1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 */ 8 #ifndef _UAPI__LINUX_BPF_H__ 9 #define _UAPI__LINUX_BPF_H__ 10 11 #include <linux/types.h> 12 #include <linux/bpf_common.h> 13 14 /* Extended instruction set based on top of classic BPF */ 15 16 /* instruction classes */ 17 #define BPF_JMP32 0x06 /* jmp mode in word width */ 18 #define BPF_ALU64 0x07 /* alu mode in double word width */ 19 20 /* ld/ldx fields */ 21 #define BPF_DW 0x18 /* double word (64-bit) */ 22 #define BPF_XADD 0xc0 /* exclusive add */ 23 24 /* alu/jmp fields */ 25 #define BPF_MOV 0xb0 /* mov reg to reg */ 26 #define BPF_ARSH 0xc0 /* sign extending arithmetic shift right */ 27 28 /* change endianness of a register */ 29 #define BPF_END 0xd0 /* flags for endianness conversion: */ 30 #define BPF_TO_LE 0x00 /* convert to little-endian */ 31 #define BPF_TO_BE 0x08 /* convert to big-endian */ 32 #define BPF_FROM_LE BPF_TO_LE 33 #define BPF_FROM_BE BPF_TO_BE 34 35 /* jmp encodings */ 36 #define BPF_JNE 0x50 /* jump != */ 37 #define BPF_JLT 0xa0 /* LT is unsigned, '<' */ 38 #define BPF_JLE 0xb0 /* LE is unsigned, '<=' */ 39 #define BPF_JSGT 0x60 /* SGT is signed '>', GT in x86 */ 40 #define BPF_JSGE 0x70 /* SGE is signed '>=', GE in x86 */ 41 #define BPF_JSLT 0xc0 /* SLT is signed, '<' */ 42 #define BPF_JSLE 0xd0 /* SLE is signed, '<=' */ 43 #define BPF_CALL 0x80 /* function call */ 44 #define BPF_EXIT 0x90 /* function return */ 45 46 /* Register numbers */ 47 enum { 48 BPF_REG_0 = 0, 49 BPF_REG_1, 50 BPF_REG_2, 51 BPF_REG_3, 52 BPF_REG_4, 53 BPF_REG_5, 54 BPF_REG_6, 55 BPF_REG_7, 56 BPF_REG_8, 57 BPF_REG_9, 58 BPF_REG_10, 59 __MAX_BPF_REG, 60 }; 61 62 /* BPF has 10 general purpose 64-bit registers and stack frame. */ 63 #define MAX_BPF_REG __MAX_BPF_REG 64 65 struct bpf_insn { 66 __u8 code; /* opcode */ 67 __u8 dst_reg:4; /* dest register */ 68 __u8 src_reg:4; /* source register */ 69 __s16 off; /* signed offset */ 70 __s32 imm; /* signed immediate constant */ 71 }; 72 73 /* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */ 74 struct bpf_lpm_trie_key { 75 __u32 prefixlen; /* up to 32 for AF_INET, 128 for AF_INET6 */ 76 __u8 data[0]; /* Arbitrary size */ 77 }; 78 79 struct bpf_cgroup_storage_key { 80 __u64 cgroup_inode_id; /* cgroup inode id */ 81 __u32 attach_type; /* program attach type */ 82 }; 83 84 /* BPF syscall commands, see bpf(2) man-page for details. */ 85 enum bpf_cmd { 86 BPF_MAP_CREATE, 87 BPF_MAP_LOOKUP_ELEM, 88 BPF_MAP_UPDATE_ELEM, 89 BPF_MAP_DELETE_ELEM, 90 BPF_MAP_GET_NEXT_KEY, 91 BPF_PROG_LOAD, 92 BPF_OBJ_PIN, 93 BPF_OBJ_GET, 94 BPF_PROG_ATTACH, 95 BPF_PROG_DETACH, 96 BPF_PROG_TEST_RUN, 97 BPF_PROG_GET_NEXT_ID, 98 BPF_MAP_GET_NEXT_ID, 99 BPF_PROG_GET_FD_BY_ID, 100 BPF_MAP_GET_FD_BY_ID, 101 BPF_OBJ_GET_INFO_BY_FD, 102 BPF_PROG_QUERY, 103 BPF_RAW_TRACEPOINT_OPEN, 104 BPF_BTF_LOAD, 105 BPF_BTF_GET_FD_BY_ID, 106 BPF_TASK_FD_QUERY, 107 BPF_MAP_LOOKUP_AND_DELETE_ELEM, 108 BPF_MAP_FREEZE, 109 BPF_BTF_GET_NEXT_ID, 110 }; 111 112 enum bpf_map_type { 113 BPF_MAP_TYPE_UNSPEC, 114 BPF_MAP_TYPE_HASH, 115 BPF_MAP_TYPE_ARRAY, 116 BPF_MAP_TYPE_PROG_ARRAY, 117 BPF_MAP_TYPE_PERF_EVENT_ARRAY, 118 BPF_MAP_TYPE_PERCPU_HASH, 119 BPF_MAP_TYPE_PERCPU_ARRAY, 120 BPF_MAP_TYPE_STACK_TRACE, 121 BPF_MAP_TYPE_CGROUP_ARRAY, 122 BPF_MAP_TYPE_LRU_HASH, 123 BPF_MAP_TYPE_LRU_PERCPU_HASH, 124 BPF_MAP_TYPE_LPM_TRIE, 125 BPF_MAP_TYPE_ARRAY_OF_MAPS, 126 BPF_MAP_TYPE_HASH_OF_MAPS, 127 BPF_MAP_TYPE_DEVMAP, 128 BPF_MAP_TYPE_SOCKMAP, 129 BPF_MAP_TYPE_CPUMAP, 130 BPF_MAP_TYPE_XSKMAP, 131 BPF_MAP_TYPE_SOCKHASH, 132 BPF_MAP_TYPE_CGROUP_STORAGE, 133 BPF_MAP_TYPE_REUSEPORT_SOCKARRAY, 134 BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE, 135 BPF_MAP_TYPE_QUEUE, 136 BPF_MAP_TYPE_STACK, 137 BPF_MAP_TYPE_SK_STORAGE, 138 BPF_MAP_TYPE_DEVMAP_HASH, 139 }; 140 141 /* Note that tracing related programs such as 142 * BPF_PROG_TYPE_{KPROBE,TRACEPOINT,PERF_EVENT,RAW_TRACEPOINT} 143 * are not subject to a stable API since kernel internal data 144 * structures can change from release to release and may 145 * therefore break existing tracing BPF programs. Tracing BPF 146 * programs correspond to /a/ specific kernel which is to be 147 * analyzed, and not /a/ specific kernel /and/ all future ones. 148 */ 149 enum bpf_prog_type { 150 BPF_PROG_TYPE_UNSPEC, 151 BPF_PROG_TYPE_SOCKET_FILTER, 152 BPF_PROG_TYPE_KPROBE, 153 BPF_PROG_TYPE_SCHED_CLS, 154 BPF_PROG_TYPE_SCHED_ACT, 155 BPF_PROG_TYPE_TRACEPOINT, 156 BPF_PROG_TYPE_XDP, 157 BPF_PROG_TYPE_PERF_EVENT, 158 BPF_PROG_TYPE_CGROUP_SKB, 159 BPF_PROG_TYPE_CGROUP_SOCK, 160 BPF_PROG_TYPE_LWT_IN, 161 BPF_PROG_TYPE_LWT_OUT, 162 BPF_PROG_TYPE_LWT_XMIT, 163 BPF_PROG_TYPE_SOCK_OPS, 164 BPF_PROG_TYPE_SK_SKB, 165 BPF_PROG_TYPE_CGROUP_DEVICE, 166 BPF_PROG_TYPE_SK_MSG, 167 BPF_PROG_TYPE_RAW_TRACEPOINT, 168 BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 169 BPF_PROG_TYPE_LWT_SEG6LOCAL, 170 BPF_PROG_TYPE_LIRC_MODE2, 171 BPF_PROG_TYPE_SK_REUSEPORT, 172 BPF_PROG_TYPE_FLOW_DISSECTOR, 173 BPF_PROG_TYPE_CGROUP_SYSCTL, 174 BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, 175 BPF_PROG_TYPE_CGROUP_SOCKOPT, 176 }; 177 178 enum bpf_attach_type { 179 BPF_CGROUP_INET_INGRESS, 180 BPF_CGROUP_INET_EGRESS, 181 BPF_CGROUP_INET_SOCK_CREATE, 182 BPF_CGROUP_SOCK_OPS, 183 BPF_SK_SKB_STREAM_PARSER, 184 BPF_SK_SKB_STREAM_VERDICT, 185 BPF_CGROUP_DEVICE, 186 BPF_SK_MSG_VERDICT, 187 BPF_CGROUP_INET4_BIND, 188 BPF_CGROUP_INET6_BIND, 189 BPF_CGROUP_INET4_CONNECT, 190 BPF_CGROUP_INET6_CONNECT, 191 BPF_CGROUP_INET4_POST_BIND, 192 BPF_CGROUP_INET6_POST_BIND, 193 BPF_CGROUP_UDP4_SENDMSG, 194 BPF_CGROUP_UDP6_SENDMSG, 195 BPF_LIRC_MODE2, 196 BPF_FLOW_DISSECTOR, 197 BPF_CGROUP_SYSCTL, 198 BPF_CGROUP_UDP4_RECVMSG, 199 BPF_CGROUP_UDP6_RECVMSG, 200 BPF_CGROUP_GETSOCKOPT, 201 BPF_CGROUP_SETSOCKOPT, 202 __MAX_BPF_ATTACH_TYPE 203 }; 204 205 #define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE 206 207 /* cgroup-bpf attach flags used in BPF_PROG_ATTACH command 208 * 209 * NONE(default): No further bpf programs allowed in the subtree. 210 * 211 * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program, 212 * the program in this cgroup yields to sub-cgroup program. 213 * 214 * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program, 215 * that cgroup program gets run in addition to the program in this cgroup. 216 * 217 * Only one program is allowed to be attached to a cgroup with 218 * NONE or BPF_F_ALLOW_OVERRIDE flag. 219 * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will 220 * release old program and attach the new one. Attach flags has to match. 221 * 222 * Multiple programs are allowed to be attached to a cgroup with 223 * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order 224 * (those that were attached first, run first) 225 * The programs of sub-cgroup are executed first, then programs of 226 * this cgroup and then programs of parent cgroup. 227 * When children program makes decision (like picking TCP CA or sock bind) 228 * parent program has a chance to override it. 229 * 230 * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups. 231 * A cgroup with NONE doesn't allow any programs in sub-cgroups. 232 * Ex1: 233 * cgrp1 (MULTI progs A, B) -> 234 * cgrp2 (OVERRIDE prog C) -> 235 * cgrp3 (MULTI prog D) -> 236 * cgrp4 (OVERRIDE prog E) -> 237 * cgrp5 (NONE prog F) 238 * the event in cgrp5 triggers execution of F,D,A,B in that order. 239 * if prog F is detached, the execution is E,D,A,B 240 * if prog F and D are detached, the execution is E,A,B 241 * if prog F, E and D are detached, the execution is C,A,B 242 * 243 * All eligible programs are executed regardless of return code from 244 * earlier programs. 245 */ 246 #define BPF_F_ALLOW_OVERRIDE (1U << 0) 247 #define BPF_F_ALLOW_MULTI (1U << 1) 248 249 /* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the 250 * verifier will perform strict alignment checking as if the kernel 251 * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set, 252 * and NET_IP_ALIGN defined to 2. 253 */ 254 #define BPF_F_STRICT_ALIGNMENT (1U << 0) 255 256 /* If BPF_F_ANY_ALIGNMENT is used in BPF_PROF_LOAD command, the 257 * verifier will allow any alignment whatsoever. On platforms 258 * with strict alignment requirements for loads ands stores (such 259 * as sparc and mips) the verifier validates that all loads and 260 * stores provably follow this requirement. This flag turns that 261 * checking and enforcement off. 262 * 263 * It is mostly used for testing when we want to validate the 264 * context and memory access aspects of the verifier, but because 265 * of an unaligned access the alignment check would trigger before 266 * the one we are interested in. 267 */ 268 #define BPF_F_ANY_ALIGNMENT (1U << 1) 269 270 /* BPF_F_TEST_RND_HI32 is used in BPF_PROG_LOAD command for testing purpose. 271 * Verifier does sub-register def/use analysis and identifies instructions whose 272 * def only matters for low 32-bit, high 32-bit is never referenced later 273 * through implicit zero extension. Therefore verifier notifies JIT back-ends 274 * that it is safe to ignore clearing high 32-bit for these instructions. This 275 * saves some back-ends a lot of code-gen. However such optimization is not 276 * necessary on some arches, for example x86_64, arm64 etc, whose JIT back-ends 277 * hence hasn't used verifier's analysis result. But, we really want to have a 278 * way to be able to verify the correctness of the described optimization on 279 * x86_64 on which testsuites are frequently exercised. 280 * 281 * So, this flag is introduced. Once it is set, verifier will randomize high 282 * 32-bit for those instructions who has been identified as safe to ignore them. 283 * Then, if verifier is not doing correct analysis, such randomization will 284 * regress tests to expose bugs. 285 */ 286 #define BPF_F_TEST_RND_HI32 (1U << 2) 287 288 /* The verifier internal test flag. Behavior is undefined */ 289 #define BPF_F_TEST_STATE_FREQ (1U << 3) 290 291 /* When BPF ldimm64's insn[0].src_reg != 0 then this can have 292 * two extensions: 293 * 294 * insn[0].src_reg: BPF_PSEUDO_MAP_FD BPF_PSEUDO_MAP_VALUE 295 * insn[0].imm: map fd map fd 296 * insn[1].imm: 0 offset into value 297 * insn[0].off: 0 0 298 * insn[1].off: 0 0 299 * ldimm64 rewrite: address of map address of map[0]+offset 300 * verifier type: CONST_PTR_TO_MAP PTR_TO_MAP_VALUE 301 */ 302 #define BPF_PSEUDO_MAP_FD 1 303 #define BPF_PSEUDO_MAP_VALUE 2 304 305 /* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative 306 * offset to another bpf function 307 */ 308 #define BPF_PSEUDO_CALL 1 309 310 /* flags for BPF_MAP_UPDATE_ELEM command */ 311 #define BPF_ANY 0 /* create new element or update existing */ 312 #define BPF_NOEXIST 1 /* create new element if it didn't exist */ 313 #define BPF_EXIST 2 /* update existing element */ 314 #define BPF_F_LOCK 4 /* spin_lock-ed map_lookup/map_update */ 315 316 /* flags for BPF_MAP_CREATE command */ 317 #define BPF_F_NO_PREALLOC (1U << 0) 318 /* Instead of having one common LRU list in the 319 * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list 320 * which can scale and perform better. 321 * Note, the LRU nodes (including free nodes) cannot be moved 322 * across different LRU lists. 323 */ 324 #define BPF_F_NO_COMMON_LRU (1U << 1) 325 /* Specify numa node during map creation */ 326 #define BPF_F_NUMA_NODE (1U << 2) 327 328 #define BPF_OBJ_NAME_LEN 16U 329 330 /* Flags for accessing BPF object from syscall side. */ 331 #define BPF_F_RDONLY (1U << 3) 332 #define BPF_F_WRONLY (1U << 4) 333 334 /* Flag for stack_map, store build_id+offset instead of pointer */ 335 #define BPF_F_STACK_BUILD_ID (1U << 5) 336 337 /* Zero-initialize hash function seed. This should only be used for testing. */ 338 #define BPF_F_ZERO_SEED (1U << 6) 339 340 /* Flags for accessing BPF object from program side. */ 341 #define BPF_F_RDONLY_PROG (1U << 7) 342 #define BPF_F_WRONLY_PROG (1U << 8) 343 344 /* Clone map from listener for newly accepted socket */ 345 #define BPF_F_CLONE (1U << 9) 346 347 /* flags for BPF_PROG_QUERY */ 348 #define BPF_F_QUERY_EFFECTIVE (1U << 0) 349 350 enum bpf_stack_build_id_status { 351 /* user space need an empty entry to identify end of a trace */ 352 BPF_STACK_BUILD_ID_EMPTY = 0, 353 /* with valid build_id and offset */ 354 BPF_STACK_BUILD_ID_VALID = 1, 355 /* couldn't get build_id, fallback to ip */ 356 BPF_STACK_BUILD_ID_IP = 2, 357 }; 358 359 #define BPF_BUILD_ID_SIZE 20 360 struct bpf_stack_build_id { 361 __s32 status; 362 unsigned char build_id[BPF_BUILD_ID_SIZE]; 363 union { 364 __u64 offset; 365 __u64 ip; 366 }; 367 }; 368 369 union bpf_attr { 370 struct { /* anonymous struct used by BPF_MAP_CREATE command */ 371 __u32 map_type; /* one of enum bpf_map_type */ 372 __u32 key_size; /* size of key in bytes */ 373 __u32 value_size; /* size of value in bytes */ 374 __u32 max_entries; /* max number of entries in a map */ 375 __u32 map_flags; /* BPF_MAP_CREATE related 376 * flags defined above. 377 */ 378 __u32 inner_map_fd; /* fd pointing to the inner map */ 379 __u32 numa_node; /* numa node (effective only if 380 * BPF_F_NUMA_NODE is set). 381 */ 382 char map_name[BPF_OBJ_NAME_LEN]; 383 __u32 map_ifindex; /* ifindex of netdev to create on */ 384 __u32 btf_fd; /* fd pointing to a BTF type data */ 385 __u32 btf_key_type_id; /* BTF type_id of the key */ 386 __u32 btf_value_type_id; /* BTF type_id of the value */ 387 }; 388 389 struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */ 390 __u32 map_fd; 391 __aligned_u64 key; 392 union { 393 __aligned_u64 value; 394 __aligned_u64 next_key; 395 }; 396 __u64 flags; 397 }; 398 399 struct { /* anonymous struct used by BPF_PROG_LOAD command */ 400 __u32 prog_type; /* one of enum bpf_prog_type */ 401 __u32 insn_cnt; 402 __aligned_u64 insns; 403 __aligned_u64 license; 404 __u32 log_level; /* verbosity level of verifier */ 405 __u32 log_size; /* size of user buffer */ 406 __aligned_u64 log_buf; /* user supplied buffer */ 407 __u32 kern_version; /* not used */ 408 __u32 prog_flags; 409 char prog_name[BPF_OBJ_NAME_LEN]; 410 __u32 prog_ifindex; /* ifindex of netdev to prep for */ 411 /* For some prog types expected attach type must be known at 412 * load time to verify attach type specific parts of prog 413 * (context accesses, allowed helpers, etc). 414 */ 415 __u32 expected_attach_type; 416 __u32 prog_btf_fd; /* fd pointing to BTF type data */ 417 __u32 func_info_rec_size; /* userspace bpf_func_info size */ 418 __aligned_u64 func_info; /* func info */ 419 __u32 func_info_cnt; /* number of bpf_func_info records */ 420 __u32 line_info_rec_size; /* userspace bpf_line_info size */ 421 __aligned_u64 line_info; /* line info */ 422 __u32 line_info_cnt; /* number of bpf_line_info records */ 423 }; 424 425 struct { /* anonymous struct used by BPF_OBJ_* commands */ 426 __aligned_u64 pathname; 427 __u32 bpf_fd; 428 __u32 file_flags; 429 }; 430 431 struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */ 432 __u32 target_fd; /* container object to attach to */ 433 __u32 attach_bpf_fd; /* eBPF program to attach */ 434 __u32 attach_type; 435 __u32 attach_flags; 436 }; 437 438 struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */ 439 __u32 prog_fd; 440 __u32 retval; 441 __u32 data_size_in; /* input: len of data_in */ 442 __u32 data_size_out; /* input/output: len of data_out 443 * returns ENOSPC if data_out 444 * is too small. 445 */ 446 __aligned_u64 data_in; 447 __aligned_u64 data_out; 448 __u32 repeat; 449 __u32 duration; 450 __u32 ctx_size_in; /* input: len of ctx_in */ 451 __u32 ctx_size_out; /* input/output: len of ctx_out 452 * returns ENOSPC if ctx_out 453 * is too small. 454 */ 455 __aligned_u64 ctx_in; 456 __aligned_u64 ctx_out; 457 } test; 458 459 struct { /* anonymous struct used by BPF_*_GET_*_ID */ 460 union { 461 __u32 start_id; 462 __u32 prog_id; 463 __u32 map_id; 464 __u32 btf_id; 465 }; 466 __u32 next_id; 467 __u32 open_flags; 468 }; 469 470 struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */ 471 __u32 bpf_fd; 472 __u32 info_len; 473 __aligned_u64 info; 474 } info; 475 476 struct { /* anonymous struct used by BPF_PROG_QUERY command */ 477 __u32 target_fd; /* container object to query */ 478 __u32 attach_type; 479 __u32 query_flags; 480 __u32 attach_flags; 481 __aligned_u64 prog_ids; 482 __u32 prog_cnt; 483 } query; 484 485 struct { 486 __u64 name; 487 __u32 prog_fd; 488 } raw_tracepoint; 489 490 struct { /* anonymous struct for BPF_BTF_LOAD */ 491 __aligned_u64 btf; 492 __aligned_u64 btf_log_buf; 493 __u32 btf_size; 494 __u32 btf_log_size; 495 __u32 btf_log_level; 496 }; 497 498 struct { 499 __u32 pid; /* input: pid */ 500 __u32 fd; /* input: fd */ 501 __u32 flags; /* input: flags */ 502 __u32 buf_len; /* input/output: buf len */ 503 __aligned_u64 buf; /* input/output: 504 * tp_name for tracepoint 505 * symbol for kprobe 506 * filename for uprobe 507 */ 508 __u32 prog_id; /* output: prod_id */ 509 __u32 fd_type; /* output: BPF_FD_TYPE_* */ 510 __u64 probe_offset; /* output: probe_offset */ 511 __u64 probe_addr; /* output: probe_addr */ 512 } task_fd_query; 513 } __attribute__((aligned(8))); 514 515 /* The description below is an attempt at providing documentation to eBPF 516 * developers about the multiple available eBPF helper functions. It can be 517 * parsed and used to produce a manual page. The workflow is the following, 518 * and requires the rst2man utility: 519 * 520 * $ ./scripts/bpf_helpers_doc.py \ 521 * --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst 522 * $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7 523 * $ man /tmp/bpf-helpers.7 524 * 525 * Note that in order to produce this external documentation, some RST 526 * formatting is used in the descriptions to get "bold" and "italics" in 527 * manual pages. Also note that the few trailing white spaces are 528 * intentional, removing them would break paragraphs for rst2man. 529 * 530 * Start of BPF helper function descriptions: 531 * 532 * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key) 533 * Description 534 * Perform a lookup in *map* for an entry associated to *key*. 535 * Return 536 * Map value associated to *key*, or **NULL** if no entry was 537 * found. 