• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * Copyright (c) 2016-2018 Christoph Hellwig.
5  * All Rights Reserved.
6  */
7 #include "xfs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_iomap.h"
16 #include "xfs_trace.h"
17 #include "xfs_bmap.h"
18 #include "xfs_bmap_util.h"
19 #include "xfs_reflink.h"
20 
21 /*
22  * structure owned by writepages passed to individual writepage calls
23  */
24 struct xfs_writepage_ctx {
25 	struct xfs_bmbt_irec    imap;
26 	int			fork;
27 	unsigned int		data_seq;
28 	unsigned int		cow_seq;
29 	struct xfs_ioend	*ioend;
30 };
31 
32 struct block_device *
xfs_find_bdev_for_inode(struct inode * inode)33 xfs_find_bdev_for_inode(
34 	struct inode		*inode)
35 {
36 	struct xfs_inode	*ip = XFS_I(inode);
37 	struct xfs_mount	*mp = ip->i_mount;
38 
39 	if (XFS_IS_REALTIME_INODE(ip))
40 		return mp->m_rtdev_targp->bt_bdev;
41 	else
42 		return mp->m_ddev_targp->bt_bdev;
43 }
44 
45 struct dax_device *
xfs_find_daxdev_for_inode(struct inode * inode)46 xfs_find_daxdev_for_inode(
47 	struct inode		*inode)
48 {
49 	struct xfs_inode	*ip = XFS_I(inode);
50 	struct xfs_mount	*mp = ip->i_mount;
51 
52 	if (XFS_IS_REALTIME_INODE(ip))
53 		return mp->m_rtdev_targp->bt_daxdev;
54 	else
55 		return mp->m_ddev_targp->bt_daxdev;
56 }
57 
58 static void
xfs_finish_page_writeback(struct inode * inode,struct bio_vec * bvec,int error)59 xfs_finish_page_writeback(
60 	struct inode		*inode,
61 	struct bio_vec	*bvec,
62 	int			error)
63 {
64 	struct iomap_page	*iop = to_iomap_page(bvec->bv_page);
65 
66 	if (error) {
67 		SetPageError(bvec->bv_page);
68 		mapping_set_error(inode->i_mapping, -EIO);
69 	}
70 
71 	ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
72 	ASSERT(!iop || atomic_read(&iop->write_count) > 0);
73 
74 	if (!iop || atomic_dec_and_test(&iop->write_count))
75 		end_page_writeback(bvec->bv_page);
76 }
77 
78 /*
79  * We're now finished for good with this ioend structure.  Update the page
80  * state, release holds on bios, and finally free up memory.  Do not use the
81  * ioend after this.
82  */
83 STATIC void
xfs_destroy_ioend(struct xfs_ioend * ioend,int error)84 xfs_destroy_ioend(
85 	struct xfs_ioend	*ioend,
86 	int			error)
87 {
88 	struct inode		*inode = ioend->io_inode;
89 	struct bio		*bio = &ioend->io_inline_bio;
90 	struct bio		*last = ioend->io_bio, *next;
91 	u64			start = bio->bi_iter.bi_sector;
92 	bool			quiet = bio_flagged(bio, BIO_QUIET);
93 
94 	for (bio = &ioend->io_inline_bio; bio; bio = next) {
95 		struct bio_vec	*bvec;
96 		struct bvec_iter_all iter_all;
97 
98 		/*
99 		 * For the last bio, bi_private points to the ioend, so we
100 		 * need to explicitly end the iteration here.
101 		 */
102 		if (bio == last)
103 			next = NULL;
104 		else
105 			next = bio->bi_private;
106 
107 		/* walk each page on bio, ending page IO on them */
108 		bio_for_each_segment_all(bvec, bio, iter_all)
109 			xfs_finish_page_writeback(inode, bvec, error);
110 		bio_put(bio);
111 	}
112 
113 	if (unlikely(error && !quiet)) {
114 		xfs_err_ratelimited(XFS_I(inode)->i_mount,
115 			"writeback error on sector %llu", start);
116 	}
117 }
118 
119 /*
120  * Fast and loose check if this write could update the on-disk inode size.
121  */
xfs_ioend_is_append(struct xfs_ioend * ioend)122 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
123 {
124 	return ioend->io_offset + ioend->io_size >
125 		XFS_I(ioend->io_inode)->i_d.di_size;
126 }
127 
128 STATIC int
xfs_setfilesize_trans_alloc(struct xfs_ioend * ioend)129 xfs_setfilesize_trans_alloc(
130 	struct xfs_ioend	*ioend)
131 {
132 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
133 	struct xfs_trans	*tp;
134 	int			error;
135 
136 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
137 	if (error)
138 		return error;
139 
140 	ioend->io_append_trans = tp;
141 
142 	/*
143 	 * We may pass freeze protection with a transaction.  So tell lockdep
144 	 * we released it.
145 	 */
146 	__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
147 	/*
148 	 * We hand off the transaction to the completion thread now, so
149 	 * clear the flag here.
150 	 */
151 	current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
152 	return 0;
153 }
154 
155 /*
156  * Update on-disk file size now that data has been written to disk.
