• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* auditfilter.c -- filtering of audit events
3  *
4  * Copyright 2003-2004 Red Hat, Inc.
5  * Copyright 2005 Hewlett-Packard Development Company, L.P.
6  * Copyright 2005 IBM Corporation
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/audit.h>
13 #include <linux/kthread.h>
14 #include <linux/mutex.h>
15 #include <linux/fs.h>
16 #include <linux/namei.h>
17 #include <linux/netlink.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/security.h>
21 #include <net/net_namespace.h>
22 #include <net/sock.h>
23 #include "audit.h"
24 
25 /*
26  * Locking model:
27  *
28  * audit_filter_mutex:
29  *		Synchronizes writes and blocking reads of audit's filterlist
30  *		data.  Rcu is used to traverse the filterlist and access
31  *		contents of structs audit_entry, audit_watch and opaque
32  *		LSM rules during filtering.  If modified, these structures
33  *		must be copied and replace their counterparts in the filterlist.
34  *		An audit_parent struct is not accessed during filtering, so may
35  *		be written directly provided audit_filter_mutex is held.
36  */
37 
38 /* Audit filter lists, defined in <linux/audit.h> */
39 struct list_head audit_filter_list[AUDIT_NR_FILTERS] = {
40 	LIST_HEAD_INIT(audit_filter_list[0]),
41 	LIST_HEAD_INIT(audit_filter_list[1]),
42 	LIST_HEAD_INIT(audit_filter_list[2]),
43 	LIST_HEAD_INIT(audit_filter_list[3]),
44 	LIST_HEAD_INIT(audit_filter_list[4]),
45 	LIST_HEAD_INIT(audit_filter_list[5]),
46 	LIST_HEAD_INIT(audit_filter_list[6]),
47 #if AUDIT_NR_FILTERS != 7
48 #error Fix audit_filter_list initialiser
49 #endif
50 };
51 static struct list_head audit_rules_list[AUDIT_NR_FILTERS] = {
52 	LIST_HEAD_INIT(audit_rules_list[0]),
53 	LIST_HEAD_INIT(audit_rules_list[1]),
54 	LIST_HEAD_INIT(audit_rules_list[2]),
55 	LIST_HEAD_INIT(audit_rules_list[3]),
56 	LIST_HEAD_INIT(audit_rules_list[4]),
57 	LIST_HEAD_INIT(audit_rules_list[5]),
58 	LIST_HEAD_INIT(audit_rules_list[6]),
59 };
60 
61 DEFINE_MUTEX(audit_filter_mutex);
62 
audit_free_lsm_field(struct audit_field * f)63 static void audit_free_lsm_field(struct audit_field *f)
64 {
65 	switch (f->type) {
66 	case AUDIT_SUBJ_USER:
67 	case AUDIT_SUBJ_ROLE:
68 	case AUDIT_SUBJ_TYPE:
69 	case AUDIT_SUBJ_SEN:
70 	case AUDIT_SUBJ_CLR:
71 	case AUDIT_OBJ_USER:
72 	case AUDIT_OBJ_ROLE:
73 	case AUDIT_OBJ_TYPE:
74 	case AUDIT_OBJ_LEV_LOW:
75 	case AUDIT_OBJ_LEV_HIGH:
76 		kfree(f->lsm_str);
77 		security_audit_rule_free(f->lsm_rule);
78 	}
79 }
80 
audit_free_rule(struct audit_entry * e)81 static inline void audit_free_rule(struct audit_entry *e)
82 {
83 	int i;
84 	struct audit_krule *erule = &e->rule;
85 
86 	/* some rules don't have associated watches */
87 	if (erule->watch)
88 		audit_put_watch(erule->watch);
89 	if (erule->fields)
90 		for (i = 0; i < erule->field_count; i++)
91 			audit_free_lsm_field(&erule->fields[i]);
92 	kfree(erule->fields);
93 	kfree(erule->filterkey);
94 	kfree(e);
95 }
96 
audit_free_rule_rcu(struct rcu_head * head)97 void audit_free_rule_rcu(struct rcu_head *head)
98 {
99 	struct audit_entry *e = container_of(head, struct audit_entry, rcu);
100 	audit_free_rule(e);
101 }
102 
103 /* Initialize an audit filterlist entry. */
audit_init_entry(u32 field_count)104 static inline struct audit_entry *audit_init_entry(u32 field_count)
105 {
106 	struct audit_entry *entry;
107 	struct audit_field *fields;
108 
109 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
110 	if (unlikely(!entry))
111 		return NULL;
112 
113 	fields = kcalloc(field_count, sizeof(*fields), GFP_KERNEL);
114 	if (unlikely(!fields)) {
115 		kfree(entry);
116 		return NULL;
117 	}
118 	entry->rule.fields = fields;
119 
120 	return entry;
121 }
122 
123 /* Unpack a filter field's string representation from user-space
124  * buffer. */
audit_unpack_string(void ** bufp,size_t * remain,size_t len)125 char *audit_unpack_string(void **bufp, size_t *remain, size_t len)
126 {
127 	char *str;
128 
129 	if (!*bufp || (len == 0) || (len > *remain))
130 		return ERR_PTR(-EINVAL);
131 
132 	/* Of the currently implemented string fields, PATH_MAX
133 	 * defines the longest valid length.