538 * 539 * int bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags) 540 * Description 541 * Add or update the value of the entry associated to *key* in 542 * *map* with *value*. *flags* is one of: 543 * 544 * **BPF_NOEXIST** 545 * The entry for *key* must not exist in the map. 546 * **BPF_EXIST** 547 * The entry for *key* must already exist in the map. 548 * **BPF_ANY** 549 * No condition on the existence of the entry for *key*. 550 * 551 * Flag value **BPF_NOEXIST** cannot be used for maps of types 552 * **BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY** (all 553 * elements always exist), the helper would return an error. 554 * Return 555 * 0 on success, or a negative error in case of failure. 556 * 557 * int bpf_map_delete_elem(struct bpf_map *map, const void *key) 558 * Description 559 * Delete entry with *key* from *map*. 560 * Return 561 * 0 on success, or a negative error in case of failure. 562 * 563 * int bpf_probe_read(void *dst, u32 size, const void *src) 564 * Description 565 * For tracing programs, safely attempt to read *size* bytes from 566 * address *src* and store the data in *dst*. 567 * Return 568 * 0 on success, or a negative error in case of failure. 569 * 570 * u64 bpf_ktime_get_ns(void) 571 * Description 572 * Return the time elapsed since system boot, in nanoseconds. 573 * Return 574 * Current *ktime*. 575 * 576 * int bpf_trace_printk(const char *fmt, u32 fmt_size, ...) 577 * Description 578 * This helper is a "printk()-like" facility for debugging. It 579 * prints a message defined by format *fmt* (of size *fmt_size*) 580 * to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if 581 * available. It can take up to three additional **u64** 582 * arguments (as an eBPF helpers, the total number of arguments is 583 * limited to five). 584 * 585 * Each time the helper is called, it appends a line to the trace. 586 * Lines are discarded while *\/sys/kernel/debug/tracing/trace* is 587 * open, use *\/sys/kernel/debug/tracing/trace_pipe* to avoid this. 588 * The format of the trace is customizable, and the exact output 589 * one will get depends on the options set in 590 * *\/sys/kernel/debug/tracing/trace_options* (see also the 591 * *README* file under the same directory). However, it usually 592 * defaults to something like: 593 * 594 * :: 595 * 596 * telnet-470 [001] .N.. 419421.045894: 0x00000001: <formatted msg> 597 * 598 * In the above: 599 * 600 * * ``telnet`` is the name of the current task. 601 * * ``470`` is the PID of the current task. 602 * * ``001`` is the CPU number on which the task is 603 * running. 604 * * In ``.N..``, each character refers to a set of 605 * options (whether irqs are enabled, scheduling 606 * options, whether hard/softirqs are running, level of 607 * preempt_disabled respectively). **N** means that 608 * **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED** 609 * are set. 610 * * ``419421.045894`` is a timestamp. 611 * * ``0x00000001`` is a fake value used by BPF for the 612 * instruction pointer register. 613 * * ``<formatted msg>`` is the message formatted with 614 * *fmt*. 615 * 616 * The conversion specifiers supported by *fmt* are similar, but 617 * more limited than for printk(). They are **%d**, **%i**, 618 * **%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**, 619 * **%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size 620 * of field, padding with zeroes, etc.) is available, and the 621 * helper will return **-EINVAL** (but print nothing) if it 622 * encounters an unknown specifier. 623 * 624 * Also, note that **bpf_trace_printk**\ () is slow, and should 625 * only be used for debugging purposes. For this reason, a notice 626 * bloc (spanning several lines) is printed to kernel logs and 627 * states that the helper should not be used "for production use" 628 * the first time this helper is used (or more precisely, when 629 * **trace_printk**\ () buffers are allocated). For passing values 630 * to user space, perf events should be preferred. 631 * Return 632 * The number of bytes written to the buffer, or a negative error 633 * in case of failure. 634 * 635 * u32 bpf_get_prandom_u32(void) 636 * Description 637 * Get a pseudo-random number. 638 * 639 * From a security point of view, this helper uses its own 640 * pseudo-random internal state, and cannot be used to infer the 641 * seed of other random functions in the kernel. However, it is 642 * essential to note that the generator used by the helper is not 643 * cryptographically secure. 644 * Return 645 * A random 32-bit unsigned value. 646 * 647 * u32 bpf_get_smp_processor_id(void) 648 * Description 649 * Get the SMP (symmetric multiprocessing) processor id. Note that 650 * all programs run with preemption disabled, which means that the 651 * SMP processor id is stable during all the execution of the 652 * program. 653 * Return 654 * The SMP id of the processor running the program. 655 * 656 * int bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags) 657 * Description 658 * Store *len* bytes from address *from* into the packet 659 * associated to *skb*, at *offset*. *flags* are a combination of 660 * **BPF_F_RECOMPUTE_CSUM** (automatically recompute the 661 * checksum for the packet after storing the bytes) and 662 * **BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\ 663 * **->swhash** and *skb*\ **->l4hash** to 0). 664 * 665 * A call to this helper is susceptible to change the underlying 666 * packet buffer. Therefore, at load time, all checks on pointers 667 * previously done by the verifier are invalidated and must be 668 * performed again, if the helper is used in combination with 669 * direct packet access. 670 * Return 671 * 0 on success, or a negative error in case of failure. 672 * 673 * int bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size) 674 * Description 675 * Recompute the layer 3 (e.g. IP) checksum for the packet 676 * associated to *skb*. Computation is incremental, so the helper 677 * must know the former value of the header field that was 678 * modified (*from*), the new value of this field (*to*), and the 679 * number of bytes (2 or 4) for this field, stored in *size*. 680 * Alternatively, it is possible to store the difference between 681 * the previous and the new values of the header field in *to*, by 682 * setting *from* and *size* to 0. For both methods, *offset* 683 * indicates the location of the IP checksum within the packet. 684 * 685 * This helper works in combination with **bpf_csum_diff**\ (), 686 * which does not update the checksum in-place, but offers more 687 * flexibility and can handle sizes larger than 2 or 4 for the 688 * checksum to update. 689 * 690 * A call to this helper is susceptible to change the underlying 691 * packet buffer. Therefore, at load time, all checks on pointers 692 * previously done by the verifier are invalidated and must be 693 * performed again, if the helper is used in combination with 694 * direct packet access. 695 * Return 696 * 0 on success, or a negative error in case of failure. 697 * 698 * int bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags) 699 * Description 700 * Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the 701 * packet associated to *skb*. Computation is incremental, so the 702 * helper must know the former value of the header field that was 703 * modified (*from*), the new value of this field (*to*), and the 704 * number of bytes (2 or 4) for this field, stored on the lowest 705 * four bits of *flags*. Alternatively, it is possible to store 706 * the difference between the previous and the new values of the 707 * header field in *to*, by setting *from* and the four lowest 708 * bits of *flags* to 0. For both methods, *offset* indicates the 709 * location of the IP checksum within the packet. In addition to 710 * the size of the field, *flags* can be added (bitwise OR) actual 711 * flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left 712 * untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and 713 * for updates resulting in a null checksum the value is set to 714 * **CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates 715 * the checksum is to be computed against a pseudo-header. 716 * 717 * This helper works in combination with **bpf_csum_diff**\ (), 718 * which does not update the checksum in-place, but offers more 719 * flexibility and can handle sizes larger than 2 or 4 for the 720 * checksum to update. 721 * 722 * A call to this helper is susceptible to change the underlying 723 * packet buffer. Therefore, at load time, all checks on pointers 724 * previously done by the verifier are invalidated and must be 725 * performed again, if the helper is used in combination with 726 * direct packet access. 727 * Return 728 * 0 on success, or a negative error in case of failure. 729 * 730 * int bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index) 731 * Description 732 * This special helper is used to trigger a "tail call", or in 733 * other words, to jump into another eBPF program. The same stack 734 * frame is used (but values on stack and in registers for the 735 * caller are not accessible to the callee). This mechanism allows 736 * for program chaining, either for raising the maximum number of 737 * available eBPF instructions, or to execute given programs in 738 * conditional blocks. For security reasons, there is an upper 739 * limit to the number of successive tail calls that can be 740 * performed. 741 * 742 * Upon call of this helper, the program attempts to jump into a 743 * program referenced at index *index* in *prog_array_map*, a 744 * special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes 745 * *ctx*, a pointer to the context. 746 * 747 * If the call succeeds, the kernel immediately runs the first 748 * instruction of the new program. This is not a function call, 749 * and it never returns to the previous program. If the call 750 * fails, then the helper has no effect, and the caller continues 751 * to run its subsequent instructions. A call can fail if the 752 * destination program for the jump does not exist (i.e. *index* 753 * is superior to the number of entries in *prog_array_map*), or 754 * if the maximum number of tail calls has been reached for this 755 * chain of programs. This limit is defined in the kernel by the 756 * macro **MAX_TAIL_CALL_CNT** (not accessible to user space), 757 * which is currently set to 32. 758 * Return 759 * 0 on success, or a negative error in case of failure. 760 * 761 * int bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags) 762 * Description 763 * Clone and redirect the packet associated to *skb* to another 764 * net device of index *ifindex*. Both ingress and egress 765 * interfaces can be used for redirection. The **BPF_F_INGRESS** 766 * value in *flags* is used to make the distinction (ingress path 767 * is selected if the flag is present, egress path otherwise). 768 * This is the only flag supported for now. 769 * 770 * In comparison with **bpf_redirect**\ () helper, 771 * **bpf_clone_redirect**\ () has the associated cost of 772 * duplicating the packet buffer, but this can be executed out of 773 * the eBPF program. Conversely, **bpf_redirect**\ () is more 774 * efficient, but it is handled through an action code where the 775 * redirection happens only after the eBPF program has returned. 776 * 777 * A call to this helper is susceptible to change the underlying 778 * packet buffer. Therefore, at load time, all checks on pointers 779 * previously done by the verifier are invalidated and must be 780 * performed again, if the helper is used in combination with 781 * direct packet access. 782 * Return 783 * 0 on success, or a negative error in case of failure. 784 * 785 * u64 bpf_get_current_pid_tgid(void) 786 * Return 787 * A 64-bit integer containing the current tgid and pid, and 788 * created as such: 789 * *current_task*\ **->tgid << 32 \|** 790 * *current_task*\ **->pid**. 791 * 792 * u64 bpf_get_current_uid_gid(void) 793 * Return 794 * A 64-bit integer containing the current GID and UID, and 795 * created as such: *current_gid* **<< 32 \|** *current_uid*. 796 * 797 * int bpf_get_current_comm(char *buf, u32 size_of_buf) 798 * Description 799 * Copy the **comm** attribute of the current task into *buf* of 800 * *size_of_buf*. The **comm** attribute contains the name of 801 * the executable (excluding the path) for the current task. The 802 * *size_of_buf* must be strictly positive. On success, the 803 * helper makes sure that the *buf* is NUL-terminated. On failure, 804 * it is filled with zeroes. 805 * Return 806 * 0 on success, or a negative error in case of failure. 807 * 808 * u32 bpf_get_cgroup_classid(struct sk_buff *skb) 809 * Description 810 * Retrieve the classid for the current task, i.e. for the net_cls 811 * cgroup to which *skb* belongs. 812 * 813 * This helper can be used on TC egress path, but not on ingress. 814 * 815 * The net_cls cgroup provides an interface to tag network packets 816 * based on a user-provided identifier for all traffic coming from 817 * the tasks belonging to the related cgroup. See also the related 818 * kernel documentation, available from the Linux sources in file 819 * *Documentation/admin-guide/cgroup-v1/net_cls.rst*. 820 * 821 * The Linux kernel has two versions for cgroups: there are 822 * cgroups v1 and cgroups v2. Both are available to users, who can 823 * use a mixture of them, but note that the net_cls cgroup is for 824 * cgroup v1 only. This makes it incompatible with BPF programs 825 * run on cgroups, which is a cgroup-v2-only feature (a socket can 826 * only hold data for one version of cgroups at a time). 827 * 828 * This helper is only available is the kernel was compiled with 829 * the **CONFIG_CGROUP_NET_CLASSID** configuration option set to 830 * "**y**" or to "**m**". 831 * Return 832 * The classid, or 0 for the default unconfigured classid. 833 * 834 * int bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 835 * Description 836 * Push a *vlan_tci* (VLAN tag control information) of protocol 837 * *vlan_proto* to the packet associated to *skb*, then update 838 * the checksum. Note that if *vlan_proto* is different from 839 * **ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to 840 * be **ETH_P_8021Q**. 841 * 842 * A call to this helper is susceptible to change the underlying 843 * packet buffer. Therefore, at load time, all checks on pointers 844 * previously done by the verifier are invalidated and must be 845 * performed again, if the helper is used in combination with 846 * direct packet access. 847 * Return 848 * 0 on success, or a negative error in case of failure. 849 * 850 * int bpf_skb_vlan_pop(struct sk_buff *skb) 851 * Description 852 * Pop a VLAN header from the packet associated to *skb*. 853 * 854 * A call to this helper is susceptible to change the underlying 855 * packet buffer. Therefore, at load time, all checks on pointers 856 * previously done by the verifier are invalidated and must be 857 * performed again, if the helper is used in combination with 858 * direct packet access. 859 * Return 860 * 0 on success, or a negative error in case of failure. 861 * 862 * int bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags) 863 * Description 864 * Get tunnel metadata. This helper takes a pointer *key* to an 865 * empty **struct bpf_tunnel_key** of **size**, that will be 866 * filled with tunnel metadata for the packet associated to *skb*. 867 * The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which 868 * indicates that the tunnel is based on IPv6 protocol instead of 869 * IPv4. 870 * 871 * The **struct bpf_tunnel_key** is an object that generalizes the 872 * principal parameters used by various tunneling protocols into a 873 * single struct. This way, it can be used to easily make a 874 * decision based on the contents of the encapsulation header, 875 * "summarized" in this struct. In particular, it holds the IP 876 * address of the remote end (IPv4 or IPv6, depending on the case) 877 * in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also, 878 * this struct exposes the *key*\ **->tunnel_id**, which is 879 * generally mapped to a VNI (Virtual Network Identifier), making 880 * it programmable together with the **bpf_skb_set_tunnel_key**\ 881 * () helper. 882 * 883 * Let's imagine that the following code is part of a program 884 * attached to the TC ingress interface, on one end of a GRE 885 * tunnel, and is supposed to filter out all messages coming from 886 * remote ends with IPv4 address other than 10.0.0.1: 887 * 888 * :: 889 * 890 * int ret; 891 * struct bpf_tunnel_key key = {}; 892 * 893 * ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0); 894 * if (ret < 0) 895 * return TC_ACT_SHOT; // drop packet 896 * 897 * if (key.remote_ipv4 != 0x0a000001) 898 * return TC_ACT_SHOT; // drop packet 899 * 900 * return TC_ACT_OK; // accept packet 901 * 902 * This interface can also be used with all encapsulation devices 903 * that can operate in "collect metadata" mode: instead of having 904 * one network device per specific configuration, the "collect 905 * metadata" mode only requires a single device where the 906 * configuration can be extracted from this helper. 907 * 908 * This can be used together with various tunnels such as VXLan, 909 * Geneve, GRE or IP in IP (IPIP). 910 * Return 911 * 0 on success, or a negative error in case of failure. 912 * 913 * int bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags) 914 * Description 915 * Populate tunnel metadata for packet associated to *skb.* The 916 * tunnel metadata is set to the contents of *key*, of *size*. The 917 * *flags* can be set to a combination of the following values: 918 * 919 * **BPF_F_TUNINFO_IPV6** 920 * Indicate that the tunnel is based on IPv6 protocol 921 * instead of IPv4. 922 * **BPF_F_ZERO_CSUM_TX** 923 * For IPv4 packets, add a flag to tunnel metadata 924 * indicating that checksum computation should be skipped 925 * and checksum set to zeroes. 926 * **BPF_F_DONT_FRAGMENT** 927 * Add a flag to tunnel metadata indicating that the 928 * packet should not be fragmented. 929 * **BPF_F_SEQ_NUMBER** 930 * Add a flag to tunnel metadata indicating that a 931 * sequence number should be added to tunnel header before 932 * sending the packet. This flag was added for GRE 933 * encapsulation, but might be used with other protocols 934 * as well in the future. 935 * 936 * Here is a typical usage on the transmit path: 937 * 938 * :: 939 * 940 * struct bpf_tunnel_key key; 941 * populate key ... 