157  */
158 STATIC int
__xfs_setfilesize(struct xfs_inode * ip,struct xfs_trans * tp,xfs_off_t offset,size_t size)159 __xfs_setfilesize(
160 	struct xfs_inode	*ip,
161 	struct xfs_trans	*tp,
162 	xfs_off_t		offset,
163 	size_t			size)
164 {
165 	xfs_fsize_t		isize;
166 
167 	xfs_ilock(ip, XFS_ILOCK_EXCL);
168 	isize = xfs_new_eof(ip, offset + size);
169 	if (!isize) {
170 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
171 		xfs_trans_cancel(tp);
172 		return 0;
173 	}
174 
175 	trace_xfs_setfilesize(ip, offset, size);
176 
177 	ip->i_d.di_size = isize;
178 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
179 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
180 
181 	return xfs_trans_commit(tp);
182 }
183 
184 int
xfs_setfilesize(struct xfs_inode * ip,xfs_off_t offset,size_t size)185 xfs_setfilesize(
186 	struct xfs_inode	*ip,
187 	xfs_off_t		offset,
188 	size_t			size)
189 {
190 	struct xfs_mount	*mp = ip->i_mount;
191 	struct xfs_trans	*tp;
192 	int			error;
193 
194 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
195 	if (error)
196 		return error;
197 
198 	return __xfs_setfilesize(ip, tp, offset, size);
199 }
200 
201 STATIC int
xfs_setfilesize_ioend(struct xfs_ioend * ioend,int error)202 xfs_setfilesize_ioend(
203 	struct xfs_ioend	*ioend,
204 	int			error)
205 {
206 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
207 	struct xfs_trans	*tp = ioend->io_append_trans;
208 
209 	/*
210 	 * The transaction may have been allocated in the I/O submission thread,
211 	 * thus we need to mark ourselves as being in a transaction manually.
212 	 * Similarly for freeze protection.
213 	 */
214 	current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
215 	__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
216 
217 	/* we abort the update if there was an IO error */
218 	if (error) {
219 		xfs_trans_cancel(tp);
220 		return error;
221 	}
222 
223 	return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
224 }
225 
226 /*
227  * IO write completion.
228  */
229 STATIC void
xfs_end_ioend(struct xfs_ioend * ioend)230 xfs_end_ioend(
231 	struct xfs_ioend	*ioend)
232 {
233 	struct list_head	ioend_list;
234 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
235 	xfs_off_t		offset = ioend->io_offset;
236 	size_t			size = ioend->io_size;
237 	unsigned int		nofs_flag;
238 	int			error;
239 
240 	/*
241 	 * We can allocate memory here while doing writeback on behalf of
242 	 * memory reclaim.  To avoid memory allocation deadlocks set the
243 	 * task-wide nofs context for the following operations.
244 	 */
245 	nofs_flag = memalloc_nofs_save();
246 
247 	/*
248 	 * Just clean up the in-memory strutures if the fs has been shut down.
249 	 */
250 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
251 		error = -EIO;
252 		goto done;
253 	}
254 
255 	/*
256 	 * Clean up any COW blocks on an I/O error.
257 	 */
258 	error = blk_status_to_errno(ioend->io_bio->bi_status);
259 	if (unlikely(error)) {
260 		if (ioend->io_fork == XFS_COW_FORK)
261 			xfs_reflink_cancel_cow_range(ip, offset, size, true);
262 		goto done;
263 	}
264 
265 	/*
266 	 * Success: commit the COW or unwritten blocks if needed.
267 	 */
268 	if (ioend->io_fork == XFS_COW_FORK)
269 		error = xfs_reflink_end_cow(ip, offset, size);
270 	else if (ioend->io_state == XFS_EXT_UNWRITTEN)
271 		error = xfs_iomap_write_unwritten(ip, offset, size, false);
272 	else
273 		ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
274 
275 done:
276 	if (ioend->io_append_trans)
277 		error = xfs_setfilesize_ioend(ioend, error);
278 	list_replace_init(&ioend->io_list, &ioend_list);
279 	xfs_destroy_ioend(ioend, error);
280 
281 	while (!list_empty(&ioend_list)) {
282 		ioend = list_first_entry(&ioend_list, struct xfs_ioend,
283 				io_list);
284 		list_del_init(&ioend->io_list);
285 		xfs_destroy_ioend(ioend, error);
286 	}
287 
288 	memalloc_nofs_restore(nofs_flag);
289 }
290 
291 /*
292  * We can merge two adjacent ioends if they have the same set of work to do.
293  */
294 static bool
xfs_ioend_can_merge(struct xfs_ioend * ioend,struct xfs_ioend * next)295 xfs_ioend_can_merge(
296 	struct xfs_ioend	*ioend,
297 	struct xfs_ioend	*next)
298 {
299 	if (ioend->io_bio->bi_status != next->io_bio->bi_status)
300 		return false;
301 	if ((ioend->io_fork == XFS_COW_FORK) ^ (next->io_fork == XFS_COW_FORK))
302 		return false;
303 	if ((ioend->io_state == XFS_EXT_UNWRITTEN) ^
304 	    (next->io_state == XFS_EXT_UNWRITTEN))
305 		return false;
306 	if (ioend->io_offset + ioend->io_size != next->io_offset)
307 		return false;
308 	return true;
309 }
310 
311 /*
312  * If the to be merged ioend has a preallocated transaction for file
313  * size updates we need to ensure the ioend it is merged into also
314  * has one.  If it already has one we can simply cancel the transaction
315  * as it is guaranteed to be clean.
