1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/exit.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66
67 #include <linux/uaccess.h>
68 #include <asm/unistd.h>
69 #include <asm/pgtable.h>
70 #include <asm/mmu_context.h>
71
__unhash_process(struct task_struct * p,bool group_dead)72 static void __unhash_process(struct task_struct *p, bool group_dead)
73 {
74 nr_threads--;
75 detach_pid(p, PIDTYPE_PID);
76 if (group_dead) {
77 detach_pid(p, PIDTYPE_TGID);
78 detach_pid(p, PIDTYPE_PGID);
79 detach_pid(p, PIDTYPE_SID);
80
81 list_del_rcu(&p->tasks);
82 list_del_init(&p->sibling);
83 __this_cpu_dec(process_counts);
84 }
85 list_del_rcu(&p->thread_group);
86 list_del_rcu(&p->thread_node);
87 }
88
89 /*
90 * This function expects the tasklist_lock write-locked.
91 */
__exit_signal(struct task_struct * tsk)92 static void __exit_signal(struct task_struct *tsk)
93 {
94 struct signal_struct *sig = tsk->signal;
95 bool group_dead = thread_group_leader(tsk);
96 struct sighand_struct *sighand;
97 struct tty_struct *uninitialized_var(tty);
98 u64 utime, stime;
99
100 sighand = rcu_dereference_check(tsk->sighand,
101 lockdep_tasklist_lock_is_held());
102 spin_lock(&sighand->siglock);
103
104 #ifdef CONFIG_POSIX_TIMERS
105 posix_cpu_timers_exit(tsk);
106 if (group_dead) {
107 posix_cpu_timers_exit_group(tsk);
108 } else {
109 /*
110 * This can only happen if the caller is de_thread().
111 * FIXME: this is the temporary hack, we should teach
112 * posix-cpu-timers to handle this case correctly.
113 */
114 if (unlikely(has_group_leader_pid(tsk)))
115 posix_cpu_timers_exit_group(tsk);
116 }
117 #endif
118
119 if (group_dead) {
120 tty = sig->tty;
121 sig->tty = NULL;
122 } else {
123 /*
124 * If there is any task waiting for the group exit
125 * then notify it:
126 */
127 if (sig->notify_count > 0 && !--sig->notify_count)
128 wake_up_process(sig->group_exit_task);
129
130 if (tsk == sig->curr_target)
131 sig->curr_target = next_thread(tsk);
132 }
133
134 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
135 sizeof(unsigned long long));
136
137 /*
138 * Accumulate here the counters for all threads as they die. We could
139 * skip the group leader because it is the last user of signal_struct,
140 * but we want to avoid the race with thread_group_cputime() which can
141 * see the empty ->thread_head list.
142 */
143 task_cputime(tsk, &utime, &stime);
144 write_seqlock(&sig->stats_lock);
145 sig->utime += utime;
146 sig->stime += stime;
147 sig->gtime += task_gtime(tsk);
148 sig->min_flt += tsk->min_flt;
149 sig->maj_flt += tsk->maj_flt;
150 sig->nvcsw += tsk->nvcsw;
151 sig->nivcsw += tsk->nivcsw;
152 sig->inblock += task_io_get_inblock(tsk);
153 sig->oublock += task_io_get_oublock(tsk);
154 task_io_accounting_add(&sig->ioac, &tsk->ioac);
155 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
156 sig->nr_threads--;
157 __unhash_process(tsk, group_dead);
158 write_sequnlock(&sig->stats_lock);
159
160 /*
161 * Do this under ->siglock, we can race with another thread
162 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
163 */
164 flush_sigqueue(&tsk->pending);
165 tsk->sighand = NULL;
166 spin_unlock(&sighand->siglock);
167
168 __cleanup_sighand(sighand);
169 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
170 if (group_dead) {
171 flush_sigqueue(&sig->shared_pending);
172 tty_kref_put(tty);
173 }
174 }
175
delayed_put_task_struct(struct rcu_head * rhp)176 static void delayed_put_task_struct(struct rcu_head *rhp)
177 {
178 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
179
180 perf_event_delayed_put(tsk);
181 trace_sched_process_free(tsk);
182 put_task_struct(tsk);
183 }
184
put_task_struct_rcu_user(struct task_struct * task)185 void put_task_struct_rcu_user(struct task_struct *task)
186 {
187 if (refcount_dec_and_test(&task->rcu_users))
188 call_rcu(&task->rcu, delayed_put_task_struct);
189 }
190
release_task(struct task_struct * p)191 void release_task(struct task_struct *p)
192 {
193 struct task_struct *leader;
194 int zap_leader;
195 repeat:
196 /* don't need to get the RCU readlock here - the process is dead and
197 * can't be modifying its own credentials. But shut RCU-lockdep up */
198 rcu_read_lock();
199 atomic_dec(&__task_cred(p)->user->processes);
200 rcu_read_unlock();
201
202 proc_flush_task(p);
203 cgroup_release(p);
204
205 write_lock_irq(&tasklist_lock);
206 ptrace_release_task(p);
207 __exit_signal(p);
208
209 /*
210 * If we are the last non-leader member of the thread
211 * group, and the leader is zombie, then notify the
212 * group leader's parent process. (if it wants notification.)
213 */
214 zap_leader = 0;
215 leader = p->group_leader;
216 if (leader != p && thread_group_empty(leader)
217 && leader->exit_state == EXIT_ZOMBIE) {
218 /*
219 * If we were the last child thread and the leader has
220 * exited already, and the leader's parent ignores SIGCHLD,
221 * then we are the one who should release the leader.
222 */
223 zap_leader = do_notify_parent(leader, leader->exit_signal);
224 if (zap_leader)
225 leader->exit_state = EXIT_DEAD;
226 }
227
228 write_unlock_irq(&tasklist_lock);
229 release_thread(p);
230 put_task_struct_rcu_user(p);
231
232 p = leader;
233 if (unlikely(zap_leader))
234 goto repeat;
235 }
236
rcuwait_wake_up(struct rcuwait * w)237 void rcuwait_wake_up(struct rcuwait *w)
238 {
239 struct task_struct *task;
240
241 rcu_read_lock();
242
243 /*
244 * Order condition vs @task, such that everything prior to the load
245 * of @task is visible. This is the condition as to why the user called
246 * rcuwait_trywake() in the first place. Pairs with set_current_state()
247 * barrier (A) in rcuwait_wait_event().
