1,
813 block_start + 1);
814 if (ret < 0)
815 mlog_errno(ret);
816 else
817 ret = 0;
818 }
819
820 /*
821 * fs-writeback will release the dirty pages without page lock
822 * whose offset are over inode size, the release happens at
823 * block_write_full_page().
824 */
825 i_size_write(inode, abs_to);
826 inode->i_blocks = ocfs2_inode_sector_count(inode);
827 di->i_size = cpu_to_le64((u64)i_size_read(inode));
828 inode->i_mtime = inode->i_ctime = current_time(inode);
829 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
830 di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
831 di->i_mtime_nsec = di->i_ctime_nsec;
832 if (handle) {
833 ocfs2_journal_dirty(handle, di_bh);
834 ocfs2_update_inode_fsync_trans(handle, inode, 1);
835 }
836
837 out_unlock:
838 unlock_page(page);
839 put_page(page);
840 out_commit_trans:
841 if (handle)
842 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
843 out:
844 return ret;
845 }
846
847 /*
848 * Find the next range to zero. We do this in terms of bytes because
849 * that's what ocfs2_zero_extend() wants, and it is dealing with the
850 * pagecache. We may return multiple extents.
851 *
852 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
853 * needs to be zeroed. range_start and range_end return the next zeroing
854 * range. A subsequent call should pass the previous range_end as its
855 * zero_start. If range_end is 0, there's nothing to do.
856 *
857 * Unwritten extents are skipped over. Refcounted extents are CoWd.
858 */
ocfs2_zero_extend_get_range(struct inode * inode,struct buffer_head * di_bh,u64 zero_start,u64 zero_end,u64 * range_start,u64 * range_end)859 static int ocfs2_zero_extend_get_range(struct inode *inode,
860 struct buffer_head *di_bh,
861 u64 zero_start, u64 zero_end,
862 u64 *range_start, u64 *range_end)
863 {
864 int rc = 0, needs_cow = 0;
865 u32 p_cpos, zero_clusters = 0;
866 u32 zero_cpos =
867 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
868 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
869 unsigned int num_clusters = 0;
870 unsigned int ext_flags = 0;
871
872 while (zero_cpos < last_cpos) {
873 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
874 &num_clusters, &ext_flags);
875 if (rc) {
876 mlog_errno(rc);
877 goto out;
878 }
879
880 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
881 zero_clusters = num_clusters;
882 if (ext_flags & OCFS2_EXT_REFCOUNTED)
883 needs_cow = 1;
884 break;
885 }
886
887 zero_cpos += num_clusters;
888 }
889 if (!zero_clusters) {
890 *range_end = 0;
891 goto out;
892 }
893
894 while ((zero_cpos + zero_clusters) < last_cpos) {
895 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
896 &p_cpos, &num_clusters,
897 &ext_flags);
898 if (rc) {
899 mlog_errno(rc);
900 goto out;
901 }
902
903 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
904 break;
905 if (ext_flags & OCFS2_EXT_REFCOUNTED)
906 needs_cow = 1;
907 zero_clusters += num_clusters;
908 }
909 if ((zero_cpos + zero_clusters) > last_cpos)
910 zero_clusters = last_cpos - zero_cpos;
911
912 if (needs_cow) {
913 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
914 zero_clusters, UINT_MAX);
915 if (rc) {
916 mlog_errno(rc);
917 goto out;
918 }
919 }
920
921 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
922 *range_end = ocfs2_clusters_to_bytes(inode->i_sb,
923 zero_cpos + zero_clusters);
924
925 out:
926 return rc;
927 }
928
929 /*
930 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller
931 * has made sure that the entire range needs zeroing.
932 */
ocfs2_zero_extend_range(struct inode * inode,u64 range_start,u64 range_end,struct buffer_head * di_bh)933 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
934 u64 range_end, struct buffer_head *di_bh)
935 {
936 int rc = 0;
937 u64 next_pos;
938 u64 zero_pos = range_start;
939
940 trace_ocfs2_zero_extend_range(
941 (unsigned long long)OCFS2_I(inode)->ip_blkno,
942 (unsigned long long)range_start,
943 (unsigned long long)range_end);
944 BUG_ON(range_start >= range_end);
945
946 while (zero_pos < range_end) {
947 next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE;
948 if (next_pos > range_end)
949 next_pos = range_end;
950 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
951 if (rc < 0) {
952 mlog_errno(rc);
953 break;
954 }
955 zero_pos = next_pos;
956
957 /*
958 * Very large extends have the potential to lock up
959 * the cpu for extended periods of time.
960 */
961 cond_resched();
962 }
963
964 return rc;
965 }
966
ocfs2_zero_extend(struct inode * inode,struct buffer_head * di_bh,loff_t zero_to_size)967 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
968 loff_t zero_to_size)
969 {
970 int ret = 0;
971 u64 zero_start, range_start = 0, range_end = 0;
972 struct super_block *sb = inode->i_sb;
973
974 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
975 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
976 (unsigned long long)zero_start,
977 (unsigned long long)i_size_read(inode));
978 while (zero_start < zero_to_size) {
979 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
980 zero_to_size,
981 &range_start,
982 &range_end);
983 if (ret) {
984 mlog_errno(ret);
985 break;
986 }
987 if (!range_end)
988 break;
989 /* Trim the ends */
990 if (range_start < zero_start)
991 range_start = zero_start;
992 if (range_end > zero_to_size)
993 range_end = zero_to_size;
994
995 ret = ocfs2_zero_extend_range(inode, range_start,
996 range_end, di_bh);
997 if (ret) {
998 mlog_errno(ret);
999 break;
1000 }
1001 zero_start = range_end;
1002 }
1003
1004 return ret;
1005 }
1006
ocfs2_extend_no_holes(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size,u64 zero_to)1007 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1008 u64 new_i_size, u64 zero_to)
1009 {
1010 int ret;
1011 u32 clusters_to_add;
1012 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1013
1014 /*
1015 * Only quota files call this without a bh, and they can't be
1016 * refcounted.
1017 */
1018 BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode));
1019 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1020
1021 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1022 if (clusters_to_add < oi->ip_clusters)
1023 clusters_to_add = 0;
1024 else
1025 clusters_to_add -= oi->ip_clusters;
1026
1027 if (clusters_to_add) {
1028 ret = ocfs2_extend_allocation(inode, oi->ip_clusters,
1029 clusters_to_add, 0);
1030 if (ret) {
1031 mlog_errno(ret);
1032 goto out;
1033 }
1034 }
1035
1036 /*
1037 * Call this even if we don't add any clusters to the tree. We
1038 * still need to zero the area between the old i_size and the
1039 * new i_size.
1040 */
1041 ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1042 if (ret < 0)
1043 mlog_errno(ret);
1044
1045 out:
1046 return ret;
1047 }
1048
ocfs2_extend_file(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size)1049 static int ocfs2_extend_file(struct inode *inode,
1050 struct buffer_head *di_bh,
1051 u64 new_i_size)
1052 {
1053 int ret = 0;
1054 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1055
1056 BUG_ON(!di_bh);
1057
1058 /* setattr sometimes calls us like this. */
1059 if (new_i_size == 0)
1060 goto out;
1061
1062 if (i_size_read(inode) == new_i_size)
1063 goto out;
1064 BUG_ON(new_i_size < i_size_read(inode));
1065
1066 /*
1067 * The alloc sem blocks people in read/write from reading our
1068 * allocation until we're done changing it. We depend on
1069 * i_mutex to block other extend/truncate calls while we're
1070 * here. We even have to hold it for sparse files because there
1071 * might be some tail zeroing.