316  */
317 static void
xfs_ioend_merge_append_transactions(struct xfs_ioend * ioend,struct xfs_ioend * next)318 xfs_ioend_merge_append_transactions(
319 	struct xfs_ioend	*ioend,
320 	struct xfs_ioend	*next)
321 {
322 	if (!ioend->io_append_trans) {
323 		ioend->io_append_trans = next->io_append_trans;
324 		next->io_append_trans = NULL;
325 	} else {
326 		xfs_setfilesize_ioend(next, -ECANCELED);
327 	}
328 }
329 
330 /* Try to merge adjacent completions. */
331 STATIC void
xfs_ioend_try_merge(struct xfs_ioend * ioend,struct list_head * more_ioends)332 xfs_ioend_try_merge(
333 	struct xfs_ioend	*ioend,
334 	struct list_head	*more_ioends)
335 {
336 	struct xfs_ioend	*next_ioend;
337 
338 	while (!list_empty(more_ioends)) {
339 		next_ioend = list_first_entry(more_ioends, struct xfs_ioend,
340 				io_list);
341 		if (!xfs_ioend_can_merge(ioend, next_ioend))
342 			break;
343 		list_move_tail(&next_ioend->io_list, &ioend->io_list);
344 		ioend->io_size += next_ioend->io_size;
345 		if (next_ioend->io_append_trans)
346 			xfs_ioend_merge_append_transactions(ioend, next_ioend);
347 	}
348 }
349 
350 /* list_sort compare function for ioends */
351 static int
xfs_ioend_compare(void * priv,struct list_head * a,struct list_head * b)352 xfs_ioend_compare(
353 	void			*priv,
354 	struct list_head	*a,
355 	struct list_head	*b)
356 {
357 	struct xfs_ioend	*ia;
358 	struct xfs_ioend	*ib;
359 
360 	ia = container_of(a, struct xfs_ioend, io_list);
361 	ib = container_of(b, struct xfs_ioend, io_list);
362 	if (ia->io_offset < ib->io_offset)
363 		return -1;
364 	else if (ia->io_offset > ib->io_offset)
365 		return 1;
366 	return 0;
367 }
368 
369 /* Finish all pending io completions. */
370 void
xfs_end_io(struct work_struct * work)371 xfs_end_io(
372 	struct work_struct	*work)
373 {
374 	struct xfs_inode	*ip;
375 	struct xfs_ioend	*ioend;
376 	struct list_head	completion_list;
377 	unsigned long		flags;
378 
379 	ip = container_of(work, struct xfs_inode, i_ioend_work);
380 
381 	spin_lock_irqsave(&ip->i_ioend_lock, flags);
382 	list_replace_init(&ip->i_ioend_list, &completion_list);
383 	spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
384 
385 	list_sort(NULL, &completion_list, xfs_ioend_compare);
386 
387 	while (!list_empty(&completion_list)) {
388 		ioend = list_first_entry(&completion_list, struct xfs_ioend,
389 				io_list);
390 		list_del_init(&ioend->io_list);
391 		xfs_ioend_try_merge(ioend, &completion_list);
392 		xfs_end_ioend(ioend);
393 	}
394 }
395 
396 STATIC void
xfs_end_bio(struct bio * bio)397 xfs_end_bio(
398 	struct bio		*bio)
399 {
400 	struct xfs_ioend	*ioend = bio->bi_private;
401 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
402 	struct xfs_mount	*mp = ip->i_mount;
403 	unsigned long		flags;
404 
405 	if (ioend->io_fork == XFS_COW_FORK ||
406 	    ioend->io_state == XFS_EXT_UNWRITTEN ||
407 	    ioend->io_append_trans != NULL) {
408 		spin_lock_irqsave(&ip->i_ioend_lock, flags);
409 		if (list_empty(&ip->i_ioend_list))
410 			WARN_ON_ONCE(!queue_work(mp->m_unwritten_workqueue,
411 						 &ip->i_ioend_work));
412 		list_add_tail(&ioend->io_list, &ip->i_ioend_list);
413 		spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
414 	} else
415 		xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
416 }
417 
418 /*
419  * Fast revalidation of the cached writeback mapping. Return true if the current
420  * mapping is valid, false otherwise.
421  */
422 static bool
xfs_imap_valid(struct xfs_writepage_ctx * wpc,struct xfs_inode * ip,xfs_fileoff_t offset_fsb)423 xfs_imap_valid(
424 	struct xfs_writepage_ctx	*wpc,
425 	struct xfs_inode		*ip,
426 	xfs_fileoff_t			offset_fsb)
427 {
428 	if (offset_fsb < wpc->imap.br_startoff ||
429 	    offset_fsb >= wpc->imap.br_startoff + wpc->imap.br_blockcount)
430 		return false;
431 	/*
432 	 * If this is a COW mapping, it is sufficient to check that the mapping
433 	 * covers the offset. Be careful to check this first because the caller
434 	 * can revalidate a COW mapping without updating the data seqno.
435 	 */
436 	if (wpc->fork == XFS_COW_FORK)
437 		return true;
438 
439 	/*
440 	 * This is not a COW mapping. Check the sequence number of the data fork
441 	 * because concurrent changes could have invalidated the extent. Check
442 	 * the COW fork because concurrent changes since the last time we
443 	 * checked (and found nothing at this offset) could have added
444 	 * overlapping blocks.
445 	 */
446 	if (wpc->data_seq != READ_ONCE(ip->i_df.if_seq))
447 		return false;
448 	if (xfs_inode_has_cow_data(ip) &&
449 	    wpc->cow_seq != READ_ONCE(ip->i_cowfp->if_seq))
450 		return false;
451 	return true;
452 }
453 
454 /*
455  * Pass in a dellalloc extent and convert it to real extents, return the real
456  * extent that maps offset_fsb in wpc->imap.
457  *
458  * The current page is held locked so nothing could have removed the block
459  * backing offset_fsb, although it could have moved from the COW to the data
460  * fork by another thread.
461  */
462 static int
xfs_convert_blocks(struct xfs_writepage_ctx * wpc,struct xfs_inode * ip,xfs_fileoff_t offset_fsb)463 xfs_convert_blocks(
464 	struct xfs_writepage_ctx *wpc,
465 	struct xfs_inode	*ip,
466 	xfs_fileoff_t		offset_fsb)
467 {
468 	int			error;
469 
470 	/*
471 	 * Attempt to allocate whatever delalloc extent currently backs
472 	 * offset_fsb and put the result into wpc->imap.  Allocate in a loop
473 	 * because it may take several attempts to allocate real blocks for a
474 	 * contiguous delalloc extent if free space is sufficiently fragmented.
475 	 */
476 	do {
477 		error = xfs_bmapi_convert_delalloc(ip, wpc->fork, offset_fsb,
478 				&wpc->imap, wpc->fork == XFS_COW_FORK ?