134 	 */
135 	if (len > PATH_MAX)
136 		return ERR_PTR(-ENAMETOOLONG);
137 
138 	str = kmalloc(len + 1, GFP_KERNEL);
139 	if (unlikely(!str))
140 		return ERR_PTR(-ENOMEM);
141 
142 	memcpy(str, *bufp, len);
143 	str[len] = 0;
144 	*bufp += len;
145 	*remain -= len;
146 
147 	return str;
148 }
149 
150 /* Translate an inode field to kernel representation. */
audit_to_inode(struct audit_krule * krule,struct audit_field * f)151 static inline int audit_to_inode(struct audit_krule *krule,
152 				 struct audit_field *f)
153 {
154 	if (krule->listnr != AUDIT_FILTER_EXIT ||
155 	    krule->inode_f || krule->watch || krule->tree ||
156 	    (f->op != Audit_equal && f->op != Audit_not_equal))
157 		return -EINVAL;
158 
159 	krule->inode_f = f;
160 	return 0;
161 }
162 
163 static __u32 *classes[AUDIT_SYSCALL_CLASSES];
164 
audit_register_class(int class,unsigned * list)165 int __init audit_register_class(int class, unsigned *list)
166 {
167 	__u32 *p = kcalloc(AUDIT_BITMASK_SIZE, sizeof(__u32), GFP_KERNEL);
168 	if (!p)
169 		return -ENOMEM;
170 	while (*list != ~0U) {
171 		unsigned n = *list++;
172 		if (n >= AUDIT_BITMASK_SIZE * 32 - AUDIT_SYSCALL_CLASSES) {
173 			kfree(p);
174 			return -EINVAL;
175 		}
176 		p[AUDIT_WORD(n)] |= AUDIT_BIT(n);
177 	}
178 	if (class >= AUDIT_SYSCALL_CLASSES || classes[class]) {
179 		kfree(p);
180 		return -EINVAL;
181 	}
182 	classes[class] = p;
183 	return 0;
184 }
185 
audit_match_class(int class,unsigned syscall)186 int audit_match_class(int class, unsigned syscall)
187 {
188 	if (unlikely(syscall >= AUDIT_BITMASK_SIZE * 32))
189 		return 0;
190 	if (unlikely(class >= AUDIT_SYSCALL_CLASSES || !classes[class]))
191 		return 0;
192 	return classes[class][AUDIT_WORD(syscall)] & AUDIT_BIT(syscall);
193 }
194 
195 #ifdef CONFIG_AUDITSYSCALL
audit_match_class_bits(int class,u32 * mask)196 static inline int audit_match_class_bits(int class, u32 *mask)
197 {
198 	int i;
199 
200 	if (classes[class]) {
201 		for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
202 			if (mask[i] & classes[class][i])
203 				return 0;
204 	}
205 	return 1;
206 }
207 
audit_match_signal(struct audit_entry * entry)208 static int audit_match_signal(struct audit_entry *entry)
209 {
210 	struct audit_field *arch = entry->rule.arch_f;
211 
212 	if (!arch) {
213 		/* When arch is unspecified, we must check both masks on biarch
214 		 * as syscall number alone is ambiguous. */
215 		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL,
216 					       entry->rule.mask) &&
217 			audit_match_class_bits(AUDIT_CLASS_SIGNAL_32,
218 					       entry->rule.mask));
219 	}
220 
221 	switch(audit_classify_arch(arch->val)) {
222 	case 0: /* native */
223 		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL,
224 					       entry->rule.mask));
225 	case 1: /* 32bit on biarch */
226 		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL_32,
227 					       entry->rule.mask));
228 	default:
229 		return 1;
230 	}
231 }
232 #endif
233 
234 /* Common user-space to kernel rule translation. */
audit_to_entry_common(struct audit_rule_data * rule)235 static inline struct audit_entry *audit_to_entry_common(struct audit_rule_data *rule)
236 {
237 	unsigned listnr;
238 	struct audit_entry *entry;
239 	int i, err;
240 
241 	err = -EINVAL;
242 	listnr = rule->flags & ~AUDIT_FILTER_PREPEND;
243 	switch(listnr) {
244 	default:
245 		goto exit_err;
246 #ifdef CONFIG_AUDITSYSCALL
247 	case AUDIT_FILTER_ENTRY:
248 		pr_err("AUDIT_FILTER_ENTRY is deprecated\n");
249 		goto exit_err;
250 	case AUDIT_FILTER_EXIT:
251 	case AUDIT_FILTER_TASK:
252 #endif
253 	case AUDIT_FILTER_USER:
254 	case AUDIT_FILTER_EXCLUDE:
255 	case AUDIT_FILTER_FS:
256 		;
257 	}
258 	if (unlikely(rule->action == AUDIT_POSSIBLE)) {
259 		pr_err("AUDIT_POSSIBLE is deprecated\n");
260 		goto exit_err;
261 	}
262 	if (rule->action != AUDIT_NEVER && rule->action != AUDIT_ALWAYS)
263 		goto exit_err;
264 	if (rule->field_count > AUDIT_MAX_FIELDS)
265 		goto exit_err;
266 
267 	err = -ENOMEM;
268 	entry = audit_init_entry(rule->field_count);
269 	if (!entry)
270 		goto exit_err;
271 
272 	entry->rule.flags = rule->flags & AUDIT_FILTER_PREPEND;
273 	entry->rule.listnr = listnr;
274 	entry->rule.action = rule->action;
275 	entry->rule.field_count = rule->field_count;
276 
277 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
278 		entry->rule.mask[i] = rule->mask[i];
279 
280 	for (i = 0; i < AUDIT_SYSCALL_CLASSES; i++) {
281 		int bit = AUDIT_BITMASK_SIZE * 32 - i - 1;
282 		__u32 *p = &entry->rule.mask[AUDIT_WORD(bit)];
283 		__u32 *class;
284 
285 		if (!(*p & AUDIT_BIT(bit)))
286 			continue;
287 		*p &= ~AUDIT_BIT(bit);
288 		class = classes[i];
289 		if (class) {
290 			int j;
291 			for (j = 0; j < AUDIT_BITMASK_SIZE; j++)
292 				entry->rule.mask[j] |= class[j];
293 		}
294 	}
295 
296 	return entry;
297 
298 exit_err:
299 	return ERR_PTR(err);
300 }
301 
302 static u32 audit_ops[] =
303 {
304 	[Audit_equal] = AUDIT_EQUAL,
305 	[Audit_not_equal] = AUDIT_NOT_EQUAL,
306 	[Audit_bitmask] = AUDIT_BIT_MASK,
307 	[Audit_bittest] = AUDIT_BIT_TEST,
308 	[Audit_lt] = AUDIT_LESS_THAN,
309 	[Audit_gt] = AUDIT_GREATER_THAN,
310 	[Audit_le] = AUDIT_LESS_THAN_OR_EQUAL,
311 	[Audit_ge] = AUDIT_GREATER_THAN_OR_EQUAL,
312 };
313 
audit_to_op(u32 op)314 static u32 audit_to_op(u32 op)
315 {
316 	u32 n;
317 	for (n = Audit_equal; n < Audit_bad && audit_ops[n] != op; n++)
318 		;
319 	return n;