1072 */
1073 down_write(&oi->ip_alloc_sem);
1074
1075 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1076 /*
1077 * We can optimize small extends by keeping the inodes
1078 * inline data.
1079 */
1080 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1081 up_write(&oi->ip_alloc_sem);
1082 goto out_update_size;
1083 }
1084
1085 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1086 if (ret) {
1087 up_write(&oi->ip_alloc_sem);
1088 mlog_errno(ret);
1089 goto out;
1090 }
1091 }
1092
1093 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1094 ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1095 else
1096 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1097 new_i_size);
1098
1099 up_write(&oi->ip_alloc_sem);
1100
1101 if (ret < 0) {
1102 mlog_errno(ret);
1103 goto out;
1104 }
1105
1106 out_update_size:
1107 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1108 if (ret < 0)
1109 mlog_errno(ret);
1110
1111 out:
1112 return ret;
1113 }
1114
ocfs2_setattr(struct dentry * dentry,struct iattr * attr)1115 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1116 {
1117 int status = 0, size_change;
1118 int inode_locked = 0;
1119 struct inode *inode = d_inode(dentry);
1120 struct super_block *sb = inode->i_sb;
1121 struct ocfs2_super *osb = OCFS2_SB(sb);
1122 struct buffer_head *bh = NULL;
1123 handle_t *handle = NULL;
1124 struct dquot *transfer_to[MAXQUOTAS] = { };
1125 int qtype;
1126 int had_lock;
1127 struct ocfs2_lock_holder oh;
1128
1129 trace_ocfs2_setattr(inode, dentry,
1130 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1131 dentry->d_name.len, dentry->d_name.name,
1132 attr->ia_valid, attr->ia_mode,
1133 from_kuid(&init_user_ns, attr->ia_uid),
1134 from_kgid(&init_user_ns, attr->ia_gid));
1135
1136 /* ensuring we don't even attempt to truncate a symlink */
1137 if (S_ISLNK(inode->i_mode))
1138 attr->ia_valid &= ~ATTR_SIZE;
1139
1140 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1141 | ATTR_GID | ATTR_UID | ATTR_MODE)
1142 if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1143 return 0;
1144
1145 status = setattr_prepare(dentry, attr);
1146 if (status)
1147 return status;
1148
1149 if (is_quota_modification(inode, attr)) {
1150 status = dquot_initialize(inode);
1151 if (status)
1152 return status;
1153 }
1154 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1155 if (size_change) {
1156 /*
1157 * Here we should wait dio to finish before inode lock
1158 * to avoid a deadlock between ocfs2_setattr() and
1159 * ocfs2_dio_end_io_write()
1160 */
1161 inode_dio_wait(inode);
1162
1163 status = ocfs2_rw_lock(inode, 1);
1164 if (status < 0) {
1165 mlog_errno(status);
1166 goto bail;
1167 }
1168 }
1169
1170 had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh);
1171 if (had_lock < 0) {
1172 status = had_lock;
1173 goto bail_unlock_rw;
1174 } else if (had_lock) {
1175 /*
1176 * As far as we know, ocfs2_setattr() could only be the first
1177 * VFS entry point in the call chain of recursive cluster
1178 * locking issue.
1179 *
1180 * For instance:
1181 * chmod_common()
1182 * notify_change()
1183 * ocfs2_setattr()
1184 * posix_acl_chmod()
1185 * ocfs2_iop_get_acl()
1186 *
1187 * But, we're not 100% sure if it's always true, because the
1188 * ordering of the VFS entry points in the call chain is out
1189 * of our control. So, we'd better dump the stack here to
1190 * catch the other cases of recursive locking.
1191 */
1192 mlog(ML_ERROR, "Another case of recursive locking:\n");
1193 dump_stack();
1194 }
1195 inode_locked = 1;
1196
1197 if (size_change) {
1198 status = inode_newsize_ok(inode, attr->ia_size);
1199 if (status)
1200 goto bail_unlock;
1201
1202 if (i_size_read(inode) >= attr->ia_size) {
1203 if (ocfs2_should_order_data(inode)) {
1204 status = ocfs2_begin_ordered_truncate(inode,
1205 attr->ia_size);
1206 if (status)
1207 goto bail_unlock;
1208 }
1209 status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1210 } else
1211 status = ocfs2_extend_file(inode, bh, attr->ia_size);
1212 if (status < 0) {
1213 if (status != -ENOSPC)
1214 mlog_errno(status);
1215 status = -ENOSPC;
1216 goto bail_unlock;
1217 }
1218 }
1219
1220 if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1221 (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1222 /*
1223 * Gather pointers to quota structures so that allocation /
1224 * freeing of quota structures happens here and not inside
1225 * dquot_transfer() where we have problems with lock ordering
1226 */
1227 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1228 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1229 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1230 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1231 if (IS_ERR(transfer_to[USRQUOTA])) {
1232 status = PTR_ERR(transfer_to[USRQUOTA]);
1233 transfer_to[USRQUOTA] = NULL;
1234 goto bail_unlock;
1235 }
1236 }
1237 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1238 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1239 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1240 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1241 if (IS_ERR(transfer_to[GRPQUOTA])) {
1242 status = PTR_ERR(transfer_to[GRPQUOTA]);
1243 transfer_to[GRPQUOTA] = NULL;
1244 goto bail_unlock;
1245 }
1246 }
1247 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1248 2 * ocfs2_quota_trans_credits(sb));
1249 if (IS_ERR(handle)) {
1250 status = PTR_ERR(handle);
1251 mlog_errno(status);
1252 goto bail_unlock;
1253 }
1254 status = __dquot_transfer(inode, transfer_to);
1255 if (status < 0)
1256 goto bail_commit;
1257 } else {
1258 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1259 if (IS_ERR(handle)) {
1260 status = PTR_ERR(handle);
1261 mlog_errno(status);
1262 goto bail_unlock;
1263 }
1264 }
1265
1266 setattr_copy(inode, attr);
1267 mark_inode_dirty(inode);
1268
1269 status = ocfs2_mark_inode_dirty(handle, inode, bh);
1270 if (status < 0)
1271 mlog_errno(status);
1272
1273 bail_commit:
1274 ocfs2_commit_trans(osb, handle);
1275 bail_unlock:
1276 if (status && inode_locked) {
1277 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1278 inode_locked = 0;
1279 }
1280 bail_unlock_rw:
1281 if (size_change)
1282 ocfs2_rw_unlock(inode, 1);
1283 bail:
1284
1285 /* Release quota pointers in case we acquired them */
1286 for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1287 dqput(transfer_to[qtype]);
1288
1289 if (!status && attr->ia_valid & ATTR_MODE) {
1290 status = ocfs2_acl_chmod(inode, bh);
1291 if (status < 0)
1292 mlog_errno(status);
1293 }
1294 if (inode_locked)
1295 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1296
1297 brelse(bh);
1298 return status;
1299 }
1300
ocfs2_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int flags)1301 int ocfs2_getattr(const struct path *path, struct kstat *stat,
1302 u32 request_mask, unsigned int flags)
1303 {
1304 struct inode *inode = d_inode(path->dentry);
1305 struct super_block *sb = path->dentry->d_sb;
1306 struct ocfs2_super *osb = sb->s_fs_info;
1307 int err;
1308
1309 err = ocfs2_inode_revalidate(path->dentry);
1310 if (err) {
1311 if (err != -ENOENT)
1312 mlog_errno(err);
1313 goto bail;
1314 }
1315
1316 generic_fillattr(inode, stat);
1317 /*
1318 * If there is inline data in the inode, the inode will normally not
1319 * have data blocks allocated (it may have an external xattr block).