479 					&wpc->cow_seq : &wpc->data_seq);
480 		if (error)
481 			return error;
482 	} while (wpc->imap.br_startoff + wpc->imap.br_blockcount <= offset_fsb);
483 
484 	return 0;
485 }
486 
487 STATIC int
xfs_map_blocks(struct xfs_writepage_ctx * wpc,struct inode * inode,loff_t offset)488 xfs_map_blocks(
489 	struct xfs_writepage_ctx *wpc,
490 	struct inode		*inode,
491 	loff_t			offset)
492 {
493 	struct xfs_inode	*ip = XFS_I(inode);
494 	struct xfs_mount	*mp = ip->i_mount;
495 	ssize_t			count = i_blocksize(inode);
496 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
497 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
498 	xfs_fileoff_t		cow_fsb = NULLFILEOFF;
499 	struct xfs_bmbt_irec	imap;
500 	struct xfs_iext_cursor	icur;
501 	int			retries = 0;
502 	int			error = 0;
503 
504 	if (XFS_FORCED_SHUTDOWN(mp))
505 		return -EIO;
506 
507 	/*
508 	 * COW fork blocks can overlap data fork blocks even if the blocks
509 	 * aren't shared.  COW I/O always takes precedent, so we must always
510 	 * check for overlap on reflink inodes unless the mapping is already a
511 	 * COW one, or the COW fork hasn't changed from the last time we looked
512 	 * at it.
513 	 *
514 	 * It's safe to check the COW fork if_seq here without the ILOCK because
515 	 * we've indirectly protected against concurrent updates: writeback has
516 	 * the page locked, which prevents concurrent invalidations by reflink
517 	 * and directio and prevents concurrent buffered writes to the same
518 	 * page.  Changes to if_seq always happen under i_lock, which protects
519 	 * against concurrent updates and provides a memory barrier on the way
520 	 * out that ensures that we always see the current value.
521 	 */
522 	if (xfs_imap_valid(wpc, ip, offset_fsb))
523 		return 0;
524 
525 	/*
526 	 * If we don't have a valid map, now it's time to get a new one for this
527 	 * offset.  This will convert delayed allocations (including COW ones)
528 	 * into real extents.  If we return without a valid map, it means we
529 	 * landed in a hole and we skip the block.
530 	 */
531 retry:
532 	xfs_ilock(ip, XFS_ILOCK_SHARED);
533 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
534 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
535 
536 	/*
537 	 * Check if this is offset is covered by a COW extents, and if yes use
538 	 * it directly instead of looking up anything in the data fork.
539 	 */
540 	if (xfs_inode_has_cow_data(ip) &&
541 	    xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
542 		cow_fsb = imap.br_startoff;
543 	if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
544 		wpc->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
545 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
546 
547 		wpc->fork = XFS_COW_FORK;
548 		goto allocate_blocks;
549 	}
550 
551 	/*
552 	 * No COW extent overlap. Revalidate now that we may have updated
553 	 * ->cow_seq. If the data mapping is still valid, we're done.
554 	 */
555 	if (xfs_imap_valid(wpc, ip, offset_fsb)) {
556 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
557 		return 0;
558 	}
559 
560 	/*
561 	 * If we don't have a valid map, now it's time to get a new one for this
562 	 * offset.  This will convert delayed allocations (including COW ones)
563 	 * into real extents.
564 	 */
565 	if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
566 		imap.br_startoff = end_fsb;	/* fake a hole past EOF */
567 	wpc->data_seq = READ_ONCE(ip->i_df.if_seq);
568 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
569 
570 	wpc->fork = XFS_DATA_FORK;
571 
572 	/* landed in a hole or beyond EOF? */
573 	if (imap.br_startoff > offset_fsb) {
574 		imap.br_blockcount = imap.br_startoff - offset_fsb;
575 		imap.br_startoff = offset_fsb;
576 		imap.br_startblock = HOLESTARTBLOCK;
577 		imap.br_state = XFS_EXT_NORM;
578 	}
579 
580 	/*
581 	 * Truncate to the next COW extent if there is one.  This is the only
582 	 * opportunity to do this because we can skip COW fork lookups for the
583 	 * subsequent blocks in the mapping; however, the requirement to treat
584 	 * the COW range separately remains.
585 	 */
586 	if (cow_fsb != NULLFILEOFF &&
587 	    cow_fsb < imap.br_startoff + imap.br_blockcount)
588 		imap.br_blockcount = cow_fsb - imap.br_startoff;
589 
590 	/* got a delalloc extent? */
591 	if (imap.br_startblock != HOLESTARTBLOCK &&
592 	    isnullstartblock(imap.br_startblock))
593 		goto allocate_blocks;
594 
595 	wpc->imap = imap;
596 	trace_xfs_map_blocks_found(ip, offset, count, wpc->fork, &imap);
597 	return 0;
598 allocate_blocks:
599 	error = xfs_convert_blocks(wpc, ip, offset_fsb);
600 	if (error) {
601 		/*
602 		 * If we failed to find the extent in the COW fork we might have
603 		 * raced with a COW to data fork conversion or truncate.
604 		 * Restart the lookup to catch the extent in the data fork for
605 		 * the former case, but prevent additional retries to avoid
606 		 * looping forever for the latter case.
607 		 */
608 		if (error == -EAGAIN && wpc->fork == XFS_COW_FORK && !retries++)
609 			goto retry;
610 		ASSERT(error != -EAGAIN);
611 		return error;
612 	}
613 
614 	/*
615 	 * Due to merging the return real extent might be larger than the
616 	 * original delalloc one.  Trim the return extent to the next COW
617 	 * boundary again to force a re-lookup.
