• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  *  Copyright 2017 - Free Electrons
4  *
5  *  Authors:
6  *	Boris Brezillon <boris.brezillon@free-electrons.com>
7  *	Peter Pan <peterpandong@micron.com>
8  */
9 
10 #ifndef __LINUX_MTD_NAND_H
11 #define __LINUX_MTD_NAND_H
12 
13 #include <linux/mtd/mtd.h>
14 
15 /**
16  * struct nand_memory_organization - Memory organization structure
17  * @bits_per_cell: number of bits per NAND cell
18  * @pagesize: page size
19  * @oobsize: OOB area size
20  * @pages_per_eraseblock: number of pages per eraseblock
21  * @eraseblocks_per_lun: number of eraseblocks per LUN (Logical Unit Number)
22  * @max_bad_eraseblocks_per_lun: maximum number of eraseblocks per LUN
23  * @planes_per_lun: number of planes per LUN
24  * @luns_per_target: number of LUN per target (target is a synonym for die)
25  * @ntargets: total number of targets exposed by the NAND device
26  */
27 struct nand_memory_organization {
28 	unsigned int bits_per_cell;
29 	unsigned int pagesize;
30 	unsigned int oobsize;
31 	unsigned int pages_per_eraseblock;
32 	unsigned int eraseblocks_per_lun;
33 	unsigned int max_bad_eraseblocks_per_lun;
34 	unsigned int planes_per_lun;
35 	unsigned int luns_per_target;
36 	unsigned int ntargets;
37 };
38 
39 #define NAND_MEMORG(bpc, ps, os, ppe, epl, mbb, ppl, lpt, nt)	\
40 	{							\
41 		.bits_per_cell = (bpc),				\
42 		.pagesize = (ps),				\
43 		.oobsize = (os),				\
44 		.pages_per_eraseblock = (ppe),			\
45 		.eraseblocks_per_lun = (epl),			\
46 		.max_bad_eraseblocks_per_lun = (mbb),		\
47 		.planes_per_lun = (ppl),			\
48 		.luns_per_target = (lpt),			\
49 		.ntargets = (nt),				\
50 	}
51 
52 /**
53  * struct nand_row_converter - Information needed to convert an absolute offset
54  *			       into a row address
55  * @lun_addr_shift: position of the LUN identifier in the row address
56  * @eraseblock_addr_shift: position of the eraseblock identifier in the row
57  *			   address
58  */
59 struct nand_row_converter {
60 	unsigned int lun_addr_shift;
61 	unsigned int eraseblock_addr_shift;
62 };
63 
64 /**
65  * struct nand_pos - NAND position object
66  * @target: the NAND target/die
67  * @lun: the LUN identifier
68  * @plane: the plane within the LUN
69  * @eraseblock: the eraseblock within the LUN
70  * @page: the page within the LUN
71  *
72  * These information are usually used by specific sub-layers to select the
73  * appropriate target/die and generate a row address to pass to the device.
74  */
75 struct nand_pos {
76 	unsigned int target;
77 	unsigned int lun;
78 	unsigned int plane;
79 	unsigned int eraseblock;
80 	unsigned int page;
81 };
82 
83 /**
84  * struct nand_page_io_req - NAND I/O request object
85  * @pos: the position this I/O request is targeting
86  * @dataoffs: the offset within the page
87  * @datalen: number of data bytes to read from/write to this page
88  * @databuf: buffer to store data in or get data from
89  * @ooboffs: the OOB offset within the page
90  * @ooblen: the number of OOB bytes to read from/write to this page
91  * @oobbuf: buffer to store OOB data in or get OOB data from
92  * @mode: one of the %MTD_OPS_XXX mode
93  *
94  * This object is used to pass per-page I/O requests to NAND sub-layers. This
95  * way all useful information are already formatted in a useful way and
96  * specific NAND layers can focus on translating these information into
97  * specific commands/operations.
