1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_MM_H
3 #define _LINUX_SCHED_MM_H
4
5 #include <linux/kernel.h>
6 #include <linux/atomic.h>
7 #include <linux/sched.h>
8 #include <linux/mm_types.h>
9 #include <linux/gfp.h>
10 #include <linux/sync_core.h>
11
12 /*
13 * Routines for handling mm_structs
14 */
15 extern struct mm_struct *mm_alloc(void);
16
17 /**
18 * mmgrab() - Pin a &struct mm_struct.
19 * @mm: The &struct mm_struct to pin.
20 *
21 * Make sure that @mm will not get freed even after the owning task
22 * exits. This doesn't guarantee that the associated address space
23 * will still exist later on and mmget_not_zero() has to be used before
24 * accessing it.
25 *
26 * This is a preferred way to to pin @mm for a longer/unbounded amount
27 * of time.
28 *
29 * Use mmdrop() to release the reference acquired by mmgrab().
30 *
31 * See also <Documentation/vm/active_mm.rst> for an in-depth explanation
32 * of &mm_struct.mm_count vs &mm_struct.mm_users.
33 */
mmgrab(struct mm_struct * mm)34 static inline void mmgrab(struct mm_struct *mm)
35 {
36 atomic_inc(&mm->mm_count);
37 }
38
39 extern void __mmdrop(struct mm_struct *mm);
40
mmdrop(struct mm_struct * mm)41 static inline void mmdrop(struct mm_struct *mm)
42 {
43 /*
44 * The implicit full barrier implied by atomic_dec_and_test() is
45 * required by the membarrier system call before returning to
46 * user-space, after storing to rq->curr.
47 */
48 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
49 __mmdrop(mm);
50 }
51
52 /*
53 * This has to be called after a get_task_mm()/mmget_not_zero()
54 * followed by taking the mmap_sem for writing before modifying the
55 * vmas or anything the coredump pretends not to change from under it.
56 *
57 * It also has to be called when mmgrab() is used in the context of
58 * the process, but then the mm_count refcount is transferred outside
59 * the context of the process to run down_write() on that pinned mm.
60 *
61 * NOTE: find_extend_vma() called from GUP context is the only place
62 * that can modify the "mm" (notably the vm_start/end) under mmap_sem
63 * for reading and outside the context of the process, so it is also
64 * the only case that holds the mmap_sem for reading that must call
65 * this function. Generally if the mmap_sem is hold for reading
66 * there's no need of this check after get_task_mm()/mmget_not_zero().
67 *
68 * This function can be obsoleted and the check can be removed, after
69 * the coredump code will hold the mmap_sem for writing before
70 * invoking the ->core_dump methods.
71 */
mmget_still_valid(struct mm_struct * mm)72 static inline bool mmget_still_valid(struct mm_struct *mm)
73 {
74 return likely(!mm->core_state);
75 }
76
77 /**
78 * mmget() - Pin the address space associated with a &struct mm_struct.
79 * @mm: The address space to pin.
80 *
81 * Make sure that the address space of the given &struct mm_struct doesn't
82 * go away. This does not protect against parts of the address space being
83 * modified or freed, however.
84 *
85 * Never use this function to pin this address space for an
86 * unbounded/indefinite amount of time.
87 *
88 * Use mmput() to release the reference acquired by mmget().
89 *
90 * See also <Documentation/vm/active_mm.rst> for an in-depth explanation
91 * of &mm_struct.mm_count vs &mm_struct.mm_users.
92 */
mmget(struct mm_struct * mm)93 static inline void mmget(struct mm_struct *mm)
94 {
95 atomic_inc(&mm->mm_users);
96 }
97
mmget_not_zero(struct mm_struct * mm)98 static inline bool mmget_not_zero(struct mm_struct *mm)
99 {
100 return atomic_inc_not_zero(&mm->mm_users);
101 }
102
103 /* mmput gets rid of the mappings and all user-space */
104 extern void mmput(struct mm_struct *);
105 #ifdef CONFIG_MMU
106 /* same as above but performs the slow path from the async context. Can
107 * be called from the atomic context as well
108 */
109 void mmput_async(struct mm_struct *);
110 #endif
111
112 /* Grab a reference to a task's mm, if it is not already going away */
113 extern struct mm_struct *get_task_mm(struct task_struct *task);
114 /*
115 * Grab a reference to a task's mm, if it is not already going away
116 * and ptrace_may_access with the mode parameter passed to it
117 * succeeds.