618 	 */
619 	if (wpc->fork != XFS_COW_FORK && cow_fsb != NULLFILEOFF &&
620 	    cow_fsb < wpc->imap.br_startoff + wpc->imap.br_blockcount)
621 		wpc->imap.br_blockcount = cow_fsb - wpc->imap.br_startoff;
622 
623 	ASSERT(wpc->imap.br_startoff <= offset_fsb);
624 	ASSERT(wpc->imap.br_startoff + wpc->imap.br_blockcount > offset_fsb);
625 	trace_xfs_map_blocks_alloc(ip, offset, count, wpc->fork, &imap);
626 	return 0;
627 }
628 
629 /*
630  * Submit the bio for an ioend. We are passed an ioend with a bio attached to
631  * it, and we submit that bio. The ioend may be used for multiple bio
632  * submissions, so we only want to allocate an append transaction for the ioend
633  * once. In the case of multiple bio submission, each bio will take an IO
634  * reference to the ioend to ensure that the ioend completion is only done once
635  * all bios have been submitted and the ioend is really done.
636  *
637  * If @status is non-zero, it means that we have a situation where some part of
638  * the submission process has failed after we have marked paged for writeback
639  * and unlocked them. In this situation, we need to fail the bio and ioend
640  * rather than submit it to IO. This typically only happens on a filesystem
641  * shutdown.
642  */
643 STATIC int
xfs_submit_ioend(struct writeback_control * wbc,struct xfs_ioend * ioend,int status)644 xfs_submit_ioend(
645 	struct writeback_control *wbc,
646 	struct xfs_ioend	*ioend,
647 	int			status)
648 {
649 	unsigned int		nofs_flag;
650 
651 	/*
652 	 * We can allocate memory here while doing writeback on behalf of
653 	 * memory reclaim.  To avoid memory allocation deadlocks set the
654 	 * task-wide nofs context for the following operations.
655 	 */
656 	nofs_flag = memalloc_nofs_save();
657 
658 	/* Convert CoW extents to regular */
659 	if (!status && ioend->io_fork == XFS_COW_FORK) {
660 		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
661 				ioend->io_offset, ioend->io_size);
662 	}
663 
664 	/* Reserve log space if we might write beyond the on-disk inode size. */
665 	if (!status &&
666 	    (ioend->io_fork == XFS_COW_FORK ||
667 	     ioend->io_state != XFS_EXT_UNWRITTEN) &&
668 	    xfs_ioend_is_append(ioend) &&
669 	    !ioend->io_append_trans)
670 		status = xfs_setfilesize_trans_alloc(ioend);
671 
672 	memalloc_nofs_restore(nofs_flag);
673 
674 	ioend->io_bio->bi_private = ioend;
675 	ioend->io_bio->bi_end_io = xfs_end_bio;
676 
677 	/*
678 	 * If we are failing the IO now, just mark the ioend with an
679 	 * error and finish it. This will run IO completion immediately
680 	 * as there is only one reference to the ioend at this point in
681 	 * time.
682 	 */
683 	if (status) {
684 		ioend->io_bio->bi_status = errno_to_blk_status(status);
685 		bio_endio(ioend->io_bio);
686 		return status;
687 	}
688 
689 	submit_bio(ioend->io_bio);
690 	return 0;
691 }
692 
693 static struct xfs_ioend *
xfs_alloc_ioend(struct inode * inode,int fork,xfs_exntst_t state,xfs_off_t offset,struct block_device * bdev,sector_t sector,struct writeback_control * wbc)694 xfs_alloc_ioend(
695 	struct inode		*inode,
696 	int			fork,
697 	xfs_exntst_t		state,
698 	xfs_off_t		offset,
699 	struct block_device	*bdev,
700 	sector_t		sector,
701 	struct writeback_control *wbc)
702 {
703 	struct xfs_ioend	*ioend;
704 	struct bio		*bio;
705 
706 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &xfs_ioend_bioset);
707 	bio_set_dev(bio, bdev);
708 	bio->bi_iter.bi_sector = sector;
709 	bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
710 	bio->bi_write_hint = inode->i_write_hint;
711 	wbc_init_bio(wbc, bio);
712 
713 	ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
714 	INIT_LIST_HEAD(&ioend->io_list);
715 	ioend->io_fork = fork;
716 	ioend->io_state = state;
717 	ioend->io_inode = inode;
718 	ioend->io_size = 0;
719 	ioend->io_offset = offset;
720 	ioend->io_append_trans = NULL;
721 	ioend->io_bio = bio;
722 	return ioend;
723 }
724 
725 /*
726  * Allocate a new bio, and chain the old bio to the new one.
727  *
728  * Note that we have to do perform the chaining in this unintuitive order
729  * so that the bi_private linkage is set up in the right direction for the
730  * traversal in xfs_destroy_ioend().
731  */
732 static struct bio *
xfs_chain_bio(struct bio * prev)733 xfs_chain_bio(
734 	struct bio		*prev)
735 {
736 	struct bio *new;
737 
738 	new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
739 	bio_copy_dev(new, prev);/* also copies over blkcg information */
740 	new->bi_iter.bi_sector = bio_end_sector(prev);
741 	new->bi_opf = prev->bi_opf;
742 	new->bi_write_hint = prev->bi_write_hint;
743 
744 	bio_chain(prev, new);
745 	bio_get(prev);		/* for xfs_destroy_ioend */
746 	submit_bio(prev);
747 	return new;
748 }
749 
750 /*
751  * Test to see if we have an existing ioend structure that we could append to
752  * first, otherwise finish off the current ioend and start another.