320 }
321 
322 /* check if an audit field is valid */
audit_field_valid(struct audit_entry * entry,struct audit_field * f)323 static int audit_field_valid(struct audit_entry *entry, struct audit_field *f)
324 {
325 	switch (f->type) {
326 	case AUDIT_MSGTYPE:
327 		if (entry->rule.listnr != AUDIT_FILTER_EXCLUDE &&
328 		    entry->rule.listnr != AUDIT_FILTER_USER)
329 			return -EINVAL;
330 		break;
331 	case AUDIT_FSTYPE:
332 		if (entry->rule.listnr != AUDIT_FILTER_FS)
333 			return -EINVAL;
334 		break;
335 	}
336 
337 	switch (entry->rule.listnr) {
338 	case AUDIT_FILTER_FS:
339 		switch(f->type) {
340 		case AUDIT_FSTYPE:
341 		case AUDIT_FILTERKEY:
342 			break;
343 		default:
344 			return -EINVAL;
345 		}
346 	}
347 
348 	/* Check for valid field type and op */
349 	switch (f->type) {
350 	case AUDIT_ARG0:
351 	case AUDIT_ARG1:
352 	case AUDIT_ARG2:
353 	case AUDIT_ARG3:
354 	case AUDIT_PERS: /* <uapi/linux/personality.h> */
355 	case AUDIT_DEVMINOR:
356 		/* all ops are valid */
357 		break;
358 	case AUDIT_UID:
359 	case AUDIT_EUID:
360 	case AUDIT_SUID:
361 	case AUDIT_FSUID:
362 	case AUDIT_LOGINUID:
363 	case AUDIT_OBJ_UID:
364 	case AUDIT_GID:
365 	case AUDIT_EGID:
366 	case AUDIT_SGID:
367 	case AUDIT_FSGID:
368 	case AUDIT_OBJ_GID:
369 	case AUDIT_PID:
370 	case AUDIT_MSGTYPE:
371 	case AUDIT_PPID:
372 	case AUDIT_DEVMAJOR:
373 	case AUDIT_EXIT:
374 	case AUDIT_SUCCESS:
375 	case AUDIT_INODE:
376 	case AUDIT_SESSIONID:
377 	case AUDIT_SUBJ_SEN:
378 	case AUDIT_SUBJ_CLR:
379 	case AUDIT_OBJ_LEV_LOW:
380 	case AUDIT_OBJ_LEV_HIGH:
381 	case AUDIT_SADDR_FAM:
382 		/* bit ops are only useful on syscall args */
383 		if (f->op == Audit_bitmask || f->op == Audit_bittest)
384 			return -EINVAL;
385 		break;
386 	case AUDIT_SUBJ_USER:
387 	case AUDIT_SUBJ_ROLE:
388 	case AUDIT_SUBJ_TYPE:
389 	case AUDIT_OBJ_USER:
390 	case AUDIT_OBJ_ROLE:
391 	case AUDIT_OBJ_TYPE:
392 	case AUDIT_WATCH:
393 	case AUDIT_DIR:
394 	case AUDIT_FILTERKEY:
395 	case AUDIT_LOGINUID_SET:
396 	case AUDIT_ARCH:
397 	case AUDIT_FSTYPE:
398 	case AUDIT_PERM:
399 	case AUDIT_FILETYPE:
400 	case AUDIT_FIELD_COMPARE:
401 	case AUDIT_EXE:
402 		/* only equal and not equal valid ops */
403 		if (f->op != Audit_not_equal && f->op != Audit_equal)
404 			return -EINVAL;
405 		break;
406 	default:
407 		/* field not recognized */
408 		return -EINVAL;
409 	}
410 
411 	/* Check for select valid field values */
412 	switch (f->type) {
413 	case AUDIT_LOGINUID_SET:
414 		if ((f->val != 0) && (f->val != 1))
415 			return -EINVAL;
416 		break;
417 	case AUDIT_PERM:
418 		if (f->val & ~15)
419 			return -EINVAL;
420 		break;
421 	case AUDIT_FILETYPE:
422 		if (f->val & ~S_IFMT)
423 			return -EINVAL;
424 		break;
425 	case AUDIT_FIELD_COMPARE:
426 		if (f->val > AUDIT_MAX_FIELD_COMPARE)
427 			return -EINVAL;
428 		break;
429 	case AUDIT_SADDR_FAM:
430 		if (f->val >= AF_MAX)
431 			return -EINVAL;
432 		break;
433 	default:
434 		break;
435 	}
436 
437 	return 0;
438 }
439 
440 /* Translate struct audit_rule_data to kernel's rule representation. */
audit_data_to_entry(struct audit_rule_data * data,size_t datasz)441 static struct audit_entry *audit_data_to_entry(struct audit_rule_data *data,
442 					       size_t datasz)
443 {
444 	int err = 0;
445 	struct audit_entry *entry;
446 	void *bufp;
447 	size_t remain = datasz - sizeof(struct audit_rule_data);
448 	int i;
449 	char *str;
450 	struct audit_fsnotify_mark *audit_mark;
451 
452 	entry = audit_to_entry_common(data);
453 	if (IS_ERR(entry))
454 		goto exit_nofree;
455 
456 	bufp = data->buf;
457 	for (i = 0; i < data->field_count; i++) {
458 		struct audit_field *f = &entry->rule.fields[i];
459 
460 		err = -EINVAL;
461 
462 		f->op = audit_to_op(data->fieldflags[i]);
463 		if (f->op == Audit_bad)
464 			goto exit_free;
465 
466 		f->type = data->fields[i];
467 		f->val = data->values[i];
468 
469 		/* Support legacy tests for a valid loginuid */
470 		if ((f->type == AUDIT_LOGINUID) && (f->val == AUDIT_UID_UNSET)) {
471 			f->type = AUDIT_LOGINUID_SET;
472 			f->val = 0;
473 			entry->rule.pflags |= AUDIT_LOGINUID_LEGACY;
474 		}
475 
476 		err = audit_field_valid(entry, f);
477 		if (err)
478 			goto exit_free;
479 
480 		err = -EINVAL;
481 		switch (f->type) {
482 		case AUDIT_LOGINUID:
483 		case AUDIT_UID:
484 		case AUDIT_EUID:
485 		case AUDIT_SUID:
486 		case AUDIT_FSUID:
487 		case AUDIT_OBJ_UID:
488 			f->uid = make_kuid(current_user_ns(), f->val);
489 			if (!uid_valid(f->uid))
490 				goto exit_free;
491 			break;
492 		case AUDIT_GID:
493 		case AUDIT_EGID:
494 		case AUDIT_SGID:
495 		case AUDIT_FSGID:
496 		case AUDIT_OBJ_GID:
497 			f->gid = make_kgid(current_user_ns(), f->val);
498 			if (!gid_valid(f->gid))
499 				goto exit_free;
500 			break;
501 		case AUDIT_ARCH:
502 			entry->rule.arch_f = f;
503 			break;
504 		case AUDIT_SUBJ_USER:
505 		case AUDIT_SUBJ_ROLE:
506 		case AUDIT_SUBJ_TYPE:
507 		case AUDIT_SUBJ_SEN:
508 		case AUDIT_SUBJ_CLR:
509 		case AUDIT_OBJ_USER:
510 		case AUDIT_OBJ_ROLE:
511 		case AUDIT_OBJ_TYPE:
512 		case AUDIT_OBJ_LEV_LOW:
513 		case AUDIT_OBJ_LEV_HIGH:
514 			str = audit_unpack_string(&bufp, &remain, f->val);
515 			if (IS_ERR(str))
516 				goto exit_free;
517 			entry->rule.buflen += f->val;
518 
519 			err = security_audit_rule_init(f->type, f->op, str,
520 						       (void **)&f->lsm_rule);
521 			/* Keep currently invalid fields around in case they