1320 * Report at least one sector for such files, so tools like tar, rsync,
1321 * others don't incorrectly think the file is completely sparse.
1322 */
1323 if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1324 stat->blocks += (stat->size + 511)>>9;
1325
1326 /* We set the blksize from the cluster size for performance */
1327 stat->blksize = osb->s_clustersize;
1328
1329 bail:
1330 return err;
1331 }
1332
ocfs2_permission(struct inode * inode,int mask)1333 int ocfs2_permission(struct inode *inode, int mask)
1334 {
1335 int ret, had_lock;
1336 struct ocfs2_lock_holder oh;
1337
1338 if (mask & MAY_NOT_BLOCK)
1339 return -ECHILD;
1340
1341 had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh);
1342 if (had_lock < 0) {
1343 ret = had_lock;
1344 goto out;
1345 } else if (had_lock) {
1346 /* See comments in ocfs2_setattr() for details.
1347 * The call chain of this case could be:
1348 * do_sys_open()
1349 * may_open()
1350 * inode_permission()
1351 * ocfs2_permission()
1352 * ocfs2_iop_get_acl()
1353 */
1354 mlog(ML_ERROR, "Another case of recursive locking:\n");
1355 dump_stack();
1356 }
1357
1358 ret = generic_permission(inode, mask);
1359
1360 ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock);
1361 out:
1362 return ret;
1363 }
1364
__ocfs2_write_remove_suid(struct inode * inode,struct buffer_head * bh)1365 static int __ocfs2_write_remove_suid(struct inode *inode,
1366 struct buffer_head *bh)
1367 {
1368 int ret;
1369 handle_t *handle;
1370 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1371 struct ocfs2_dinode *di;
1372
1373 trace_ocfs2_write_remove_suid(
1374 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1375 inode->i_mode);
1376
1377 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1378 if (IS_ERR(handle)) {
1379 ret = PTR_ERR(handle);
1380 mlog_errno(ret);
1381 goto out;
1382 }
1383
1384 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1385 OCFS2_JOURNAL_ACCESS_WRITE);
1386 if (ret < 0) {
1387 mlog_errno(ret);
1388 goto out_trans;
1389 }
1390
1391 inode->i_mode &= ~S_ISUID;
1392 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1393 inode->i_mode &= ~S_ISGID;
1394
1395 di = (struct ocfs2_dinode *) bh->b_data;
1396 di->i_mode = cpu_to_le16(inode->i_mode);
1397 ocfs2_update_inode_fsync_trans(handle, inode, 0);
1398
1399 ocfs2_journal_dirty(handle, bh);
1400
1401 out_trans:
1402 ocfs2_commit_trans(osb, handle);
1403 out:
1404 return ret;
1405 }
1406
ocfs2_write_remove_suid(struct inode * inode)1407 static int ocfs2_write_remove_suid(struct inode *inode)
1408 {
1409 int ret;
1410 struct buffer_head *bh = NULL;
1411
1412 ret = ocfs2_read_inode_block(inode, &bh);
1413 if (ret < 0) {
1414 mlog_errno(ret);
1415 goto out;
1416 }
1417
1418 ret = __ocfs2_write_remove_suid(inode, bh);
1419 out:
1420 brelse(bh);
1421 return ret;
1422 }
1423
1424 /*
1425 * Allocate enough extents to cover the region starting at byte offset
1426 * start for len bytes. Existing extents are skipped, any extents
1427 * added are marked as "unwritten".
1428 */
ocfs2_allocate_unwritten_extents(struct inode * inode,u64 start,u64 len)1429 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1430 u64 start, u64 len)
1431 {
1432 int ret;
1433 u32 cpos, phys_cpos, clusters, alloc_size;
1434 u64 end = start + len;
1435 struct buffer_head *di_bh = NULL;
1436
1437 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1438 ret = ocfs2_read_inode_block(inode, &di_bh);
1439 if (ret) {
1440 mlog_errno(ret);
1441 goto out;
1442 }
1443
1444 /*
1445 * Nothing to do if the requested reservation range
1446 * fits within the inode.
1447 */
1448 if (ocfs2_size_fits_inline_data(di_bh, end))
1449 goto out;
1450
1451 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1452 if (ret) {
1453 mlog_errno(ret);
1454 goto out;
1455 }
1456 }
1457
1458 /*
1459 * We consider both start and len to be inclusive.
1460 */
1461 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1462 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1463 clusters -= cpos;
1464
1465 while (clusters) {
1466 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1467 &alloc_size, NULL);
1468 if (ret) {
1469 mlog_errno(ret);
1470 goto out;
1471 }
1472
1473 /*
1474 * Hole or existing extent len can be arbitrary, so
1475 * cap it to our own allocation request.
1476 */
1477 if (alloc_size > clusters)
1478 alloc_size = clusters;
1479
1480 if (phys_cpos) {
1481 /*
1482 * We already have an allocation at this
1483 * region so we can safely skip it.
1484 */
1485 goto next;
1486 }
1487
1488 ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1489 if (ret) {
1490 if (ret != -ENOSPC)
1491 mlog_errno(ret);
1492 goto out;
1493 }
1494
1495 next:
1496 cpos += alloc_size;
1497 clusters -= alloc_size;
1498 }
1499
1500 ret = 0;
1501 out:
1502
1503 brelse(di_bh);
1504 return ret;
1505 }
1506
1507 /*
1508 * Truncate a byte range, avoiding pages within partial clusters. This
1509 * preserves those pages for the zeroing code to write to.
1510 */
ocfs2_truncate_cluster_pages(struct inode * inode,u64 byte_start,u64 byte_len)1511 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1512 u64 byte_len)
1513 {
1514 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1515 loff_t start, end;
1516 struct address_space *mapping = inode->i_mapping;
1517
1518 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1519 end = byte_start + byte_len;
1520 end = end & ~(osb->s_clustersize - 1);
1521
1522 if (start < end) {
1523 unmap_mapping_range(mapping, start, end - start, 0);
1524 truncate_inode_pages_range(mapping, start, end - 1);
1525 }
1526 }
1527
ocfs2_zero_partial_clusters(struct inode * inode,u64 start,u64 len)1528 static int ocfs2_zero_partial_clusters(struct inode *inode,
1529 u64 start, u64 len)
1530 {
1531 int ret = 0;
1532 u64 tmpend = 0;
1533 u64 end = start + len;
1534 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1535 unsigned int csize = osb->s_clustersize;
1536 handle_t *handle;
1537
1538 /*
1539 * The "start" and "end" values are NOT necessarily part of
1540 * the range whose allocation is being deleted. Rather, this
1541 * is what the user passed in with the request. We must zero
1542 * partial clusters here. There's no need to worry about
1543 * physical allocation - the zeroing code knows to skip holes.
1544 */
1545 trace_ocfs2_zero_partial_clusters(
1546 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1547 (unsigned long long)start, (unsigned long long)end);
1548
1549 /*
1550 * If both edges are on a cluster boundary then there's no
1551 * zeroing required as the region is part of the allocation to
1552 * be truncated.