753  */
754 STATIC void
xfs_add_to_ioend(struct inode * inode,xfs_off_t offset,struct page * page,struct iomap_page * iop,struct xfs_writepage_ctx * wpc,struct writeback_control * wbc,struct list_head * iolist)755 xfs_add_to_ioend(
756 	struct inode		*inode,
757 	xfs_off_t		offset,
758 	struct page		*page,
759 	struct iomap_page	*iop,
760 	struct xfs_writepage_ctx *wpc,
761 	struct writeback_control *wbc,
762 	struct list_head	*iolist)
763 {
764 	struct xfs_inode	*ip = XFS_I(inode);
765 	struct xfs_mount	*mp = ip->i_mount;
766 	struct block_device	*bdev = xfs_find_bdev_for_inode(inode);
767 	unsigned		len = i_blocksize(inode);
768 	unsigned		poff = offset & (PAGE_SIZE - 1);
769 	bool			merged, same_page = false;
770 	sector_t		sector;
771 
772 	sector = xfs_fsb_to_db(ip, wpc->imap.br_startblock) +
773 		((offset - XFS_FSB_TO_B(mp, wpc->imap.br_startoff)) >> 9);
774 
775 	if (!wpc->ioend ||
776 	    wpc->fork != wpc->ioend->io_fork ||
777 	    wpc->imap.br_state != wpc->ioend->io_state ||
778 	    sector != bio_end_sector(wpc->ioend->io_bio) ||
779 	    offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
780 		if (wpc->ioend)
781 			list_add(&wpc->ioend->io_list, iolist);
782 		wpc->ioend = xfs_alloc_ioend(inode, wpc->fork,
783 				wpc->imap.br_state, offset, bdev, sector, wbc);
784 	}
785 
786 	merged = __bio_try_merge_page(wpc->ioend->io_bio, page, len, poff,
787 			&same_page);
788 
789 	if (iop && !same_page)
790 		atomic_inc(&iop->write_count);
791 
792 	if (!merged) {
793 		if (bio_full(wpc->ioend->io_bio, len))
794 			wpc->ioend->io_bio = xfs_chain_bio(wpc->ioend->io_bio);
795 		bio_add_page(wpc->ioend->io_bio, page, len, poff);
796 	}
797 
798 	wpc->ioend->io_size += len;
799 	wbc_account_cgroup_owner(wbc, page, len);
800 }
801 
802 STATIC void
xfs_vm_invalidatepage(struct page * page,unsigned int offset,unsigned int length)803 xfs_vm_invalidatepage(
804 	struct page		*page,
805 	unsigned int		offset,
806 	unsigned int		length)
807 {
808 	trace_xfs_invalidatepage(page->mapping->host, page, offset, length);
809 	iomap_invalidatepage(page, offset, length);
810 }
811 
812 /*
813  * If the page has delalloc blocks on it, we need to punch them out before we
814  * invalidate the page.  If we don't, we leave a stale delalloc mapping on the
815  * inode that can trip up a later direct I/O read operation on the same region.
816  *
817  * We prevent this by truncating away the delalloc regions on the page.  Because
818  * they are delalloc, we can do this without needing a transaction. Indeed - if
819  * we get ENOSPC errors, we have to be able to do this truncation without a
820  * transaction as there is no space left for block reservation (typically why we
821  * see a ENOSPC in writeback).
822  */
823 STATIC void
xfs_aops_discard_page(struct page * page)824 xfs_aops_discard_page(
825 	struct page		*page)
826 {
827 	struct inode		*inode = page->mapping->host;
828 	struct xfs_inode	*ip = XFS_I(inode);
829 	struct xfs_mount	*mp = ip->i_mount;
830 	loff_t			offset = page_offset(page);
831 	xfs_fileoff_t		start_fsb = XFS_B_TO_FSBT(mp, offset);
832 	int			error;
833 
834 	if (XFS_FORCED_SHUTDOWN(mp))
835 		goto out_invalidate;
836 
837 	xfs_alert(mp,
838 		"page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
839 			page, ip->i_ino, offset);
840 
841 	error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
842 			PAGE_SIZE / i_blocksize(inode));
843 	if (error && !XFS_FORCED_SHUTDOWN(mp))
844 		xfs_alert(mp, "page discard unable to remove delalloc mapping.");
845 out_invalidate:
846 	xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
847 }
848 
849 /*
850  * We implement an immediate ioend submission policy here to avoid needing to
851  * chain multiple ioends and hence nest mempool allocations which can violate
852  * forward progress guarantees we need to provide. The current ioend we are
853  * adding blocks to is cached on the writepage context, and if the new block
854  * does not append to the cached ioend it will create a new ioend and cache that
855  * instead.
856  *
857  * If a new ioend is created and cached, the old ioend is returned and queued
858  * locally for submission once the entire page is processed or an error has been
859  * detected.  While ioends are submitted immediately after they are completed,
860  * batching optimisations are provided by higher level block plugging.
861  *
862  * At the end of a writeback pass, there will be a cached ioend remaining on the
863  * writepage context that the caller will need to submit.
864  */
865 static int
xfs_writepage_map(struct xfs_writepage_ctx * wpc,struct writeback_control * wbc,struct inode * inode,struct page * page,uint64_t end_offset)866 xfs_writepage_map(
867 	struct xfs_writepage_ctx *wpc,
868 	struct writeback_control *wbc,
869 	struct inode		*inode,
870 	struct page		*page,
871 	uint64_t		end_offset)
872 {
873 	LIST_HEAD(submit_list);
874 	struct iomap_page	*iop = to_iomap_page(page);
875 	unsigned		len = i_blocksize(inode);
876 	struct xfs_ioend	*ioend, *next;
877 	uint64_t		file_offset;	/* file offset of page */
878 	int			error = 0, count = 0, i;
879 
880 	ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
881 	ASSERT(!iop || atomic_read(&iop->write_count) == 0);
882 
883 	/*
884 	 * Walk through the page to find areas to write back. If we run off the
885 	 * end of the current map or find the current map invalid, grab a new
886 	 * one.
887 	 */
888 	for (i = 0, file_offset = page_offset(page);
889 	     i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
890 	     i++, file_offset += len) {
891 		if (iop && !test_bit(i, iop->uptodate))
892 			continue;
893 
894 		error = xfs_map_blocks(wpc, inode, file_offset);
895 		if (error)
896 			break;
897 		if (wpc->imap.br_startblock == HOLESTARTBLOCK)
898 			continue;
899 		xfs_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
900 				 &submit_list);
901 		count++;
902 	}
903 
904 	ASSERT(wpc->ioend || list_empty(&submit_list));
905 	ASSERT(PageLocked(page));
906 	ASSERT(!PageWriteback(page));
907 
908 	/*
909 	 * On error, we have to fail the ioend here because we may have set
910 	 * pages under writeback, we have to make sure we run IO completion to
911 	 * mark the error state of the IO appropriately, so we can't cancel the
912 	 * ioend directly here.  That means we have to mark this page as under
913 	 * writeback if we included any blocks from it in the ioend chain so
914 	 * that completion treats it correctly.