98  */
99 struct nand_page_io_req {
100 	struct nand_pos pos;
101 	unsigned int dataoffs;
102 	unsigned int datalen;
103 	union {
104 		const void *out;
105 		void *in;
106 	} databuf;
107 	unsigned int ooboffs;
108 	unsigned int ooblen;
109 	union {
110 		const void *out;
111 		void *in;
112 	} oobbuf;
113 	int mode;
114 };
115 
116 /**
117  * struct nand_ecc_req - NAND ECC requirements
118  * @strength: ECC strength
119  * @step_size: ECC step/block size
120  */
121 struct nand_ecc_req {
122 	unsigned int strength;
123 	unsigned int step_size;
124 };
125 
126 #define NAND_ECCREQ(str, stp) { .strength = (str), .step_size = (stp) }
127 
128 /**
129  * struct nand_bbt - bad block table object
130  * @cache: in memory BBT cache
131  */
132 struct nand_bbt {
133 	unsigned long *cache;
134 };
135 
136 struct nand_device;
137 
138 /**
139  * struct nand_ops - NAND operations
140  * @erase: erase a specific block. No need to check if the block is bad before
141  *	   erasing, this has been taken care of by the generic NAND layer
142  * @markbad: mark a specific block bad. No need to check if the block is
143  *	     already marked bad, this has been taken care of by the generic
144  *	     NAND layer. This method should just write the BBM (Bad Block
145  *	     Marker) so that future call to struct_nand_ops->isbad() return
146  *	     true
147  * @isbad: check whether a block is bad or not. This method should just read
148  *	   the BBM and return whether the block is bad or not based on what it
149  *	   reads
150  *
151  * These are all low level operations that should be implemented by specialized
152  * NAND layers (SPI NAND, raw NAND, ...).
153  */
154 struct nand_ops {
155 	int (*erase)(struct nand_device *nand, const struct nand_pos *pos);
156 	int (*markbad)(struct nand_device *nand, const struct nand_pos *pos);
157 	bool (*isbad)(struct nand_device *nand, const struct nand_pos *pos);
158 };
159 
160 /**
161  * struct nand_device - NAND device
162  * @mtd: MTD instance attached to the NAND device
163  * @memorg: memory layout
164  * @eccreq: ECC requirements
165  * @rowconv: position to row address converter
166  * @bbt: bad block table info
167  * @ops: NAND operations attached to the NAND device
168  *
169  * Generic NAND object. Specialized NAND layers (raw NAND, SPI NAND, OneNAND)
170  * should declare their own NAND object embedding a nand_device struct (that's
171  * how inheritance is done).
172  * struct_nand_device->memorg and struct_nand_device->eccreq should be filled
173  * at device detection time to reflect the NAND device
174  * capabilities/requirements. Once this is done nanddev_init() can be called.
175  * It will take care of converting NAND information into MTD ones, which means
176  * the specialized NAND layers should never manually tweak
177  * struct_nand_device->mtd except for the ->_read/write() hooks.
178  */
179 struct nand_device {
180 	struct mtd_info mtd;
181 	struct nand_memory_organization memorg;
182 	struct nand_ecc_req eccreq;
183 	struct nand_row_converter rowconv;
184 	struct nand_bbt bbt;
185 	const struct nand_ops *ops;
186 };
187 
188 /**
189  * struct nand_io_iter - NAND I/O iterator
190  * @req: current I/O request
191  * @oobbytes_per_page: maximum number of OOB bytes per page
192  * @dataleft: remaining number of data bytes to read/write
193  * @oobleft: remaining number of OOB bytes to read/write
194  *
195  * Can be used by specialized NAND layers to iterate over all pages covered
196  * by an MTD I/O request, which should greatly simplifies the boiler-plate
197  * code needed to read/write data from/to a NAND device.
198  */
199 struct nand_io_iter {
200 	struct nand_page_io_req req;
201 	unsigned int oobbytes_per_page;
202 	unsigned int dataleft;
203 	unsigned int oobleft;
204 };
205 
206 /**
207  * mtd_to_nanddev() - Get the NAND device attached to the MTD instance
208  * @mtd: MTD instance
209  *
210  * Return: the NAND device embedding @mtd.
211  */
mtd_to_nanddev(struct mtd_info * mtd)212 static inline struct nand_device *mtd_to_nanddev(struct mtd_info *mtd)
213 {
214 	return container_of(mtd, struct nand_device, mtd);
215 }
216 
217 /**
218  * nanddev_to_mtd() - Get the MTD device attached to a NAND device
219  * @nand: NAND device
220  *
221  * Return: the MTD device embedded in @nand.