942 * bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0); 943 * bpf_clone_redirect(skb, vxlan_dev_ifindex, 0); 944 * 945 * See also the description of the **bpf_skb_get_tunnel_key**\ () 946 * helper for additional information. 947 * Return 948 * 0 on success, or a negative error in case of failure. 949 * 950 * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags) 951 * Description 952 * Read the value of a perf event counter. This helper relies on a 953 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of 954 * the perf event counter is selected when *map* is updated with 955 * perf event file descriptors. The *map* is an array whose size 956 * is the number of available CPUs, and each cell contains a value 957 * relative to one CPU. The value to retrieve is indicated by 958 * *flags*, that contains the index of the CPU to look up, masked 959 * with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to 960 * **BPF_F_CURRENT_CPU** to indicate that the value for the 961 * current CPU should be retrieved. 962 * 963 * Note that before Linux 4.13, only hardware perf event can be 964 * retrieved. 965 * 966 * Also, be aware that the newer helper 967 * **bpf_perf_event_read_value**\ () is recommended over 968 * **bpf_perf_event_read**\ () in general. The latter has some ABI 969 * quirks where error and counter value are used as a return code 970 * (which is wrong to do since ranges may overlap). This issue is 971 * fixed with **bpf_perf_event_read_value**\ (), which at the same 972 * time provides more features over the **bpf_perf_event_read**\ 973 * () interface. Please refer to the description of 974 * **bpf_perf_event_read_value**\ () for details. 975 * Return 976 * The value of the perf event counter read from the map, or a 977 * negative error code in case of failure. 978 * 979 * int bpf_redirect(u32 ifindex, u64 flags) 980 * Description 981 * Redirect the packet to another net device of index *ifindex*. 982 * This helper is somewhat similar to **bpf_clone_redirect**\ 983 * (), except that the packet is not cloned, which provides 984 * increased performance. 985 * 986 * Except for XDP, both ingress and egress interfaces can be used 987 * for redirection. The **BPF_F_INGRESS** value in *flags* is used 988 * to make the distinction (ingress path is selected if the flag 989 * is present, egress path otherwise). Currently, XDP only 990 * supports redirection to the egress interface, and accepts no 991 * flag at all. 992 * 993 * The same effect can be attained with the more generic 994 * **bpf_redirect_map**\ (), which requires specific maps to be 995 * used but offers better performance. 996 * Return 997 * For XDP, the helper returns **XDP_REDIRECT** on success or 998 * **XDP_ABORTED** on error. For other program types, the values 999 * are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on 1000 * error. 1001 * 1002 * u32 bpf_get_route_realm(struct sk_buff *skb) 1003 * Description 1004 * Retrieve the realm or the route, that is to say the 1005 * **tclassid** field of the destination for the *skb*. The 1006 * indentifier retrieved is a user-provided tag, similar to the 1007 * one used with the net_cls cgroup (see description for 1008 * **bpf_get_cgroup_classid**\ () helper), but here this tag is 1009 * held by a route (a destination entry), not by a task. 1010 * 1011 * Retrieving this identifier works with the clsact TC egress hook 1012 * (see also **tc-bpf(8)**), or alternatively on conventional 1013 * classful egress qdiscs, but not on TC ingress path. In case of 1014 * clsact TC egress hook, this has the advantage that, internally, 1015 * the destination entry has not been dropped yet in the transmit 1016 * path. Therefore, the destination entry does not need to be 1017 * artificially held via **netif_keep_dst**\ () for a classful 1018 * qdisc until the *skb* is freed. 1019 * 1020 * This helper is available only if the kernel was compiled with 1021 * **CONFIG_IP_ROUTE_CLASSID** configuration option. 1022 * Return 1023 * The realm of the route for the packet associated to *skb*, or 0 1024 * if none was found. 1025 * 1026 * int bpf_perf_event_output(struct pt_regs *ctx, struct bpf_map *map, u64 flags, void *data, u64 size) 1027 * Description 1028 * Write raw *data* blob into a special BPF perf event held by 1029 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf 1030 * event must have the following attributes: **PERF_SAMPLE_RAW** 1031 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and 1032 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**. 1033 * 1034 * The *flags* are used to indicate the index in *map* for which 1035 * the value must be put, masked with **BPF_F_INDEX_MASK**. 1036 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU** 1037 * to indicate that the index of the current CPU core should be 1038 * used. 1039 * 1040 * The value to write, of *size*, is passed through eBPF stack and 1041 * pointed by *data*. 1042 * 1043 * The context of the program *ctx* needs also be passed to the 1044 * helper. 1045 * 1046 * On user space, a program willing to read the values needs to 1047 * call **perf_event_open**\ () on the perf event (either for 1048 * one or for all CPUs) and to store the file descriptor into the 1049 * *map*. This must be done before the eBPF program can send data 1050 * into it. An example is available in file 1051 * *samples/bpf/trace_output_user.c* in the Linux kernel source 1052 * tree (the eBPF program counterpart is in 1053 * *samples/bpf/trace_output_kern.c*). 1054 * 1055 * **bpf_perf_event_output**\ () achieves better performance 1056 * than **bpf_trace_printk**\ () for sharing data with user 1057 * space, and is much better suitable for streaming data from eBPF 1058 * programs. 1059 * 1060 * Note that this helper is not restricted to tracing use cases 1061 * and can be used with programs attached to TC or XDP as well, 1062 * where it allows for passing data to user space listeners. Data 1063 * can be: 1064 * 1065 * * Only custom structs, 1066 * * Only the packet payload, or 1067 * * A combination of both. 1068 * Return 1069 * 0 on success, or a negative error in case of failure. 1070 * 1071 * int bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len) 1072 * Description 1073 * This helper was provided as an easy way to load data from a 1074 * packet. It can be used to load *len* bytes from *offset* from 1075 * the packet associated to *skb*, into the buffer pointed by 1076 * *to*. 1077 * 1078 * Since Linux 4.7, usage of this helper has mostly been replaced 1079 * by "direct packet access", enabling packet data to be 1080 * manipulated with *skb*\ **->data** and *skb*\ **->data_end** 1081 * pointing respectively to the first byte of packet data and to 1082 * the byte after the last byte of packet data. However, it 1083 * remains useful if one wishes to read large quantities of data 1084 * at once from a packet into the eBPF stack. 1085 * Return 1086 * 0 on success, or a negative error in case of failure. 1087 * 1088 * int bpf_get_stackid(struct pt_regs *ctx, struct bpf_map *map, u64 flags) 1089 * Description 1090 * Walk a user or a kernel stack and return its id. To achieve 1091 * this, the helper needs *ctx*, which is a pointer to the context 1092 * on which the tracing program is executed, and a pointer to a 1093 * *map* of type **BPF_MAP_TYPE_STACK_TRACE**. 1094 * 1095 * The last argument, *flags*, holds the number of stack frames to 1096 * skip (from 0 to 255), masked with 1097 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set 1098 * a combination of the following flags: 1099 * 1100 * **BPF_F_USER_STACK** 1101 * Collect a user space stack instead of a kernel stack. 1102 * **BPF_F_FAST_STACK_CMP** 1103 * Compare stacks by hash only. 1104 * **BPF_F_REUSE_STACKID** 1105 * If two different stacks hash into the same *stackid*, 1106 * discard the old one. 1107 * 1108 * The stack id retrieved is a 32 bit long integer handle which 1109 * can be further combined with other data (including other stack 1110 * ids) and used as a key into maps. This can be useful for 1111 * generating a variety of graphs (such as flame graphs or off-cpu 1112 * graphs). 1113 * 1114 * For walking a stack, this helper is an improvement over 1115 * **bpf_probe_read**\ (), which can be used with unrolled loops 1116 * but is not efficient and consumes a lot of eBPF instructions. 1117 * Instead, **bpf_get_stackid**\ () can collect up to 1118 * **PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that 1119 * this limit can be controlled with the **sysctl** program, and 1120 * that it should be manually increased in order to profile long 1121 * user stacks (such as stacks for Java programs). To do so, use: 1122 * 1123 * :: 1124 * 1125 * # sysctl kernel.perf_event_max_stack=<new value> 1126 * Return 1127 * The positive or null stack id on success, or a negative error 1128 * in case of failure. 1129 * 1130 * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed) 1131 * Description 1132 * Compute a checksum difference, from the raw buffer pointed by 1133 * *from*, of length *from_size* (that must be a multiple of 4), 1134 * towards the raw buffer pointed by *to*, of size *to_size* 1135 * (same remark). An optional *seed* can be added to the value 1136 * (this can be cascaded, the seed may come from a previous call 1137 * to the helper). 1138 * 1139 * This is flexible enough to be used in several ways: 1140 * 1141 * * With *from_size* == 0, *to_size* > 0 and *seed* set to 1142 * checksum, it can be used when pushing new data. 1143 * * With *from_size* > 0, *to_size* == 0 and *seed* set to 1144 * checksum, it can be used when removing data from a packet. 1145 * * With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it 1146 * can be used to compute a diff. Note that *from_size* and 1147 * *to_size* do not need to be equal. 1148 * 1149 * This helper can be used in combination with 1150 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to 1151 * which one can feed in the difference computed with 1152 * **bpf_csum_diff**\ (). 1153 * Return 1154 * The checksum result, or a negative error code in case of 1155 * failure. 1156 * 1157 * int bpf_skb_get_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size) 1158 * Description 1159 * Retrieve tunnel options metadata for the packet associated to 1160 * *skb*, and store the raw tunnel option data to the buffer *opt* 1161 * of *size*. 1162 * 1163 * This helper can be used with encapsulation devices that can 1164 * operate in "collect metadata" mode (please refer to the related 1165 * note in the description of **bpf_skb_get_tunnel_key**\ () for 1166 * more details). A particular example where this can be used is 1167 * in combination with the Geneve encapsulation protocol, where it 1168 * allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper) 1169 * and retrieving arbitrary TLVs (Type-Length-Value headers) from 1170 * the eBPF program. This allows for full customization of these 1171 * headers. 1172 * Return 1173 * The size of the option data retrieved. 1174 * 1175 * int bpf_skb_set_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size) 1176 * Description 1177 * Set tunnel options metadata for the packet associated to *skb* 1178 * to the option data contained in the raw buffer *opt* of *size*. 1179 * 1180 * See also the description of the **bpf_skb_get_tunnel_opt**\ () 1181 * helper for additional information. 1182 * Return 1183 * 0 on success, or a negative error in case of failure. 1184 * 1185 * int bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags) 1186 * Description 1187 * Change the protocol of the *skb* to *proto*. Currently 1188 * supported are transition from IPv4 to IPv6, and from IPv6 to 1189 * IPv4. The helper takes care of the groundwork for the 1190 * transition, including resizing the socket buffer. The eBPF 1191 * program is expected to fill the new headers, if any, via 1192 * **skb_store_bytes**\ () and to recompute the checksums with 1193 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ 1194 * (). The main case for this helper is to perform NAT64 1195 * operations out of an eBPF program. 1196 * 1197 * Internally, the GSO type is marked as dodgy so that headers are 1198 * checked and segments are recalculated by the GSO/GRO engine. 1199 * The size for GSO target is adapted as well. 1200 * 1201 * All values for *flags* are reserved for future usage, and must 1202 * be left at zero. 1203 * 1204 * A call to this helper is susceptible to change the underlying 1205 * packet buffer. Therefore, at load time, all checks on pointers 1206 * previously done by the verifier are invalidated and must be 1207 * performed again, if the helper is used in combination with 1208 * direct packet access. 1209 * Return 1210 * 0 on success, or a negative error in case of failure. 1211 * 1212 * int bpf_skb_change_type(struct sk_buff *skb, u32 type) 1213 * Description 1214 * Change the packet type for the packet associated to *skb*. This 1215 * comes down to setting *skb*\ **->pkt_type** to *type*, except 1216 * the eBPF program does not have a write access to *skb*\ 1217 * **->pkt_type** beside this helper. Using a helper here allows 1218 * for graceful handling of errors. 1219 * 1220 * The major use case is to change incoming *skb*s to 1221 * **PACKET_HOST** in a programmatic way instead of having to 1222 * recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for 1223 * example. 1224 * 1225 * Note that *type* only allows certain values. At this time, they 1226 * are: 1227 * 1228 * **PACKET_HOST** 1229 * Packet is for us. 1230 * **PACKET_BROADCAST** 1231 * Send packet to all. 1232 * **PACKET_MULTICAST** 1233 * Send packet to group. 1234 * **PACKET_OTHERHOST** 1235 * Send packet to someone else. 1236 * Return 1237 * 0 on success, or a negative error in case of failure. 1238 * 1239 * int bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index) 1240 * Description 1241 * Check whether *skb* is a descendant of the cgroup2 held by 1242 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*. 1243 * Return 1244 * The return value depends on the result of the test, and can be: 1245 * 1246 * * 0, if the *skb* failed the cgroup2 descendant test. 1247 * * 1, if the *skb* succeeded the cgroup2 descendant test. 1248 * * A negative error code, if an error occurred. 1249 * 1250 * u32 bpf_get_hash_recalc(struct sk_buff *skb) 1251 * Description 1252 * Retrieve the hash of the packet, *skb*\ **->hash**. If it is 1253 * not set, in particular if the hash was cleared due to mangling, 1254 * recompute this hash. Later accesses to the hash can be done 1255 * directly with *skb*\ **->hash**. 1256 * 1257 * Calling **bpf_set_hash_invalid**\ (), changing a packet 1258 * prototype with **bpf_skb_change_proto**\ (), or calling 1259 * **bpf_skb_store_bytes**\ () with the 1260 * **BPF_F_INVALIDATE_HASH** are actions susceptible to clear 1261 * the hash and to trigger a new computation for the next call to 1262 * **bpf_get_hash_recalc**\ (). 1263 * Return 1264 * The 32-bit hash. 1265 * 1266 * u64 bpf_get_current_task(void) 1267 * Return 1268 * A pointer to the current task struct. 1269 * 1270 * int bpf_probe_write_user(void *dst, const void *src, u32 len) 1271 * Description 1272 * Attempt in a safe way to write *len* bytes from the buffer 1273 * *src* to *dst* in memory. It only works for threads that are in 1274 * user context, and *dst* must be a valid user space address. 1275 * 1276 * This helper should not be used to implement any kind of 1277 * security mechanism because of TOC-TOU attacks, but rather to 1278 * debug, divert, and manipulate execution of semi-cooperative 1279 * processes. 1280 * 1281 * Keep in mind that this feature is meant for experiments, and it 1282 * has a risk of crashing the system and running programs. 1283 * Therefore, when an eBPF program using this helper is attached, 1284 * a warning including PID and process name is printed to kernel 1285 * logs. 1286 * Return 1287 * 0 on success, or a negative error in case of failure. 1288 * 1289 * int bpf_current_task_under_cgroup(struct bpf_map *map, u32 index) 1290 * Description 1291 * Check whether the probe is being run is the context of a given 1292 * subset of the cgroup2 hierarchy. The cgroup2 to test is held by 1293 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*. 1294 * Return 1295 * The return value depends on the result of the test, and can be: 1296 * 1297 * * 0, if the *skb* task belongs to the cgroup2. 1298 * * 1, if the *skb* task does not belong to the cgroup2. 1299 * * A negative error code, if an error occurred. 1300 * 1301 * int bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags) 1302 * Description 1303 * Resize (trim or grow) the packet associated to *skb* to the 1304 * new *len*. The *flags* are reserved for future usage, and must 1305 * be left at zero. 1306 * 1307 * The basic idea is that the helper performs the needed work to 1308 * change the size of the packet, then the eBPF program rewrites 1309 * the rest via helpers like **bpf_skb_store_bytes**\ (), 1310 * **bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ () 1311 * and others. This helper is a slow path utility intended for 1312 * replies with control messages. And because it is targeted for 1313 * slow path, the helper itself can afford to be slow: it 1314 * implicitly linearizes, unclones and drops offloads from the 1315 * *skb*. 1316 * 1317 * A call to this helper is susceptible to change the underlying 1318 * packet buffer. Therefore, at load time, all checks on pointers 1319 * previously done by the verifier are invalidated and must be 1320 * performed again, if the helper is used in combination with 1321 * direct packet access. 1322 * Return 1323 * 0 on success, or a negative error in case of failure. 1324 * 1325 * int bpf_skb_pull_data(struct sk_buff *skb, u32 len) 1326 * Description 1327 * Pull in non-linear data in case the *skb* is non-linear and not 1328 * all of *len* are part of the linear section. Make *len* bytes 1329 * from *skb* readable and writable. If a zero value is passed for 1330 * *len*, then the whole length of the *skb* is pulled. 1331 * 1332 * This helper is only needed for reading and writing with direct 1333 * packet access. 