1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * sha1_base.h - core logic for SHA-1 implementations
4 *
5 * Copyright (C) 2015 Linaro Ltd <ard.biesheuvel@linaro.org>
6 */
7
8 #ifndef _CRYPTO_SHA1_BASE_H
9 #define _CRYPTO_SHA1_BASE_H
10
11 #include <crypto/internal/hash.h>
12 #include <crypto/sha.h>
13 #include <linux/crypto.h>
14 #include <linux/module.h>
15
16 #include <asm/unaligned.h>
17
18 typedef void (sha1_block_fn)(struct sha1_state *sst, u8 const *src, int blocks);
19
sha1_base_init(struct shash_desc * desc)20 static inline int sha1_base_init(struct shash_desc *desc)
21 {
22 struct sha1_state *sctx = shash_desc_ctx(desc);
23
24 sctx->state[0] = SHA1_H0;
25 sctx->state[1] = SHA1_H1;
26 sctx->state[2] = SHA1_H2;
27 sctx->state[3] = SHA1_H3;
28 sctx->state[4] = SHA1_H4;
29 sctx->count = 0;
30
31 return 0;
32 }
33
sha1_base_do_update(struct shash_desc * desc,const u8 * data,unsigned int len,sha1_block_fn * block_fn)34 static inline int sha1_base_do_update(struct shash_desc *desc,
35 const u8 *data,
36 unsigned int len,
37 sha1_block_fn *block_fn)
38 {
39 struct sha1_state *sctx = shash_desc_ctx(desc);
40 unsigned int partial = sctx->count % SHA1_BLOCK_SIZE;
41
42 sctx->count += len;
43
44 if (unlikely((partial + len) >= SHA1_BLOCK_SIZE)) {
45 int blocks;
46
47 if (partial) {
48 int p = SHA1_BLOCK_SIZE - partial;
49
50 memcpy(sctx->buffer + partial, data, p);
51 data += p;
52 len -= p;
53
54 block_fn(sctx, sctx->buffer, 1);
55 }
56
57 blocks = len / SHA1_BLOCK_SIZE;
58 len %= SHA1_BLOCK_SIZE;
59
60 if (blocks) {
61 block_fn(sctx, data, blocks);
62 data += blocks * SHA1_BLOCK_SIZE;
63 }
64 partial = 0;
65 }
66 if (len)
67 memcpy(sctx->buffer + partial, data, len);
68
69 return 0;
70 }
71
sha1_base_do_finalize(struct shash_desc * desc,sha1_block_fn * block_fn)72 static inline int sha1_base_do_finalize(struct shash_desc *desc,
73 sha1_block_fn *block_fn)
74 {
75 const int bit_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
76 struct sha1_state *sctx = shash_desc_ctx(desc);
77 __be64 *bits = (__be64 *)(sctx->buffer + bit_offset);
78 unsigned int partial = sctx->count % SHA1_BLOCK_SIZE;
79
80 sctx->buffer[partial++] = 0x80;
81 if (partial > bit_offset) {
82 memset(sctx->buffer + partial, 0x0, SHA1_BLOCK_SIZE - partial);
83 partial = 0;
84
85 block_fn(sctx, sctx->buffer, 1);
86 }
87
88 memset(sctx->buffer + partial, 0x0, bit_offset - partial);
89 *bits = cpu_to_be64(sctx->count << 3);
90 block_fn(sctx, sctx->buffer, 1);
91
92 return 0;
93 }
94
sha1_base_finish(struct shash_desc * desc,u8 * out)95 static inline int sha1_base_finish(struct shash_desc *desc, u8 *out)
96 {
97 struct sha1_state *sctx = shash_desc_ctx(desc);
98 __be32 *digest = (__be32 *)out;
99 int i;
100
101 for (i = 0; i < SHA1_DIGEST_SIZE / sizeof(__be32); i++)
102 put_unaligned_be32(sctx->state[i], digest++);
103
104 *sctx = (struct sha1_state){};
105 return 0;
106 }
107
108 #endif /* _CRYPTO_SHA1_BASE_H */
109