1553 */
1554 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1555 goto out;
1556
1557 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1558 if (IS_ERR(handle)) {
1559 ret = PTR_ERR(handle);
1560 mlog_errno(ret);
1561 goto out;
1562 }
1563
1564 /*
1565 * If start is on a cluster boundary and end is somewhere in another
1566 * cluster, we have not COWed the cluster starting at start, unless
1567 * end is also within the same cluster. So, in this case, we skip this
1568 * first call to ocfs2_zero_range_for_truncate() truncate and move on
1569 * to the next one.
1570 */
1571 if ((start & (csize - 1)) != 0) {
1572 /*
1573 * We want to get the byte offset of the end of the 1st
1574 * cluster.
1575 */
1576 tmpend = (u64)osb->s_clustersize +
1577 (start & ~(osb->s_clustersize - 1));
1578 if (tmpend > end)
1579 tmpend = end;
1580
1581 trace_ocfs2_zero_partial_clusters_range1(
1582 (unsigned long long)start,
1583 (unsigned long long)tmpend);
1584
1585 ret = ocfs2_zero_range_for_truncate(inode, handle, start,
1586 tmpend);
1587 if (ret)
1588 mlog_errno(ret);
1589 }
1590
1591 if (tmpend < end) {
1592 /*
1593 * This may make start and end equal, but the zeroing
1594 * code will skip any work in that case so there's no
1595 * need to catch it up here.
1596 */
1597 start = end & ~(osb->s_clustersize - 1);
1598
1599 trace_ocfs2_zero_partial_clusters_range2(
1600 (unsigned long long)start, (unsigned long long)end);
1601
1602 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1603 if (ret)
1604 mlog_errno(ret);
1605 }
1606 ocfs2_update_inode_fsync_trans(handle, inode, 1);
1607
1608 ocfs2_commit_trans(osb, handle);
1609 out:
1610 return ret;
1611 }
1612
ocfs2_find_rec(struct ocfs2_extent_list * el,u32 pos)1613 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1614 {
1615 int i;
1616 struct ocfs2_extent_rec *rec = NULL;
1617
1618 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1619
1620 rec = &el->l_recs[i];
1621
1622 if (le32_to_cpu(rec->e_cpos) < pos)
1623 break;
1624 }
1625
1626 return i;
1627 }
1628
1629 /*
1630 * Helper to calculate the punching pos and length in one run, we handle the
1631 * following three cases in order:
1632 *
1633 * - remove the entire record
1634 * - remove a partial record
1635 * - no record needs to be removed (hole-punching completed)
1636 */
ocfs2_calc_trunc_pos(struct inode * inode,struct ocfs2_extent_list * el,struct ocfs2_extent_rec * rec,u32 trunc_start,u32 * trunc_cpos,u32 * trunc_len,u32 * trunc_end,u64 * blkno,int * done)1637 static void ocfs2_calc_trunc_pos(struct inode *inode,
1638 struct ocfs2_extent_list *el,
1639 struct ocfs2_extent_rec *rec,
1640 u32 trunc_start, u32 *trunc_cpos,
1641 u32 *trunc_len, u32 *trunc_end,
1642 u64 *blkno, int *done)
1643 {
1644 int ret = 0;
1645 u32 coff, range;
1646
1647 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1648
1649 if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1650 /*
1651 * remove an entire extent record.
1652 */
1653 *trunc_cpos = le32_to_cpu(rec->e_cpos);
1654 /*
1655 * Skip holes if any.
1656 */
1657 if (range < *trunc_end)
1658 *trunc_end = range;
1659 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1660 *blkno = le64_to_cpu(rec->e_blkno);
1661 *trunc_end = le32_to_cpu(rec->e_cpos);
1662 } else if (range > trunc_start) {
1663 /*
1664 * remove a partial extent record, which means we're
1665 * removing the last extent record.
1666 */
1667 *trunc_cpos = trunc_start;
1668 /*
1669 * skip hole if any.
1670 */
1671 if (range < *trunc_end)
1672 *trunc_end = range;
1673 *trunc_len = *trunc_end - trunc_start;
1674 coff = trunc_start - le32_to_cpu(rec->e_cpos);
1675 *blkno = le64_to_cpu(rec->e_blkno) +
1676 ocfs2_clusters_to_blocks(inode->i_sb, coff);
1677 *trunc_end = trunc_start;
1678 } else {
1679 /*
1680 * It may have two following possibilities:
1681 *
1682 * - last record has been removed
1683 * - trunc_start was within a hole
1684 *
1685 * both two cases mean the completion of hole punching.
1686 */
1687 ret = 1;
1688 }
1689
1690 *done = ret;
1691 }
1692
ocfs2_remove_inode_range(struct inode * inode,struct buffer_head * di_bh,u64 byte_start,u64 byte_len)1693 int ocfs2_remove_inode_range(struct inode *inode,
1694 struct buffer_head *di_bh, u64 byte_start,
1695 u64 byte_len)
1696 {
1697 int ret = 0, flags = 0, done = 0, i;
1698 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1699 u32 cluster_in_el;
1700 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1701 struct ocfs2_cached_dealloc_ctxt dealloc;
1702 struct address_space *mapping = inode->i_mapping;
1703 struct ocfs2_extent_tree et;
1704 struct ocfs2_path *path = NULL;
1705 struct ocfs2_extent_list *el = NULL;
1706 struct ocfs2_extent_rec *rec = NULL;
1707 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1708 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1709
1710 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1711 ocfs2_init_dealloc_ctxt(&dealloc);
1712
1713 trace_ocfs2_remove_inode_range(
1714 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1715 (unsigned long long)byte_start,
1716 (unsigned long long)byte_len);
1717
1718 if (byte_len == 0)
1719 return 0;
1720
1721 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1722 ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1723 byte_start + byte_len, 0);
1724 if (ret) {
1725 mlog_errno(ret);
1726 goto out;
1727 }
1728 /*
1729 * There's no need to get fancy with the page cache
1730 * truncate of an inline-data inode. We're talking
1731 * about less than a page here, which will be cached
1732 * in the dinode buffer anyway.
1733 */
1734 unmap_mapping_range(mapping, 0, 0, 0);
1735 truncate_inode_pages(mapping, 0);
1736 goto out;
1737 }
1738
1739 /*
1740 * For reflinks, we may need to CoW 2 clusters which might be
1741 * partially zero'd later, if hole's start and end offset were
1742 * within one cluster(means is not exactly aligned to clustersize).
1743 */
1744
1745 if (ocfs2_is_refcount_inode(inode)) {
1746 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1747 if (ret) {
1748 mlog_errno(ret);
1749 goto out;
1750 }
1751
1752 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1753 if (ret) {
1754 mlog_errno(ret);
1755 goto out;
1756 }
1757 }
1758
1759 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1760 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1761 cluster_in_el = trunc_end;
1762
1763 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1764 if (ret) {
1765 mlog_errno(ret);
1766 goto out;
1767 }
1768
1769 path = ocfs2_new_path_from_et(&et);
1770 if (!path) {
1771 ret = -ENOMEM;
1772 mlog_errno(ret);
1773 goto out;
1774 }
1775
1776 while (trunc_end > trunc_start) {
1777
1778 ret = ocfs2_find_path(INODE_CACHE(inode), path,
1779 cluster_in_el);
1780 if (ret) {
1781 mlog_errno(ret);
1782 goto out;
1783 }
1784
1785 el = path_leaf_el(path);
1786
1787 i = ocfs2_find_rec(el, trunc_end);
1788 /*
1789 * Need to go to previous extent block.