118 */
119 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
120 /* Remove the current tasks stale references to the old mm_struct on exit() */
121 extern void exit_mm_release(struct task_struct *, struct mm_struct *);
122 /* Remove the current tasks stale references to the old mm_struct on exec() */
123 extern void exec_mm_release(struct task_struct *, struct mm_struct *);
124
125 #ifdef CONFIG_MEMCG
126 extern void mm_update_next_owner(struct mm_struct *mm);
127 #else
mm_update_next_owner(struct mm_struct * mm)128 static inline void mm_update_next_owner(struct mm_struct *mm)
129 {
130 }
131 #endif /* CONFIG_MEMCG */
132
133 #ifdef CONFIG_MMU
134 extern void arch_pick_mmap_layout(struct mm_struct *mm,
135 struct rlimit *rlim_stack);
136 extern unsigned long
137 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
138 unsigned long, unsigned long);
139 extern unsigned long
140 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
141 unsigned long len, unsigned long pgoff,
142 unsigned long flags);
143 #else
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)144 static inline void arch_pick_mmap_layout(struct mm_struct *mm,
145 struct rlimit *rlim_stack) {}
146 #endif
147
in_vfork(struct task_struct * tsk)148 static inline bool in_vfork(struct task_struct *tsk)
149 {
150 bool ret;
151
152 /*
153 * need RCU to access ->real_parent if CLONE_VM was used along with
154 * CLONE_PARENT.
155 *
156 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
157 * imply CLONE_VM
158 *
159 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
160 * ->real_parent is not necessarily the task doing vfork(), so in
161 * theory we can't rely on task_lock() if we want to dereference it.
162 *
163 * And in this case we can't trust the real_parent->mm == tsk->mm
164 * check, it can be false negative. But we do not care, if init or
165 * another oom-unkillable task does this it should blame itself.
166 */
167 rcu_read_lock();
168 ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm;
169 rcu_read_unlock();
170
171 return ret;
172 }
173
174 /*
175 * Applies per-task gfp context to the given allocation flags.
176 * PF_MEMALLOC_NOIO implies GFP_NOIO
177 * PF_MEMALLOC_NOFS implies GFP_NOFS
178 * PF_MEMALLOC_NOCMA implies no allocation from CMA region.
179 */
current_gfp_context(gfp_t flags)180 static inline gfp_t current_gfp_context(gfp_t flags)
181 {
182 if (unlikely(current->flags &
183 (PF_MEMALLOC_NOIO | PF_MEMALLOC_NOFS | PF_MEMALLOC_NOCMA))) {
184 /*
185 * NOIO implies both NOIO and NOFS and it is a weaker context
186 * so always make sure it makes precedence
187 */
188 if (current->flags & PF_MEMALLOC_NOIO)
189 flags &= ~(__GFP_IO | __GFP_FS);
190 else if (current->flags & PF_MEMALLOC_NOFS)
191 flags &= ~__GFP_FS;
192 #ifdef CONFIG_CMA
193 if (current->flags & PF_MEMALLOC_NOCMA)
194 flags &= ~__GFP_MOVABLE;
195 #endif
196 }
197 return flags;
198 }
199
200 #ifdef CONFIG_LOCKDEP
201 extern void __fs_reclaim_acquire(void);
202 extern void __fs_reclaim_release(void);
203 extern void fs_reclaim_acquire(gfp_t gfp_mask);
204 extern void fs_reclaim_release(gfp_t gfp_mask);
205 #else
__fs_reclaim_acquire(void)206 static inline void __fs_reclaim_acquire(void) { }
__fs_reclaim_release(void)207 static inline void __fs_reclaim_release(void) { }
fs_reclaim_acquire(gfp_t gfp_mask)208 static inline void fs_reclaim_acquire(gfp_t gfp_mask) { }
fs_reclaim_release(gfp_t gfp_mask)209 static inline void fs_reclaim_release(gfp_t gfp_mask) { }
210 #endif
211
212 /**
213 * memalloc_noio_save - Marks implicit GFP_NOIO allocation scope.
214 *
215 * This functions marks the beginning of the GFP_NOIO allocation scope.
216 * All further allocations will implicitly drop __GFP_IO flag and so
217 * they are safe for the IO critical section from the allocation recursion
218 * point of view. Use memalloc_noio_restore to end the scope with flags
219 * returned by this function.
220 *
221 * This function is safe to be used from any context.
222 */
memalloc_noio_save(void)223 static inline unsigned int memalloc_noio_save(void)
224 {
225 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
226 current->flags |= PF_MEMALLOC_NOIO;
227 return flags;
228 }
229
230 /**
231 * memalloc_noio_restore - Ends the implicit GFP_NOIO scope.
232 * @flags: Flags to restore.
233 *
234 * Ends the implicit GFP_NOIO scope started by memalloc_noio_save function.
235 * Always make sure that that the given flags is the return value from the
236 * pairing memalloc_noio_save call.
237 */
memalloc_noio_restore(unsigned int flags)238 static inline void memalloc_noio_restore(unsigned int flags)
239 {
240 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
241 }
242
243 /**
244 * memalloc_nofs_save - Marks implicit GFP_NOFS allocation scope.
245 *
246 * This functions marks the beginning of the GFP_NOFS allocation scope.
247 * All further allocations will implicitly drop __GFP_FS flag and so
248 * they are safe for the FS critical section from the allocation recursion
249 * point of view. Use memalloc_nofs_restore to end the scope with flags
250 * returned by this function.
251 *
252 * This function is safe to be used from any context.