222  */
nanddev_to_mtd(struct nand_device * nand)223 static inline struct mtd_info *nanddev_to_mtd(struct nand_device *nand)
224 {
225 	return &nand->mtd;
226 }
227 
228 /*
229  * nanddev_bits_per_cell() - Get the number of bits per cell
230  * @nand: NAND device
231  *
232  * Return: the number of bits per cell.
233  */
nanddev_bits_per_cell(const struct nand_device * nand)234 static inline unsigned int nanddev_bits_per_cell(const struct nand_device *nand)
235 {
236 	return nand->memorg.bits_per_cell;
237 }
238 
239 /**
240  * nanddev_page_size() - Get NAND page size
241  * @nand: NAND device
242  *
243  * Return: the page size.
244  */
nanddev_page_size(const struct nand_device * nand)245 static inline size_t nanddev_page_size(const struct nand_device *nand)
246 {
247 	return nand->memorg.pagesize;
248 }
249 
250 /**
251  * nanddev_per_page_oobsize() - Get NAND OOB size
252  * @nand: NAND device
253  *
254  * Return: the OOB size.
255  */
256 static inline unsigned int
nanddev_per_page_oobsize(const struct nand_device * nand)257 nanddev_per_page_oobsize(const struct nand_device *nand)
258 {
259 	return nand->memorg.oobsize;
260 }
261 
262 /**
263  * nanddev_pages_per_eraseblock() - Get the number of pages per eraseblock
264  * @nand: NAND device
265  *
266  * Return: the number of pages per eraseblock.
267  */
268 static inline unsigned int
nanddev_pages_per_eraseblock(const struct nand_device * nand)269 nanddev_pages_per_eraseblock(const struct nand_device *nand)
270 {
271 	return nand->memorg.pages_per_eraseblock;
272 }
273 
274 /**
275  * nanddev_pages_per_target() - Get the number of pages per target
276  * @nand: NAND device
277  *
278  * Return: the number of pages per target.
279  */
280 static inline unsigned int
nanddev_pages_per_target(const struct nand_device * nand)281 nanddev_pages_per_target(const struct nand_device *nand)
282 {
283 	return nand->memorg.pages_per_eraseblock *
284 	       nand->memorg.eraseblocks_per_lun *
285 	       nand->memorg.luns_per_target;
286 }
287 
288 /**
289  * nanddev_per_page_oobsize() - Get NAND erase block size
290  * @nand: NAND device
291  *
292  * Return: the eraseblock size.
293  */
nanddev_eraseblock_size(const struct nand_device * nand)294 static inline size_t nanddev_eraseblock_size(const struct nand_device *nand)
295 {
296 	return nand->memorg.pagesize * nand->memorg.pages_per_eraseblock;
297 }
298 
299 /**
300  * nanddev_eraseblocks_per_lun() - Get the number of eraseblocks per LUN
301  * @nand: NAND device
302  *
303  * Return: the number of eraseblocks per LUN.
304  */
305 static inline unsigned int
nanddev_eraseblocks_per_lun(const struct nand_device * nand)306 nanddev_eraseblocks_per_lun(const struct nand_device *nand)
307 {
308 	return nand->memorg.eraseblocks_per_lun;
309 }
310 
311 /**
312  * nanddev_eraseblocks_per_target() - Get the number of eraseblocks per target
313  * @nand: NAND device
314  *
315  * Return: the number of eraseblocks per target.
316  */
317 static inline unsigned int
nanddev_eraseblocks_per_target(const struct nand_device * nand)318 nanddev_eraseblocks_per_target(const struct nand_device *nand)
319 {
320 	return nand->memorg.eraseblocks_per_lun * nand->memorg.luns_per_target;
321 }
322 
323 /**
324  * nanddev_target_size() - Get the total size provided by a single target/die
325  * @nand: NAND device
326  *
327  * Return: the total size exposed by a single target/die in bytes.
328  */
nanddev_target_size(const struct nand_device * nand)329 static inline u64 nanddev_target_size(const struct nand_device *nand)
330 {
331 	return (u64)nand->memorg.luns_per_target *
332 	       nand->memorg.eraseblocks_per_lun *
333 	       nand->memorg.pages_per_eraseblock *
334 	       nand->memorg.pagesize;
335 }
336 
337 /**
338  * nanddev_ntarget() - Get the total of targets
339  * @nand: NAND device
340  *
341  * Return: the number of targets/dies exposed by @nand.