1334 * 1335 * For direct packet access, testing that offsets to access 1336 * are within packet boundaries (test on *skb*\ **->data_end**) is 1337 * susceptible to fail if offsets are invalid, or if the requested 1338 * data is in non-linear parts of the *skb*. On failure the 1339 * program can just bail out, or in the case of a non-linear 1340 * buffer, use a helper to make the data available. The 1341 * **bpf_skb_load_bytes**\ () helper is a first solution to access 1342 * the data. Another one consists in using **bpf_skb_pull_data** 1343 * to pull in once the non-linear parts, then retesting and 1344 * eventually access the data. 1345 * 1346 * At the same time, this also makes sure the *skb* is uncloned, 1347 * which is a necessary condition for direct write. As this needs 1348 * to be an invariant for the write part only, the verifier 1349 * detects writes and adds a prologue that is calling 1350 * **bpf_skb_pull_data()** to effectively unclone the *skb* from 1351 * the very beginning in case it is indeed cloned. 1352 * 1353 * A call to this helper is susceptible to change the underlying 1354 * packet buffer. Therefore, at load time, all checks on pointers 1355 * previously done by the verifier are invalidated and must be 1356 * performed again, if the helper is used in combination with 1357 * direct packet access. 1358 * Return 1359 * 0 on success, or a negative error in case of failure. 1360 * 1361 * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum) 1362 * Description 1363 * Add the checksum *csum* into *skb*\ **->csum** in case the 1364 * driver has supplied a checksum for the entire packet into that 1365 * field. Return an error otherwise. This helper is intended to be 1366 * used in combination with **bpf_csum_diff**\ (), in particular 1367 * when the checksum needs to be updated after data has been 1368 * written into the packet through direct packet access. 1369 * Return 1370 * The checksum on success, or a negative error code in case of 1371 * failure. 1372 * 1373 * void bpf_set_hash_invalid(struct sk_buff *skb) 1374 * Description 1375 * Invalidate the current *skb*\ **->hash**. It can be used after 1376 * mangling on headers through direct packet access, in order to 1377 * indicate that the hash is outdated and to trigger a 1378 * recalculation the next time the kernel tries to access this 1379 * hash or when the **bpf_get_hash_recalc**\ () helper is called. 1380 * 1381 * int bpf_get_numa_node_id(void) 1382 * Description 1383 * Return the id of the current NUMA node. The primary use case 1384 * for this helper is the selection of sockets for the local NUMA 1385 * node, when the program is attached to sockets using the 1386 * **SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**), 1387 * but the helper is also available to other eBPF program types, 1388 * similarly to **bpf_get_smp_processor_id**\ (). 1389 * Return 1390 * The id of current NUMA node. 1391 * 1392 * int bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags) 1393 * Description 1394 * Grows headroom of packet associated to *skb* and adjusts the 1395 * offset of the MAC header accordingly, adding *len* bytes of 1396 * space. It automatically extends and reallocates memory as 1397 * required. 1398 * 1399 * This helper can be used on a layer 3 *skb* to push a MAC header 1400 * for redirection into a layer 2 device. 1401 * 1402 * All values for *flags* are reserved for future usage, and must 1403 * be left at zero. 1404 * 1405 * A call to this helper is susceptible to change the underlying 1406 * packet buffer. Therefore, at load time, all checks on pointers 1407 * previously done by the verifier are invalidated and must be 1408 * performed again, if the helper is used in combination with 1409 * direct packet access. 1410 * Return 1411 * 0 on success, or a negative error in case of failure. 1412 * 1413 * int bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta) 1414 * Description 1415 * Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that 1416 * it is possible to use a negative value for *delta*. This helper 1417 * can be used to prepare the packet for pushing or popping 1418 * headers. 1419 * 1420 * A call to this helper is susceptible to change the underlying 1421 * packet buffer. Therefore, at load time, all checks on pointers 1422 * previously done by the verifier are invalidated and must be 1423 * performed again, if the helper is used in combination with 1424 * direct packet access. 1425 * Return 1426 * 0 on success, or a negative error in case of failure. 1427 * 1428 * int bpf_probe_read_str(void *dst, int size, const void *unsafe_ptr) 1429 * Description 1430 * Copy a NUL terminated string from an unsafe address 1431 * *unsafe_ptr* to *dst*. The *size* should include the 1432 * terminating NUL byte. In case the string length is smaller than 1433 * *size*, the target is not padded with further NUL bytes. If the 1434 * string length is larger than *size*, just *size*-1 bytes are 1435 * copied and the last byte is set to NUL. 1436 * 1437 * On success, the length of the copied string is returned. This 1438 * makes this helper useful in tracing programs for reading 1439 * strings, and more importantly to get its length at runtime. See 1440 * the following snippet: 1441 * 1442 * :: 1443 * 1444 * SEC("kprobe/sys_open") 1445 * void bpf_sys_open(struct pt_regs *ctx) 1446 * { 1447 * char buf[PATHLEN]; // PATHLEN is defined to 256 1448 * int res = bpf_probe_read_str(buf, sizeof(buf), 1449 * ctx->di); 1450 * 1451 * // Consume buf, for example push it to 1452 * // userspace via bpf_perf_event_output(); we 1453 * // can use res (the string length) as event 1454 * // size, after checking its boundaries. 1455 * } 1456 * 1457 * In comparison, using **bpf_probe_read()** helper here instead 1458 * to read the string would require to estimate the length at 1459 * compile time, and would often result in copying more memory 1460 * than necessary. 1461 * 1462 * Another useful use case is when parsing individual process 1463 * arguments or individual environment variables navigating 1464 * *current*\ **->mm->arg_start** and *current*\ 1465 * **->mm->env_start**: using this helper and the return value, 1466 * one can quickly iterate at the right offset of the memory area. 1467 * Return 1468 * On success, the strictly positive length of the string, 1469 * including the trailing NUL character. On error, a negative 1470 * value. 1471 * 1472 * u64 bpf_get_socket_cookie(struct sk_buff *skb) 1473 * Description 1474 * If the **struct sk_buff** pointed by *skb* has a known socket, 1475 * retrieve the cookie (generated by the kernel) of this socket. 1476 * If no cookie has been set yet, generate a new cookie. Once 1477 * generated, the socket cookie remains stable for the life of the 1478 * socket. This helper can be useful for monitoring per socket 1479 * networking traffic statistics as it provides a global socket 1480 * identifier that can be assumed unique. 1481 * Return 1482 * A 8-byte long non-decreasing number on success, or 0 if the 1483 * socket field is missing inside *skb*. 1484 * 1485 * u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx) 1486 * Description 1487 * Equivalent to bpf_get_socket_cookie() helper that accepts 1488 * *skb*, but gets socket from **struct bpf_sock_addr** context. 1489 * Return 1490 * A 8-byte long non-decreasing number. 1491 * 1492 * u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx) 1493 * Description 1494 * Equivalent to bpf_get_socket_cookie() helper that accepts 1495 * *skb*, but gets socket from **struct bpf_sock_ops** context. 1496 * Return 1497 * A 8-byte long non-decreasing number. 1498 * 1499 * u32 bpf_get_socket_uid(struct sk_buff *skb) 1500 * Return 1501 * The owner UID of the socket associated to *skb*. If the socket 1502 * is **NULL**, or if it is not a full socket (i.e. if it is a 1503 * time-wait or a request socket instead), **overflowuid** value 1504 * is returned (note that **overflowuid** might also be the actual 1505 * UID value for the socket). 1506 * 1507 * u32 bpf_set_hash(struct sk_buff *skb, u32 hash) 1508 * Description 1509 * Set the full hash for *skb* (set the field *skb*\ **->hash**) 1510 * to value *hash*. 1511 * Return 1512 * 0 1513 * 1514 * int bpf_setsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen) 1515 * Description 1516 * Emulate a call to **setsockopt()** on the socket associated to 1517 * *bpf_socket*, which must be a full socket. The *level* at 1518 * which the option resides and the name *optname* of the option 1519 * must be specified, see **setsockopt(2)** for more information. 1520 * The option value of length *optlen* is pointed by *optval*. 1521 * 1522 * This helper actually implements a subset of **setsockopt()**. 1523 * It supports the following *level*\ s: 1524 * 1525 * * **SOL_SOCKET**, which supports the following *optname*\ s: 1526 * **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**, 1527 * **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**. 1528 * * **IPPROTO_TCP**, which supports the following *optname*\ s: 1529 * **TCP_CONGESTION**, **TCP_BPF_IW**, 1530 * **TCP_BPF_SNDCWND_CLAMP**. 1531 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**. 1532 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**. 1533 * Return 1534 * 0 on success, or a negative error in case of failure. 1535 * 1536 * int bpf_skb_adjust_room(struct sk_buff *skb, s32 len_diff, u32 mode, u64 flags) 1537 * Description 1538 * Grow or shrink the room for data in the packet associated to 1539 * *skb* by *len_diff*, and according to the selected *mode*. 1540 * 1541 * There are two supported modes at this time: 1542 * 1543 * * **BPF_ADJ_ROOM_MAC**: Adjust room at the mac layer 1544 * (room space is added or removed below the layer 2 header). 1545 * 1546 * * **BPF_ADJ_ROOM_NET**: Adjust room at the network layer 1547 * (room space is added or removed below the layer 3 header). 1548 * 1549 * The following flags are supported at this time: 1550 * 1551 * * **BPF_F_ADJ_ROOM_FIXED_GSO**: Do not adjust gso_size. 1552 * Adjusting mss in this way is not allowed for datagrams. 1553 * 1554 * * **BPF_F_ADJ_ROOM_ENCAP_L3_IPV4**, 1555 * **BPF_F_ADJ_ROOM_ENCAP_L3_IPV6**: 1556 * Any new space is reserved to hold a tunnel header. 1557 * Configure skb offsets and other fields accordingly. 1558 * 1559 * * **BPF_F_ADJ_ROOM_ENCAP_L4_GRE**, 1560 * **BPF_F_ADJ_ROOM_ENCAP_L4_UDP**: 1561 * Use with ENCAP_L3 flags to further specify the tunnel type. 1562 * 1563 * * **BPF_F_ADJ_ROOM_ENCAP_L2**\ (*len*): 1564 * Use with ENCAP_L3/L4 flags to further specify the tunnel 1565 * type; *len* is the length of the inner MAC header. 1566 * 1567 * A call to this helper is susceptible to change the underlying 1568 * packet buffer. Therefore, at load time, all checks on pointers 1569 * previously done by the verifier are invalidated and must be 1570 * performed again, if the helper is used in combination with 1571 * direct packet access. 1572 * Return 1573 * 0 on success, or a negative error in case of failure. 1574 * 1575 * int bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags) 1576 * Description 1577 * Redirect the packet to the endpoint referenced by *map* at 1578 * index *key*. Depending on its type, this *map* can contain 1579 * references to net devices (for forwarding packets through other 1580 * ports), or to CPUs (for redirecting XDP frames to another CPU; 1581 * but this is only implemented for native XDP (with driver 1582 * support) as of this writing). 1583 * 1584 * The lower two bits of *flags* are used as the return code if 1585 * the map lookup fails. This is so that the return value can be 1586 * one of the XDP program return codes up to XDP_TX, as chosen by 1587 * the caller. Any higher bits in the *flags* argument must be 1588 * unset. 1589 * 1590 * When used to redirect packets to net devices, this helper 1591 * provides a high performance increase over **bpf_redirect**\ (). 1592 * This is due to various implementation details of the underlying 1593 * mechanisms, one of which is the fact that **bpf_redirect_map**\ 1594 * () tries to send packet as a "bulk" to the device. 1595 * Return 1596 * **XDP_REDIRECT** on success, or **XDP_ABORTED** on error. 1597 * 1598 * int bpf_sk_redirect_map(struct bpf_map *map, u32 key, u64 flags) 1599 * Description 1600 * Redirect the packet to the socket referenced by *map* (of type 1601 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and 1602 * egress interfaces can be used for redirection. The 1603 * **BPF_F_INGRESS** value in *flags* is used to make the 1604 * distinction (ingress path is selected if the flag is present, 1605 * egress path otherwise). This is the only flag supported for now. 1606 * Return 1607 * **SK_PASS** on success, or **SK_DROP** on error. 1608 * 1609 * int bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags) 1610 * Description 1611 * Add an entry to, or update a *map* referencing sockets. The 1612 * *skops* is used as a new value for the entry associated to 1613 * *key*. *flags* is one of: 1614 * 1615 * **BPF_NOEXIST** 1616 * The entry for *key* must not exist in the map. 1617 * **BPF_EXIST** 1618 * The entry for *key* must already exist in the map. 1619 * **BPF_ANY** 1620 * No condition on the existence of the entry for *key*. 1621 * 1622 * If the *map* has eBPF programs (parser and verdict), those will 1623 * be inherited by the socket being added. If the socket is 1624 * already attached to eBPF programs, this results in an error. 1625 * Return 1626 * 0 on success, or a negative error in case of failure. 1627 * 1628 * int bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta) 1629 * Description 1630 * Adjust the address pointed by *xdp_md*\ **->data_meta** by 1631 * *delta* (which can be positive or negative). Note that this 1632 * operation modifies the address stored in *xdp_md*\ **->data**, 1633 * so the latter must be loaded only after the helper has been 1634 * called. 1635 * 1636 * The use of *xdp_md*\ **->data_meta** is optional and programs 1637 * are not required to use it. The rationale is that when the 1638 * packet is processed with XDP (e.g. as DoS filter), it is 1639 * possible to push further meta data along with it before passing 1640 * to the stack, and to give the guarantee that an ingress eBPF 1641 * program attached as a TC classifier on the same device can pick 1642 * this up for further post-processing. Since TC works with socket 1643 * buffers, it remains possible to set from XDP the **mark** or 1644 * **priority** pointers, or other pointers for the socket buffer. 1645 * Having this scratch space generic and programmable allows for 1646 * more flexibility as the user is free to store whatever meta 1647 * data they need. 1648 * 1649 * A call to this helper is susceptible to change the underlying 1650 * packet buffer. Therefore, at load time, all checks on pointers 1651 * previously done by the verifier are invalidated and must be 1652 * performed again, if the helper is used in combination with 1653 * direct packet access. 1654 * Return 1655 * 0 on success, or a negative error in case of failure. 1656 * 1657 * int bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size) 1658 * Description 1659 * Read the value of a perf event counter, and store it into *buf* 1660 * of size *buf_size*. This helper relies on a *map* of type 1661 * **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event 1662 * counter is selected when *map* is updated with perf event file 1663 * descriptors. The *map* is an array whose size is the number of 1664 * available CPUs, and each cell contains a value relative to one 1665 * CPU. The value to retrieve is indicated by *flags*, that 1666 * contains the index of the CPU to look up, masked with 1667 * **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to 1668 * **BPF_F_CURRENT_CPU** to indicate that the value for the 1669 * current CPU should be retrieved. 1670 * 1671 * This helper behaves in a way close to 1672 * **bpf_perf_event_read**\ () helper, save that instead of 1673 * just returning the value observed, it fills the *buf* 1674 * structure. This allows for additional data to be retrieved: in 1675 * particular, the enabled and running times (in *buf*\ 1676 * **->enabled** and *buf*\ **->running**, respectively) are 1677 * copied. In general, **bpf_perf_event_read_value**\ () is 1678 * recommended over **bpf_perf_event_read**\ (), which has some 1679 * ABI issues and provides fewer functionalities. 1680 * 1681 * These values are interesting, because hardware PMU (Performance 1682 * Monitoring Unit) counters are limited resources. When there are 1683 * more PMU based perf events opened than available counters, 1684 * kernel will multiplex these events so each event gets certain 1685 * percentage (but not all) of the PMU time. In case that 1686 * multiplexing happens, the number of samples or counter value 1687 * will not reflect the case compared to when no multiplexing 1688 * occurs. This makes comparison between different runs difficult. 1689 * Typically, the counter value should be normalized before 1690 * comparing to other experiments. The usual normalization is done 1691 * as follows. 1692 * 1693 * :: 1694 * 1695 * normalized_counter = counter * t_enabled / t_running 1696 * 1697 * Where t_enabled is the time enabled for event and t_running is 1698 * the time running for event since last normalization. The 1699 * enabled and running times are accumulated since the perf event 1700 * open. To achieve scaling factor between two invocations of an 1701 * eBPF program, users can can use CPU id as the key (which is 1702 * typical for perf array usage model) to remember the previous 1703 * value and do the calculation inside the eBPF program. 1704 * Return 1705 * 0 on success, or a negative error in case of failure. 1706 * 1707 * int bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size) 1708 * Description 1709 * For en eBPF program attached to a perf event, retrieve the 1710 * value of the event counter associated to *ctx* and store it in 1711 * the structure pointed by *buf* and of size *buf_size*. Enabled 1712 * and running times are also stored in the structure (see 1713 * description of helper **bpf_perf_event_read_value**\ () for 1714 * more details). 1715 * Return 1716 * 0 on success, or a negative error in case of failure. 