522 			 * become valid after a policy reload. */
523 			if (err == -EINVAL) {
524 				pr_warn("audit rule for LSM \'%s\' is invalid\n",
525 					str);
526 				err = 0;
527 			}
528 			if (err) {
529 				kfree(str);
530 				goto exit_free;
531 			} else
532 				f->lsm_str = str;
533 			break;
534 		case AUDIT_WATCH:
535 			str = audit_unpack_string(&bufp, &remain, f->val);
536 			if (IS_ERR(str))
537 				goto exit_free;
538 			entry->rule.buflen += f->val;
539 
540 			err = audit_to_watch(&entry->rule, str, f->val, f->op);
541 			if (err) {
542 				kfree(str);
543 				goto exit_free;
544 			}
545 			break;
546 		case AUDIT_DIR:
547 			str = audit_unpack_string(&bufp, &remain, f->val);
548 			if (IS_ERR(str))
549 				goto exit_free;
550 			entry->rule.buflen += f->val;
551 
552 			err = audit_make_tree(&entry->rule, str, f->op);
553 			kfree(str);
554 			if (err)
555 				goto exit_free;
556 			break;
557 		case AUDIT_INODE:
558 			err = audit_to_inode(&entry->rule, f);
559 			if (err)
560 				goto exit_free;
561 			break;
562 		case AUDIT_FILTERKEY:
563 			if (entry->rule.filterkey || f->val > AUDIT_MAX_KEY_LEN)
564 				goto exit_free;
565 			str = audit_unpack_string(&bufp, &remain, f->val);
566 			if (IS_ERR(str))
567 				goto exit_free;
568 			entry->rule.buflen += f->val;
569 			entry->rule.filterkey = str;
570 			break;
571 		case AUDIT_EXE:
572 			if (entry->rule.exe || f->val > PATH_MAX)
573 				goto exit_free;
574 			str = audit_unpack_string(&bufp, &remain, f->val);
575 			if (IS_ERR(str)) {
576 				err = PTR_ERR(str);
577 				goto exit_free;
578 			}
579 			entry->rule.buflen += f->val;
580 
581 			audit_mark = audit_alloc_mark(&entry->rule, str, f->val);
582 			if (IS_ERR(audit_mark)) {
583 				kfree(str);
584 				err = PTR_ERR(audit_mark);
585 				goto exit_free;
586 			}
587 			entry->rule.exe = audit_mark;
588 			break;
589 		}
590 	}
591 
592 	if (entry->rule.inode_f && entry->rule.inode_f->op == Audit_not_equal)
593 		entry->rule.inode_f = NULL;
594 
595 exit_nofree:
596 	return entry;
597 
598 exit_free:
599 	if (entry->rule.tree)
600 		audit_put_tree(entry->rule.tree); /* that's the temporary one */
601 	if (entry->rule.exe)
602 		audit_remove_mark(entry->rule.exe); /* that's the template one */
603 	audit_free_rule(entry);
604 	return ERR_PTR(err);
605 }
606 
607 /* Pack a filter field's string representation into data block. */
audit_pack_string(void ** bufp,const char * str)608 static inline size_t audit_pack_string(void **bufp, const char *str)
609 {
610 	size_t len = strlen(str);
611 
612 	memcpy(*bufp, str, len);
613 	*bufp += len;
614 
615 	return len;
616 }
617 
618 /* Translate kernel rule representation to struct audit_rule_data. */
audit_krule_to_data(struct audit_krule * krule)619 static struct audit_rule_data *audit_krule_to_data(struct audit_krule *krule)
620 {
621 	struct audit_rule_data *data;
622 	void *bufp;
623 	int i;
624 
625 	data = kmalloc(sizeof(*data) + krule->buflen, GFP_KERNEL);
626 	if (unlikely(!data))
627 		return NULL;
628 	memset(data, 0, sizeof(*data));
629 
630 	data->flags = krule->flags | krule->listnr;
631 	data->action = krule->action;
632 	data->field_count = krule->field_count;
633 	bufp = data->buf;
634 	for (i = 0; i < data->field_count; i++) {
635 		struct audit_field *f = &krule->fields[i];
636 
637 		data->fields[i] = f->type;
638 		data->fieldflags[i] = audit_ops[f->op];
639 		switch(f->type) {
640 		case AUDIT_SUBJ_USER:
641 		case AUDIT_SUBJ_ROLE:
642 		case AUDIT_SUBJ_TYPE:
643 		case AUDIT_SUBJ_SEN:
644 		case AUDIT_SUBJ_CLR:
645 		case AUDIT_OBJ_USER:
646 		case AUDIT_OBJ_ROLE:
647 		case AUDIT_OBJ_TYPE:
648 		case AUDIT_OBJ_LEV_LOW:
649 		case AUDIT_OBJ_LEV_HIGH:
650 			data->buflen += data->values[i] =
651 				audit_pack_string(&bufp, f->lsm_str);
652 			break;
653 		case AUDIT_WATCH:
654 			data->buflen += data->values[i] =
655 				audit_pack_string(&bufp,
656 						  audit_watch_path(krule->watch));
657 			break;
658 		case AUDIT_DIR:
659 			data->buflen += data->values[i] =
660 				audit_pack_string(&bufp,
661 						  audit_tree_path(krule->tree));
662 			break;
663 		case AUDIT_FILTERKEY:
664 			data->buflen += data->values[i] =
665 				audit_pack_string(&bufp, krule->filterkey);
666 			break;
667 		case AUDIT_EXE:
668 			data->buflen += data->values[i] =
669 				audit_pack_string(&bufp, audit_mark_path(krule->exe));
670 			break;
671 		case AUDIT_LOGINUID_SET:
672 			if (krule->pflags & AUDIT_LOGINUID_LEGACY && !f->val) {
673 				data->fields[i] = AUDIT_LOGINUID;
674 				data->values[i] = AUDIT_UID_UNSET;
675 				break;
676 			}
677 			/* fall through - if set */
678 		default:
679 			data->values[i] = f->val;
680 		}
681 	}
682 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++) data->mask[i] = krule->mask[i];
683 
684 	return data;
685 }
686 
687 /* Compare two rules in kernel format.  Considered success if rules
688  * don't match. */
audit_compare_rule(struct audit_krule * a,struct audit_krule * b)689 static int audit_compare_rule(struct audit_krule *a, struct audit_krule *b)
690 {
691 	int i;
692 
693 	if (a->flags != b->flags ||
694 	    a->pflags != b->pflags ||
695 	    a->listnr != b->listnr ||
696 	    a->action != b->action ||
697 	    a->field_count != b->field_count)
698 		return 1;
699 
700 	for (i = 0; i < a->field_count; i++) {
701 		if (a->fields[i].type != b->fields[i].type ||
702 		    a->fields[i].op != b->fields[i].op)
703 			return 1;