1790 */
1791 if (i < 0) {
1792 if (path->p_tree_depth == 0)
1793 break;
1794
1795 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1796 path,
1797 &cluster_in_el);
1798 if (ret) {
1799 mlog_errno(ret);
1800 goto out;
1801 }
1802
1803 /*
1804 * We've reached the leftmost extent block,
1805 * it's safe to leave.
1806 */
1807 if (cluster_in_el == 0)
1808 break;
1809
1810 /*
1811 * The 'pos' searched for previous extent block is
1812 * always one cluster less than actual trunc_end.
1813 */
1814 trunc_end = cluster_in_el + 1;
1815
1816 ocfs2_reinit_path(path, 1);
1817
1818 continue;
1819
1820 } else
1821 rec = &el->l_recs[i];
1822
1823 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1824 &trunc_len, &trunc_end, &blkno, &done);
1825 if (done)
1826 break;
1827
1828 flags = rec->e_flags;
1829 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1830
1831 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1832 phys_cpos, trunc_len, flags,
1833 &dealloc, refcount_loc, false);
1834 if (ret < 0) {
1835 mlog_errno(ret);
1836 goto out;
1837 }
1838
1839 cluster_in_el = trunc_end;
1840
1841 ocfs2_reinit_path(path, 1);
1842 }
1843
1844 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1845
1846 out:
1847 ocfs2_free_path(path);
1848 ocfs2_schedule_truncate_log_flush(osb, 1);
1849 ocfs2_run_deallocs(osb, &dealloc);
1850
1851 return ret;
1852 }
1853
1854 /*
1855 * Parts of this function taken from xfs_change_file_space()
1856 */
__ocfs2_change_file_space(struct file * file,struct inode * inode,loff_t f_pos,unsigned int cmd,struct ocfs2_space_resv * sr,int change_size)1857 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1858 loff_t f_pos, unsigned int cmd,
1859 struct ocfs2_space_resv *sr,
1860 int change_size)
1861 {
1862 int ret;
1863 s64 llen;
1864 loff_t size;
1865 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1866 struct buffer_head *di_bh = NULL;
1867 handle_t *handle;
1868 unsigned long long max_off = inode->i_sb->s_maxbytes;
1869
1870 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1871 return -EROFS;
1872
1873 inode_lock(inode);
1874
1875 /*
1876 * This prevents concurrent writes on other nodes
1877 */
1878 ret = ocfs2_rw_lock(inode, 1);
1879 if (ret) {
1880 mlog_errno(ret);
1881 goto out;
1882 }
1883
1884 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1885 if (ret) {
1886 mlog_errno(ret);
1887 goto out_rw_unlock;
1888 }
1889
1890 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1891 ret = -EPERM;
1892 goto out_inode_unlock;
1893 }
1894
1895 switch (sr->l_whence) {
1896 case 0: /*SEEK_SET*/
1897 break;
1898 case 1: /*SEEK_CUR*/
1899 sr->l_start += f_pos;
1900 break;
1901 case 2: /*SEEK_END*/
1902 sr->l_start += i_size_read(inode);
1903 break;
1904 default:
1905 ret = -EINVAL;
1906 goto out_inode_unlock;
1907 }
1908 sr->l_whence = 0;
1909
1910 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1911
1912 if (sr->l_start < 0
1913 || sr->l_start > max_off
1914 || (sr->l_start + llen) < 0
1915 || (sr->l_start + llen) > max_off) {
1916 ret = -EINVAL;
1917 goto out_inode_unlock;
1918 }
1919 size = sr->l_start + sr->l_len;
1920
1921 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1922 cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1923 if (sr->l_len <= 0) {
1924 ret = -EINVAL;
1925 goto out_inode_unlock;
1926 }
1927 }
1928
1929 if (file && should_remove_suid(file->f_path.dentry)) {
1930 ret = __ocfs2_write_remove_suid(inode, di_bh);
1931 if (ret) {
1932 mlog_errno(ret);
1933 goto out_inode_unlock;
1934 }
1935 }
1936
1937 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1938 switch (cmd) {
1939 case OCFS2_IOC_RESVSP:
1940 case OCFS2_IOC_RESVSP64:
1941 /*
1942 * This takes unsigned offsets, but the signed ones we
1943 * pass have been checked against overflow above.
1944 */
1945 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1946 sr->l_len);
1947 break;
1948 case OCFS2_IOC_UNRESVSP:
1949 case OCFS2_IOC_UNRESVSP64:
1950 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1951 sr->l_len);
1952 break;
1953 default:
1954 ret = -EINVAL;
1955 }
1956 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1957 if (ret) {
1958 mlog_errno(ret);
1959 goto out_inode_unlock;
1960 }
1961
1962 /*
1963 * We update c/mtime for these changes
1964 */
1965 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1966 if (IS_ERR(handle)) {
1967 ret = PTR_ERR(handle);
1968 mlog_errno(ret);
1969 goto out_inode_unlock;
1970 }
1971
1972 if (change_size && i_size_read(inode) < size)
1973 i_size_write(inode, size);
1974
1975 inode->i_ctime = inode->i_mtime = current_time(inode);
1976 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1977 if (ret < 0)
1978 mlog_errno(ret);
1979
1980 if (file && (file->f_flags & O_SYNC))
1981 handle->h_sync = 1;
1982
1983 ocfs2_commit_trans(osb, handle);
1984
1985 out_inode_unlock:
1986 brelse(di_bh);
1987 ocfs2_inode_unlock(inode, 1);
1988 out_rw_unlock:
1989 ocfs2_rw_unlock(inode, 1);
1990
1991 out:
1992 inode_unlock(inode);
1993 return ret;
1994 }
1995
ocfs2_change_file_space(struct file * file,unsigned int cmd,struct ocfs2_space_resv * sr)1996 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
1997 struct ocfs2_space_resv *sr)
1998 {
1999 struct inode *inode = file_inode(file);
2000 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2001 int ret;
2002
2003 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
2004 !ocfs2_writes_unwritten_extents(osb))
2005 return -ENOTTY;
2006 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
2007 !ocfs2_sparse_alloc(osb))
2008 return -ENOTTY;
2009
2010 if (!S_ISREG(inode->i_mode))
2011 return -EINVAL;
2012
2013 if (!(file->f_mode & FMODE_WRITE))
2014 return -EBADF;
2015
2016 ret = mnt_want_write_file(file);
2017 if (ret)
2018 return ret;
2019 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
2020 mnt_drop_write_file(file);
2021 return ret;
2022 }
2023
ocfs2_fallocate(struct file * file,int mode,loff_t offset,loff_t len)2024 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
2025 loff_t len)
2026 {
2027 struct inode *inode = file_inode(file);
2028 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2029 struct ocfs2_space_resv sr;
2030 int change_size = 1;
2031 int cmd = OCFS2_IOC_RESVSP64;
2032
2033 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2034 return -EOPNOTSUPP;
2035 if (!ocfs2_writes_unwritten_extents(osb))
2036 return -EOPNOTSUPP;
2037
2038 if (mode & FALLOC_FL_KEEP_SIZE)
2039 change_size = 0;
2040
2041 if (mode & FALLOC_FL_PUNCH_HOLE)
2042 cmd = OCFS2_IOC_UNRESVSP64;
2043
2044 sr.l_whence = 0;
2045 sr.l_start = (s64)offset;
2046 sr.l_len = (s64)len;
2047
2048 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2049 change_size);
2050 }
2051
ocfs2_check_range_for_refcount(struct inode * inode,loff_t pos,size_t count)2052 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2053 size_t count)
2054 {
2055 int ret = 0;
2056 unsigned int extent_flags;
2057 u32 cpos, clusters, extent_len, phys_cpos;
2058 struct super_block *sb = inode->i_sb;