1717 * 1718 * int bpf_getsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen) 1719 * Description 1720 * Emulate a call to **getsockopt()** on the socket associated to 1721 * *bpf_socket*, which must be a full socket. The *level* at 1722 * which the option resides and the name *optname* of the option 1723 * must be specified, see **getsockopt(2)** for more information. 1724 * The retrieved value is stored in the structure pointed by 1725 * *opval* and of length *optlen*. 1726 * 1727 * This helper actually implements a subset of **getsockopt()**. 1728 * It supports the following *level*\ s: 1729 * 1730 * * **IPPROTO_TCP**, which supports *optname* 1731 * **TCP_CONGESTION**. 1732 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**. 1733 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**. 1734 * Return 1735 * 0 on success, or a negative error in case of failure. 1736 * 1737 * int bpf_override_return(struct pt_regs *regs, u64 rc) 1738 * Description 1739 * Used for error injection, this helper uses kprobes to override 1740 * the return value of the probed function, and to set it to *rc*. 1741 * The first argument is the context *regs* on which the kprobe 1742 * works. 1743 * 1744 * This helper works by setting setting the PC (program counter) 1745 * to an override function which is run in place of the original 1746 * probed function. This means the probed function is not run at 1747 * all. The replacement function just returns with the required 1748 * value. 1749 * 1750 * This helper has security implications, and thus is subject to 1751 * restrictions. It is only available if the kernel was compiled 1752 * with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration 1753 * option, and in this case it only works on functions tagged with 1754 * **ALLOW_ERROR_INJECTION** in the kernel code. 1755 * 1756 * Also, the helper is only available for the architectures having 1757 * the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing, 1758 * x86 architecture is the only one to support this feature. 1759 * Return 1760 * 0 1761 * 1762 * int bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval) 1763 * Description 1764 * Attempt to set the value of the **bpf_sock_ops_cb_flags** field 1765 * for the full TCP socket associated to *bpf_sock_ops* to 1766 * *argval*. 1767 * 1768 * The primary use of this field is to determine if there should 1769 * be calls to eBPF programs of type 1770 * **BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP 1771 * code. A program of the same type can change its value, per 1772 * connection and as necessary, when the connection is 1773 * established. This field is directly accessible for reading, but 1774 * this helper must be used for updates in order to return an 1775 * error if an eBPF program tries to set a callback that is not 1776 * supported in the current kernel. 1777 * 1778 * *argval* is a flag array which can combine these flags: 1779 * 1780 * * **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out) 1781 * * **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission) 1782 * * **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change) 1783 * * **BPF_SOCK_OPS_RTT_CB_FLAG** (every RTT) 1784 * 1785 * Therefore, this function can be used to clear a callback flag by 1786 * setting the appropriate bit to zero. e.g. to disable the RTO 1787 * callback: 1788 * 1789 * **bpf_sock_ops_cb_flags_set(bpf_sock,** 1790 * **bpf_sock->bpf_sock_ops_cb_flags & ~BPF_SOCK_OPS_RTO_CB_FLAG)** 1791 * 1792 * Here are some examples of where one could call such eBPF 1793 * program: 1794 * 1795 * * When RTO fires. 1796 * * When a packet is retransmitted. 1797 * * When the connection terminates. 1798 * * When a packet is sent. 1799 * * When a packet is received. 1800 * Return 1801 * Code **-EINVAL** if the socket is not a full TCP socket; 1802 * otherwise, a positive number containing the bits that could not 1803 * be set is returned (which comes down to 0 if all bits were set 1804 * as required). 1805 * 1806 * int bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags) 1807 * Description 1808 * This helper is used in programs implementing policies at the 1809 * socket level. If the message *msg* is allowed to pass (i.e. if 1810 * the verdict eBPF program returns **SK_PASS**), redirect it to 1811 * the socket referenced by *map* (of type 1812 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and 1813 * egress interfaces can be used for redirection. The 1814 * **BPF_F_INGRESS** value in *flags* is used to make the 1815 * distinction (ingress path is selected if the flag is present, 1816 * egress path otherwise). This is the only flag supported for now. 1817 * Return 1818 * **SK_PASS** on success, or **SK_DROP** on error. 1819 * 1820 * int bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes) 1821 * Description 1822 * For socket policies, apply the verdict of the eBPF program to 1823 * the next *bytes* (number of bytes) of message *msg*. 1824 * 1825 * For example, this helper can be used in the following cases: 1826 * 1827 * * A single **sendmsg**\ () or **sendfile**\ () system call 1828 * contains multiple logical messages that the eBPF program is 1829 * supposed to read and for which it should apply a verdict. 1830 * * An eBPF program only cares to read the first *bytes* of a 1831 * *msg*. If the message has a large payload, then setting up 1832 * and calling the eBPF program repeatedly for all bytes, even 1833 * though the verdict is already known, would create unnecessary 1834 * overhead. 1835 * 1836 * When called from within an eBPF program, the helper sets a 1837 * counter internal to the BPF infrastructure, that is used to 1838 * apply the last verdict to the next *bytes*. If *bytes* is 1839 * smaller than the current data being processed from a 1840 * **sendmsg**\ () or **sendfile**\ () system call, the first 1841 * *bytes* will be sent and the eBPF program will be re-run with 1842 * the pointer for start of data pointing to byte number *bytes* 1843 * **+ 1**. If *bytes* is larger than the current data being 1844 * processed, then the eBPF verdict will be applied to multiple 1845 * **sendmsg**\ () or **sendfile**\ () calls until *bytes* are 1846 * consumed. 1847 * 1848 * Note that if a socket closes with the internal counter holding 1849 * a non-zero value, this is not a problem because data is not 1850 * being buffered for *bytes* and is sent as it is received. 1851 * Return 1852 * 0 1853 * 1854 * int bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes) 1855 * Description 1856 * For socket policies, prevent the execution of the verdict eBPF 1857 * program for message *msg* until *bytes* (byte number) have been 1858 * accumulated. 1859 * 1860 * This can be used when one needs a specific number of bytes 1861 * before a verdict can be assigned, even if the data spans 1862 * multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme 1863 * case would be a user calling **sendmsg**\ () repeatedly with 1864 * 1-byte long message segments. Obviously, this is bad for 1865 * performance, but it is still valid. If the eBPF program needs 1866 * *bytes* bytes to validate a header, this helper can be used to 1867 * prevent the eBPF program to be called again until *bytes* have 1868 * been accumulated. 1869 * Return 1870 * 0 1871 * 1872 * int bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags) 1873 * Description 1874 * For socket policies, pull in non-linear data from user space 1875 * for *msg* and set pointers *msg*\ **->data** and *msg*\ 1876 * **->data_end** to *start* and *end* bytes offsets into *msg*, 1877 * respectively. 1878 * 1879 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a 1880 * *msg* it can only parse data that the (**data**, **data_end**) 1881 * pointers have already consumed. For **sendmsg**\ () hooks this 1882 * is likely the first scatterlist element. But for calls relying 1883 * on the **sendpage** handler (e.g. **sendfile**\ ()) this will 1884 * be the range (**0**, **0**) because the data is shared with 1885 * user space and by default the objective is to avoid allowing 1886 * user space to modify data while (or after) eBPF verdict is 1887 * being decided. This helper can be used to pull in data and to 1888 * set the start and end pointer to given values. Data will be 1889 * copied if necessary (i.e. if data was not linear and if start 1890 * and end pointers do not point to the same chunk). 1891 * 1892 * A call to this helper is susceptible to change the underlying 1893 * packet buffer. Therefore, at load time, all checks on pointers 1894 * previously done by the verifier are invalidated and must be 1895 * performed again, if the helper is used in combination with 1896 * direct packet access. 1897 * 1898 * All values for *flags* are reserved for future usage, and must 1899 * be left at zero. 1900 * Return 1901 * 0 on success, or a negative error in case of failure. 1902 * 1903 * int bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len) 1904 * Description 1905 * Bind the socket associated to *ctx* to the address pointed by 1906 * *addr*, of length *addr_len*. This allows for making outgoing 1907 * connection from the desired IP address, which can be useful for 1908 * example when all processes inside a cgroup should use one 1909 * single IP address on a host that has multiple IP configured. 1910 * 1911 * This helper works for IPv4 and IPv6, TCP and UDP sockets. The 1912 * domain (*addr*\ **->sa_family**) must be **AF_INET** (or 1913 * **AF_INET6**). Looking for a free port to bind to can be 1914 * expensive, therefore binding to port is not permitted by the 1915 * helper: *addr*\ **->sin_port** (or **sin6_port**, respectively) 1916 * must be set to zero. 1917 * Return 1918 * 0 on success, or a negative error in case of failure. 1919 * 1920 * int bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta) 1921 * Description 1922 * Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is 1923 * only possible to shrink the packet as of this writing, 1924 * therefore *delta* must be a negative integer. 1925 * 1926 * A call to this helper is susceptible to change the underlying 1927 * packet buffer. Therefore, at load time, all checks on pointers 1928 * previously done by the verifier are invalidated and must be 1929 * performed again, if the helper is used in combination with 1930 * direct packet access. 1931 * Return 1932 * 0 on success, or a negative error in case of failure. 1933 * 1934 * int bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags) 1935 * Description 1936 * Retrieve the XFRM state (IP transform framework, see also 1937 * **ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*. 1938 * 1939 * The retrieved value is stored in the **struct bpf_xfrm_state** 1940 * pointed by *xfrm_state* and of length *size*. 1941 * 1942 * All values for *flags* are reserved for future usage, and must 1943 * be left at zero. 1944 * 1945 * This helper is available only if the kernel was compiled with 1946 * **CONFIG_XFRM** configuration option. 1947 * Return 1948 * 0 on success, or a negative error in case of failure. 1949 * 1950 * int bpf_get_stack(struct pt_regs *regs, void *buf, u32 size, u64 flags) 1951 * Description 1952 * Return a user or a kernel stack in bpf program provided buffer. 1953 * To achieve this, the helper needs *ctx*, which is a pointer 1954 * to the context on which the tracing program is executed. 1955 * To store the stacktrace, the bpf program provides *buf* with 1956 * a nonnegative *size*. 1957 * 1958 * The last argument, *flags*, holds the number of stack frames to 1959 * skip (from 0 to 255), masked with 1960 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set 1961 * the following flags: 1962 * 1963 * **BPF_F_USER_STACK** 1964 * Collect a user space stack instead of a kernel stack. 1965 * **BPF_F_USER_BUILD_ID** 1966 * Collect buildid+offset instead of ips for user stack, 1967 * only valid if **BPF_F_USER_STACK** is also specified. 1968 * 1969 * **bpf_get_stack**\ () can collect up to 1970 * **PERF_MAX_STACK_DEPTH** both kernel and user frames, subject 1971 * to sufficient large buffer size. Note that 1972 * this limit can be controlled with the **sysctl** program, and 1973 * that it should be manually increased in order to profile long 1974 * user stacks (such as stacks for Java programs). To do so, use: 1975 * 1976 * :: 1977 * 1978 * # sysctl kernel.perf_event_max_stack=<new value> 1979 * Return 1980 * A non-negative value equal to or less than *size* on success, 1981 * or a negative error in case of failure. 1982 * 1983 * int bpf_skb_load_bytes_relative(const struct sk_buff *skb, u32 offset, void *to, u32 len, u32 start_header) 1984 * Description 1985 * This helper is similar to **bpf_skb_load_bytes**\ () in that 1986 * it provides an easy way to load *len* bytes from *offset* 1987 * from the packet associated to *skb*, into the buffer pointed 1988 * by *to*. The difference to **bpf_skb_load_bytes**\ () is that 1989 * a fifth argument *start_header* exists in order to select a 1990 * base offset to start from. *start_header* can be one of: 1991 * 1992 * **BPF_HDR_START_MAC** 1993 * Base offset to load data from is *skb*'s mac header. 1994 * **BPF_HDR_START_NET** 1995 * Base offset to load data from is *skb*'s network header. 1996 * 1997 * In general, "direct packet access" is the preferred method to 1998 * access packet data, however, this helper is in particular useful 1999 * in socket filters where *skb*\ **->data** does not always point 2000 * to the start of the mac header and where "direct packet access" 2001 * is not available. 2002 * Return 2003 * 0 on success, or a negative error in case of failure. 2004 * 2005 * int bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags) 2006 * Description 2007 * Do FIB lookup in kernel tables using parameters in *params*. 2008 * If lookup is successful and result shows packet is to be 2009 * forwarded, the neighbor tables are searched for the nexthop. 2010 * If successful (ie., FIB lookup shows forwarding and nexthop 2011 * is resolved), the nexthop address is returned in ipv4_dst 2012 * or ipv6_dst based on family, smac is set to mac address of 2013 * egress device, dmac is set to nexthop mac address, rt_metric 2014 * is set to metric from route (IPv4/IPv6 only), and ifindex 2015 * is set to the device index of the nexthop from the FIB lookup. 2016 * 2017 * *plen* argument is the size of the passed in struct. 2018 * *flags* argument can be a combination of one or more of the 2019 * following values: 2020 * 2021 * **BPF_FIB_LOOKUP_DIRECT** 2022 * Do a direct table lookup vs full lookup using FIB 2023 * rules. 2024 * **BPF_FIB_LOOKUP_OUTPUT** 2025 * Perform lookup from an egress perspective (default is 2026 * ingress). 2027 * 2028 * *ctx* is either **struct xdp_md** for XDP programs or 2029 * **struct sk_buff** tc cls_act programs. 2030 * Return 2031 * * < 0 if any input argument is invalid 2032 * * 0 on success (packet is forwarded, nexthop neighbor exists) 2033 * * > 0 one of **BPF_FIB_LKUP_RET_** codes explaining why the 2034 * packet is not forwarded or needs assist from full stack 2035 * 2036 * int bpf_sock_hash_update(struct bpf_sock_ops_kern *skops, struct bpf_map *map, void *key, u64 flags) 2037 * Description 2038 * Add an entry to, or update a sockhash *map* referencing sockets. 2039 * The *skops* is used as a new value for the entry associated to 2040 * *key*. *flags* is one of: 2041 * 2042 * **BPF_NOEXIST** 2043 * The entry for *key* must not exist in the map. 2044 * **BPF_EXIST** 2045 * The entry for *key* must already exist in the map. 2046 * **BPF_ANY** 2047 * No condition on the existence of the entry for *key*. 2048 * 2049 * If the *map* has eBPF programs (parser and verdict), those will 2050 * be inherited by the socket being added. If the socket is 2051 * already attached to eBPF programs, this results in an error. 2052 * Return 2053 * 0 on success, or a negative error in case of failure. 2054 * 2055 * int bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64 flags) 2056 * Description 2057 * This helper is used in programs implementing policies at the 2058 * socket level. If the message *msg* is allowed to pass (i.e. if 2059 * the verdict eBPF program returns **SK_PASS**), redirect it to 2060 * the socket referenced by *map* (of type 2061 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and 2062 * egress interfaces can be used for redirection. The 2063 * **BPF_F_INGRESS** value in *flags* is used to make the 2064 * distinction (ingress path is selected if the flag is present, 2065 * egress path otherwise). This is the only flag supported for now. 2066 * Return 2067 * **SK_PASS** on success, or **SK_DROP** on error. 2068 * 2069 * int bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags) 2070 * Description 2071 * This helper is used in programs implementing policies at the 2072 * skb socket level. If the sk_buff *skb* is allowed to pass (i.e. 2073 * if the verdeict eBPF program returns **SK_PASS**), redirect it 2074 * to the socket referenced by *map* (of type 2075 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and 2076 * egress interfaces can be used for redirection. The 2077 * **BPF_F_INGRESS** value in *flags* is used to make the 2078 * distinction (ingress path is selected if the flag is present, 2079 * egress otherwise). This is the only flag supported for now. 2080 * Return 2081 * **SK_PASS** on success, or **SK_DROP** on error. 2082 * 2083 * int bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len) 2084 * Description 2085 * Encapsulate the packet associated to *skb* within a Layer 3 2086 * protocol header. This header is provided in the buffer at 2087 * address *hdr*, with *len* its size in bytes. *type* indicates 2088 * the protocol of the header and can be one of: 2089 * 2090 * **BPF_LWT_ENCAP_SEG6** 2091 * IPv6 encapsulation with Segment Routing Header 2092 * (**struct ipv6_sr_hdr**). *hdr* only contains the SRH, 2093 * the IPv6 header is computed by the kernel. 2094 * **BPF_LWT_ENCAP_SEG6_INLINE** 2095 * Only works if *skb* contains an IPv6 packet. Insert a 2096 * Segment Routing Header (**struct ipv6_sr_hdr**) inside 2097 * the IPv6 header. 