248 *
249 * WAIT WAKE
250 * [S] tsk = current [S] cond = true
251 * MB (A) MB (B)
252 * [L] cond [L] tsk
253 */
254 smp_mb(); /* (B) */
255
256 task = rcu_dereference(w->task);
257 if (task)
258 wake_up_process(task);
259 rcu_read_unlock();
260 }
261
262 /*
263 * Determine if a process group is "orphaned", according to the POSIX
264 * definition in 2.2.2.52. Orphaned process groups are not to be affected
265 * by terminal-generated stop signals. Newly orphaned process groups are
266 * to receive a SIGHUP and a SIGCONT.
267 *
268 * "I ask you, have you ever known what it is to be an orphan?"
269 */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)270 static int will_become_orphaned_pgrp(struct pid *pgrp,
271 struct task_struct *ignored_task)
272 {
273 struct task_struct *p;
274
275 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
276 if ((p == ignored_task) ||
277 (p->exit_state && thread_group_empty(p)) ||
278 is_global_init(p->real_parent))
279 continue;
280
281 if (task_pgrp(p->real_parent) != pgrp &&
282 task_session(p->real_parent) == task_session(p))
283 return 0;
284 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
285
286 return 1;
287 }
288
is_current_pgrp_orphaned(void)289 int is_current_pgrp_orphaned(void)
290 {
291 int retval;
292
293 read_lock(&tasklist_lock);
294 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
295 read_unlock(&tasklist_lock);
296
297 return retval;
298 }
299
has_stopped_jobs(struct pid * pgrp)300 static bool has_stopped_jobs(struct pid *pgrp)
301 {
302 struct task_struct *p;
303
304 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
305 if (p->signal->flags & SIGNAL_STOP_STOPPED)
306 return true;
307 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
308
309 return false;
310 }
311
312 /*
313 * Check to see if any process groups have become orphaned as
314 * a result of our exiting, and if they have any stopped jobs,
315 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
316 */
317 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)318 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
319 {
320 struct pid *pgrp = task_pgrp(tsk);
321 struct task_struct *ignored_task = tsk;
322
323 if (!parent)
324 /* exit: our father is in a different pgrp than
325 * we are and we were the only connection outside.
326 */
327 parent = tsk->real_parent;
328 else
329 /* reparent: our child is in a different pgrp than
330 * we are, and it was the only connection outside.
331 */
332 ignored_task = NULL;
333
334 if (task_pgrp(parent) != pgrp &&
335 task_session(parent) == task_session(tsk) &&
336 will_become_orphaned_pgrp(pgrp, ignored_task) &&
337 has_stopped_jobs(pgrp)) {
338 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
339 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
340 }
341 }
342
343 #ifdef CONFIG_MEMCG
344 /*
345 * A task is exiting. If it owned this mm, find a new owner for the mm.
346 */
mm_update_next_owner(struct mm_struct * mm)347 void mm_update_next_owner(struct mm_struct *mm)
348 {
349 struct task_struct *c, *g, *p = current;
350
351 retry:
352 /*
353 * If the exiting or execing task is not the owner, it's
354 * someone else's problem.
355 */
356 if (mm->owner != p)
357 return;
358 /*
359 * The current owner is exiting/execing and there are no other
360 * candidates. Do not leave the mm pointing to a possibly
361 * freed task structure.
362 */
363 if (atomic_read(&mm->mm_users) <= 1) {
364 WRITE_ONCE(mm->owner, NULL);
365 return;
366 }
367
368 read_lock(&tasklist_lock);
369 /*
370 * Search in the children
371 */
372 list_for_each_entry(c, &p->children, sibling) {
373 if (c->mm == mm)
374 goto assign_new_owner;
375 }
376
377 /*
378 * Search in the siblings
379 */
380 list_for_each_entry(c, &p->real_parent->children, sibling) {
381 if (c->mm == mm)
382 goto assign_new_owner;
383 }
384
385 /*
386 * Search through everything else, we should not get here often.
387 */
388 for_each_process(g) {
389 if (g->flags & PF_KTHREAD)
390 continue;
391 for_each_thread(g, c) {
392 if (c->mm == mm)
393 goto assign_new_owner;
394 if (c->mm)
395 break;
396 }
397 }
398 read_unlock(&tasklist_lock);
399 /*
400 * We found no owner yet mm_users > 1: this implies that we are
401 * most likely racing with swapoff (try_to_unuse()) or /proc or
402 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
403 */
404 WRITE_ONCE(mm->owner, NULL);
405 return;
406
407 assign_new_owner:
408 BUG_ON(c == p);
409 get_task_struct(c);
410 /*
411 * The task_lock protects c->mm from changing.
412 * We always want mm->owner->mm == mm
413 */
414 task_lock(c);
415 /*
416 * Delay read_unlock() till we have the task_lock()
417 * to ensure that c does not slip away underneath us
418 */
419 read_unlock(&tasklist_lock);
420 if (c->mm != mm) {
421 task_unlock(c);
422 put_task_struct(c);
423 goto retry;
424 }
425 WRITE_ONCE(mm->owner, c);
426 task_unlock(c);
427 put_task_struct(c);
428 }
429 #endif /* CONFIG_MEMCG */
430
431 /*
432 * Turn us into a lazy TLB process if we
433 * aren't already..
434 */
exit_mm(void)435 static void exit_mm(void)
436 {
437 struct mm_struct *mm = current->mm;
438 struct core_state *core_state;
439
440 exit_mm_release(current, mm);
441 if (!mm)
442 return;
443 sync_mm_rss(mm);
444 /*
445 * Serialize with any possible pending coredump.