2059
2060 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2061 !ocfs2_is_refcount_inode(inode) ||
2062 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2063 return 0;
2064
2065 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2066 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2067
2068 while (clusters) {
2069 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2070 &extent_flags);
2071 if (ret < 0) {
2072 mlog_errno(ret);
2073 goto out;
2074 }
2075
2076 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2077 ret = 1;
2078 break;
2079 }
2080
2081 if (extent_len > clusters)
2082 extent_len = clusters;
2083
2084 clusters -= extent_len;
2085 cpos += extent_len;
2086 }
2087 out:
2088 return ret;
2089 }
2090
ocfs2_is_io_unaligned(struct inode * inode,size_t count,loff_t pos)2091 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2092 {
2093 int blockmask = inode->i_sb->s_blocksize - 1;
2094 loff_t final_size = pos + count;
2095
2096 if ((pos & blockmask) || (final_size & blockmask))
2097 return 1;
2098 return 0;
2099 }
2100
ocfs2_inode_lock_for_extent_tree(struct inode * inode,struct buffer_head ** di_bh,int meta_level,int overwrite_io,int write_sem,int wait)2101 static int ocfs2_inode_lock_for_extent_tree(struct inode *inode,
2102 struct buffer_head **di_bh,
2103 int meta_level,
2104 int overwrite_io,
2105 int write_sem,
2106 int wait)
2107 {
2108 int ret = 0;
2109
2110 if (wait)
2111 ret = ocfs2_inode_lock(inode, NULL, meta_level);
2112 else
2113 ret = ocfs2_try_inode_lock(inode,
2114 overwrite_io ? NULL : di_bh, meta_level);
2115 if (ret < 0)
2116 goto out;
2117
2118 if (wait) {
2119 if (write_sem)
2120 down_write(&OCFS2_I(inode)->ip_alloc_sem);
2121 else
2122 down_read(&OCFS2_I(inode)->ip_alloc_sem);
2123 } else {
2124 if (write_sem)
2125 ret = down_write_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2126 else
2127 ret = down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2128
2129 if (!ret) {
2130 ret = -EAGAIN;
2131 goto out_unlock;
2132 }
2133 }
2134
2135 return ret;
2136
2137 out_unlock:
2138 brelse(*di_bh);
2139 ocfs2_inode_unlock(inode, meta_level);
2140 out:
2141 return ret;
2142 }
2143
ocfs2_inode_unlock_for_extent_tree(struct inode * inode,struct buffer_head ** di_bh,int meta_level,int write_sem)2144 static void ocfs2_inode_unlock_for_extent_tree(struct inode *inode,
2145 struct buffer_head **di_bh,
2146 int meta_level,
2147 int write_sem)
2148 {
2149 if (write_sem)
2150 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2151 else
2152 up_read(&OCFS2_I(inode)->ip_alloc_sem);
2153
2154 brelse(*di_bh);
2155 *di_bh = NULL;
2156
2157 if (meta_level >= 0)
2158 ocfs2_inode_unlock(inode, meta_level);
2159 }
2160
ocfs2_prepare_inode_for_write(struct file * file,loff_t pos,size_t count,int wait)2161 static int ocfs2_prepare_inode_for_write(struct file *file,
2162 loff_t pos, size_t count, int wait)
2163 {
2164 int ret = 0, meta_level = 0, overwrite_io = 0;
2165 int write_sem = 0;
2166 struct dentry *dentry = file->f_path.dentry;
2167 struct inode *inode = d_inode(dentry);
2168 struct buffer_head *di_bh = NULL;
2169 u32 cpos;
2170 u32 clusters;
2171
2172 /*
2173 * We start with a read level meta lock and only jump to an ex
2174 * if we need to make modifications here.
2175 */
2176 for(;;) {
2177 ret = ocfs2_inode_lock_for_extent_tree(inode,
2178 &di_bh,
2179 meta_level,
2180 overwrite_io,
2181 write_sem,
2182 wait);
2183 if (ret < 0) {
2184 if (ret != -EAGAIN)
2185 mlog_errno(ret);
2186 goto out;
2187 }
2188
2189 /*
2190 * Check if IO will overwrite allocated blocks in case
2191 * IOCB_NOWAIT flag is set.
2192 */
2193 if (!wait && !overwrite_io) {
2194 overwrite_io = 1;
2195
2196 ret = ocfs2_overwrite_io(inode, di_bh, pos, count);
2197 if (ret < 0) {
2198 if (ret != -EAGAIN)
2199 mlog_errno(ret);
2200 goto out_unlock;
2201 }
2202 }
2203
2204 /* Clear suid / sgid if necessary. We do this here
2205 * instead of later in the write path because
2206 * remove_suid() calls ->setattr without any hint that
2207 * we may have already done our cluster locking. Since
2208 * ocfs2_setattr() *must* take cluster locks to
2209 * proceed, this will lead us to recursively lock the
2210 * inode. There's also the dinode i_size state which
2211 * can be lost via setattr during extending writes (we
2212 * set inode->i_size at the end of a write. */
2213 if (should_remove_suid(dentry)) {
2214 if (meta_level == 0) {
2215 ocfs2_inode_unlock_for_extent_tree(inode,
2216 &di_bh,
2217 meta_level,
2218 write_sem);
2219 meta_level = 1;
2220 continue;
2221 }
2222
2223 ret = ocfs2_write_remove_suid(inode);
2224 if (ret < 0) {
2225 mlog_errno(ret);
2226 goto out_unlock;
2227 }
2228 }
2229
2230 ret = ocfs2_check_range_for_refcount(inode, pos, count);
2231 if (ret == 1) {
2232 ocfs2_inode_unlock_for_extent_tree(inode,
2233 &di_bh,
2234 meta_level,
2235 write_sem);
2236 ret = ocfs2_inode_lock_for_extent_tree(inode,
2237 &di_bh,
2238 meta_level,
2239 overwrite_io,
2240 1,
2241 wait);
2242 write_sem = 1;
2243 if (ret < 0) {
2244 if (ret != -EAGAIN)
2245 mlog_errno(ret);
2246 goto out;
2247 }
2248
2249 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2250 clusters =
2251 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2252 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2253 }
2254
2255 if (ret < 0) {
2256 if (ret != -EAGAIN)
2257 mlog_errno(ret);
2258 goto out_unlock;
2259 }
2260
2261 break;
2262 }
2263
2264 out_unlock:
2265 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2266 pos, count, wait);
2267
2268 ocfs2_inode_unlock_for_extent_tree(inode,
2269 &di_bh,
2270 meta_level,
2271 write_sem);
2272
2273 out:
2274 return ret;
2275 }
2276
ocfs2_file_write_iter(struct kiocb * iocb,struct iov_iter * from)2277 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2278 struct iov_iter *from)
2279 {
2280 int rw_level;
2281 ssize_t written = 0;
2282 ssize_t ret;
2283 size_t count = iov_iter_count(from);
2284 struct file *file = iocb->ki_filp;
2285 struct inode *inode = file_inode(file);
2286 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2287 int full_coherency = !(osb->s_mount_opt &
2288 OCFS2_MOUNT_COHERENCY_BUFFERED);
2289 void *saved_ki_complete = NULL;
2290 int append_write = ((iocb->ki_pos + count) >=
2291 i_size_read(inode) ? 1 : 0);
2292 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2293 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2294
2295 trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry,
2296 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2297 file->f_path.dentry->d_name.len,
2298 file->f_path.dentry->d_name.name,
2299 (unsigned int)from->nr_segs); /* GRRRRR */
2300
2301 if (!direct_io && nowait)
2302 return -EOPNOTSUPP;
2303
2304 if (count == 0)
2305 return 0;
2306
2307 if (nowait) {
2308 if (!inode_trylock(inode))
2309 return -EAGAIN;
2310 } else
2311 inode_lock(inode);
2312
2313 /*
2314 * Concurrent O_DIRECT writes are allowed with
2315 * mount_option "coherency=buffered".