704 
705 		switch(a->fields[i].type) {
706 		case AUDIT_SUBJ_USER:
707 		case AUDIT_SUBJ_ROLE:
708 		case AUDIT_SUBJ_TYPE:
709 		case AUDIT_SUBJ_SEN:
710 		case AUDIT_SUBJ_CLR:
711 		case AUDIT_OBJ_USER:
712 		case AUDIT_OBJ_ROLE:
713 		case AUDIT_OBJ_TYPE:
714 		case AUDIT_OBJ_LEV_LOW:
715 		case AUDIT_OBJ_LEV_HIGH:
716 			if (strcmp(a->fields[i].lsm_str, b->fields[i].lsm_str))
717 				return 1;
718 			break;
719 		case AUDIT_WATCH:
720 			if (strcmp(audit_watch_path(a->watch),
721 				   audit_watch_path(b->watch)))
722 				return 1;
723 			break;
724 		case AUDIT_DIR:
725 			if (strcmp(audit_tree_path(a->tree),
726 				   audit_tree_path(b->tree)))
727 				return 1;
728 			break;
729 		case AUDIT_FILTERKEY:
730 			/* both filterkeys exist based on above type compare */
731 			if (strcmp(a->filterkey, b->filterkey))
732 				return 1;
733 			break;
734 		case AUDIT_EXE:
735 			/* both paths exist based on above type compare */
736 			if (strcmp(audit_mark_path(a->exe),
737 				   audit_mark_path(b->exe)))
738 				return 1;
739 			break;
740 		case AUDIT_UID:
741 		case AUDIT_EUID:
742 		case AUDIT_SUID:
743 		case AUDIT_FSUID:
744 		case AUDIT_LOGINUID:
745 		case AUDIT_OBJ_UID:
746 			if (!uid_eq(a->fields[i].uid, b->fields[i].uid))
747 				return 1;
748 			break;
749 		case AUDIT_GID:
750 		case AUDIT_EGID:
751 		case AUDIT_SGID:
752 		case AUDIT_FSGID:
753 		case AUDIT_OBJ_GID:
754 			if (!gid_eq(a->fields[i].gid, b->fields[i].gid))
755 				return 1;
756 			break;
757 		default:
758 			if (a->fields[i].val != b->fields[i].val)
759 				return 1;
760 		}
761 	}
762 
763 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
764 		if (a->mask[i] != b->mask[i])
765 			return 1;
766 
767 	return 0;
768 }
769 
770 /* Duplicate LSM field information.  The lsm_rule is opaque, so must be
771  * re-initialized. */
audit_dupe_lsm_field(struct audit_field * df,struct audit_field * sf)772 static inline int audit_dupe_lsm_field(struct audit_field *df,
773 					   struct audit_field *sf)
774 {
775 	int ret = 0;
776 	char *lsm_str;
777 
778 	/* our own copy of lsm_str */
779 	lsm_str = kstrdup(sf->lsm_str, GFP_KERNEL);
780 	if (unlikely(!lsm_str))
781 		return -ENOMEM;
782 	df->lsm_str = lsm_str;
783 
784 	/* our own (refreshed) copy of lsm_rule */
785 	ret = security_audit_rule_init(df->type, df->op, df->lsm_str,
786 				       (void **)&df->lsm_rule);
787 	/* Keep currently invalid fields around in case they
788 	 * become valid after a policy reload. */
789 	if (ret == -EINVAL) {
790 		pr_warn("audit rule for LSM \'%s\' is invalid\n",
791 			df->lsm_str);
792 		ret = 0;
793 	}
794 
795 	return ret;
796 }
797 
798 /* Duplicate an audit rule.  This will be a deep copy with the exception
799  * of the watch - that pointer is carried over.  The LSM specific fields
800  * will be updated in the copy.  The point is to be able to replace the old
801  * rule with the new rule in the filterlist, then free the old rule.
802  * The rlist element is undefined; list manipulations are handled apart from
803  * the initial copy. */
audit_dupe_rule(struct audit_krule * old)804 struct audit_entry *audit_dupe_rule(struct audit_krule *old)
805 {
806 	u32 fcount = old->field_count;
807 	struct audit_entry *entry;
808 	struct audit_krule *new;
809 	char *fk;
810 	int i, err = 0;
811 
812 	entry = audit_init_entry(fcount);
813 	if (unlikely(!entry))
814 		return ERR_PTR(-ENOMEM);
815 
816 	new = &entry->rule;
817 	new->flags = old->flags;
818 	new->pflags = old->pflags;
819 	new->listnr = old->listnr;
820 	new->action = old->action;
821 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
822 		new->mask[i] = old->mask[i];
823 	new->prio = old->prio;
824 	new->buflen = old->buflen;
825 	new->inode_f = old->inode_f;
826 	new->field_count = old->field_count;
827 
828 	/*
829 	 * note that we are OK with not refcounting here; audit_match_tree()
830 	 * never dereferences tree and we can't get false positives there
831 	 * since we'd have to have rule gone from the list *and* removed
832 	 * before the chunks found by lookup had been allocated, i.e. before
833 	 * the beginning of list scan.
834 	 */
835 	new->tree = old->tree;
836 	memcpy(new->fields, old->fields, sizeof(struct audit_field) * fcount);
837 
838 	/* deep copy this information, updating the lsm_rule fields, because
839 	 * the originals will all be freed when the old rule is freed. */
840 	for (i = 0; i < fcount; i++) {
841 		switch (new->fields[i].type) {
842 		case AUDIT_SUBJ_USER:
843 		case AUDIT_SUBJ_ROLE:
844 		case AUDIT_SUBJ_TYPE:
845 		case AUDIT_SUBJ_SEN:
846 		case AUDIT_SUBJ_CLR:
847 		case AUDIT_OBJ_USER:
848 		case AUDIT_OBJ_ROLE:
849 		case AUDIT_OBJ_TYPE:
850 		case AUDIT_OBJ_LEV_LOW:
851 		case AUDIT_OBJ_LEV_HIGH:
852 			err = audit_dupe_lsm_field(&new->fields[i],
853 						       &old->fields[i]);
854 			break;
855 		case AUDIT_FILTERKEY:
856 			fk = kstrdup(old->filterkey, GFP_KERNEL);
857 			if (unlikely(!fk))
858 				err = -ENOMEM;
859 			else
860 				new->filterkey = fk;
861 			break;
862 		case AUDIT_EXE:
863 			err = audit_dupe_exe(new, old);
864 			break;
865 		}
866 		if (err) {
867 			if (new->exe)
868 				audit_remove_mark(new->exe);
869 			audit_free_rule(entry);
870 			return ERR_PTR(err);
871 		}
872 	}
873 
874 	if (old->watch) {
875 		audit_get_watch(old->watch);
876 		new->watch = old->watch;
877 	}
878 
879 	return entry;
880 }
881 
882 /* Find an existing audit rule.