446 * We must hold mmap_sem around checking core_state
447 * and clearing tsk->mm. The core-inducing thread
448 * will increment ->nr_threads for each thread in the
449 * group with ->mm != NULL.
450 */
451 down_read(&mm->mmap_sem);
452 core_state = mm->core_state;
453 if (core_state) {
454 struct core_thread self;
455
456 up_read(&mm->mmap_sem);
457
458 self.task = current;
459 self.next = xchg(&core_state->dumper.next, &self);
460 /*
461 * Implies mb(), the result of xchg() must be visible
462 * to core_state->dumper.
463 */
464 if (atomic_dec_and_test(&core_state->nr_threads))
465 complete(&core_state->startup);
466
467 for (;;) {
468 set_current_state(TASK_UNINTERRUPTIBLE);
469 if (!self.task) /* see coredump_finish() */
470 break;
471 freezable_schedule();
472 }
473 __set_current_state(TASK_RUNNING);
474 down_read(&mm->mmap_sem);
475 }
476 mmgrab(mm);
477 BUG_ON(mm != current->active_mm);
478 /* more a memory barrier than a real lock */
479 task_lock(current);
480 current->mm = NULL;
481 up_read(&mm->mmap_sem);
482 enter_lazy_tlb(mm, current);
483 task_unlock(current);
484 mm_update_next_owner(mm);
485 mmput(mm);
486 if (test_thread_flag(TIF_MEMDIE))
487 exit_oom_victim();
488 }
489
find_alive_thread(struct task_struct * p)490 static struct task_struct *find_alive_thread(struct task_struct *p)
491 {
492 struct task_struct *t;
493
494 for_each_thread(p, t) {
495 if (!(t->flags & PF_EXITING))
496 return t;
497 }
498 return NULL;
499 }
500
find_child_reaper(struct task_struct * father,struct list_head * dead)501 static struct task_struct *find_child_reaper(struct task_struct *father,
502 struct list_head *dead)
503 __releases(&tasklist_lock)
504 __acquires(&tasklist_lock)
505 {
506 struct pid_namespace *pid_ns = task_active_pid_ns(father);
507 struct task_struct *reaper = pid_ns->child_reaper;
508 struct task_struct *p, *n;
509
510 if (likely(reaper != father))
511 return reaper;
512
513 reaper = find_alive_thread(father);
514 if (reaper) {
515 pid_ns->child_reaper = reaper;
516 return reaper;
517 }
518
519 write_unlock_irq(&tasklist_lock);
520
521 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
522 list_del_init(&p->ptrace_entry);
523 release_task(p);
524 }
525
526 zap_pid_ns_processes(pid_ns);
527 write_lock_irq(&tasklist_lock);
528
529 return father;
530 }
531
532 /*
533 * When we die, we re-parent all our children, and try to:
534 * 1. give them to another thread in our thread group, if such a member exists
535 * 2. give it to the first ancestor process which prctl'd itself as a
536 * child_subreaper for its children (like a service manager)
537 * 3. give it to the init process (PID 1) in our pid namespace
538 */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)539 static struct task_struct *find_new_reaper(struct task_struct *father,
540 struct task_struct *child_reaper)
541 {
542 struct task_struct *thread, *reaper;
543
544 thread = find_alive_thread(father);
545 if (thread)
546 return thread;
547
548 if (father->signal->has_child_subreaper) {
549 unsigned int ns_level = task_pid(father)->level;
550 /*
551 * Find the first ->is_child_subreaper ancestor in our pid_ns.
552 * We can't check reaper != child_reaper to ensure we do not
553 * cross the namespaces, the exiting parent could be injected
554 * by setns() + fork().
555 * We check pid->level, this is slightly more efficient than
556 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
557 */
558 for (reaper = father->real_parent;
559 task_pid(reaper)->level == ns_level;
560 reaper = reaper->real_parent) {
561 if (reaper == &init_task)
562 break;
563 if (!reaper->signal->is_child_subreaper)
564 continue;
565 thread = find_alive_thread(reaper);
566 if (thread)
567 return thread;
568 }
569 }
570
571 return child_reaper;
572 }
573
574 /*
575 * Any that need to be release_task'd are put on the @dead list.
576 */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)577 static void reparent_leader(struct task_struct *father, struct task_struct *p,
578 struct list_head *dead)
579 {
580 if (unlikely(p->exit_state == EXIT_DEAD))
581 return;
582
583 /* We don't want people slaying init. */
584 p->exit_signal = SIGCHLD;
585
586 /* If it has exited notify the new parent about this child's death. */
587 if (!p->ptrace &&
588 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
589 if (do_notify_parent(p, p->exit_signal)) {
590 p->exit_state = EXIT_DEAD;
591 list_add(&p->ptrace_entry, dead);
592 }
593 }
594
595 kill_orphaned_pgrp(p, father);
596 }
597
598 /*
599 * This does two things:
600 *
601 * A. Make init inherit all the child processes
602 * B. Check to see if any process groups have become orphaned
603 * as a result of our exiting, and if they have any stopped
604 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
605 */
forget_original_parent(struct task_struct * father,struct list_head * dead)606 static void forget_original_parent(struct task_struct *father,
607 struct list_head *dead)
608 {
609 struct task_struct *p, *t, *reaper;
610
611 if (unlikely(!list_empty(&father->ptraced)))
612 exit_ptrace(father, dead);
613
614 /* Can drop and reacquire tasklist_lock */
615 reaper = find_child_reaper(father, dead);
616 if (list_empty(&father->children))
617 return;
618
619 reaper = find_new_reaper(father, reaper);
620 list_for_each_entry(p, &father->children, sibling) {
621 for_each_thread(p, t) {
622 t->real_parent = reaper;
623 BUG_ON((!t->ptrace) != (t->parent == father));
624 if (likely(!t->ptrace))
625 t->parent = t->real_parent;
626 if (t->pdeath_signal)
627 group_send_sig_info(t->pdeath_signal,
628 SEND_SIG_NOINFO, t,
629 PIDTYPE_TGID);
630 }
631 /*
632 * If this is a threaded reparent there is no need to
633 * notify anyone anything has happened.