253 */
memalloc_nofs_save(void)254 static inline unsigned int memalloc_nofs_save(void)
255 {
256 unsigned int flags = current->flags & PF_MEMALLOC_NOFS;
257 current->flags |= PF_MEMALLOC_NOFS;
258 return flags;
259 }
260
261 /**
262 * memalloc_nofs_restore - Ends the implicit GFP_NOFS scope.
263 * @flags: Flags to restore.
264 *
265 * Ends the implicit GFP_NOFS scope started by memalloc_nofs_save function.
266 * Always make sure that that the given flags is the return value from the
267 * pairing memalloc_nofs_save call.
268 */
memalloc_nofs_restore(unsigned int flags)269 static inline void memalloc_nofs_restore(unsigned int flags)
270 {
271 current->flags = (current->flags & ~PF_MEMALLOC_NOFS) | flags;
272 }
273
memalloc_noreclaim_save(void)274 static inline unsigned int memalloc_noreclaim_save(void)
275 {
276 unsigned int flags = current->flags & PF_MEMALLOC;
277 current->flags |= PF_MEMALLOC;
278 return flags;
279 }
280
memalloc_noreclaim_restore(unsigned int flags)281 static inline void memalloc_noreclaim_restore(unsigned int flags)
282 {
283 current->flags = (current->flags & ~PF_MEMALLOC) | flags;
284 }
285
286 #ifdef CONFIG_CMA
memalloc_nocma_save(void)287 static inline unsigned int memalloc_nocma_save(void)
288 {
289 unsigned int flags = current->flags & PF_MEMALLOC_NOCMA;
290
291 current->flags |= PF_MEMALLOC_NOCMA;
292 return flags;
293 }
294
memalloc_nocma_restore(unsigned int flags)295 static inline void memalloc_nocma_restore(unsigned int flags)
296 {
297 current->flags = (current->flags & ~PF_MEMALLOC_NOCMA) | flags;
298 }
299 #else
memalloc_nocma_save(void)300 static inline unsigned int memalloc_nocma_save(void)
301 {
302 return 0;
303 }
304
memalloc_nocma_restore(unsigned int flags)305 static inline void memalloc_nocma_restore(unsigned int flags)
306 {
307 }
308 #endif
309
310 #ifdef CONFIG_MEMCG
311 /**
312 * memalloc_use_memcg - Starts the remote memcg charging scope.
313 * @memcg: memcg to charge.
314 *
315 * This function marks the beginning of the remote memcg charging scope. All the
316 * __GFP_ACCOUNT allocations till the end of the scope will be charged to the
317 * given memcg.
318 *
319 * NOTE: This function is not nesting safe.
320 */
memalloc_use_memcg(struct mem_cgroup * memcg)321 static inline void memalloc_use_memcg(struct mem_cgroup *memcg)
322 {
323 WARN_ON_ONCE(current->active_memcg);
324 current->active_memcg = memcg;
325 }
326
327 /**
328 * memalloc_unuse_memcg - Ends the remote memcg charging scope.
329 *
330 * This function marks the end of the remote memcg charging scope started by
331 * memalloc_use_memcg().
332 */
memalloc_unuse_memcg(void)333 static inline void memalloc_unuse_memcg(void)
334 {
335 current->active_memcg = NULL;
336 }
337 #else
memalloc_use_memcg(struct mem_cgroup * memcg)338 static inline void memalloc_use_memcg(struct mem_cgroup *memcg)
339 {
340 }
341
memalloc_unuse_memcg(void)342 static inline void memalloc_unuse_memcg(void)
343 {
344 }
345 #endif
346
347 #ifdef CONFIG_MEMBARRIER
348 enum {
349 MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY = (1U << 0),
350 MEMBARRIER_STATE_PRIVATE_EXPEDITED = (1U << 1),
351 MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY = (1U << 2),
352 MEMBARRIER_STATE_GLOBAL_EXPEDITED = (1U << 3),
353 MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY = (1U << 4),
354 MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE = (1U << 5),
355 };
356
357 enum {
358 MEMBARRIER_FLAG_SYNC_CORE = (1U << 0),
359 };
360
361 #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
362 #include <asm/membarrier.h>
363 #endif
364
membarrier_mm_sync_core_before_usermode(struct mm_struct * mm)365 static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
366 {
367 if (current->mm != mm)
368 return;
369 if (likely(!(atomic_read(&mm->membarrier_state) &
370 MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE)))
371 return;
372 sync_core_before_usermode();
373 }
374
375 extern void membarrier_exec_mmap(struct mm_struct *mm);
376
377 #else
378 #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
membarrier_arch_switch_mm(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)379 static inline void membarrier_arch_switch_mm(struct mm_struct *prev,
380 struct mm_struct *next,
381 struct task_struct *tsk)
382 {
383 }
384 #endif
membarrier_exec_mmap(struct mm_struct * mm)385 static inline void membarrier_exec_mmap(struct mm_struct *mm)
386 {
387 }
membarrier_mm_sync_core_before_usermode(struct mm_struct * mm)388 static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
389 {
390 }
391 #endif
392
393 #endif /* _LINUX_SCHED_MM_H */
394