883  * Caller must hold audit_filter_mutex to prevent stale rule data. */
audit_find_rule(struct audit_entry * entry,struct list_head ** p)884 static struct audit_entry *audit_find_rule(struct audit_entry *entry,
885 					   struct list_head **p)
886 {
887 	struct audit_entry *e, *found = NULL;
888 	struct list_head *list;
889 	int h;
890 
891 	if (entry->rule.inode_f) {
892 		h = audit_hash_ino(entry->rule.inode_f->val);
893 		*p = list = &audit_inode_hash[h];
894 	} else if (entry->rule.watch) {
895 		/* we don't know the inode number, so must walk entire hash */
896 		for (h = 0; h < AUDIT_INODE_BUCKETS; h++) {
897 			list = &audit_inode_hash[h];
898 			list_for_each_entry(e, list, list)
899 				if (!audit_compare_rule(&entry->rule, &e->rule)) {
900 					found = e;
901 					goto out;
902 				}
903 		}
904 		goto out;
905 	} else {
906 		*p = list = &audit_filter_list[entry->rule.listnr];
907 	}
908 
909 	list_for_each_entry(e, list, list)
910 		if (!audit_compare_rule(&entry->rule, &e->rule)) {
911 			found = e;
912 			goto out;
913 		}
914 
915 out:
916 	return found;
917 }
918 
919 static u64 prio_low = ~0ULL/2;
920 static u64 prio_high = ~0ULL/2 - 1;
921 
922 /* Add rule to given filterlist if not a duplicate. */
audit_add_rule(struct audit_entry * entry)923 static inline int audit_add_rule(struct audit_entry *entry)
924 {
925 	struct audit_entry *e;
926 	struct audit_watch *watch = entry->rule.watch;
927 	struct audit_tree *tree = entry->rule.tree;
928 	struct list_head *list;
929 	int err = 0;
930 #ifdef CONFIG_AUDITSYSCALL
931 	int dont_count = 0;
932 
933 	/* If any of these, don't count towards total */
934 	switch(entry->rule.listnr) {
935 	case AUDIT_FILTER_USER:
936 	case AUDIT_FILTER_EXCLUDE:
937 	case AUDIT_FILTER_FS:
938 		dont_count = 1;
939 	}
940 #endif
941 
942 	mutex_lock(&audit_filter_mutex);
943 	e = audit_find_rule(entry, &list);
944 	if (e) {
945 		mutex_unlock(&audit_filter_mutex);
946 		err = -EEXIST;
947 		/* normally audit_add_tree_rule() will free it on failure */
948 		if (tree)
949 			audit_put_tree(tree);
950 		return err;
951 	}
952 
953 	if (watch) {
954 		/* audit_filter_mutex is dropped and re-taken during this call */
955 		err = audit_add_watch(&entry->rule, &list);
956 		if (err) {
957 			mutex_unlock(&audit_filter_mutex);
958 			/*
959 			 * normally audit_add_tree_rule() will free it
960 			 * on failure
961 			 */
962 			if (tree)
963 				audit_put_tree(tree);
964 			return err;
965 		}
966 	}
967 	if (tree) {
968 		err = audit_add_tree_rule(&entry->rule);
969 		if (err) {
970 			mutex_unlock(&audit_filter_mutex);
971 			return err;
972 		}
973 	}
974 
975 	entry->rule.prio = ~0ULL;
976 	if (entry->rule.listnr == AUDIT_FILTER_EXIT) {
977 		if (entry->rule.flags & AUDIT_FILTER_PREPEND)
978 			entry->rule.prio = ++prio_high;
979 		else
980 			entry->rule.prio = --prio_low;
981 	}
982 
983 	if (entry->rule.flags & AUDIT_FILTER_PREPEND) {
984 		list_add(&entry->rule.list,
985 			 &audit_rules_list[entry->rule.listnr]);
986 		list_add_rcu(&entry->list, list);
987 		entry->rule.flags &= ~AUDIT_FILTER_PREPEND;
988 	} else {
989 		list_add_tail(&entry->rule.list,
990 			      &audit_rules_list[entry->rule.listnr]);
991 		list_add_tail_rcu(&entry->list, list);
992 	}
993 #ifdef CONFIG_AUDITSYSCALL
994 	if (!dont_count)
995 		audit_n_rules++;
996 
997 	if (!audit_match_signal(entry))
998 		audit_signals++;
999 #endif
1000 	mutex_unlock(&audit_filter_mutex);
1001 
1002 	return err;
1003 }
1004 
1005 /* Remove an existing rule from filterlist. */
audit_del_rule(struct audit_entry * entry)1006 int audit_del_rule(struct audit_entry *entry)
1007 {
1008 	struct audit_entry  *e;
1009 	struct audit_tree *tree = entry->rule.tree;
1010 	struct list_head *list;
1011 	int ret = 0;
1012 #ifdef CONFIG_AUDITSYSCALL
1013 	int dont_count = 0;
1014 
1015 	/* If any of these, don't count towards total */
1016 	switch(entry->rule.listnr) {
1017 	case AUDIT_FILTER_USER:
1018 	case AUDIT_FILTER_EXCLUDE:
1019 	case AUDIT_FILTER_FS:
1020 		dont_count = 1;
1021 	}
1022 #endif
1023 
1024 	mutex_lock(&audit_filter_mutex);
1025 	e = audit_find_rule(entry, &list);
1026 	if (!e) {
1027 		ret = -ENOENT;
1028 		goto out;
1029 	}
1030 
1031 	if (e->rule.watch)
1032 		audit_remove_watch_rule(&e->rule);
1033 
1034 	if (e->rule.tree)
1035 		audit_remove_tree_rule(&e->rule);
1036 
1037 	if (e->rule.exe)
1038 		audit_remove_mark_rule(&e->rule);
1039 
1040 #ifdef CONFIG_AUDITSYSCALL
1041 	if (!dont_count)
1042 		audit_n_rules--;
1043 
1044 	if (!audit_match_signal(entry))
1045 		audit_signals--;
1046 #endif
1047 
1048 	list_del_rcu(&e->list);
1049 	list_del(&e->rule.list);
1050 	call_rcu(&e->rcu, audit_free_rule_rcu);
1051 
1052 out:
1053 	mutex_unlock(&audit_filter_mutex);
1054 
1055 	if (tree)
1056 		audit_put_tree(tree);	/* that's the temporary one */
1057 
1058 	return ret;
1059 }
1060 
1061 /* List rules using struct audit_rule_data. */
audit_list_rules(int seq,struct sk_buff_head * q)1062 static void audit_list_rules(int seq, struct sk_buff_head *q)
1063 {
1064 	struct sk_buff *skb;
1065 	struct audit_krule *r;
1066 	int i;
1067 
1068 	/* This is a blocking read, so use audit_filter_mutex instead of rcu
1069 	 * iterator to sync with list writers. */
1070 	for (i=0; i<AUDIT_NR_FILTERS; i++) {
1071 		list_for_each_entry(r, &audit_rules_list[i], list) {
1072 			struct audit_rule_data *data;
1073 
1074 			data = audit_krule_to_data(r);
1075 			if (unlikely(!data))
1076 				break;
1077 			skb = audit_make_reply(seq, AUDIT_LIST_RULES, 0, 1,
1078 					       data,
1079 					       sizeof(*data) + data->buflen);
1080 			if (skb)
1081 				skb_queue_tail(q, skb);
1082 			kfree(data);
1083 		}
1084 	}
1085 	skb = audit_make_reply(seq, AUDIT_LIST_RULES, 1, 1, NULL, 0);
1086 	if (skb)
1087 		skb_queue_tail(q, skb);
1088 }
1089 
1090 /* Log rule additions and removals */