634 */
635 if (!same_thread_group(reaper, father))
636 reparent_leader(father, p, dead);
637 }
638 list_splice_tail_init(&father->children, &reaper->children);
639 }
640
641 /*
642 * Send signals to all our closest relatives so that they know
643 * to properly mourn us..
644 */
exit_notify(struct task_struct * tsk,int group_dead)645 static void exit_notify(struct task_struct *tsk, int group_dead)
646 {
647 bool autoreap;
648 struct task_struct *p, *n;
649 LIST_HEAD(dead);
650
651 write_lock_irq(&tasklist_lock);
652 forget_original_parent(tsk, &dead);
653
654 if (group_dead)
655 kill_orphaned_pgrp(tsk->group_leader, NULL);
656
657 tsk->exit_state = EXIT_ZOMBIE;
658 if (unlikely(tsk->ptrace)) {
659 int sig = thread_group_leader(tsk) &&
660 thread_group_empty(tsk) &&
661 !ptrace_reparented(tsk) ?
662 tsk->exit_signal : SIGCHLD;
663 autoreap = do_notify_parent(tsk, sig);
664 } else if (thread_group_leader(tsk)) {
665 autoreap = thread_group_empty(tsk) &&
666 do_notify_parent(tsk, tsk->exit_signal);
667 } else {
668 autoreap = true;
669 }
670
671 if (autoreap) {
672 tsk->exit_state = EXIT_DEAD;
673 list_add(&tsk->ptrace_entry, &dead);
674 }
675
676 /* mt-exec, de_thread() is waiting for group leader */
677 if (unlikely(tsk->signal->notify_count < 0))
678 wake_up_process(tsk->signal->group_exit_task);
679 write_unlock_irq(&tasklist_lock);
680
681 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
682 list_del_init(&p->ptrace_entry);
683 release_task(p);
684 }
685 }
686
687 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)688 static void check_stack_usage(void)
689 {
690 static DEFINE_SPINLOCK(low_water_lock);
691 static int lowest_to_date = THREAD_SIZE;
692 unsigned long free;
693
694 free = stack_not_used(current);
695
696 if (free >= lowest_to_date)
697 return;
698
699 spin_lock(&low_water_lock);
700 if (free < lowest_to_date) {
701 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
702 current->comm, task_pid_nr(current), free);
703 lowest_to_date = free;
704 }
705 spin_unlock(&low_water_lock);
706 }
707 #else
check_stack_usage(void)708 static inline void check_stack_usage(void) {}
709 #endif
710
do_exit(long code)711 void __noreturn do_exit(long code)
712 {
713 struct task_struct *tsk = current;
714 int group_dead;
715
716 profile_task_exit(tsk);
717 kcov_task_exit(tsk);
718
719 WARN_ON(blk_needs_flush_plug(tsk));
720
721 if (unlikely(in_interrupt()))
722 panic("Aiee, killing interrupt handler!");
723 if (unlikely(!tsk->pid))
724 panic("Attempted to kill the idle task!");
725
726 /*
727 * If do_exit is called because this processes oopsed, it's possible
728 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
729 * continuing. Amongst other possible reasons, this is to prevent
730 * mm_release()->clear_child_tid() from writing to a user-controlled
731 * kernel address.
732 */
733 set_fs(USER_DS);
734
735 ptrace_event(PTRACE_EVENT_EXIT, code);
736
737 validate_creds_for_do_exit(tsk);
738
739 /*
740 * We're taking recursive faults here in do_exit. Safest is to just
741 * leave this task alone and wait for reboot.
742 */
743 if (unlikely(tsk->flags & PF_EXITING)) {
744 pr_alert("Fixing recursive fault but reboot is needed!\n");
745 futex_exit_recursive(tsk);
746 set_current_state(TASK_UNINTERRUPTIBLE);
747 schedule();
748 }
749
750 exit_signals(tsk); /* sets PF_EXITING */
751
752 if (unlikely(in_atomic())) {
753 pr_info("note: %s[%d] exited with preempt_count %d\n",
754 current->comm, task_pid_nr(current),
755 preempt_count());
756 preempt_count_set(PREEMPT_ENABLED);
757 }
758
759 /* sync mm's RSS info before statistics gathering */
760 if (tsk->mm)
761 sync_mm_rss(tsk->mm);
762 acct_update_integrals(tsk);
763 group_dead = atomic_dec_and_test(&tsk->signal->live);
764 if (group_dead) {
765 /*
766 * If the last thread of global init has exited, panic
767 * immediately to get a useable coredump.
768 */
769 if (unlikely(is_global_init(tsk)))
770 panic("Attempted to kill init! exitcode=0x%08x\n",
771 tsk->signal->group_exit_code ?: (int)code);
772
773 #ifdef CONFIG_POSIX_TIMERS
774 hrtimer_cancel(&tsk->signal->real_timer);
775 exit_itimers(tsk->signal);
776 #endif
777 if (tsk->mm)
778 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
779 }
780 acct_collect(code, group_dead);
781 if (group_dead)
782 tty_audit_exit();
783 audit_free(tsk);
784
785 tsk->exit_code = code;
786 taskstats_exit(tsk, group_dead);
787
788 exit_mm();
789
790 if (group_dead)
791 acct_process();
792 trace_sched_process_exit(tsk);
793
794 exit_sem(tsk);
795 exit_shm(tsk);
796 exit_files(tsk);
797 exit_fs(tsk);
798 if (group_dead)
799 disassociate_ctty(1);
800 exit_task_namespaces(tsk);
801 exit_task_work(tsk);
802 exit_thread(tsk);
803 exit_umh(tsk);
804
805 /*
806 * Flush inherited counters to the parent - before the parent
807 * gets woken up by child-exit notifications.