2098 * **BPF_LWT_ENCAP_IP** 2099 * IP encapsulation (GRE/GUE/IPIP/etc). The outer header 2100 * must be IPv4 or IPv6, followed by zero or more 2101 * additional headers, up to **LWT_BPF_MAX_HEADROOM** 2102 * total bytes in all prepended headers. Please note that 2103 * if **skb_is_gso**\ (*skb*) is true, no more than two 2104 * headers can be prepended, and the inner header, if 2105 * present, should be either GRE or UDP/GUE. 2106 * 2107 * **BPF_LWT_ENCAP_SEG6**\ \* types can be called by BPF programs 2108 * of type **BPF_PROG_TYPE_LWT_IN**; **BPF_LWT_ENCAP_IP** type can 2109 * be called by bpf programs of types **BPF_PROG_TYPE_LWT_IN** and 2110 * **BPF_PROG_TYPE_LWT_XMIT**. 2111 * 2112 * A call to this helper is susceptible to change the underlying 2113 * packet buffer. Therefore, at load time, all checks on pointers 2114 * previously done by the verifier are invalidated and must be 2115 * performed again, if the helper is used in combination with 2116 * direct packet access. 2117 * Return 2118 * 0 on success, or a negative error in case of failure. 2119 * 2120 * int bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len) 2121 * Description 2122 * Store *len* bytes from address *from* into the packet 2123 * associated to *skb*, at *offset*. Only the flags, tag and TLVs 2124 * inside the outermost IPv6 Segment Routing Header can be 2125 * modified through this helper. 2126 * 2127 * A call to this helper is susceptible to change the underlying 2128 * packet buffer. Therefore, at load time, all checks on pointers 2129 * previously done by the verifier are invalidated and must be 2130 * performed again, if the helper is used in combination with 2131 * direct packet access. 2132 * Return 2133 * 0 on success, or a negative error in case of failure. 2134 * 2135 * int bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta) 2136 * Description 2137 * Adjust the size allocated to TLVs in the outermost IPv6 2138 * Segment Routing Header contained in the packet associated to 2139 * *skb*, at position *offset* by *delta* bytes. Only offsets 2140 * after the segments are accepted. *delta* can be as well 2141 * positive (growing) as negative (shrinking). 2142 * 2143 * A call to this helper is susceptible to change the underlying 2144 * packet buffer. Therefore, at load time, all checks on pointers 2145 * previously done by the verifier are invalidated and must be 2146 * performed again, if the helper is used in combination with 2147 * direct packet access. 2148 * Return 2149 * 0 on success, or a negative error in case of failure. 2150 * 2151 * int bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len) 2152 * Description 2153 * Apply an IPv6 Segment Routing action of type *action* to the 2154 * packet associated to *skb*. Each action takes a parameter 2155 * contained at address *param*, and of length *param_len* bytes. 2156 * *action* can be one of: 2157 * 2158 * **SEG6_LOCAL_ACTION_END_X** 2159 * End.X action: Endpoint with Layer-3 cross-connect. 2160 * Type of *param*: **struct in6_addr**. 2161 * **SEG6_LOCAL_ACTION_END_T** 2162 * End.T action: Endpoint with specific IPv6 table lookup. 2163 * Type of *param*: **int**. 2164 * **SEG6_LOCAL_ACTION_END_B6** 2165 * End.B6 action: Endpoint bound to an SRv6 policy. 2166 * Type of *param*: **struct ipv6_sr_hdr**. 2167 * **SEG6_LOCAL_ACTION_END_B6_ENCAP** 2168 * End.B6.Encap action: Endpoint bound to an SRv6 2169 * encapsulation policy. 2170 * Type of *param*: **struct ipv6_sr_hdr**. 2171 * 2172 * A call to this helper is susceptible to change the underlying 2173 * packet buffer. Therefore, at load time, all checks on pointers 2174 * previously done by the verifier are invalidated and must be 2175 * performed again, if the helper is used in combination with 2176 * direct packet access. 2177 * Return 2178 * 0 on success, or a negative error in case of failure. 2179 * 2180 * int bpf_rc_repeat(void *ctx) 2181 * Description 2182 * This helper is used in programs implementing IR decoding, to 2183 * report a successfully decoded repeat key message. This delays 2184 * the generation of a key up event for previously generated 2185 * key down event. 2186 * 2187 * Some IR protocols like NEC have a special IR message for 2188 * repeating last button, for when a button is held down. 2189 * 2190 * The *ctx* should point to the lirc sample as passed into 2191 * the program. 2192 * 2193 * This helper is only available is the kernel was compiled with 2194 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to 2195 * "**y**". 2196 * Return 2197 * 0 2198 * 2199 * int bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle) 2200 * Description 2201 * This helper is used in programs implementing IR decoding, to 2202 * report a successfully decoded key press with *scancode*, 2203 * *toggle* value in the given *protocol*. The scancode will be 2204 * translated to a keycode using the rc keymap, and reported as 2205 * an input key down event. After a period a key up event is 2206 * generated. This period can be extended by calling either 2207 * **bpf_rc_keydown**\ () again with the same values, or calling 2208 * **bpf_rc_repeat**\ (). 2209 * 2210 * Some protocols include a toggle bit, in case the button was 2211 * released and pressed again between consecutive scancodes. 2212 * 2213 * The *ctx* should point to the lirc sample as passed into 2214 * the program. 2215 * 2216 * The *protocol* is the decoded protocol number (see 2217 * **enum rc_proto** for some predefined values). 2218 * 2219 * This helper is only available is the kernel was compiled with 2220 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to 2221 * "**y**". 2222 * Return 2223 * 0 2224 * 2225 * u64 bpf_skb_cgroup_id(struct sk_buff *skb) 2226 * Description 2227 * Return the cgroup v2 id of the socket associated with the *skb*. 2228 * This is roughly similar to the **bpf_get_cgroup_classid**\ () 2229 * helper for cgroup v1 by providing a tag resp. identifier that 2230 * can be matched on or used for map lookups e.g. to implement 2231 * policy. The cgroup v2 id of a given path in the hierarchy is 2232 * exposed in user space through the f_handle API in order to get 2233 * to the same 64-bit id. 2234 * 2235 * This helper can be used on TC egress path, but not on ingress, 2236 * and is available only if the kernel was compiled with the 2237 * **CONFIG_SOCK_CGROUP_DATA** configuration option. 2238 * Return 2239 * The id is returned or 0 in case the id could not be retrieved. 2240 * 2241 * u64 bpf_get_current_cgroup_id(void) 2242 * Return 2243 * A 64-bit integer containing the current cgroup id based 2244 * on the cgroup within which the current task is running. 2245 * 2246 * void *bpf_get_local_storage(void *map, u64 flags) 2247 * Description 2248 * Get the pointer to the local storage area. 2249 * The type and the size of the local storage is defined 2250 * by the *map* argument. 2251 * The *flags* meaning is specific for each map type, 2252 * and has to be 0 for cgroup local storage. 2253 * 2254 * Depending on the BPF program type, a local storage area 2255 * can be shared between multiple instances of the BPF program, 2256 * running simultaneously. 2257 * 2258 * A user should care about the synchronization by himself. 2259 * For example, by using the **BPF_STX_XADD** instruction to alter 2260 * the shared data. 2261 * Return 2262 * A pointer to the local storage area. 2263 * 2264 * int bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map *map, void *key, u64 flags) 2265 * Description 2266 * Select a **SO_REUSEPORT** socket from a 2267 * **BPF_MAP_TYPE_REUSEPORT_ARRAY** *map*. 2268 * It checks the selected socket is matching the incoming 2269 * request in the socket buffer. 2270 * Return 2271 * 0 on success, or a negative error in case of failure. 2272 * 2273 * u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level) 2274 * Description 2275 * Return id of cgroup v2 that is ancestor of cgroup associated 2276 * with the *skb* at the *ancestor_level*. The root cgroup is at 2277 * *ancestor_level* zero and each step down the hierarchy 2278 * increments the level. If *ancestor_level* == level of cgroup 2279 * associated with *skb*, then return value will be same as that 2280 * of **bpf_skb_cgroup_id**\ (). 2281 * 2282 * The helper is useful to implement policies based on cgroups 2283 * that are upper in hierarchy than immediate cgroup associated 2284 * with *skb*. 2285 * 2286 * The format of returned id and helper limitations are same as in 2287 * **bpf_skb_cgroup_id**\ (). 2288 * Return 2289 * The id is returned or 0 in case the id could not be retrieved. 2290 * 2291 * struct bpf_sock *bpf_sk_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags) 2292 * Description 2293 * Look for TCP socket matching *tuple*, optionally in a child 2294 * network namespace *netns*. The return value must be checked, 2295 * and if non-**NULL**, released via **bpf_sk_release**\ (). 2296 * 2297 * The *ctx* should point to the context of the program, such as 2298 * the skb or socket (depending on the hook in use). This is used 2299 * to determine the base network namespace for the lookup. 2300 * 2301 * *tuple_size* must be one of: 2302 * 2303 * **sizeof**\ (*tuple*\ **->ipv4**) 2304 * Look for an IPv4 socket. 2305 * **sizeof**\ (*tuple*\ **->ipv6**) 2306 * Look for an IPv6 socket. 2307 * 2308 * If the *netns* is a negative signed 32-bit integer, then the 2309 * socket lookup table in the netns associated with the *ctx* will 2310 * will be used. For the TC hooks, this is the netns of the device 2311 * in the skb. For socket hooks, this is the netns of the socket. 2312 * If *netns* is any other signed 32-bit value greater than or 2313 * equal to zero then it specifies the ID of the netns relative to 2314 * the netns associated with the *ctx*. *netns* values beyond the 2315 * range of 32-bit integers are reserved for future use. 2316 * 2317 * All values for *flags* are reserved for future usage, and must 2318 * be left at zero. 2319 * 2320 * This helper is available only if the kernel was compiled with 2321 * **CONFIG_NET** configuration option. 2322 * Return 2323 * Pointer to **struct bpf_sock**, or **NULL** in case of failure. 2324 * For sockets with reuseport option, the **struct bpf_sock** 2325 * result is from *reuse*\ **->socks**\ [] using the hash of the 2326 * tuple. 2327 * 2328 * struct bpf_sock *bpf_sk_lookup_udp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags) 2329 * Description 2330 * Look for UDP socket matching *tuple*, optionally in a child 2331 * network namespace *netns*. The return value must be checked, 2332 * and if non-**NULL**, released via **bpf_sk_release**\ (). 2333 * 2334 * The *ctx* should point to the context of the program, such as 2335 * the skb or socket (depending on the hook in use). This is used 2336 * to determine the base network namespace for the lookup. 2337 * 2338 * *tuple_size* must be one of: 2339 * 2340 * **sizeof**\ (*tuple*\ **->ipv4**) 2341 * Look for an IPv4 socket. 2342 * **sizeof**\ (*tuple*\ **->ipv6**) 2343 * Look for an IPv6 socket. 2344 * 2345 * If the *netns* is a negative signed 32-bit integer, then the 2346 * socket lookup table in the netns associated with the *ctx* will 2347 * will be used. For the TC hooks, this is the netns of the device 2348 * in the skb. For socket hooks, this is the netns of the socket. 2349 * If *netns* is any other signed 32-bit value greater than or 2350 * equal to zero then it specifies the ID of the netns relative to 2351 * the netns associated with the *ctx*. *netns* values beyond the 2352 * range of 32-bit integers are reserved for future use. 2353 * 2354 * All values for *flags* are reserved for future usage, and must 2355 * be left at zero. 2356 * 2357 * This helper is available only if the kernel was compiled with 2358 * **CONFIG_NET** configuration option. 2359 * Return 2360 * Pointer to **struct bpf_sock**, or **NULL** in case of failure. 2361 * For sockets with reuseport option, the **struct bpf_sock** 2362 * result is from *reuse*\ **->socks**\ [] using the hash of the 2363 * tuple. 2364 * 2365 * int bpf_sk_release(struct bpf_sock *sock) 2366 * Description 2367 * Release the reference held by *sock*. *sock* must be a 2368 * non-**NULL** pointer that was returned from 2369 * **bpf_sk_lookup_xxx**\ (). 2370 * Return 2371 * 0 on success, or a negative error in case of failure. 2372 * 2373 * int bpf_map_push_elem(struct bpf_map *map, const void *value, u64 flags) 2374 * Description 2375 * Push an element *value* in *map*. *flags* is one of: 2376 * 2377 * **BPF_EXIST** 2378 * If the queue/stack is full, the oldest element is 2379 * removed to make room for this. 2380 * Return 2381 * 0 on success, or a negative error in case of failure. 2382 * 2383 * int bpf_map_pop_elem(struct bpf_map *map, void *value) 2384 * Description 2385 * Pop an element from *map*. 2386 * Return 2387 * 0 on success, or a negative error in case of failure. 2388 * 2389 * int bpf_map_peek_elem(struct bpf_map *map, void *value) 2390 * Description 2391 * Get an element from *map* without removing it. 2392 * Return 2393 * 0 on success, or a negative error in case of failure. 2394 * 2395 * int bpf_msg_push_data(struct sk_buff *skb, u32 start, u32 len, u64 flags) 2396 * Description 2397 * For socket policies, insert *len* bytes into *msg* at offset 2398 * *start*. 2399 * 2400 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a 2401 * *msg* it may want to insert metadata or options into the *msg*. 2402 * This can later be read and used by any of the lower layer BPF 2403 * hooks. 2404 * 2405 * This helper may fail if under memory pressure (a malloc 2406 * fails) in these cases BPF programs will get an appropriate 2407 * error and BPF programs will need to handle them. 2408 * Return 2409 * 0 on success, or a negative error in case of failure. 2410 * 2411 * int bpf_msg_pop_data(struct sk_msg_buff *msg, u32 start, u32 pop, u64 flags) 2412 * Description 2413 * Will remove *pop* bytes from a *msg* starting at byte *start*. 2414 * This may result in **ENOMEM** errors under certain situations if 2415 * an allocation and copy are required due to a full ring buffer. 2416 * However, the helper will try to avoid doing the allocation 2417 * if possible. Other errors can occur if input parameters are 2418 * invalid either due to *start* byte not being valid part of *msg* 2419 * payload and/or *pop* value being to large. 2420 * Return 2421 * 0 on success, or a negative error in case of failure. 2422 * 2423 * int bpf_rc_pointer_rel(void *ctx, s32 rel_x, s32 rel_y) 2424 * Description 2425 * This helper is used in programs implementing IR decoding, to 2426 * report a successfully decoded pointer movement. 2427 * 2428 * The *ctx* should point to the lirc sample as passed into 2429 * the program. 2430 * 2431 * This helper is only available is the kernel was compiled with 2432 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to 2433 * "**y**". 2434 * Return 2435 * 0 2436 * 2437 * int bpf_spin_lock(struct bpf_spin_lock *lock) 2438 * Description 2439 * Acquire a spinlock represented by the pointer *lock*, which is 2440 * stored as part of a value of a map. Taking the lock allows to 2441 * safely update the rest of the fields in that value. The 2442 * spinlock can (and must) later be released with a call to 2443 * **bpf_spin_unlock**\ (\ *lock*\ ). 2444 * 2445 * Spinlocks in BPF programs come with a number of restrictions 2446 * and constraints: 2447 * 2448 * * **bpf_spin_lock** objects are only allowed inside maps of 2449 * types **BPF_MAP_TYPE_HASH** and **BPF_MAP_TYPE_ARRAY** (this 2450 * list could be extended in the future). 2451 * * BTF description of the map is mandatory. 2452 * * The BPF program can take ONE lock at a time, since taking two 2453 * or more could cause dead locks. 2454 * * Only one **struct bpf_spin_lock** is allowed per map element. 2455 * * When the lock is taken, calls (either BPF to BPF or helpers) 2456 * are not allowed. 2457 * * The **BPF_LD_ABS** and **BPF_LD_IND** instructions are not 2458 * allowed inside a spinlock-ed region. 2459 * * The BPF program MUST call **bpf_spin_unlock**\ () to release 2460 * the lock, on all execution paths, before it returns. 2461 * * The BPF program can access **struct bpf_spin_lock** only via 2462 * the **bpf_spin_lock**\ () and **bpf_spin_unlock**\ () 2463 * helpers. Loading or storing data into the **struct 2464 * bpf_spin_lock** *lock*\ **;** field of a map is not allowed. 2465 * * To use the **bpf_spin_lock**\ () helper, the BTF description 2466 * of the map value must be a struct and have **struct 2467 * bpf_spin_lock** *anyname*\ **;** field at the top level. 2468 * Nested lock inside another struct is not allowed. 2469 * * The **struct bpf_spin_lock** *lock* field in a map value must 2470 * be aligned on a multiple of 4 bytes in that value. 2471 * * Syscall with command **BPF_MAP_LOOKUP_ELEM** does not copy 2472 * the **bpf_spin_lock** field to user space. 2473 * * Syscall with command **BPF_MAP_UPDATE_ELEM**, or update from 2474 * a BPF program, do not update the **bpf_spin_lock** field. 2475 * * **bpf_spin_lock** cannot be on the stack or inside a 2476 * networking packet (it can only be inside of a map values). 2477 * * **bpf_spin_lock** is available to root only. 2478 * * Tracing programs and socket filter programs cannot use 2479 * **bpf_spin_lock**\ () due to insufficient preemption checks 2480 * (but this may change in the future). 2481 * * **bpf_spin_lock** is not allowed in inner maps of map-in-map. 2482 * Return 2483 * 0 2484 * 2485 * int bpf_spin_unlock(struct bpf_spin_lock *lock) 2486 * Description 2487 * Release the *lock* previously locked by a call to 2488 * **bpf_spin_lock**\ (\ *lock*\ ). 2489 * Return 2490 * 0 2491 * 2492 * struct bpf_sock *bpf_sk_fullsock(struct bpf_sock *sk) 2493 * Description 2494 * This helper gets a **struct bpf_sock** pointer such 2495 * that all the fields in this **bpf_sock** can be accessed. 2496 * Return 2497 * A **struct bpf_sock** pointer on success, or **NULL** in 2498 * case of failure. 2499 * 2500 * struct bpf_tcp_sock *bpf_tcp_sock(struct bpf_sock *sk) 2501 * Description 2502 * This helper gets a **struct bpf_tcp_sock** pointer from a 2503 * **struct bpf_sock** pointer. 2504 * Return 2505 * A **struct bpf_tcp_sock** pointer on success, or **NULL** in 2506 * case of failure. 