342  */
nanddev_ntargets(const struct nand_device * nand)343 static inline unsigned int nanddev_ntargets(const struct nand_device *nand)
344 {
345 	return nand->memorg.ntargets;
346 }
347 
348 /**
349  * nanddev_neraseblocks() - Get the total number of eraseblocks
350  * @nand: NAND device
351  *
352  * Return: the total number of eraseblocks exposed by @nand.
353  */
nanddev_neraseblocks(const struct nand_device * nand)354 static inline unsigned int nanddev_neraseblocks(const struct nand_device *nand)
355 {
356 	return nand->memorg.ntargets * nand->memorg.luns_per_target *
357 	       nand->memorg.eraseblocks_per_lun;
358 }
359 
360 /**
361  * nanddev_size() - Get NAND size
362  * @nand: NAND device
363  *
364  * Return: the total size (in bytes) exposed by @nand.
365  */
nanddev_size(const struct nand_device * nand)366 static inline u64 nanddev_size(const struct nand_device *nand)
367 {
368 	return nanddev_target_size(nand) * nanddev_ntargets(nand);
369 }
370 
371 /**
372  * nanddev_get_memorg() - Extract memory organization info from a NAND device
373  * @nand: NAND device
374  *
375  * This can be used by the upper layer to fill the memorg info before calling
376  * nanddev_init().
377  *
378  * Return: the memorg object embedded in the NAND device.
379  */
380 static inline struct nand_memory_organization *
nanddev_get_memorg(struct nand_device * nand)381 nanddev_get_memorg(struct nand_device *nand)
382 {
383 	return &nand->memorg;
384 }
385 
386 int nanddev_init(struct nand_device *nand, const struct nand_ops *ops,
387 		 struct module *owner);
388 void nanddev_cleanup(struct nand_device *nand);
389 
390 /**
391  * nanddev_register() - Register a NAND device
392  * @nand: NAND device
393  *
394  * Register a NAND device.
395  * This function is just a wrapper around mtd_device_register()
396  * registering the MTD device embedded in @nand.
397  *
398  * Return: 0 in case of success, a negative error code otherwise.
399  */
nanddev_register(struct nand_device * nand)400 static inline int nanddev_register(struct nand_device *nand)
401 {
402 	return mtd_device_register(&nand->mtd, NULL, 0);
403 }
404 
405 /**
406  * nanddev_unregister() - Unregister a NAND device
407  * @nand: NAND device
408  *
409  * Unregister a NAND device.
410  * This function is just a wrapper around mtd_device_unregister()
411  * unregistering the MTD device embedded in @nand.
412  *
413  * Return: 0 in case of success, a negative error code otherwise.
414  */
nanddev_unregister(struct nand_device * nand)415 static inline int nanddev_unregister(struct nand_device *nand)
416 {
417 	return mtd_device_unregister(&nand->mtd);
418 }
419 
420 /**
421  * nanddev_set_of_node() - Attach a DT node to a NAND device
422  * @nand: NAND device
423  * @np: DT node
424  *
425  * Attach a DT node to a NAND device.
426  */
nanddev_set_of_node(struct nand_device * nand,struct device_node * np)427 static inline void nanddev_set_of_node(struct nand_device *nand,
428 				       struct device_node *np)
429 {
430 	mtd_set_of_node(&nand->mtd, np);
431 }
432 
433 /**
434  * nanddev_get_of_node() - Retrieve the DT node attached to a NAND device
435  * @nand: NAND device
436  *
437  * Return: the DT node attached to @nand.
438  */
nanddev_get_of_node(struct nand_device * nand)439 static inline struct device_node *nanddev_get_of_node(struct nand_device *nand)
440 {
441 	return mtd_get_of_node(&nand->mtd);
442 }
443 
444 /**
445  * nanddev_offs_to_pos() - Convert an absolute NAND offset into a NAND position
446  * @nand: NAND device
447  * @offs: absolute NAND offset (usually passed by the MTD layer)
448  * @pos: a NAND position object to fill in
449  *
450  * Converts @offs into a nand_pos representation.
451  *
452  * Return: the offset within the NAND page pointed by @pos.