808 *
809 * because of cgroup mode, must be called before cgroup_exit()
810 */
811 perf_event_exit_task(tsk);
812
813 sched_autogroup_exit_task(tsk);
814 cgroup_exit(tsk);
815
816 /*
817 * FIXME: do that only when needed, using sched_exit tracepoint
818 */
819 flush_ptrace_hw_breakpoint(tsk);
820
821 exit_tasks_rcu_start();
822 exit_notify(tsk, group_dead);
823 proc_exit_connector(tsk);
824 mpol_put_task_policy(tsk);
825 #ifdef CONFIG_FUTEX
826 if (unlikely(current->pi_state_cache))
827 kfree(current->pi_state_cache);
828 #endif
829 /*
830 * Make sure we are holding no locks:
831 */
832 debug_check_no_locks_held();
833
834 if (tsk->io_context)
835 exit_io_context(tsk);
836
837 if (tsk->splice_pipe)
838 free_pipe_info(tsk->splice_pipe);
839
840 if (tsk->task_frag.page)
841 put_page(tsk->task_frag.page);
842
843 validate_creds_for_do_exit(tsk);
844
845 check_stack_usage();
846 preempt_disable();
847 if (tsk->nr_dirtied)
848 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
849 exit_rcu();
850 exit_tasks_rcu_finish();
851
852 lockdep_free_task(tsk);
853 do_task_dead();
854 }
855 EXPORT_SYMBOL_GPL(do_exit);
856
complete_and_exit(struct completion * comp,long code)857 void complete_and_exit(struct completion *comp, long code)
858 {
859 if (comp)
860 complete(comp);
861
862 do_exit(code);
863 }
864 EXPORT_SYMBOL(complete_and_exit);
865
SYSCALL_DEFINE1(exit,int,error_code)866 SYSCALL_DEFINE1(exit, int, error_code)
867 {
868 do_exit((error_code&0xff)<<8);
869 }
870
871 /*
872 * Take down every thread in the group. This is called by fatal signals
873 * as well as by sys_exit_group (below).
874 */
875 void
do_group_exit(int exit_code)876 do_group_exit(int exit_code)
877 {
878 struct signal_struct *sig = current->signal;
879
880 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
881
882 if (signal_group_exit(sig))
883 exit_code = sig->group_exit_code;
884 else if (!thread_group_empty(current)) {
885 struct sighand_struct *const sighand = current->sighand;
886
887 spin_lock_irq(&sighand->siglock);
888 if (signal_group_exit(sig))
889 /* Another thread got here before we took the lock. */
890 exit_code = sig->group_exit_code;
891 else {
892 sig->group_exit_code = exit_code;
893 sig->flags = SIGNAL_GROUP_EXIT;
894 zap_other_threads(current);
895 }
896 spin_unlock_irq(&sighand->siglock);
897 }
898
899 do_exit(exit_code);
900 /* NOTREACHED */
901 }
902
903 /*
904 * this kills every thread in the thread group. Note that any externally
905 * wait4()-ing process will get the correct exit code - even if this
906 * thread is not the thread group leader.
907 */
SYSCALL_DEFINE1(exit_group,int,error_code)908 SYSCALL_DEFINE1(exit_group, int, error_code)
909 {
910 do_group_exit((error_code & 0xff) << 8);
911 /* NOTREACHED */
912 return 0;
913 }
914
915 struct waitid_info {
916 pid_t pid;
917 uid_t uid;
918 int status;
919 int cause;
920 };
921
922 struct wait_opts {
923 enum pid_type wo_type;
924 int wo_flags;
925 struct pid *wo_pid;
926
927 struct waitid_info *wo_info;
928 int wo_stat;
929 struct rusage *wo_rusage;
930
931 wait_queue_entry_t child_wait;
932 int notask_error;
933 };
934
eligible_pid(struct wait_opts * wo,struct task_struct * p)935 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
936 {
937 return wo->wo_type == PIDTYPE_MAX ||
938 task_pid_type(p, wo->wo_type) == wo->wo_pid;
939 }
940
941 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)942 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
943 {
944 if (!eligible_pid(wo, p))
945 return 0;
946
947 /*
948 * Wait for all children (clone and not) if __WALL is set or
949 * if it is traced by us.
950 */
951 if (ptrace || (wo->wo_flags & __WALL))
952 return 1;
953
954 /*
955 * Otherwise, wait for clone children *only* if __WCLONE is set;
956 * otherwise, wait for non-clone children *only*.
957 *
958 * Note: a "clone" child here is one that reports to its parent
959 * using a signal other than SIGCHLD, or a non-leader thread which
960 * we can only see if it is traced by us.
961 */
962 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
963 return 0;
964
965 return 1;
966 }
967
968 /*
969 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
970 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
971 * the lock and this task is uninteresting. If we return nonzero, we have
972 * released the lock and the system call should return.
973 */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)974 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
975 {
976 int state, status;
977 pid_t pid = task_pid_vnr(p);
978 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
979 struct waitid_info *infop;
980
981 if (!likely(wo->wo_flags & WEXITED))
982 return 0;
983
984 if (unlikely(wo->wo_flags & WNOWAIT)) {
985 status = p->exit_code;
986 get_task_struct(p);
987 read_unlock(&tasklist_lock);
988 sched_annotate_sleep();
989 if (wo->wo_rusage)
990 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
991 put_task_struct(p);
992 goto out_info;
993 }
994 /*
995 * Move the task's state to DEAD/TRACE, only one thread can do this.
996 */
997 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
998 EXIT_TRACE : EXIT_DEAD;
999 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1000 return 0;
1001 /*
1002 * We own this thread, nobody else can reap it.
1003 */
1004 read_unlock(&tasklist_lock);
1005 sched_annotate_sleep();
1006
1007 /*
1008 * Check thread_group_leader() to exclude the traced sub-threads.
1009 */
1010 if (state == EXIT_DEAD && thread_group_leader(p)) {
1011 struct signal_struct *sig = p->signal;
1012 struct signal_struct *psig = current->signal;
1013 unsigned long maxrss;
1014 u64 tgutime, tgstime;
1015
1016 /*
1017 * The resource counters for the group leader are in its
1018 * own task_struct. Those for dead threads in the group
1019 * are in its signal_struct, as are those for the child
1020 * processes it has previously reaped. All these
1021 * accumulate in the parent's signal_struct c* fields.