2316 * For append write, we must take rw EX.
2317 */
2318 rw_level = (!direct_io || full_coherency || append_write);
2319
2320 if (nowait)
2321 ret = ocfs2_try_rw_lock(inode, rw_level);
2322 else
2323 ret = ocfs2_rw_lock(inode, rw_level);
2324 if (ret < 0) {
2325 if (ret != -EAGAIN)
2326 mlog_errno(ret);
2327 goto out_mutex;
2328 }
2329
2330 /*
2331 * O_DIRECT writes with "coherency=full" need to take EX cluster
2332 * inode_lock to guarantee coherency.
2333 */
2334 if (direct_io && full_coherency) {
2335 /*
2336 * We need to take and drop the inode lock to force
2337 * other nodes to drop their caches. Buffered I/O
2338 * already does this in write_begin().
2339 */
2340 if (nowait)
2341 ret = ocfs2_try_inode_lock(inode, NULL, 1);
2342 else
2343 ret = ocfs2_inode_lock(inode, NULL, 1);
2344 if (ret < 0) {
2345 if (ret != -EAGAIN)
2346 mlog_errno(ret);
2347 goto out;
2348 }
2349
2350 ocfs2_inode_unlock(inode, 1);
2351 }
2352
2353 ret = generic_write_checks(iocb, from);
2354 if (ret <= 0) {
2355 if (ret)
2356 mlog_errno(ret);
2357 goto out;
2358 }
2359 count = ret;
2360
2361 ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait);
2362 if (ret < 0) {
2363 if (ret != -EAGAIN)
2364 mlog_errno(ret);
2365 goto out;
2366 }
2367
2368 if (direct_io && !is_sync_kiocb(iocb) &&
2369 ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) {
2370 /*
2371 * Make it a sync io if it's an unaligned aio.
2372 */
2373 saved_ki_complete = xchg(&iocb->ki_complete, NULL);
2374 }
2375
2376 /* communicate with ocfs2_dio_end_io */
2377 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2378
2379 written = __generic_file_write_iter(iocb, from);
2380 /* buffered aio wouldn't have proper lock coverage today */
2381 BUG_ON(written == -EIOCBQUEUED && !direct_io);
2382
2383 /*
2384 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2385 * function pointer which is called when o_direct io completes so that
2386 * it can unlock our rw lock.
2387 * Unfortunately there are error cases which call end_io and others
2388 * that don't. so we don't have to unlock the rw_lock if either an
2389 * async dio is going to do it in the future or an end_io after an
2390 * error has already done it.
2391 */
2392 if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2393 rw_level = -1;
2394 }
2395
2396 if (unlikely(written <= 0))
2397 goto out;
2398
2399 if (((file->f_flags & O_DSYNC) && !direct_io) ||
2400 IS_SYNC(inode)) {
2401 ret = filemap_fdatawrite_range(file->f_mapping,
2402 iocb->ki_pos - written,
2403 iocb->ki_pos - 1);
2404 if (ret < 0)
2405 written = ret;
2406
2407 if (!ret) {
2408 ret = jbd2_journal_force_commit(osb->journal->j_journal);
2409 if (ret < 0)
2410 written = ret;
2411 }
2412
2413 if (!ret)
2414 ret = filemap_fdatawait_range(file->f_mapping,
2415 iocb->ki_pos - written,
2416 iocb->ki_pos - 1);
2417 }
2418
2419 out:
2420 if (saved_ki_complete)
2421 xchg(&iocb->ki_complete, saved_ki_complete);
2422
2423 if (rw_level != -1)
2424 ocfs2_rw_unlock(inode, rw_level);
2425
2426 out_mutex:
2427 inode_unlock(inode);
2428
2429 if (written)
2430 ret = written;
2431 return ret;
2432 }
2433
ocfs2_file_read_iter(struct kiocb * iocb,struct iov_iter * to)2434 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2435 struct iov_iter *to)
2436 {
2437 int ret = 0, rw_level = -1, lock_level = 0;
2438 struct file *filp = iocb->ki_filp;
2439 struct inode *inode = file_inode(filp);
2440 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2441 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2442
2443 trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry,
2444 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2445 filp->f_path.dentry->d_name.len,
2446 filp->f_path.dentry->d_name.name,
2447 to->nr_segs); /* GRRRRR */
2448
2449
2450 if (!inode) {
2451 ret = -EINVAL;
2452 mlog_errno(ret);
2453 goto bail;
2454 }
2455
2456 if (!direct_io && nowait)
2457 return -EOPNOTSUPP;
2458
2459 /*
2460 * buffered reads protect themselves in ->readpage(). O_DIRECT reads
2461 * need locks to protect pending reads from racing with truncate.
2462 */
2463 if (direct_io) {
2464 if (nowait)
2465 ret = ocfs2_try_rw_lock(inode, 0);
2466 else
2467 ret = ocfs2_rw_lock(inode, 0);
2468
2469 if (ret < 0) {
2470 if (ret != -EAGAIN)
2471 mlog_errno(ret);
2472 goto bail;
2473 }
2474 rw_level = 0;
2475 /* communicate with ocfs2_dio_end_io */
2476 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2477 }
2478
2479 /*
2480 * We're fine letting folks race truncates and extending
2481 * writes with read across the cluster, just like they can
2482 * locally. Hence no rw_lock during read.
2483 *
2484 * Take and drop the meta data lock to update inode fields
2485 * like i_size. This allows the checks down below
2486 * generic_file_read_iter() a chance of actually working.
2487 */
2488 ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level,
2489 !nowait);
2490 if (ret < 0) {
2491 if (ret != -EAGAIN)
2492 mlog_errno(ret);
2493 goto bail;
2494 }
2495 ocfs2_inode_unlock(inode, lock_level);
2496
2497 ret = generic_file_read_iter(iocb, to);
2498 trace_generic_file_read_iter_ret(ret);
2499
2500 /* buffered aio wouldn't have proper lock coverage today */
2501 BUG_ON(ret == -EIOCBQUEUED && !direct_io);
2502
2503 /* see ocfs2_file_write_iter */
2504 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2505 rw_level = -1;
2506 }
2507
2508 bail:
2509 if (rw_level != -1)
2510 ocfs2_rw_unlock(inode, rw_level);
2511
2512 return ret;
2513 }
2514
2515 /* Refer generic_file_llseek_unlocked() */
ocfs2_file_llseek(struct file * file,loff_t offset,int whence)2516 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2517 {
2518 struct inode *inode = file->f_mapping->host;
2519 int ret = 0;
2520
2521 inode_lock(inode);
2522
2523 switch (whence) {
2524 case SEEK_SET:
2525 break;
2526 case SEEK_END:
2527 /* SEEK_END requires the OCFS2 inode lock for the file
2528 * because it references the file's size.