453  */
nanddev_offs_to_pos(struct nand_device * nand,loff_t offs,struct nand_pos * pos)454 static inline unsigned int nanddev_offs_to_pos(struct nand_device *nand,
455 					       loff_t offs,
456 					       struct nand_pos *pos)
457 {
458 	unsigned int pageoffs;
459 	u64 tmp = offs;
460 
461 	pageoffs = do_div(tmp, nand->memorg.pagesize);
462 	pos->page = do_div(tmp, nand->memorg.pages_per_eraseblock);
463 	pos->eraseblock = do_div(tmp, nand->memorg.eraseblocks_per_lun);
464 	pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
465 	pos->lun = do_div(tmp, nand->memorg.luns_per_target);
466 	pos->target = tmp;
467 
468 	return pageoffs;
469 }
470 
471 /**
472  * nanddev_pos_cmp() - Compare two NAND positions
473  * @a: First NAND position
474  * @b: Second NAND position
475  *
476  * Compares two NAND positions.
477  *
478  * Return: -1 if @a < @b, 0 if @a == @b and 1 if @a > @b.
479  */
nanddev_pos_cmp(const struct nand_pos * a,const struct nand_pos * b)480 static inline int nanddev_pos_cmp(const struct nand_pos *a,
481 				  const struct nand_pos *b)
482 {
483 	if (a->target != b->target)
484 		return a->target < b->target ? -1 : 1;
485 
486 	if (a->lun != b->lun)
487 		return a->lun < b->lun ? -1 : 1;
488 
489 	if (a->eraseblock != b->eraseblock)
490 		return a->eraseblock < b->eraseblock ? -1 : 1;
491 
492 	if (a->page != b->page)
493 		return a->page < b->page ? -1 : 1;
494 
495 	return 0;
496 }
497 
498 /**
499  * nanddev_pos_to_offs() - Convert a NAND position into an absolute offset
500  * @nand: NAND device
501  * @pos: the NAND position to convert
502  *
503  * Converts @pos NAND position into an absolute offset.
504  *
505  * Return: the absolute offset. Note that @pos points to the beginning of a
506  *	   page, if one wants to point to a specific offset within this page
507  *	   the returned offset has to be adjusted manually.
508  */
nanddev_pos_to_offs(struct nand_device * nand,const struct nand_pos * pos)509 static inline loff_t nanddev_pos_to_offs(struct nand_device *nand,
510 					 const struct nand_pos *pos)
511 {
512 	unsigned int npages;
513 
514 	npages = pos->page +
515 		 ((pos->eraseblock +
516 		   (pos->lun +
517 		    (pos->target * nand->memorg.luns_per_target)) *
518 		   nand->memorg.eraseblocks_per_lun) *
519 		  nand->memorg.pages_per_eraseblock);
520 
521 	return (loff_t)npages * nand->memorg.pagesize;
522 }
523 
524 /**
525  * nanddev_pos_to_row() - Extract a row address from a NAND position
526  * @nand: NAND device
527  * @pos: the position to convert
528  *
529  * Converts a NAND position into a row address that can then be passed to the
530  * device.
531  *
532  * Return: the row address extracted from @pos.
533  */
nanddev_pos_to_row(struct nand_device * nand,const struct nand_pos * pos)534 static inline unsigned int nanddev_pos_to_row(struct nand_device *nand,
535 					      const struct nand_pos *pos)
536 {
537 	return (pos->lun << nand->rowconv.lun_addr_shift) |
538 	       (pos->eraseblock << nand->rowconv.eraseblock_addr_shift) |
539 	       pos->page;
540 }
541 
542 /**
543  * nanddev_pos_next_target() - Move a position to the next target/die
544  * @nand: NAND device
545  * @pos: the position to update
546  *
547  * Updates @pos to point to the start of the next target/die. Useful when you
548  * want to iterate over all targets/dies of a NAND device.
549  */
nanddev_pos_next_target(struct nand_device * nand,struct nand_pos * pos)550 static inline void nanddev_pos_next_target(struct nand_device *nand,
551 					   struct nand_pos *pos)
552 {
553 	pos->page = 0;
554 	pos->plane = 0;
555 	pos->eraseblock = 0;
556 	pos->lun = 0;
557 	pos->target++;
558 }
559 
560 /**
561  * nanddev_pos_next_lun() - Move a position to the next LUN
562  * @nand: NAND device
563  * @pos: the position to update
564  *
565  * Updates @pos to point to the start of the next LUN. Useful when you want to
566  * iterate over all LUNs of a NAND device.