2507 * 2508 * int bpf_skb_ecn_set_ce(struct sk_buf *skb) 2509 * Description 2510 * Set ECN (Explicit Congestion Notification) field of IP header 2511 * to **CE** (Congestion Encountered) if current value is **ECT** 2512 * (ECN Capable Transport). Otherwise, do nothing. Works with IPv6 2513 * and IPv4. 2514 * Return 2515 * 1 if the **CE** flag is set (either by the current helper call 2516 * or because it was already present), 0 if it is not set. 2517 * 2518 * struct bpf_sock *bpf_get_listener_sock(struct bpf_sock *sk) 2519 * Description 2520 * Return a **struct bpf_sock** pointer in **TCP_LISTEN** state. 2521 * **bpf_sk_release**\ () is unnecessary and not allowed. 2522 * Return 2523 * A **struct bpf_sock** pointer on success, or **NULL** in 2524 * case of failure. 2525 * 2526 * struct bpf_sock *bpf_skc_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags) 2527 * Description 2528 * Look for TCP socket matching *tuple*, optionally in a child 2529 * network namespace *netns*. The return value must be checked, 2530 * and if non-**NULL**, released via **bpf_sk_release**\ (). 2531 * 2532 * This function is identical to **bpf_sk_lookup_tcp**\ (), except 2533 * that it also returns timewait or request sockets. Use 2534 * **bpf_sk_fullsock**\ () or **bpf_tcp_sock**\ () to access the 2535 * full structure. 2536 * 2537 * This helper is available only if the kernel was compiled with 2538 * **CONFIG_NET** configuration option. 2539 * Return 2540 * Pointer to **struct bpf_sock**, or **NULL** in case of failure. 2541 * For sockets with reuseport option, the **struct bpf_sock** 2542 * result is from *reuse*\ **->socks**\ [] using the hash of the 2543 * tuple. 2544 * 2545 * int bpf_tcp_check_syncookie(struct bpf_sock *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len) 2546 * Description 2547 * Check whether *iph* and *th* contain a valid SYN cookie ACK for 2548 * the listening socket in *sk*. 2549 * 2550 * *iph* points to the start of the IPv4 or IPv6 header, while 2551 * *iph_len* contains **sizeof**\ (**struct iphdr**) or 2552 * **sizeof**\ (**struct ip6hdr**). 2553 * 2554 * *th* points to the start of the TCP header, while *th_len* 2555 * contains **sizeof**\ (**struct tcphdr**). 2556 * 2557 * Return 2558 * 0 if *iph* and *th* are a valid SYN cookie ACK, or a negative 2559 * error otherwise. 2560 * 2561 * int bpf_sysctl_get_name(struct bpf_sysctl *ctx, char *buf, size_t buf_len, u64 flags) 2562 * Description 2563 * Get name of sysctl in /proc/sys/ and copy it into provided by 2564 * program buffer *buf* of size *buf_len*. 2565 * 2566 * The buffer is always NUL terminated, unless it's zero-sized. 2567 * 2568 * If *flags* is zero, full name (e.g. "net/ipv4/tcp_mem") is 2569 * copied. Use **BPF_F_SYSCTL_BASE_NAME** flag to copy base name 2570 * only (e.g. "tcp_mem"). 2571 * Return 2572 * Number of character copied (not including the trailing NUL). 2573 * 2574 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain 2575 * truncated name in this case). 2576 * 2577 * int bpf_sysctl_get_current_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len) 2578 * Description 2579 * Get current value of sysctl as it is presented in /proc/sys 2580 * (incl. newline, etc), and copy it as a string into provided 2581 * by program buffer *buf* of size *buf_len*. 2582 * 2583 * The whole value is copied, no matter what file position user 2584 * space issued e.g. sys_read at. 2585 * 2586 * The buffer is always NUL terminated, unless it's zero-sized. 2587 * Return 2588 * Number of character copied (not including the trailing NUL). 2589 * 2590 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain 2591 * truncated name in this case). 2592 * 2593 * **-EINVAL** if current value was unavailable, e.g. because 2594 * sysctl is uninitialized and read returns -EIO for it. 2595 * 2596 * int bpf_sysctl_get_new_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len) 2597 * Description 2598 * Get new value being written by user space to sysctl (before 2599 * the actual write happens) and copy it as a string into 2600 * provided by program buffer *buf* of size *buf_len*. 2601 * 2602 * User space may write new value at file position > 0. 2603 * 2604 * The buffer is always NUL terminated, unless it's zero-sized. 2605 * Return 2606 * Number of character copied (not including the trailing NUL). 2607 * 2608 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain 2609 * truncated name in this case). 2610 * 2611 * **-EINVAL** if sysctl is being read. 2612 * 2613 * int bpf_sysctl_set_new_value(struct bpf_sysctl *ctx, const char *buf, size_t buf_len) 2614 * Description 2615 * Override new value being written by user space to sysctl with 2616 * value provided by program in buffer *buf* of size *buf_len*. 2617 * 2618 * *buf* should contain a string in same form as provided by user 2619 * space on sysctl write. 2620 * 2621 * User space may write new value at file position > 0. To override 2622 * the whole sysctl value file position should be set to zero. 2623 * Return 2624 * 0 on success. 2625 * 2626 * **-E2BIG** if the *buf_len* is too big. 2627 * 2628 * **-EINVAL** if sysctl is being read. 2629 * 2630 * int bpf_strtol(const char *buf, size_t buf_len, u64 flags, long *res) 2631 * Description 2632 * Convert the initial part of the string from buffer *buf* of 2633 * size *buf_len* to a long integer according to the given base 2634 * and save the result in *res*. 2635 * 2636 * The string may begin with an arbitrary amount of white space 2637 * (as determined by **isspace**\ (3)) followed by a single 2638 * optional '**-**' sign. 2639 * 2640 * Five least significant bits of *flags* encode base, other bits 2641 * are currently unused. 2642 * 2643 * Base must be either 8, 10, 16 or 0 to detect it automatically 2644 * similar to user space **strtol**\ (3). 2645 * Return 2646 * Number of characters consumed on success. Must be positive but 2647 * no more than *buf_len*. 2648 * 2649 * **-EINVAL** if no valid digits were found or unsupported base 2650 * was provided. 2651 * 2652 * **-ERANGE** if resulting value was out of range. 2653 * 2654 * int bpf_strtoul(const char *buf, size_t buf_len, u64 flags, unsigned long *res) 2655 * Description 2656 * Convert the initial part of the string from buffer *buf* of 2657 * size *buf_len* to an unsigned long integer according to the 2658 * given base and save the result in *res*. 2659 * 2660 * The string may begin with an arbitrary amount of white space 2661 * (as determined by **isspace**\ (3)). 2662 * 2663 * Five least significant bits of *flags* encode base, other bits 2664 * are currently unused. 2665 * 2666 * Base must be either 8, 10, 16 or 0 to detect it automatically 2667 * similar to user space **strtoul**\ (3). 2668 * Return 2669 * Number of characters consumed on success. Must be positive but 2670 * no more than *buf_len*. 2671 * 2672 * **-EINVAL** if no valid digits were found or unsupported base 2673 * was provided. 2674 * 2675 * **-ERANGE** if resulting value was out of range. 2676 * 2677 * void *bpf_sk_storage_get(struct bpf_map *map, struct bpf_sock *sk, void *value, u64 flags) 2678 * Description 2679 * Get a bpf-local-storage from a *sk*. 2680 * 2681 * Logically, it could be thought of getting the value from 2682 * a *map* with *sk* as the **key**. From this 2683 * perspective, the usage is not much different from 2684 * **bpf_map_lookup_elem**\ (*map*, **&**\ *sk*) except this 2685 * helper enforces the key must be a full socket and the map must 2686 * be a **BPF_MAP_TYPE_SK_STORAGE** also. 2687 * 2688 * Underneath, the value is stored locally at *sk* instead of 2689 * the *map*. The *map* is used as the bpf-local-storage 2690 * "type". The bpf-local-storage "type" (i.e. the *map*) is 2691 * searched against all bpf-local-storages residing at *sk*. 2692 * 2693 * An optional *flags* (**BPF_SK_STORAGE_GET_F_CREATE**) can be 2694 * used such that a new bpf-local-storage will be 2695 * created if one does not exist. *value* can be used 2696 * together with **BPF_SK_STORAGE_GET_F_CREATE** to specify 2697 * the initial value of a bpf-local-storage. If *value* is 2698 * **NULL**, the new bpf-local-storage will be zero initialized. 2699 * Return 2700 * A bpf-local-storage pointer is returned on success. 2701 * 2702 * **NULL** if not found or there was an error in adding 2703 * a new bpf-local-storage. 2704 * 2705 * int bpf_sk_storage_delete(struct bpf_map *map, struct bpf_sock *sk) 2706 * Description 2707 * Delete a bpf-local-storage from a *sk*. 2708 * Return 2709 * 0 on success. 2710 * 2711 * **-ENOENT** if the bpf-local-storage cannot be found. 2712 * 2713 * int bpf_send_signal(u32 sig) 2714 * Description 2715 * Send signal *sig* to the current task. 2716 * Return 2717 * 0 on success or successfully queued. 2718 * 2719 * **-EBUSY** if work queue under nmi is full. 2720 * 2721 * **-EINVAL** if *sig* is invalid. 2722 * 2723 * **-EPERM** if no permission to send the *sig*. 2724 * 2725 * **-EAGAIN** if bpf program can try again. 2726 * 2727 * s64 bpf_tcp_gen_syncookie(struct bpf_sock *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len) 2728 * Description 2729 * Try to issue a SYN cookie for the packet with corresponding 2730 * IP/TCP headers, *iph* and *th*, on the listening socket in *sk*. 2731 * 2732 * *iph* points to the start of the IPv4 or IPv6 header, while 2733 * *iph_len* contains **sizeof**\ (**struct iphdr**) or 2734 * **sizeof**\ (**struct ip6hdr**). 2735 * 2736 * *th* points to the start of the TCP header, while *th_len* 2737 * contains the length of the TCP header. 2738 * 2739 * Return 2740 * On success, lower 32 bits hold the generated SYN cookie in 2741 * followed by 16 bits which hold the MSS value for that cookie, 2742 * and the top 16 bits are unused. 2743 * 2744 * On failure, the returned value is one of the following: 2745 * 2746 * **-EINVAL** SYN cookie cannot be issued due to error 2747 * 2748 * **-ENOENT** SYN cookie should not be issued (no SYN flood) 2749 * 2750 * **-EOPNOTSUPP** kernel configuration does not enable SYN cookies 2751 * 2752 * **-EPROTONOSUPPORT** IP packet version is not 4 or 6 2753 */ 2754 #define __BPF_FUNC_MAPPER(FN) \ 2755 FN(unspec), \ 2756 FN(map_lookup_elem), \ 2757 FN(map_update_elem), \ 2758 FN(map_delete_elem), \ 2759 FN(probe_read), \ 2760 FN(ktime_get_ns), \ 2761 FN(trace_printk), \ 2762 FN(get_prandom_u32), \ 2763 FN(get_smp_processor_id), \ 2764 FN(skb_store_bytes), \ 2765 FN(l3_csum_replace), \ 2766 FN(l4_csum_replace), \ 2767 FN(tail_call), \ 2768 FN(clone_redirect), \ 2769 FN(get_current_pid_tgid), \ 2770 FN(get_current_uid_gid), \ 2771 FN(get_current_comm), \ 2772 FN(get_cgroup_classid), \ 2773 FN(skb_vlan_push), \ 2774 FN(skb_vlan_pop), \ 2775 FN(skb_get_tunnel_key), \ 2776 FN(skb_set_tunnel_key), \ 2777 FN(perf_event_read), \ 2778 FN(redirect), \ 2779 FN(get_route_realm), \ 2780 FN(perf_event_output), \ 2781 FN(skb_load_bytes), \ 2782 FN(get_stackid), \ 2783 FN(csum_diff), \ 2784 FN(skb_get_tunnel_opt), \ 2785 FN(skb_set_tunnel_opt), \ 2786 FN(skb_change_proto), \ 2787 FN(skb_change_type), \ 2788 FN(skb_under_cgroup), \ 2789 FN(get_hash_recalc), \ 2790 FN(get_current_task), \ 2791 FN(probe_write_user), \ 2792 FN(current_task_under_cgroup), \ 2793 FN(skb_change_tail), \ 2794 FN(skb_pull_data), \ 2795 FN(csum_update), \ 2796 FN(set_hash_invalid), \ 2797 FN(get_numa_node_id), \ 2798 FN(skb_change_head), \ 2799 FN(xdp_adjust_head), \ 2800 FN(probe_read_str), \ 2801 FN(get_socket_cookie), \ 2802 FN(get_socket_uid), \ 2803 FN(set_hash), \ 2804 FN(setsockopt), \ 2805 FN(skb_adjust_room), \ 2806 FN(redirect_map), \ 2807 FN(sk_redirect_map), \ 2808 FN(sock_map_update), \ 2809 FN(xdp_adjust_meta), \ 2810 FN(perf_event_read_value), \ 2811 FN(perf_prog_read_value), \ 2812 FN(getsockopt), \ 2813 FN(override_return), \ 2814 FN(sock_ops_cb_flags_set), \ 2815 FN(msg_redirect_map), \ 2816 FN(msg_apply_bytes), \ 2817 FN(msg_cork_bytes), \ 2818 FN(msg_pull_data), \ 2819 FN(bind), \ 2820 FN(xdp_adjust_tail), \ 2821 FN(skb_get_xfrm_state), \ 2822 FN(get_stack), \ 2823 FN(skb_load_bytes_relative), \ 2824 FN(fib_lookup), \ 2825 FN(sock_hash_update), \ 2826 FN(msg_redirect_hash), \ 2827 FN(sk_redirect_hash), \ 2828 FN(lwt_push_encap), \ 2829 FN(lwt_seg6_store_bytes), \ 2830 FN(lwt_seg6_adjust_srh), \ 2831 FN(lwt_seg6_action), \ 2832 FN(rc_repeat), \ 2833 FN(rc_keydown), \ 2834 FN(skb_cgroup_id), \ 2835 FN(get_current_cgroup_id), \ 2836 FN(get_local_storage), \ 2837 FN(sk_select_reuseport), \ 2838 FN(skb_ancestor_cgroup_id), \ 2839 FN(sk_lookup_tcp), \ 2840 FN(sk_lookup_udp), \ 2841 FN(sk_release), \ 2842 FN(map_push_elem), \ 2843 FN(map_pop_elem), \ 2844 FN(map_peek_elem), \ 2845 FN(msg_push_data), \ 2846 FN(msg_pop_data), \ 2847 FN(rc_pointer_rel), \ 2848 FN(spin_lock), \ 2849 FN(spin_unlock), \ 2850 FN(sk_fullsock), \ 2851 FN(tcp_sock), \ 2852 FN(skb_ecn_set_ce), \ 2853 FN(get_listener_sock), \ 2854 FN(skc_lookup_tcp), \ 2855 FN(tcp_check_syncookie), \ 2856 FN(sysctl_get_name), \ 2857 FN(sysctl_get_current_value), \ 2858 FN(sysctl_get_new_value), \ 2859 FN(sysctl_set_new_value), \ 2860 FN(strtol), \ 2861 FN(strtoul), \ 2862 FN(sk_storage_get), \ 2863 FN(sk_storage_delete), \ 2864 FN(send_signal), \ 2865 FN(tcp_gen_syncookie), 2866 2867 /* integer value in 'imm' field of BPF_CALL instruction selects which helper 2868 * function eBPF program intends to call 2869 */ 2870 #define __BPF_ENUM_FN(x) BPF_FUNC_ ## x 2871 enum bpf_func_id { 2872 __BPF_FUNC_MAPPER(__BPF_ENUM_FN) 2873 __BPF_FUNC_MAX_ID, 2874 }; 2875 #undef __BPF_ENUM_FN 2876 2877 /* All flags used by eBPF helper functions, placed here. */ 2878 2879 /* BPF_FUNC_skb_store_bytes flags. */ 2880 #define BPF_F_RECOMPUTE_CSUM (1ULL << 0) 2881 #define BPF_F_INVALIDATE_HASH (1ULL << 1) 2882 2883 /* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags. 2884 * First 4 bits are for passing the header field size. 2885 */ 2886 #define BPF_F_HDR_FIELD_MASK 0xfULL 2887 2888 /* BPF_FUNC_l4_csum_replace flags. */ 2889 #define BPF_F_PSEUDO_HDR (1ULL << 4) 2890 #define BPF_F_MARK_MANGLED_0 (1ULL << 5) 2891 #define BPF_F_MARK_ENFORCE (1ULL << 6) 2892 2893 /* BPF_FUNC_clone_redirect and BPF_FUNC_redirect flags. */ 2894 #define BPF_F_INGRESS (1ULL << 0) 2895 2896 /* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */ 2897 #define BPF_F_TUNINFO_IPV6 (1ULL << 0) 2898 2899 /* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */ 2900 #define BPF_F_SKIP_FIELD_MASK 0xffULL 2901 #define BPF_F_USER_STACK (1ULL << 8) 2902 /* flags used by BPF_FUNC_get_stackid only. */ 2903 #define BPF_F_FAST_STACK_CMP (1ULL << 9) 2904 #define BPF_F_REUSE_STACKID (1ULL << 10) 2905 /* flags used by BPF_FUNC_get_stack only. */ 2906 #define BPF_F_USER_BUILD_ID (1ULL << 11) 2907 2908 /* BPF_FUNC_skb_set_tunnel_key flags. */ 2909 #define BPF_F_ZERO_CSUM_TX (1ULL << 1) 2910 #define BPF_F_DONT_FRAGMENT (1ULL << 2) 2911 #define BPF_F_SEQ_NUMBER (1ULL << 3) 2912 2913 /* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and 2914 * BPF_FUNC_perf_event_read_value flags. 2915 */ 2916 #define BPF_F_INDEX_MASK 0xffffffffULL 2917 #define BPF_F_CURRENT_CPU BPF_F_INDEX_MASK 2918 /* BPF_FUNC_perf_event_output for sk_buff input context. */ 2919 #define BPF_F_CTXLEN_MASK (0xfffffULL << 32) 2920 2921 /* Current network namespace */ 2922 #define BPF_F_CURRENT_NETNS (-1L) 2923 2924 /* BPF_FUNC_skb_adjust_room flags. */ 2925 #define BPF_F_ADJ_ROOM_FIXED_GSO (1ULL << 0) 2926 2927 #define BPF_ADJ_ROOM_ENCAP_L2_MASK 0xff 2928 #define BPF_ADJ_ROOM_ENCAP_L2_SHIFT 56 2929 2930 #define BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 (1ULL << 1) 2931 #define BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 (1ULL << 2) 2932 #define BPF_F_ADJ_ROOM_ENCAP_L4_GRE (1ULL << 3) 2933 #define BPF_F_ADJ_ROOM_ENCAP_L4_UDP (1ULL << 4) 2934 #define BPF_F_ADJ_ROOM_ENCAP_L2(len) (((__u64)len & \ 2935 BPF_ADJ_ROOM_ENCAP_L2_MASK) \ 2936 << BPF_ADJ_ROOM_ENCAP_L2_SHIFT) 2937 2938 /* BPF_FUNC_sysctl_get_name flags. */ 2939 #define BPF_F_SYSCTL_BASE_NAME (1ULL << 0) 2940 2941 /* BPF_FUNC_sk_storage_get flags */ 2942 #define BPF_SK_STORAGE_GET_F_CREATE (1ULL << 0) 2943 2944 /* Mode for BPF_FUNC_skb_adjust_room helper. */ 2945 enum bpf_adj_room_mode { 2946 BPF_ADJ_ROOM_NET, 2947 BPF_ADJ_ROOM_MAC, 2948 }; 2949 2950 /* Mode for BPF_FUNC_skb_load_bytes_relative helper. */ 2951 enum bpf_hdr_start_off { 2952 BPF_HDR_START_MAC, 2953 BPF_HDR_START_NET, 2954 }; 2955 2956 /* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */ 2957 enum bpf_lwt_encap_mode { 2958 BPF_LWT_ENCAP_SEG6, 2959 BPF_LWT_ENCAP_SEG6_INLINE, 2960 BPF_LWT_ENCAP_IP, 2961 }; 2962 2963 #define __bpf_md_ptr(type, name) \ 2964 union { \ 2965 type name; \ 2966 __u64 :64; \ 2967 } __attribute__((aligned(8))) 2968 2969 /* user accessible mirror of in-kernel sk_buff. 2970 * new fields can only be added to the end of this structure 2971 */ 2972 struct __sk_buff { 2973 __u32 len; 2974 __u32 pkt_type; 2975 __u32 mark; 2976 __u32 queue_mapping; 2977 __u32 protocol; 2978 __u32 vlan_present; 2979 __u32 vlan_tci; 2980 __u32 vlan_proto; 2981 __u32 priority; 2982 __u32 ingress_ifindex; 2983 __u32 ifindex; 2984 __u32 tc_index; 2985 __u32 cb[5]; 2986 __u32 hash; 2987 __u32 tc_classid; 2988 __u32 data; 2989 __u32 data_end; 2990 __u32 napi_id; 2991 2992 /* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */ 2993 __u32 family; 2994 __u32 remote_ip4; /* Stored in network byte order */ 2995 __u32 local_ip4; /* Stored in network byte order */ 2996 __u32 remote_ip6[4]; /* Stored in network byte order */ 2997 __u32 local_ip6[4]; /* Stored in network byte order */ 2998 __u32 remote_port; /* Stored in network byte order */ 2999 __u32 local_port; /* stored in host byte order */ 3000 /* ... here. */ 3001 3002 __u32 data_meta; 3003 __bpf_md_ptr(struct bpf_flow_keys *, flow_keys); 3004 __u64 tstamp; 3005 __u32 wire_len; 3006 __u32 gso_segs; 3007 __bpf_md_ptr(struct bpf_sock *, sk); 3008 }; 3009 3010 struct bpf_tunnel_key { 3011 __u32 tunnel_id; 3012 union { 3013 __u32 remote_ipv4; 3014 __u32 remote_ipv6[4]; 3015 }; 3016 __u8 tunnel_tos; 3017 __u8 tunnel_ttl; 3018 __u16 tunnel_ext; /* Padding, future use. */ 3019 __u32 tunnel_label; 3020 }; 3021 3022 /* user accessible mirror of in-kernel xfrm_state. 3023 * new fields can only be added to the end of this structure 3024 */ 3025 struct bpf_xfrm_state { 3026 __u32 reqid; 3027 __u32 spi; /* Stored in network byte order */ 3028 __u16 family; 3029 __u16 ext; /* Padding, future use. */ 3030 union { 3031 __u32 remote_ipv4; /* Stored in network byte order */ 3032 __u32 remote_ipv6[4]; /* Stored in network byte order */ 3033 }; 3034 }; 3035 3036 /* Generic BPF return codes which all BPF program types may support. 