2529 */
2530 ret = ocfs2_inode_lock(inode, NULL, 0);
2531 if (ret < 0) {
2532 mlog_errno(ret);
2533 goto out;
2534 }
2535 offset += i_size_read(inode);
2536 ocfs2_inode_unlock(inode, 0);
2537 break;
2538 case SEEK_CUR:
2539 if (offset == 0) {
2540 offset = file->f_pos;
2541 goto out;
2542 }
2543 offset += file->f_pos;
2544 break;
2545 case SEEK_DATA:
2546 case SEEK_HOLE:
2547 ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2548 if (ret)
2549 goto out;
2550 break;
2551 default:
2552 ret = -EINVAL;
2553 goto out;
2554 }
2555
2556 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2557
2558 out:
2559 inode_unlock(inode);
2560 if (ret)
2561 return ret;
2562 return offset;
2563 }
2564
ocfs2_remap_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,loff_t len,unsigned int remap_flags)2565 static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in,
2566 struct file *file_out, loff_t pos_out,
2567 loff_t len, unsigned int remap_flags)
2568 {
2569 struct inode *inode_in = file_inode(file_in);
2570 struct inode *inode_out = file_inode(file_out);
2571 struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb);
2572 struct buffer_head *in_bh = NULL, *out_bh = NULL;
2573 bool same_inode = (inode_in == inode_out);
2574 loff_t remapped = 0;
2575 ssize_t ret;
2576
2577 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
2578 return -EINVAL;
2579 if (!ocfs2_refcount_tree(osb))
2580 return -EOPNOTSUPP;
2581 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
2582 return -EROFS;
2583
2584 /* Lock both files against IO */
2585 ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh);
2586 if (ret)
2587 return ret;
2588
2589 /* Check file eligibility and prepare for block sharing. */
2590 ret = -EINVAL;
2591 if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) ||
2592 (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE))
2593 goto out_unlock;
2594
2595 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
2596 &len, remap_flags);
2597 if (ret < 0 || len == 0)
2598 goto out_unlock;
2599
2600 /* Lock out changes to the allocation maps and remap. */
2601 down_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2602 if (!same_inode)
2603 down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem,
2604 SINGLE_DEPTH_NESTING);
2605
2606 /* Zap any page cache for the destination file's range. */
2607 truncate_inode_pages_range(&inode_out->i_data,
2608 round_down(pos_out, PAGE_SIZE),
2609 round_up(pos_out + len, PAGE_SIZE) - 1);
2610
2611 remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in,
2612 inode_out, out_bh, pos_out, len);
2613 up_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2614 if (!same_inode)
2615 up_write(&OCFS2_I(inode_out)->ip_alloc_sem);
2616 if (remapped < 0) {
2617 ret = remapped;
2618 mlog_errno(ret);
2619 goto out_unlock;
2620 }
2621
2622 /*
2623 * Empty the extent map so that we may get the right extent
2624 * record from the disk.
2625 */
2626 ocfs2_extent_map_trunc(inode_in, 0);
2627 ocfs2_extent_map_trunc(inode_out, 0);
2628
2629 ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len);
2630 if (ret) {
2631 mlog_errno(ret);
2632 goto out_unlock;
2633 }
2634
2635 out_unlock:
2636 ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh);
2637 return remapped > 0 ? remapped : ret;
2638 }
2639
2640 const struct inode_operations ocfs2_file_iops = {
2641 .setattr = ocfs2_setattr,
2642 .getattr = ocfs2_getattr,
2643 .permission = ocfs2_permission,
2644 .listxattr = ocfs2_listxattr,
2645 .fiemap = ocfs2_fiemap,
2646 .get_acl = ocfs2_iop_get_acl,
2647 .set_acl = ocfs2_iop_set_acl,
2648 };
2649
2650 const struct inode_operations ocfs2_special_file_iops = {
2651 .setattr = ocfs2_setattr,
2652 .getattr = ocfs2_getattr,
2653 .permission = ocfs2_permission,
2654 .get_acl = ocfs2_iop_get_acl,
2655 .set_acl = ocfs2_iop_set_acl,
2656 };
2657
2658 /*
2659 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2660 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2661 */
2662 const struct file_operations ocfs2_fops = {
2663 .llseek = ocfs2_file_llseek,
2664 .mmap = ocfs2_mmap,
2665 .fsync = ocfs2_sync_file,
2666 .release = ocfs2_file_release,
2667 .open = ocfs2_file_open,
2668 .read_iter = ocfs2_file_read_iter,
2669 .write_iter = ocfs2_file_write_iter,
2670 .unlocked_ioctl = ocfs2_ioctl,
2671 #ifdef CONFIG_COMPAT
2672 .compat_ioctl = ocfs2_compat_ioctl,
2673 #endif
2674 .lock = ocfs2_lock,
2675 .flock = ocfs2_flock,
2676 .splice_read = generic_file_splice_read,
2677 .splice_write = iter_file_splice_write,
2678 .fallocate = ocfs2_fallocate,
2679 .remap_file_range = ocfs2_remap_file_range,
2680 };
2681
2682 const struct file_operations ocfs2_dops = {
2683 .llseek = generic_file_llseek,
2684 .read = generic_read_dir,
2685 .iterate = ocfs2_readdir,
2686 .fsync = ocfs2_sync_file,
2687 .release = ocfs2_dir_release,
2688 .open = ocfs2_dir_open,
2689 .unlocked_ioctl = ocfs2_ioctl,
2690 #ifdef CONFIG_COMPAT
2691 .compat_ioctl = ocfs2_compat_ioctl,
2692 #endif
2693 .lock = ocfs2_lock,
2694 .flock = ocfs2_flock,
2695 };
2696
2697 /*
2698 * POSIX-lockless variants of our file_operations.
2699 *
2700 * These will be used if the underlying cluster stack does not support
2701 * posix file locking, if the user passes the "localflocks" mount
2702 * option, or if we have a local-only fs.
2703 *
2704 * ocfs2_flock is in here because all stacks handle UNIX file locks,
2705 * so we still want it in the case of no stack support for
2706 * plocks. Internally, it will do the right thing when asked to ignore
2707 * the cluster.
2708 */
2709 const struct file_operations ocfs2_fops_no_plocks = {
2710 .llseek = ocfs2_file_llseek,
2711 .mmap = ocfs2_mmap,
2712 .fsync = ocfs2_sync_file,
2713 .release = ocfs2_file_release,
2714 .open = ocfs2_file_open,
2715 .read_iter = ocfs2_file_read_iter,
2716 .write_iter = ocfs2_file_write_iter,
2717 .unlocked_ioctl = ocfs2_ioctl,
2718 #ifdef CONFIG_COMPAT
2719 .compat_ioctl = ocfs2_compat_ioctl,
2720 #endif
2721 .flock = ocfs2_flock,
2722 .splice_read = generic_file_splice_read,
2723 .splice_write = iter_file_splice_write,
2724 .fallocate = ocfs2_fallocate,
2725 .remap_file_range = ocfs2_remap_file_range,
2726 };
2727
2728 const struct file_operations ocfs2_dops_no_plocks = {
2729 .llseek = generic_file_llseek,
2730 .read = generic_read_dir,
2731 .iterate = ocfs2_readdir,
2732 .fsync = ocfs2_sync_file,
2733 .release = ocfs2_dir_release,
2734 .open = ocfs2_dir_open,
2735 .unlocked_ioctl = ocfs2_ioctl,
2736 #ifdef CONFIG_COMPAT
2737 .compat_ioctl = ocfs2_compat_ioctl,
2738 #endif
2739 .flock = ocfs2_flock,
2740 };
2741