915 	 *
916 	 * If we didn't include the page in the ioend, the on error we can
917 	 * simply discard and unlock it as there are no other users of the page
918 	 * now.  The caller will still need to trigger submission of outstanding
919 	 * ioends on the writepage context so they are treated correctly on
920 	 * error.
921 	 */
922 	if (unlikely(error)) {
923 		if (!count) {
924 			xfs_aops_discard_page(page);
925 			ClearPageUptodate(page);
926 			unlock_page(page);
927 			goto done;
928 		}
929 
930 		/*
931 		 * If the page was not fully cleaned, we need to ensure that the
932 		 * higher layers come back to it correctly.  That means we need
933 		 * to keep the page dirty, and for WB_SYNC_ALL writeback we need
934 		 * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed
935 		 * so another attempt to write this page in this writeback sweep
936 		 * will be made.
937 		 */
938 		set_page_writeback_keepwrite(page);
939 	} else {
940 		clear_page_dirty_for_io(page);
941 		set_page_writeback(page);
942 	}
943 
944 	unlock_page(page);
945 
946 	/*
947 	 * Preserve the original error if there was one, otherwise catch
948 	 * submission errors here and propagate into subsequent ioend
949 	 * submissions.
950 	 */
951 	list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
952 		int error2;
953 
954 		list_del_init(&ioend->io_list);
955 		error2 = xfs_submit_ioend(wbc, ioend, error);
956 		if (error2 && !error)
957 			error = error2;
958 	}
959 
960 	/*
961 	 * We can end up here with no error and nothing to write only if we race
962 	 * with a partial page truncate on a sub-page block sized filesystem.
963 	 */
964 	if (!count)
965 		end_page_writeback(page);
966 done:
967 	mapping_set_error(page->mapping, error);
968 	return error;
969 }
970 
971 /*
972  * Write out a dirty page.
973  *
974  * For delalloc space on the page we need to allocate space and flush it.
975  * For unwritten space on the page we need to start the conversion to
976  * regular allocated space.
977  */
978 STATIC int
xfs_do_writepage(struct page * page,struct writeback_control * wbc,void * data)979 xfs_do_writepage(
980 	struct page		*page,
981 	struct writeback_control *wbc,
982 	void			*data)
983 {
984 	struct xfs_writepage_ctx *wpc = data;
985 	struct inode		*inode = page->mapping->host;
986 	loff_t			offset;
987 	uint64_t              end_offset;
988 	pgoff_t                 end_index;
989 
990 	trace_xfs_writepage(inode, page, 0, 0);
991 
992 	/*
993 	 * Refuse to write the page out if we are called from reclaim context.
994 	 *
995 	 * This avoids stack overflows when called from deeply used stacks in
996 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
997 	 * allow reclaim from kswapd as the stack usage there is relatively low.
998 	 *
999 	 * This should never happen except in the case of a VM regression so
1000 	 * warn about it.
1001 	 */
1002 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1003 			PF_MEMALLOC))
1004 		goto redirty;
1005 
1006 	/*
1007 	 * Given that we do not allow direct reclaim to call us, we should
1008 	 * never be called while in a filesystem transaction.
1009 	 */
1010 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
1011 		goto redirty;
1012 
1013 	/*
1014 	 * Is this page beyond the end of the file?
1015 	 *
1016 	 * The page index is less than the end_index, adjust the end_offset
1017 	 * to the highest offset that this page should represent.
1018 	 * -----------------------------------------------------
1019 	 * |			file mapping	       | <EOF> |
1020 	 * -----------------------------------------------------
1021 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1022 	 * ^--------------------------------^----------|--------
1023 	 * |     desired writeback range    |      see else    |
1024 	 * ---------------------------------^------------------|
1025 	 */
1026 	offset = i_size_read(inode);
1027 	end_index = offset >> PAGE_SHIFT;
1028 	if (page->index < end_index)
1029 		end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
1030 	else {
1031 		/*
1032 		 * Check whether the page to write out is beyond or straddles
1033 		 * i_size or not.
1034 		 * -------------------------------------------------------
1035 		 * |		file mapping		        | <EOF>  |
1036 		 * -------------------------------------------------------
1037 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1038 		 * ^--------------------------------^-----------|---------
1039 		 * |				    |      Straddles     |
1040 		 * ---------------------------------^-----------|--------|
1041 		 */
1042 		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1043 
1044 		/*
1045 		 * Skip the page if it is fully outside i_size, e.g. due to a
1046 		 * truncate operation that is in progress. We must redirty the
1047 		 * page so that reclaim stops reclaiming it. Otherwise
1048 		 * xfs_vm_releasepage() is called on it and gets confused.
1049 		 *
1050 		 * Note that the end_index is unsigned long, it would overflow
1051 		 * if the given offset is greater than 16TB on 32-bit system
1052 		 * and if we do check the page is fully outside i_size or not
1053 		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1054 		 * will be evaluated to 0.  Hence this page will be redirtied
1055 		 * and be written out repeatedly which would result in an
1056 		 * infinite loop, the user program that perform this operation
1057 		 * will hang.  Instead, we can verify this situation by checking
1058 		 * if the page to write is totally beyond the i_size or if it's
1059 		 * offset is just equal to the EOF.
1060 		 */
1061 		if (page->index > end_index ||
1062 		    (page->index == end_index && offset_into_page == 0))
1063 			goto redirty;
1064 
1065 		/*
1066 		 * The page straddles i_size.  It must be zeroed out on each
1067 		 * and every writepage invocation because it may be mmapped.