3037 * The values are binary compatible with their TC_ACT_* counter-part to 3038 * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT 3039 * programs. 3040 * 3041 * XDP is handled seprately, see XDP_*. 3042 */ 3043 enum bpf_ret_code { 3044 BPF_OK = 0, 3045 /* 1 reserved */ 3046 BPF_DROP = 2, 3047 /* 3-6 reserved */ 3048 BPF_REDIRECT = 7, 3049 /* >127 are reserved for prog type specific return codes. 3050 * 3051 * BPF_LWT_REROUTE: used by BPF_PROG_TYPE_LWT_IN and 3052 * BPF_PROG_TYPE_LWT_XMIT to indicate that skb had been 3053 * changed and should be routed based on its new L3 header. 3054 * (This is an L3 redirect, as opposed to L2 redirect 3055 * represented by BPF_REDIRECT above). 3056 */ 3057 BPF_LWT_REROUTE = 128, 3058 }; 3059 3060 struct bpf_sock { 3061 __u32 bound_dev_if; 3062 __u32 family; 3063 __u32 type; 3064 __u32 protocol; 3065 __u32 mark; 3066 __u32 priority; 3067 /* IP address also allows 1 and 2 bytes access */ 3068 __u32 src_ip4; 3069 __u32 src_ip6[4]; 3070 __u32 src_port; /* host byte order */ 3071 __u32 dst_port; /* network byte order */ 3072 __u32 dst_ip4; 3073 __u32 dst_ip6[4]; 3074 __u32 state; 3075 }; 3076 3077 struct bpf_tcp_sock { 3078 __u32 snd_cwnd; /* Sending congestion window */ 3079 __u32 srtt_us; /* smoothed round trip time << 3 in usecs */ 3080 __u32 rtt_min; 3081 __u32 snd_ssthresh; /* Slow start size threshold */ 3082 __u32 rcv_nxt; /* What we want to receive next */ 3083 __u32 snd_nxt; /* Next sequence we send */ 3084 __u32 snd_una; /* First byte we want an ack for */ 3085 __u32 mss_cache; /* Cached effective mss, not including SACKS */ 3086 __u32 ecn_flags; /* ECN status bits. */ 3087 __u32 rate_delivered; /* saved rate sample: packets delivered */ 3088 __u32 rate_interval_us; /* saved rate sample: time elapsed */ 3089 __u32 packets_out; /* Packets which are "in flight" */ 3090 __u32 retrans_out; /* Retransmitted packets out */ 3091 __u32 total_retrans; /* Total retransmits for entire connection */ 3092 __u32 segs_in; /* RFC4898 tcpEStatsPerfSegsIn 3093 * total number of segments in. 3094 */ 3095 __u32 data_segs_in; /* RFC4898 tcpEStatsPerfDataSegsIn 3096 * total number of data segments in. 3097 */ 3098 __u32 segs_out; /* RFC4898 tcpEStatsPerfSegsOut 3099 * The total number of segments sent. 3100 */ 3101 __u32 data_segs_out; /* RFC4898 tcpEStatsPerfDataSegsOut 3102 * total number of data segments sent. 3103 */ 3104 __u32 lost_out; /* Lost packets */ 3105 __u32 sacked_out; /* SACK'd packets */ 3106 __u64 bytes_received; /* RFC4898 tcpEStatsAppHCThruOctetsReceived 3107 * sum(delta(rcv_nxt)), or how many bytes 3108 * were acked. 3109 */ 3110 __u64 bytes_acked; /* RFC4898 tcpEStatsAppHCThruOctetsAcked 3111 * sum(delta(snd_una)), or how many bytes 3112 * were acked. 3113 */ 3114 __u32 dsack_dups; /* RFC4898 tcpEStatsStackDSACKDups 3115 * total number of DSACK blocks received 3116 */ 3117 __u32 delivered; /* Total data packets delivered incl. rexmits */ 3118 __u32 delivered_ce; /* Like the above but only ECE marked packets */ 3119 __u32 icsk_retransmits; /* Number of unrecovered [RTO] timeouts */ 3120 }; 3121 3122 struct bpf_sock_tuple { 3123 union { 3124 struct { 3125 __be32 saddr; 3126 __be32 daddr; 3127 __be16 sport; 3128 __be16 dport; 3129 } ipv4; 3130 struct { 3131 __be32 saddr[4]; 3132 __be32 daddr[4]; 3133 __be16 sport; 3134 __be16 dport; 3135 } ipv6; 3136 }; 3137 }; 3138 3139 struct bpf_xdp_sock { 3140 __u32 queue_id; 3141 }; 3142 3143 #define XDP_PACKET_HEADROOM 256 3144 3145 /* User return codes for XDP prog type. 3146 * A valid XDP program must return one of these defined values. All other 3147 * return codes are reserved for future use. Unknown return codes will 3148 * result in packet drops and a warning via bpf_warn_invalid_xdp_action(). 3149 */ 3150 enum xdp_action { 3151 XDP_ABORTED = 0, 3152 XDP_DROP, 3153 XDP_PASS, 3154 XDP_TX, 3155 XDP_REDIRECT, 3156 }; 3157 3158 /* user accessible metadata for XDP packet hook 3159 * new fields must be added to the end of this structure 3160 */ 3161 struct xdp_md { 3162 __u32 data; 3163 __u32 data_end; 3164 __u32 data_meta; 3165 /* Below access go through struct xdp_rxq_info */ 3166 __u32 ingress_ifindex; /* rxq->dev->ifindex */ 3167 __u32 rx_queue_index; /* rxq->queue_index */ 3168 }; 3169 3170 enum sk_action { 3171 SK_DROP = 0, 3172 SK_PASS, 3173 }; 3174 3175 /* user accessible metadata for SK_MSG packet hook, new fields must 3176 * be added to the end of this structure 3177 */ 3178 struct sk_msg_md { 3179 __bpf_md_ptr(void *, data); 3180 __bpf_md_ptr(void *, data_end); 3181 3182 __u32 family; 3183 __u32 remote_ip4; /* Stored in network byte order */ 3184 __u32 local_ip4; /* Stored in network byte order */ 3185 __u32 remote_ip6[4]; /* Stored in network byte order */ 3186 __u32 local_ip6[4]; /* Stored in network byte order */ 3187 __u32 remote_port; /* Stored in network byte order */ 3188 __u32 local_port; /* stored in host byte order */ 3189 __u32 size; /* Total size of sk_msg */ 3190 }; 3191 3192 struct sk_reuseport_md { 3193 /* 3194 * Start of directly accessible data. It begins from 3195 * the tcp/udp header. 3196 */ 3197 __bpf_md_ptr(void *, data); 3198 /* End of directly accessible data */ 3199 __bpf_md_ptr(void *, data_end); 3200 /* 3201 * Total length of packet (starting from the tcp/udp header). 3202 * Note that the directly accessible bytes (data_end - data) 3203 * could be less than this "len". Those bytes could be 3204 * indirectly read by a helper "bpf_skb_load_bytes()". 3205 */ 3206 __u32 len; 3207 /* 3208 * Eth protocol in the mac header (network byte order). e.g. 3209 * ETH_P_IP(0x0800) and ETH_P_IPV6(0x86DD) 3210 */ 3211 __u32 eth_protocol; 3212 __u32 ip_protocol; /* IP protocol. e.g. IPPROTO_TCP, IPPROTO_UDP */ 3213 __u32 bind_inany; /* Is sock bound to an INANY address? */ 3214 __u32 hash; /* A hash of the packet 4 tuples */ 3215 }; 3216 3217 #define BPF_TAG_SIZE 8 3218 3219 struct bpf_prog_info { 3220 __u32 type; 3221 __u32 id; 3222 __u8 tag[BPF_TAG_SIZE]; 3223 __u32 jited_prog_len; 3224 __u32 xlated_prog_len; 3225 __aligned_u64 jited_prog_insns; 3226 __aligned_u64 xlated_prog_insns; 3227 __u64 load_time; /* ns since boottime */ 3228 __u32 created_by_uid; 3229 __u32 nr_map_ids; 3230 __aligned_u64 map_ids; 3231 char name[BPF_OBJ_NAME_LEN]; 3232 __u32 ifindex; 3233 __u32 gpl_compatible:1; 3234 __u32 :31; /* alignment pad */ 3235 __u64 netns_dev; 3236 __u64 netns_ino; 3237 __u32 nr_jited_ksyms; 3238 __u32 nr_jited_func_lens; 3239 __aligned_u64 jited_ksyms; 3240 __aligned_u64 jited_func_lens; 3241 __u32 btf_id; 3242 __u32 func_info_rec_size; 3243 __aligned_u64 func_info; 3244 __u32 nr_func_info; 3245 __u32 nr_line_info; 3246 __aligned_u64 line_info; 3247 __aligned_u64 jited_line_info; 3248 __u32 nr_jited_line_info; 3249 __u32 line_info_rec_size; 3250 __u32 jited_line_info_rec_size; 3251 __u32 nr_prog_tags; 3252 __aligned_u64 prog_tags; 3253 __u64 run_time_ns; 3254 __u64 run_cnt; 3255 } __attribute__((aligned(8))); 3256 3257 struct bpf_map_info { 3258 __u32 type; 3259 __u32 id; 3260 __u32 key_size; 3261 __u32 value_size; 3262 __u32 max_entries; 3263 __u32 map_flags; 3264 char name[BPF_OBJ_NAME_LEN]; 3265 __u32 ifindex; 3266 __u32 :32; 3267 __u64 netns_dev; 3268 __u64 netns_ino; 3269 __u32 btf_id; 3270 __u32 btf_key_type_id; 3271 __u32 btf_value_type_id; 3272 } __attribute__((aligned(8))); 3273 3274 struct bpf_btf_info { 3275 __aligned_u64 btf; 3276 __u32 btf_size; 3277 __u32 id; 3278 } __attribute__((aligned(8))); 3279 3280 /* User bpf_sock_addr struct to access socket fields and sockaddr struct passed 3281 * by user and intended to be used by socket (e.g. to bind to, depends on 3282 * attach attach type). 3283 */ 3284 struct bpf_sock_addr { 3285 __u32 user_family; /* Allows 4-byte read, but no write. */ 3286 __u32 user_ip4; /* Allows 1,2,4-byte read and 4-byte write. 3287 * Stored in network byte order. 3288 */ 3289 __u32 user_ip6[4]; /* Allows 1,2,4,8-byte read and 4,8-byte write. 3290 * Stored in network byte order. 3291 */ 3292 __u32 user_port; /* Allows 4-byte read and write. 3293 * Stored in network byte order 3294 */ 3295 __u32 family; /* Allows 4-byte read, but no write */ 3296 __u32 type; /* Allows 4-byte read, but no write */ 3297 __u32 protocol; /* Allows 4-byte read, but no write */ 3298 __u32 msg_src_ip4; /* Allows 1,2,4-byte read and 4-byte write. 3299 * Stored in network byte order. 3300 */ 3301 __u32 msg_src_ip6[4]; /* Allows 1,2,4,8-byte read and 4,8-byte write. 3302 * Stored in network byte order. 3303 */ 3304 __bpf_md_ptr(struct bpf_sock *, sk); 3305 }; 3306 3307 /* User bpf_sock_ops struct to access socket values and specify request ops 3308 * and their replies. 3309 * Some of this fields are in network (bigendian) byte order and may need 3310 * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h). 3311 * New fields can only be added at the end of this structure 3312 */ 3313 struct bpf_sock_ops { 3314 __u32 op; 3315 union { 3316 __u32 args[4]; /* Optionally passed to bpf program */ 3317 __u32 reply; /* Returned by bpf program */ 3318 __u32 replylong[4]; /* Optionally returned by bpf prog */ 3319 }; 3320 __u32 family; 3321 __u32 remote_ip4; /* Stored in network byte order */ 3322 __u32 local_ip4; /* Stored in network byte order */ 3323 __u32 remote_ip6[4]; /* Stored in network byte order */ 3324 __u32 local_ip6[4]; /* Stored in network byte order */ 3325 __u32 remote_port; /* Stored in network byte order */ 3326 __u32 local_port; /* stored in host byte order */ 3327 __u32 is_fullsock; /* Some TCP fields are only valid if 3328 * there is a full socket. If not, the 3329 * fields read as zero. 3330 */ 3331 __u32 snd_cwnd; 3332 __u32 srtt_us; /* Averaged RTT << 3 in usecs */ 3333 __u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */ 3334 __u32 state; 3335 __u32 rtt_min; 3336 __u32 snd_ssthresh; 3337 __u32 rcv_nxt; 3338 __u32 snd_nxt; 3339 __u32 snd_una; 3340 __u32 mss_cache; 3341 __u32 ecn_flags; 3342 __u32 rate_delivered; 3343 __u32 rate_interval_us; 3344 __u32 packets_out; 3345 __u32 retrans_out; 3346 __u32 total_retrans; 3347 __u32 segs_in; 3348 __u32 data_segs_in; 3349 __u32 segs_out; 3350 __u32 data_segs_out; 3351 __u32 lost_out; 3352 __u32 sacked_out; 3353 __u32 sk_txhash; 3354 __u64 bytes_received; 3355 __u64 bytes_acked; 3356 __bpf_md_ptr(struct bpf_sock *, sk); 3357 }; 3358 3359 /* Definitions for bpf_sock_ops_cb_flags */ 3360 #define BPF_SOCK_OPS_RTO_CB_FLAG (1<<0) 3361 #define BPF_SOCK_OPS_RETRANS_CB_FLAG (1<<1) 3362 #define BPF_SOCK_OPS_STATE_CB_FLAG (1<<2) 3363 #define BPF_SOCK_OPS_RTT_CB_FLAG (1<<3) 3364 #define BPF_SOCK_OPS_ALL_CB_FLAGS 0xF /* Mask of all currently 3365 * supported cb flags 3366 */ 3367 3368 /* List of known BPF sock_ops operators. 3369 * New entries can only be added at the end 3370 */ 3371 enum { 3372 BPF_SOCK_OPS_VOID, 3373 BPF_SOCK_OPS_TIMEOUT_INIT, /* Should return SYN-RTO value to use or 3374 * -1 if default value should be used 3375 */ 3376 BPF_SOCK_OPS_RWND_INIT, /* Should return initial advertized 3377 * window (in packets) or -1 if default 3378 * value should be used 3379 */ 3380 BPF_SOCK_OPS_TCP_CONNECT_CB, /* Calls BPF program right before an 3381 * active connection is initialized 3382 */ 3383 BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, /* Calls BPF program when an 3384 * active connection is 3385 * established 3386 */ 3387 BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, /* Calls BPF program when a 3388 * passive connection is 3389 * established 3390 */ 3391 BPF_SOCK_OPS_NEEDS_ECN, /* If connection's congestion control 3392 * needs ECN 3393 */ 3394 BPF_SOCK_OPS_BASE_RTT, /* Get base RTT. The correct value is 3395 * based on the path and may be 3396 * dependent on the congestion control 3397 * algorithm. In general it indicates 3398 * a congestion threshold. RTTs above 3399 * this indicate congestion 3400 */ 3401 BPF_SOCK_OPS_RTO_CB, /* Called when an RTO has triggered. 3402 * Arg1: value of icsk_retransmits 3403 * Arg2: value of icsk_rto 3404 * Arg3: whether RTO has expired 3405 */ 3406 BPF_SOCK_OPS_RETRANS_CB, /* Called when skb is retransmitted. 3407 * Arg1: sequence number of 1st byte 3408 * Arg2: # segments 3409 * Arg3: return value of 3410 * tcp_transmit_skb (0 => success) 3411 */ 3412 BPF_SOCK_OPS_STATE_CB, /* Called when TCP changes state. 3413 * Arg1: old_state 3414 * Arg2: new_state 3415 */ 3416 BPF_SOCK_OPS_TCP_LISTEN_CB, /* Called on listen(2), right after 3417 * socket transition to LISTEN state. 3418 */ 3419 BPF_SOCK_OPS_RTT_CB, /* Called on every RTT. 3420 */ 3421 }; 3422 3423 /* List of TCP states. There is a build check in net/ipv4/tcp.c to detect 3424 * changes between the TCP and BPF versions. Ideally this should never happen. 3425 * If it does, we need to add code to convert them before calling 3426 * the BPF sock_ops function. 3427 */ 3428 enum { 3429 BPF_TCP_ESTABLISHED = 1, 3430 BPF_TCP_SYN_SENT, 3431 BPF_TCP_SYN_RECV, 3432 BPF_TCP_FIN_WAIT1, 3433 BPF_TCP_FIN_WAIT2, 3434 BPF_TCP_TIME_WAIT, 3435 BPF_TCP_CLOSE, 3436 BPF_TCP_CLOSE_WAIT, 3437 BPF_TCP_LAST_ACK, 3438 BPF_TCP_LISTEN, 3439 BPF_TCP_CLOSING, /* Now a valid state */ 3440 BPF_TCP_NEW_SYN_RECV, 3441 3442 BPF_TCP_MAX_STATES /* Leave at the end! */ 3443 }; 3444 3445 #define TCP_BPF_IW 1001 /* Set TCP initial congestion window */ 3446 #define TCP_BPF_SNDCWND_CLAMP 1002 /* Set sndcwnd_clamp */ 3447 3448 struct bpf_perf_event_value { 3449 __u64 counter; 3450 __u64 enabled; 3451 __u64 running; 3452 }; 3453 3454 #define BPF_DEVCG_ACC_MKNOD (1ULL << 0) 3455 #define BPF_DEVCG_ACC_READ (1ULL << 1) 3456 #define BPF_DEVCG_ACC_WRITE (1ULL << 2) 3457 3458 #define BPF_DEVCG_DEV_BLOCK (1ULL << 0) 3459 #define BPF_DEVCG_DEV_CHAR (1ULL << 1) 3460 3461 struct bpf_cgroup_dev_ctx { 3462 /* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */ 3463 __u32 access_type; 3464 __u32 major; 3465 __u32 minor; 3466 }; 3467 3468 struct bpf_raw_tracepoint_args { 3469 __u64 args[0]; 3470 }; 3471 3472 /* DIRECT: Skip the FIB rules and go to FIB table associated with device 3473 * OUTPUT: Do lookup from egress perspective; default is ingress 3474 */ 3475 #define BPF_FIB_LOOKUP_DIRECT (1U << 0) 3476 #define BPF_FIB_LOOKUP_OUTPUT (1U << 1) 3477 3478 enum { 3479 BPF_FIB_LKUP_RET_SUCCESS, /* lookup successful */ 3480 BPF_FIB_LKUP_RET_BLACKHOLE, /* dest is blackholed; can be dropped */ 3481 BPF_FIB_LKUP_RET_UNREACHABLE, /* dest is unreachable; can be dropped */ 3482 BPF_FIB_LKUP_RET_PROHIBIT, /* dest not allowed; can be dropped */ 3483 BPF_FIB_LKUP_RET_NOT_FWDED, /* packet is not forwarded */ 3484 BPF_FIB_LKUP_RET_FWD_DISABLED, /* fwding is not enabled on ingress */ 3485 BPF_FIB_LKUP_RET_UNSUPP_LWT, /* fwd requires encapsulation */ 3486 BPF_FIB_LKUP_RET_NO_NEIGH, /* no neighbor entry for nh */ 3487 BPF_FIB_LKUP_RET_FRAG_NEEDED, /* fragmentation required to fwd */ 3488 }; 3489 3490 struct bpf_fib_lookup { 3491 /* input: network family for lookup (AF_INET, AF_INET6) 3492 * output: network family of egress nexthop 3493 */ 3494 __u8 family; 3495 3496 /* set if lookup is to consider L4 data - e.g., FIB rules */ 3497 __u8 l4_protocol; 3498 __be16 sport; 3499 __be16 dport; 3500 3501 /* total length of packet from network header - used for MTU check */ 3502 __u16 tot_len; 3503 3504 /* input: L3 device index for lookup 3505 * output: device index from FIB lookup 3506 */ 3507 __u32 ifindex; 3508 3509 union { 3510 /* inputs to lookup */ 3511 __u8 tos; /* AF_INET */ 3512 __be32 flowinfo; /* AF_INET6, flow_label + priority */ 3513 3514 /* output: metric of fib result (IPv4/IPv6 only) */ 3515 __u32 rt_metric; 3516 }; 3517 3518 union { 3519 __be32 ipv4_src; 3520 __u32 ipv6_src[4]; /* in6_addr; network order */ 3521 }; 3522 3523 /* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in 3524 * network header. output: bpf_fib_lookup sets to gateway address 3525 * if FIB lookup returns gateway route 3526 */ 3527 union { 3528 __be32 ipv4_dst; 3529 __u32 ipv6_dst[4]; /* in6_addr; network order */ 3530 }; 3531 3532 /* output */ 3533 __be16 h_vlan_proto; 3534 __be16 h_vlan_TCI; 3535 __u8 smac[6]; /* ETH_ALEN */ 3536 __u8 dmac[6]; /* ETH_ALEN */ 3537 }; 3538 3539 enum bpf_task_fd_type { 3540 BPF_FD_TYPE_RAW_TRACEPOINT, /* tp name */ 3541 BPF_FD_TYPE_TRACEPOINT, /* tp name */ 3542 BPF_FD_TYPE_KPROBE, /* (symbol + offset) or addr */ 3543 BPF_FD_TYPE_KRETPROBE, /* (symbol + offset) or addr */ 3544 BPF_FD_TYPE_UPROBE, /* filename + offset */ 3545 BPF_FD_TYPE_URETPROBE, /* filename + offset */ 3546 }; 3547 3548 #define BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG (1U << 0) 3549 #define BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL (1U << 1) 3550 #define BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP (1U << 2) 3551 3552 struct bpf_flow_keys { 3553 __u16 nhoff; 3554 __u16 thoff; 3555 __u16 addr_proto; /* ETH_P_* of valid addrs */ 3556 __u8 is_frag; 3557 __u8 is_first_frag; 3558 __u8 is_encap; 3559 __u8 ip_proto; 3560 __be16 n_proto; 3561 __be16 sport; 3562 __be16 dport; 3563 union { 3564 struct { 3565 __be32 ipv4_src; 3566 __be32 ipv4_dst; 3567 }; 3568 struct { 3569 __u32 ipv6_src[4]; /* in6_addr; network order */ 3570 __u32 ipv6_dst[4]; /* in6_addr; network order */ 3571 }; 3572 }; 3573 __u32 flags; 3574 __be32 flow_label; 3575 }; 3576 3577 struct bpf_func_info { 3578 __u32 insn_off; 3579 __u32 type_id; 3580 }; 3581 3582 #define BPF_LINE_INFO_LINE_NUM(line_col) ((line_col) >> 10) 3583 #define BPF_LINE_INFO_LINE_COL(line_col) ((line_col) & 0x3ff) 3584 3585 struct bpf_line_info { 3586 __u32 insn_off; 3587 __u32 file_name_off; 3588 __u32 line_off; 3589 __u32 line_col; 3590 }; 3591 3592 struct bpf_spin_lock { 3593 __u32 val; 3594 }; 3595 3596 struct bpf_sysctl { 3597 __u32 write; /* Sysctl is being read (= 0) or written (= 1). 3598 * Allows 1,2,4-byte read, but no write. 3599 */ 3600 __u32 file_pos; /* Sysctl file position to read from, write to. 3601 * Allows 1,2,4-byte read an 4-byte write. 3602 */ 3603 }; 3604 3605 struct bpf_sockopt { 3606 __bpf_md_ptr(struct bpf_sock *, sk); 3607 __bpf_md_ptr(void *, optval); 3608 __bpf_md_ptr(void *, optval_end); 3609 3610 __s32 level; 3611 __s32 optname; 3612 __s32 optlen; 3613 __s32 retval; 3614 }; 3615 3616 #endif /* _UAPI__LINUX_BPF_H__ */ 3617