1022 *
1023 * We don't bother to take a lock here to protect these
1024 * p->signal fields because the whole thread group is dead
1025 * and nobody can change them.
1026 *
1027 * psig->stats_lock also protects us from our sub-theads
1028 * which can reap other children at the same time. Until
1029 * we change k_getrusage()-like users to rely on this lock
1030 * we have to take ->siglock as well.
1031 *
1032 * We use thread_group_cputime_adjusted() to get times for
1033 * the thread group, which consolidates times for all threads
1034 * in the group including the group leader.
1035 */
1036 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1037 spin_lock_irq(¤t->sighand->siglock);
1038 write_seqlock(&psig->stats_lock);
1039 psig->cutime += tgutime + sig->cutime;
1040 psig->cstime += tgstime + sig->cstime;
1041 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1042 psig->cmin_flt +=
1043 p->min_flt + sig->min_flt + sig->cmin_flt;
1044 psig->cmaj_flt +=
1045 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1046 psig->cnvcsw +=
1047 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1048 psig->cnivcsw +=
1049 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1050 psig->cinblock +=
1051 task_io_get_inblock(p) +
1052 sig->inblock + sig->cinblock;
1053 psig->coublock +=
1054 task_io_get_oublock(p) +
1055 sig->oublock + sig->coublock;
1056 maxrss = max(sig->maxrss, sig->cmaxrss);
1057 if (psig->cmaxrss < maxrss)
1058 psig->cmaxrss = maxrss;
1059 task_io_accounting_add(&psig->ioac, &p->ioac);
1060 task_io_accounting_add(&psig->ioac, &sig->ioac);
1061 write_sequnlock(&psig->stats_lock);
1062 spin_unlock_irq(¤t->sighand->siglock);
1063 }
1064
1065 if (wo->wo_rusage)
1066 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1067 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1068 ? p->signal->group_exit_code : p->exit_code;
1069 wo->wo_stat = status;
1070
1071 if (state == EXIT_TRACE) {
1072 write_lock_irq(&tasklist_lock);
1073 /* We dropped tasklist, ptracer could die and untrace */
1074 ptrace_unlink(p);
1075
1076 /* If parent wants a zombie, don't release it now */
1077 state = EXIT_ZOMBIE;
1078 if (do_notify_parent(p, p->exit_signal))
1079 state = EXIT_DEAD;
1080 p->exit_state = state;
1081 write_unlock_irq(&tasklist_lock);
1082 }
1083 if (state == EXIT_DEAD)
1084 release_task(p);
1085
1086 out_info:
1087 infop = wo->wo_info;
1088 if (infop) {
1089 if ((status & 0x7f) == 0) {
1090 infop->cause = CLD_EXITED;
1091 infop->status = status >> 8;
1092 } else {
1093 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1094 infop->status = status & 0x7f;
1095 }
1096 infop->pid = pid;
1097 infop->uid = uid;
1098 }
1099
1100 return pid;
1101 }
1102
task_stopped_code(struct task_struct * p,bool ptrace)1103 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1104 {
1105 if (ptrace) {
1106 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1107 return &p->exit_code;
1108 } else {
1109 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1110 return &p->signal->group_exit_code;
1111 }
1112 return NULL;
1113 }
1114
1115 /**
1116 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1117 * @wo: wait options
1118 * @ptrace: is the wait for ptrace
1119 * @p: task to wait for
1120 *
1121 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1122 *
1123 * CONTEXT:
1124 * read_lock(&tasklist_lock), which is released if return value is
1125 * non-zero. Also, grabs and releases @p->sighand->siglock.
1126 *
1127 * RETURNS:
1128 * 0 if wait condition didn't exist and search for other wait conditions
1129 * should continue. Non-zero return, -errno on failure and @p's pid on
1130 * success, implies that tasklist_lock is released and wait condition
1131 * search should terminate.
1132 */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1133 static int wait_task_stopped(struct wait_opts *wo,
1134 int ptrace, struct task_struct *p)
1135 {
1136 struct waitid_info *infop;
1137 int exit_code, *p_code, why;
1138 uid_t uid = 0; /* unneeded, required by compiler */
1139 pid_t pid;
1140
1141 /*
1142 * Traditionally we see ptrace'd stopped tasks regardless of options.
1143 */
1144 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1145 return 0;
1146
1147 if (!task_stopped_code(p, ptrace))
1148 return 0;
1149
1150 exit_code = 0;
1151 spin_lock_irq(&p->sighand->siglock);
1152
1153 p_code = task_stopped_code(p, ptrace);
1154 if (unlikely(!p_code))
1155 goto unlock_sig;
1156
1157 exit_code = *p_code;
1158 if (!exit_code)
1159 goto unlock_sig;
1160
1161 if (!unlikely(wo->wo_flags & WNOWAIT))
1162 *p_code = 0;
1163
1164 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1165 unlock_sig:
1166 spin_unlock_irq(&p->sighand->siglock);
1167 if (!exit_code)
1168 return 0;
1169
1170 /*
1171 * Now we are pretty sure this task is interesting.
1172 * Make sure it doesn't get reaped out from under us while we
1173 * give up the lock and then examine it below. We don't want to
1174 * keep holding onto the tasklist_lock while we call getrusage and
1175 * possibly take page faults for user memory.
1176 */
1177 get_task_struct(p);
1178 pid = task_pid_vnr(p);
1179 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1180 read_unlock(&tasklist_lock);
1181 sched_annotate_sleep();
1182 if (wo->wo_rusage)
1183 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1184 put_task_struct(p);
1185
1186 if (likely(!(wo->wo_flags & WNOWAIT)))
1187 wo->wo_stat = (exit_code << 8) | 0x7f;
1188
1189 infop = wo->wo_info;
1190 if (infop) {
1191 infop->cause = why;
1192 infop->status = exit_code;
1193 infop->pid = pid;
1194 infop->uid = uid;
1195 }
1196 return pid;
1197 }
1198
1199 /*
1200 * Handle do_wait work for one task in a live, non-stopped state.