1068 		 * "A file is mapped in multiples of the page size.  For a file
1069 		 * that is not a multiple of the page size, the remaining
1070 		 * memory is zeroed when mapped, and writes to that region are
1071 		 * not written out to the file."
1072 		 */
1073 		zero_user_segment(page, offset_into_page, PAGE_SIZE);
1074 
1075 		/* Adjust the end_offset to the end of file */
1076 		end_offset = offset;
1077 	}
1078 
1079 	return xfs_writepage_map(wpc, wbc, inode, page, end_offset);
1080 
1081 redirty:
1082 	redirty_page_for_writepage(wbc, page);
1083 	unlock_page(page);
1084 	return 0;
1085 }
1086 
1087 STATIC int
xfs_vm_writepage(struct page * page,struct writeback_control * wbc)1088 xfs_vm_writepage(
1089 	struct page		*page,
1090 	struct writeback_control *wbc)
1091 {
1092 	struct xfs_writepage_ctx wpc = { };
1093 	int			ret;
1094 
1095 	ret = xfs_do_writepage(page, wbc, &wpc);
1096 	if (wpc.ioend)
1097 		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1098 	return ret;
1099 }
1100 
1101 STATIC int
xfs_vm_writepages(struct address_space * mapping,struct writeback_control * wbc)1102 xfs_vm_writepages(
1103 	struct address_space	*mapping,
1104 	struct writeback_control *wbc)
1105 {
1106 	struct xfs_writepage_ctx wpc = { };
1107 	int			ret;
1108 
1109 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1110 	ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1111 	if (wpc.ioend)
1112 		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1113 	return ret;
1114 }
1115 
1116 STATIC int
xfs_dax_writepages(struct address_space * mapping,struct writeback_control * wbc)1117 xfs_dax_writepages(
1118 	struct address_space	*mapping,
1119 	struct writeback_control *wbc)
1120 {
1121 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1122 	return dax_writeback_mapping_range(mapping,
1123 			xfs_find_bdev_for_inode(mapping->host), wbc);
1124 }
1125 
1126 STATIC int
xfs_vm_releasepage(struct page * page,gfp_t gfp_mask)1127 xfs_vm_releasepage(
1128 	struct page		*page,
1129 	gfp_t			gfp_mask)
1130 {
1131 	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1132 	return iomap_releasepage(page, gfp_mask);
1133 }
1134 
1135 STATIC sector_t
xfs_vm_bmap(struct address_space * mapping,sector_t block)1136 xfs_vm_bmap(
1137 	struct address_space	*mapping,
1138 	sector_t		block)
1139 {
1140 	struct xfs_inode	*ip = XFS_I(mapping->host);
1141 
1142 	trace_xfs_vm_bmap(ip);
1143 
1144 	/*
1145 	 * The swap code (ab-)uses ->bmap to get a block mapping and then
1146 	 * bypasses the file system for actual I/O.  We really can't allow
1147 	 * that on reflinks inodes, so we have to skip out here.  And yes,
1148 	 * 0 is the magic code for a bmap error.
1149 	 *
1150 	 * Since we don't pass back blockdev info, we can't return bmap
1151 	 * information for rt files either.
1152 	 */
1153 	if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip))
1154 		return 0;
1155 	return iomap_bmap(mapping, block, &xfs_iomap_ops);
1156 }
1157 
1158 STATIC int
xfs_vm_readpage(struct file * unused,struct page * page)1159 xfs_vm_readpage(
1160 	struct file		*unused,
1161 	struct page		*page)
1162 {
1163 	trace_xfs_vm_readpage(page->mapping->host, 1);
1164 	return iomap_readpage(page, &xfs_iomap_ops);
1165 }
1166 
1167 STATIC int
xfs_vm_readpages(struct file * unused,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)1168 xfs_vm_readpages(
1169 	struct file		*unused,
1170 	struct address_space	*mapping,
1171 	struct list_head	*pages,
1172 	unsigned		nr_pages)
1173 {
1174 	trace_xfs_vm_readpages(mapping->host, nr_pages);
1175 	return iomap_readpages(mapping, pages, nr_pages, &xfs_iomap_ops);
1176 }
1177 
1178 static int
xfs_iomap_swapfile_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)1179 xfs_iomap_swapfile_activate(
1180 	struct swap_info_struct		*sis,
1181 	struct file			*swap_file,
1182 	sector_t			*span)
1183 {
1184 	sis->bdev = xfs_find_bdev_for_inode(file_inode(swap_file));
1185 	return iomap_swapfile_activate(sis, swap_file, span, &xfs_iomap_ops);
1186 }
1187 
1188 const struct address_space_operations xfs_address_space_operations = {
1189 	.readpage		= xfs_vm_readpage,
1190 	.readpages		= xfs_vm_readpages,
1191 	.writepage		= xfs_vm_writepage,
1192 	.writepages		= xfs_vm_writepages,
1193 	.set_page_dirty		= iomap_set_page_dirty,
1194 	.releasepage		= xfs_vm_releasepage,
1195 	.invalidatepage		= xfs_vm_invalidatepage,
1196 	.bmap			= xfs_vm_bmap,
1197 	.direct_IO		= noop_direct_IO,
1198 	.migratepage		= iomap_migrate_page,
1199 	.is_partially_uptodate  = iomap_is_partially_uptodate,
1200 	.error_remove_page	= generic_error_remove_page,
1201 	.swap_activate		= xfs_iomap_swapfile_activate,
1202 };
1203 
1204 const struct address_space_operations xfs_dax_aops = {
1205 	.writepages		= xfs_dax_writepages,
1206 	.direct_IO		= noop_direct_IO,
1207 	.set_page_dirty		= noop_set_page_dirty,
1208 	.invalidatepage		= noop_invalidatepage,
1209 	.swap_activate		= xfs_iomap_swapfile_activate,
1210 };
1211