audit_log_rule_change(char * action,struct audit_krule * rule,int res)1091 static void audit_log_rule_change(char *action, struct audit_krule *rule, int res)
1092 {
1093 	struct audit_buffer *ab;
1094 
1095 	if (!audit_enabled)
1096 		return;
1097 
1098 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
1099 	if (!ab)
1100 		return;
1101 	audit_log_session_info(ab);
1102 	audit_log_task_context(ab);
1103 	audit_log_format(ab, " op=%s", action);
1104 	audit_log_key(ab, rule->filterkey);
1105 	audit_log_format(ab, " list=%d res=%d", rule->listnr, res);
1106 	audit_log_end(ab);
1107 }
1108 
1109 /**
1110  * audit_rule_change - apply all rules to the specified message type
1111  * @type: audit message type
1112  * @seq: netlink audit message sequence (serial) number
1113  * @data: payload data
1114  * @datasz: size of payload data
1115  */
audit_rule_change(int type,int seq,void * data,size_t datasz)1116 int audit_rule_change(int type, int seq, void *data, size_t datasz)
1117 {
1118 	int err = 0;
1119 	struct audit_entry *entry;
1120 
1121 	switch (type) {
1122 	case AUDIT_ADD_RULE:
1123 		entry = audit_data_to_entry(data, datasz);
1124 		if (IS_ERR(entry))
1125 			return PTR_ERR(entry);
1126 		err = audit_add_rule(entry);
1127 		audit_log_rule_change("add_rule", &entry->rule, !err);
1128 		break;
1129 	case AUDIT_DEL_RULE:
1130 		entry = audit_data_to_entry(data, datasz);
1131 		if (IS_ERR(entry))
1132 			return PTR_ERR(entry);
1133 		err = audit_del_rule(entry);
1134 		audit_log_rule_change("remove_rule", &entry->rule, !err);
1135 		break;
1136 	default:
1137 		WARN_ON(1);
1138 		return -EINVAL;
1139 	}
1140 
1141 	if (err || type == AUDIT_DEL_RULE) {
1142 		if (entry->rule.exe)
1143 			audit_remove_mark(entry->rule.exe);
1144 		audit_free_rule(entry);
1145 	}
1146 
1147 	return err;
1148 }
1149 
1150 /**
1151  * audit_list_rules_send - list the audit rules
1152  * @request_skb: skb of request we are replying to (used to target the reply)
1153  * @seq: netlink audit message sequence (serial) number
1154  */
audit_list_rules_send(struct sk_buff * request_skb,int seq)1155 int audit_list_rules_send(struct sk_buff *request_skb, int seq)
1156 {
1157 	u32 portid = NETLINK_CB(request_skb).portid;
1158 	struct net *net = sock_net(NETLINK_CB(request_skb).sk);
1159 	struct task_struct *tsk;
1160 	struct audit_netlink_list *dest;
1161 	int err = 0;
1162 
1163 	/* We can't just spew out the rules here because we might fill
1164 	 * the available socket buffer space and deadlock waiting for
1165 	 * auditctl to read from it... which isn't ever going to
1166 	 * happen if we're actually running in the context of auditctl
1167 	 * trying to _send_ the stuff */
1168 
1169 	dest = kmalloc(sizeof(struct audit_netlink_list), GFP_KERNEL);
1170 	if (!dest)
1171 		return -ENOMEM;
1172 	dest->net = get_net(net);
1173 	dest->portid = portid;
1174 	skb_queue_head_init(&dest->q);
1175 
1176 	mutex_lock(&audit_filter_mutex);
1177 	audit_list_rules(seq, &dest->q);
1178 	mutex_unlock(&audit_filter_mutex);
1179 
1180 	tsk = kthread_run(audit_send_list, dest, "audit_send_list");
1181 	if (IS_ERR(tsk)) {
1182 		skb_queue_purge(&dest->q);
1183 		kfree(dest);
1184 		err = PTR_ERR(tsk);
1185 	}
1186 
1187 	return err;
1188 }
1189 
audit_comparator(u32 left,u32 op,u32 right)1190 int audit_comparator(u32 left, u32 op, u32 right)
1191 {
1192 	switch (op) {
1193 	case Audit_equal:
1194 		return (left == right);
1195 	case Audit_not_equal:
1196 		return (left != right);
1197 	case Audit_lt:
1198 		return (left < right);
1199 	case Audit_le:
1200 		return (left <= right);
1201 	case Audit_gt:
1202 		return (left > right);
1203 	case Audit_ge:
1204 		return (left >= right);
1205 	case Audit_bitmask:
1206 		return (left & right);
1207 	case Audit_bittest:
1208 		return ((left & right) == right);
1209 	default:
1210 		return 0;
1211 	}
1212 }
1213 
audit_uid_comparator(kuid_t left,u32 op,kuid_t right)1214 int audit_uid_comparator(kuid_t left, u32 op, kuid_t right)
1215 {
1216 	switch (op) {
1217 	case Audit_equal:
1218 		return uid_eq(left, right);
1219 	case Audit_not_equal:
1220 		return !uid_eq(left, right);
1221 	case Audit_lt:
1222 		return uid_lt(left, right);
1223 	case Audit_le:
1224 		return uid_lte(left, right);
1225 	case Audit_gt:
1226 		return uid_gt(left, right);
1227 	case Audit_ge:
1228 		return uid_gte(left, right);
1229 	case Audit_bitmask:
1230 	case Audit_bittest:
1231 	default:
1232 		return 0;
1233 	}
1234 }
1235 
audit_gid_comparator(kgid_t left,u32 op,kgid_t right)1236 int audit_gid_comparator(kgid_t left, u32 op, kgid_t right)
1237 {
1238 	switch (op) {
1239 	case Audit_equal:
1240 		return gid_eq(left, right);
1241 	case Audit_not_equal:
1242 		return !gid_eq(left, right);
1243 	case Audit_lt:
1244 		return gid_lt(left, right);
1245 	case Audit_le:
1246 		return gid_lte(left, right);
1247 	case Audit_gt:
1248 		return gid_gt(left, right);
1249 	case Audit_ge:
1250 		return gid_gte(left, right);
1251 	case Audit_bitmask:
1252 	case Audit_bittest:
1253 	default:
1254 		return 0;
1255 	}
1256 }
1257 
1258 /**
1259  * parent_len - find the length of the parent portion of a pathname
1260  * @path: pathname of which to determine length
1261  */
parent_len(const char * path)1262 int parent_len(const char *path)
1263 {
1264 	int plen;
1265 	const char *p;
1266 
1267 	plen = strlen(path);
1268 
1269 	if (plen == 0)
1270 		return plen;
1271 
1272 	/* disregard trailing slashes */
1273 	p = path + plen - 1;
1274 	while ((*p == '/') && (p > path))
1275 		p--;
1276 
1277 	/* walk backward until we find the next slash or hit beginning */
1278 	while ((*p != '/') && (p > path))
1279 		p--;
1280 
1281 	/* did we find a slash? Then increment to include it in path */
1282 	if (*p == '/')
1283 		p++;
1284 
1285 	return p - path;
1286 }
1287 
1288 /**
1289  * audit_compare_dname_path - compare given dentry name with last component in
1290  * 			      given path. Return of 0 indicates a match.