1201 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1202 * the lock and this task is uninteresting. If we return nonzero, we have
1203 * released the lock and the system call should return.
1204 */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1205 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1206 {
1207 struct waitid_info *infop;
1208 pid_t pid;
1209 uid_t uid;
1210
1211 if (!unlikely(wo->wo_flags & WCONTINUED))
1212 return 0;
1213
1214 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1215 return 0;
1216
1217 spin_lock_irq(&p->sighand->siglock);
1218 /* Re-check with the lock held. */
1219 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1220 spin_unlock_irq(&p->sighand->siglock);
1221 return 0;
1222 }
1223 if (!unlikely(wo->wo_flags & WNOWAIT))
1224 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1225 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1226 spin_unlock_irq(&p->sighand->siglock);
1227
1228 pid = task_pid_vnr(p);
1229 get_task_struct(p);
1230 read_unlock(&tasklist_lock);
1231 sched_annotate_sleep();
1232 if (wo->wo_rusage)
1233 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1234 put_task_struct(p);
1235
1236 infop = wo->wo_info;
1237 if (!infop) {
1238 wo->wo_stat = 0xffff;
1239 } else {
1240 infop->cause = CLD_CONTINUED;
1241 infop->pid = pid;
1242 infop->uid = uid;
1243 infop->status = SIGCONT;
1244 }
1245 return pid;
1246 }
1247
1248 /*
1249 * Consider @p for a wait by @parent.
1250 *
1251 * -ECHILD should be in ->notask_error before the first call.
1252 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1253 * Returns zero if the search for a child should continue;
1254 * then ->notask_error is 0 if @p is an eligible child,
1255 * or still -ECHILD.
1256 */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1257 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1258 struct task_struct *p)
1259 {
1260 /*
1261 * We can race with wait_task_zombie() from another thread.
1262 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1263 * can't confuse the checks below.
1264 */
1265 int exit_state = READ_ONCE(p->exit_state);
1266 int ret;
1267
1268 if (unlikely(exit_state == EXIT_DEAD))
1269 return 0;
1270
1271 ret = eligible_child(wo, ptrace, p);
1272 if (!ret)
1273 return ret;
1274
1275 if (unlikely(exit_state == EXIT_TRACE)) {
1276 /*
1277 * ptrace == 0 means we are the natural parent. In this case
1278 * we should clear notask_error, debugger will notify us.
1279 */
1280 if (likely(!ptrace))
1281 wo->notask_error = 0;
1282 return 0;
1283 }
1284
1285 if (likely(!ptrace) && unlikely(p->ptrace)) {
1286 /*
1287 * If it is traced by its real parent's group, just pretend
1288 * the caller is ptrace_do_wait() and reap this child if it
1289 * is zombie.
1290 *
1291 * This also hides group stop state from real parent; otherwise
1292 * a single stop can be reported twice as group and ptrace stop.
1293 * If a ptracer wants to distinguish these two events for its
1294 * own children it should create a separate process which takes
1295 * the role of real parent.
1296 */
1297 if (!ptrace_reparented(p))
1298 ptrace = 1;
1299 }
1300
1301 /* slay zombie? */
1302 if (exit_state == EXIT_ZOMBIE) {
1303 /* we don't reap group leaders with subthreads */
1304 if (!delay_group_leader(p)) {
1305 /*
1306 * A zombie ptracee is only visible to its ptracer.
1307 * Notification and reaping will be cascaded to the
1308 * real parent when the ptracer detaches.
1309 */
1310 if (unlikely(ptrace) || likely(!p->ptrace))
1311 return wait_task_zombie(wo, p);
1312 }
1313
1314 /*
1315 * Allow access to stopped/continued state via zombie by
1316 * falling through. Clearing of notask_error is complex.
1317 *
1318 * When !@ptrace:
1319 *
1320 * If WEXITED is set, notask_error should naturally be
1321 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1322 * so, if there are live subthreads, there are events to
1323 * wait for. If all subthreads are dead, it's still safe
1324 * to clear - this function will be called again in finite
1325 * amount time once all the subthreads are released and
1326 * will then return without clearing.
1327 *
1328 * When @ptrace:
1329 *
1330 * Stopped state is per-task and thus can't change once the
1331 * target task dies. Only continued and exited can happen.
1332 * Clear notask_error if WCONTINUED | WEXITED.
1333 */
1334 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1335 wo->notask_error = 0;
1336 } else {
1337 /*
1338 * @p is alive and it's gonna stop, continue or exit, so
1339 * there always is something to wait for.
1340 */
1341 wo->notask_error = 0;
1342 }
1343
1344 /*
1345 * Wait for stopped. Depending on @ptrace, different stopped state
1346 * is used and the two don't interact with each other.
1347 */
1348 ret = wait_task_stopped(wo, ptrace, p);
1349 if (ret)
1350 return ret;
1351
1352 /*
1353 * Wait for continued. There's only one continued state and the
1354 * ptracer can consume it which can confuse the real parent. Don't
1355 * use WCONTINUED from ptracer. You don't need or want it.
1356 */
1357 return wait_task_continued(wo, p);
1358 }
1359
1360 /*
1361 * Do the work of do_wait() for one thread in the group, @tsk.
1362 *
1363 * -ECHILD should be in ->notask_error before the first call.
1364 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1365 * Returns zero if the search for a child should continue; then
1366 * ->notask_error is 0 if there were any eligible children,
1367 * or still -ECHILD.