567  */
nanddev_pos_next_lun(struct nand_device * nand,struct nand_pos * pos)568 static inline void nanddev_pos_next_lun(struct nand_device *nand,
569 					struct nand_pos *pos)
570 {
571 	if (pos->lun >= nand->memorg.luns_per_target - 1)
572 		return nanddev_pos_next_target(nand, pos);
573 
574 	pos->lun++;
575 	pos->page = 0;
576 	pos->plane = 0;
577 	pos->eraseblock = 0;
578 }
579 
580 /**
581  * nanddev_pos_next_eraseblock() - Move a position to the next eraseblock
582  * @nand: NAND device
583  * @pos: the position to update
584  *
585  * Updates @pos to point to the start of the next eraseblock. Useful when you
586  * want to iterate over all eraseblocks of a NAND device.
587  */
nanddev_pos_next_eraseblock(struct nand_device * nand,struct nand_pos * pos)588 static inline void nanddev_pos_next_eraseblock(struct nand_device *nand,
589 					       struct nand_pos *pos)
590 {
591 	if (pos->eraseblock >= nand->memorg.eraseblocks_per_lun - 1)
592 		return nanddev_pos_next_lun(nand, pos);
593 
594 	pos->eraseblock++;
595 	pos->page = 0;
596 	pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
597 }
598 
599 /**
600  * nanddev_pos_next_page() - Move a position to the next page
601  * @nand: NAND device
602  * @pos: the position to update
603  *
604  * Updates @pos to point to the start of the next page. Useful when you want to
605  * iterate over all pages of a NAND device.
606  */
nanddev_pos_next_page(struct nand_device * nand,struct nand_pos * pos)607 static inline void nanddev_pos_next_page(struct nand_device *nand,
608 					 struct nand_pos *pos)
609 {
610 	if (pos->page >= nand->memorg.pages_per_eraseblock - 1)
611 		return nanddev_pos_next_eraseblock(nand, pos);
612 
613 	pos->page++;
614 }
615 
616 /**
617  * nand_io_iter_init - Initialize a NAND I/O iterator
618  * @nand: NAND device
619  * @offs: absolute offset
620  * @req: MTD request
621  * @iter: NAND I/O iterator
622  *
623  * Initializes a NAND iterator based on the information passed by the MTD
624  * layer.
625  */
nanddev_io_iter_init(struct nand_device * nand,loff_t offs,struct mtd_oob_ops * req,struct nand_io_iter * iter)626 static inline void nanddev_io_iter_init(struct nand_device *nand,
627 					loff_t offs, struct mtd_oob_ops *req,
628 					struct nand_io_iter *iter)
629 {
630 	struct mtd_info *mtd = nanddev_to_mtd(nand);
631 
632 	iter->req.mode = req->mode;
633 	iter->req.dataoffs = nanddev_offs_to_pos(nand, offs, &iter->req.pos);
634 	iter->req.ooboffs = req->ooboffs;
635 	iter->oobbytes_per_page = mtd_oobavail(mtd, req);
636 	iter->dataleft = req->len;
637 	iter->oobleft = req->ooblen;
638 	iter->req.databuf.in = req->datbuf;
639 	iter->req.datalen = min_t(unsigned int,
640 				  nand->memorg.pagesize - iter->req.dataoffs,
641 				  iter->dataleft);
642 	iter->req.oobbuf.in = req->oobbuf;
643 	iter->req.ooblen = min_t(unsigned int,
644 				 iter->oobbytes_per_page - iter->req.ooboffs,
645 				 iter->oobleft);
646 }
647 
648 /**
649  * nand_io_iter_next_page - Move to the next page
650  * @nand: NAND device
651  * @iter: NAND I/O iterator
652  *
653  * Updates the @iter to point to the next page.