1291  * @dname:	dentry name that we're comparing
1292  * @path:	full pathname that we're comparing
1293  * @parentlen:	length of the parent if known. Passing in AUDIT_NAME_FULL
1294  * 		here indicates that we must compute this value.
1295  */
audit_compare_dname_path(const struct qstr * dname,const char * path,int parentlen)1296 int audit_compare_dname_path(const struct qstr *dname, const char *path, int parentlen)
1297 {
1298 	int dlen, pathlen;
1299 	const char *p;
1300 
1301 	dlen = dname->len;
1302 	pathlen = strlen(path);
1303 	if (pathlen < dlen)
1304 		return 1;
1305 
1306 	parentlen = parentlen == AUDIT_NAME_FULL ? parent_len(path) : parentlen;
1307 	if (pathlen - parentlen != dlen)
1308 		return 1;
1309 
1310 	p = path + parentlen;
1311 
1312 	return strncmp(p, dname->name, dlen);
1313 }
1314 
audit_filter(int msgtype,unsigned int listtype)1315 int audit_filter(int msgtype, unsigned int listtype)
1316 {
1317 	struct audit_entry *e;
1318 	int ret = 1; /* Audit by default */
1319 
1320 	rcu_read_lock();
1321 	list_for_each_entry_rcu(e, &audit_filter_list[listtype], list) {
1322 		int i, result = 0;
1323 
1324 		for (i = 0; i < e->rule.field_count; i++) {
1325 			struct audit_field *f = &e->rule.fields[i];
1326 			pid_t pid;
1327 			u32 sid;
1328 
1329 			switch (f->type) {
1330 			case AUDIT_PID:
1331 				pid = task_pid_nr(current);
1332 				result = audit_comparator(pid, f->op, f->val);
1333 				break;
1334 			case AUDIT_UID:
1335 				result = audit_uid_comparator(current_uid(), f->op, f->uid);
1336 				break;
1337 			case AUDIT_GID:
1338 				result = audit_gid_comparator(current_gid(), f->op, f->gid);
1339 				break;
1340 			case AUDIT_LOGINUID:
1341 				result = audit_uid_comparator(audit_get_loginuid(current),
1342 							      f->op, f->uid);
1343 				break;
1344 			case AUDIT_LOGINUID_SET:
1345 				result = audit_comparator(audit_loginuid_set(current),
1346 							  f->op, f->val);
1347 				break;
1348 			case AUDIT_MSGTYPE:
1349 				result = audit_comparator(msgtype, f->op, f->val);
1350 				break;
1351 			case AUDIT_SUBJ_USER:
1352 			case AUDIT_SUBJ_ROLE:
1353 			case AUDIT_SUBJ_TYPE:
1354 			case AUDIT_SUBJ_SEN:
1355 			case AUDIT_SUBJ_CLR:
1356 				if (f->lsm_rule) {
1357 					security_task_getsecid(current, &sid);
1358 					result = security_audit_rule_match(sid,
1359 						   f->type, f->op, f->lsm_rule);
1360 				}
1361 				break;
1362 			case AUDIT_EXE:
1363 				result = audit_exe_compare(current, e->rule.exe);
1364 				if (f->op == Audit_not_equal)
1365 					result = !result;
1366 				break;
1367 			default:
1368 				goto unlock_and_return;
1369 			}
1370 			if (result < 0) /* error */
1371 				goto unlock_and_return;
1372 			if (!result)
1373 				break;
1374 		}
1375 		if (result > 0) {
1376 			if (e->rule.action == AUDIT_NEVER || listtype == AUDIT_FILTER_EXCLUDE)
1377 				ret = 0;
1378 			break;
1379 		}
1380 	}
1381 unlock_and_return:
1382 	rcu_read_unlock();
1383 	return ret;
1384 }
1385 
update_lsm_rule(struct audit_krule * r)1386 static int update_lsm_rule(struct audit_krule *r)
1387 {
1388 	struct audit_entry *entry = container_of(r, struct audit_entry, rule);
1389 	struct audit_entry *nentry;
1390 	int err = 0;
1391 
1392 	if (!security_audit_rule_known(r))
1393 		return 0;
1394 
1395 	nentry = audit_dupe_rule(r);
1396 	if (entry->rule.exe)
1397 		audit_remove_mark(entry->rule.exe);
1398 	if (IS_ERR(nentry)) {
1399 		/* save the first error encountered for the
1400 		 * return value */
1401 		err = PTR_ERR(nentry);
1402 		audit_panic("error updating LSM filters");
1403 		if (r->watch)
1404 			list_del(&r->rlist);
1405 		list_del_rcu(&entry->list);
1406 		list_del(&r->list);
1407 	} else {
1408 		if (r->watch || r->tree)
1409 			list_replace_init(&r->rlist, &nentry->rule.rlist);
1410 		list_replace_rcu(&entry->list, &nentry->list);
1411 		list_replace(&r->list, &nentry->rule.list);
1412 	}
1413 	call_rcu(&entry->rcu, audit_free_rule_rcu);
1414 
1415 	return err;
1416 }
1417 
1418 /* This function will re-initialize the lsm_rule field of all applicable rules.
1419  * It will traverse the filter lists serarching for rules that contain LSM
1420  * specific filter fields.  When such a rule is found, it is copied, the
1421  * LSM field is re-initialized, and the old rule is replaced with the
1422  * updated rule. */
audit_update_lsm_rules(void)1423 int audit_update_lsm_rules(void)
1424 {
1425 	struct audit_krule *r, *n;
1426 	int i, err = 0;
1427 
1428 	/* audit_filter_mutex synchronizes the writers */
1429 	mutex_lock(&audit_filter_mutex);
1430 
1431 	for (i = 0; i < AUDIT_NR_FILTERS; i++) {
1432 		list_for_each_entry_safe(r, n, &audit_rules_list[i], list) {
1433 			int res = update_lsm_rule(r);
1434 			if (!err)
1435 				err = res;
1436 		}
1437 	}
1438 	mutex_unlock(&audit_filter_mutex);
1439 
1440 	return err;
1441 }
1442