654  */
nanddev_io_iter_next_page(struct nand_device * nand,struct nand_io_iter * iter)655 static inline void nanddev_io_iter_next_page(struct nand_device *nand,
656 					     struct nand_io_iter *iter)
657 {
658 	nanddev_pos_next_page(nand, &iter->req.pos);
659 	iter->dataleft -= iter->req.datalen;
660 	iter->req.databuf.in += iter->req.datalen;
661 	iter->oobleft -= iter->req.ooblen;
662 	iter->req.oobbuf.in += iter->req.ooblen;
663 	iter->req.dataoffs = 0;
664 	iter->req.ooboffs = 0;
665 	iter->req.datalen = min_t(unsigned int, nand->memorg.pagesize,
666 				  iter->dataleft);
667 	iter->req.ooblen = min_t(unsigned int, iter->oobbytes_per_page,
668 				 iter->oobleft);
669 }
670 
671 /**
672  * nand_io_iter_end - Should end iteration or not
673  * @nand: NAND device
674  * @iter: NAND I/O iterator
675  *
676  * Check whether @iter has reached the end of the NAND portion it was asked to
677  * iterate on or not.
678  *
679  * Return: true if @iter has reached the end of the iteration request, false
680  *	   otherwise.
681  */
nanddev_io_iter_end(struct nand_device * nand,const struct nand_io_iter * iter)682 static inline bool nanddev_io_iter_end(struct nand_device *nand,
683 				       const struct nand_io_iter *iter)
684 {
685 	if (iter->dataleft || iter->oobleft)
686 		return false;
687 
688 	return true;
689 }
690 
691 /**
692  * nand_io_for_each_page - Iterate over all NAND pages contained in an MTD I/O
693  *			   request
694  * @nand: NAND device
695  * @start: start address to read/write from
696  * @req: MTD I/O request
697  * @iter: NAND I/O iterator
698  *
699  * Should be used for iterate over pages that are contained in an MTD request.
700  */
701 #define nanddev_io_for_each_page(nand, start, req, iter)		\
702 	for (nanddev_io_iter_init(nand, start, req, iter);		\
703 	     !nanddev_io_iter_end(nand, iter);				\
704 	     nanddev_io_iter_next_page(nand, iter))
705 
706 bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos);
707 bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos);
708 int nanddev_erase(struct nand_device *nand, const struct nand_pos *pos);
709 int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos);
710 
711 /* BBT related functions */
712 enum nand_bbt_block_status {
713 	NAND_BBT_BLOCK_STATUS_UNKNOWN,
714 	NAND_BBT_BLOCK_GOOD,
715 	NAND_BBT_BLOCK_WORN,
716 	NAND_BBT_BLOCK_RESERVED,
717 	NAND_BBT_BLOCK_FACTORY_BAD,
718 	NAND_BBT_BLOCK_NUM_STATUS,
719 };
720 
721 int nanddev_bbt_init(struct nand_device *nand);
722 void nanddev_bbt_cleanup(struct nand_device *nand);
723 int nanddev_bbt_update(struct nand_device *nand);
724 int nanddev_bbt_get_block_status(const struct nand_device *nand,
725 				 unsigned int entry);
726 int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry,
727 				 enum nand_bbt_block_status status);
728 int nanddev_bbt_markbad(struct nand_device *nand, unsigned int block);
729 
730 /**
731  * nanddev_bbt_pos_to_entry() - Convert a NAND position into a BBT entry
732  * @nand: NAND device
733  * @pos: the NAND position we want to get BBT entry for
734  *
735  * Return the BBT entry used to store information about the eraseblock pointed
736  * by @pos.
737  *
738  * Return: the BBT entry storing information about eraseblock pointed by @pos.
739  */
nanddev_bbt_pos_to_entry(struct nand_device * nand,const struct nand_pos * pos)740 static inline unsigned int nanddev_bbt_pos_to_entry(struct nand_device *nand,
741 						    const struct nand_pos *pos)
742 {
743 	return pos->eraseblock +
744 	       ((pos->lun + (pos->target * nand->memorg.luns_per_target)) *
745 		nand->memorg.eraseblocks_per_lun);
746 }
747 
748 /**
749  * nanddev_bbt_is_initialized() - Check if the BBT has been initialized
750  * @nand: NAND device
751  *
752  * Return: true if the BBT has been initialized, false otherwise.
753  */
nanddev_bbt_is_initialized(struct nand_device * nand)754 static inline bool nanddev_bbt_is_initialized(struct nand_device *nand)
755 {
756 	return !!nand->bbt.cache;
757 }
758 
759 /* MTD -> NAND helper functions. */
760 int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo);
761 int nanddev_mtd_max_bad_blocks(struct mtd_info *mtd, loff_t offs, size_t len);
762 
763 #endif /* __LINUX_MTD_NAND_H */
764