1368 */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1369 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1370 {
1371 struct task_struct *p;
1372
1373 list_for_each_entry(p, &tsk->children, sibling) {
1374 int ret = wait_consider_task(wo, 0, p);
1375
1376 if (ret)
1377 return ret;
1378 }
1379
1380 return 0;
1381 }
1382
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1383 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1384 {
1385 struct task_struct *p;
1386
1387 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1388 int ret = wait_consider_task(wo, 1, p);
1389
1390 if (ret)
1391 return ret;
1392 }
1393
1394 return 0;
1395 }
1396
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1397 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1398 int sync, void *key)
1399 {
1400 struct wait_opts *wo = container_of(wait, struct wait_opts,
1401 child_wait);
1402 struct task_struct *p = key;
1403
1404 if (!eligible_pid(wo, p))
1405 return 0;
1406
1407 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1408 return 0;
1409
1410 return default_wake_function(wait, mode, sync, key);
1411 }
1412
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1413 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1414 {
1415 __wake_up_sync_key(&parent->signal->wait_chldexit,
1416 TASK_INTERRUPTIBLE, 1, p);
1417 }
1418
do_wait(struct wait_opts * wo)1419 static long do_wait(struct wait_opts *wo)
1420 {
1421 struct task_struct *tsk;
1422 int retval;
1423
1424 trace_sched_process_wait(wo->wo_pid);
1425
1426 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1427 wo->child_wait.private = current;
1428 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1429 repeat:
1430 /*
1431 * If there is nothing that can match our criteria, just get out.
1432 * We will clear ->notask_error to zero if we see any child that
1433 * might later match our criteria, even if we are not able to reap
1434 * it yet.
1435 */
1436 wo->notask_error = -ECHILD;
1437 if ((wo->wo_type < PIDTYPE_MAX) &&
1438 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1439 goto notask;
1440
1441 set_current_state(TASK_INTERRUPTIBLE);
1442 read_lock(&tasklist_lock);
1443 tsk = current;
1444 do {
1445 retval = do_wait_thread(wo, tsk);
1446 if (retval)
1447 goto end;
1448
1449 retval = ptrace_do_wait(wo, tsk);
1450 if (retval)
1451 goto end;
1452
1453 if (wo->wo_flags & __WNOTHREAD)
1454 break;
1455 } while_each_thread(current, tsk);
1456 read_unlock(&tasklist_lock);
1457
1458 notask:
1459 retval = wo->notask_error;
1460 if (!retval && !(wo->wo_flags & WNOHANG)) {
1461 retval = -ERESTARTSYS;
1462 if (!signal_pending(current)) {
1463 schedule();
1464 goto repeat;
1465 }
1466 }
1467 end:
1468 __set_current_state(TASK_RUNNING);
1469 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1470 return retval;
1471 }
1472
pidfd_get_pid(unsigned int fd)1473 static struct pid *pidfd_get_pid(unsigned int fd)
1474 {
1475 struct fd f;
1476 struct pid *pid;
1477
1478 f = fdget(fd);
1479 if (!f.file)
1480 return ERR_PTR(-EBADF);
1481
1482 pid = pidfd_pid(f.file);
1483 if (!IS_ERR(pid))
1484 get_pid(pid);
1485
1486 fdput(f);
1487 return pid;
1488 }
1489
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1490 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1491 int options, struct rusage *ru)
1492 {
1493 struct wait_opts wo;
1494 struct pid *pid = NULL;
1495 enum pid_type type;
1496 long ret;
1497
1498 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1499 __WNOTHREAD|__WCLONE|__WALL))
1500 return -EINVAL;
1501 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1502 return -EINVAL;
1503
1504 switch (which) {
1505 case P_ALL:
1506 type = PIDTYPE_MAX;
1507 break;
1508 case P_PID:
1509 type = PIDTYPE_PID;
1510 if (upid <= 0)
1511 return -EINVAL;
1512
1513 pid = find_get_pid(upid);
1514 break;
1515 case P_PGID:
1516 type = PIDTYPE_PGID;
1517 if (upid < 0)
1518 return -EINVAL;
1519
1520 if (upid)
1521 pid = find_get_pid(upid);
1522 else
1523 pid = get_task_pid(current, PIDTYPE_PGID);
1524 break;
1525 case P_PIDFD:
1526 type = PIDTYPE_PID;
1527 if (upid < 0)
1528 return -EINVAL;
1529
1530 pid = pidfd_get_pid(upid);
1531 if (IS_ERR(pid))
1532 return PTR_ERR(pid);
1533 break;
1534 default:
1535 return -EINVAL;
1536 }
1537
1538 wo.wo_type = type;
1539 wo.wo_pid = pid;
1540 wo.wo_flags = options;
1541 wo.wo_info = infop;
1542 wo.wo_rusage = ru;
1543 ret = do_wait(&wo);
1544
1545 put_pid(pid);
1546 return ret;
1547 }
1548
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1549 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1550 infop, int, options, struct rusage __user *, ru)
1551 {
1552 struct rusage r;
1553 struct waitid_info info = {.status = 0};
1554 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1555 int signo = 0;
1556
1557 if (err > 0) {
1558 signo = SIGCHLD;
1559 err = 0;
1560 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1561 return -EFAULT;
1562 }
1563 if (!infop)
1564 return err;
1565
1566 if (!user_access_begin(infop, sizeof(*infop)))
1567 return -EFAULT;
1568
1569 unsafe_put_user(signo, &infop->si_signo, Efault);
1570 unsafe_put_user(0, &infop->si_errno, Efault);
1571 unsafe_put_user(info.cause, &infop->si_code, Efault);
1572 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1573 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1574 unsafe_put_user(info.status, &infop->si_status, Efault);
1575 user_access_end();
1576 return err;
1577 Efault:
1578 user_access_end();
1579 return -EFAULT;
1580 }
1581
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1582 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1583 struct rusage *ru)
1584 {
1585 struct wait_opts wo;
1586 struct pid *pid = NULL;
1587 enum pid_type type;
1588 long ret;
1589
1590 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1591 __WNOTHREAD|__WCLONE|__WALL))
1592 return -EINVAL;
1593
1594 /* -INT_MIN is not defined */
1595 if (upid == INT_MIN)
1596 return -ESRCH;
1597
1598 if (upid == -1)
1599 type = PIDTYPE_MAX;
1600 else if (upid < 0) {
1601 type = PIDTYPE_PGID;
1602 pid = find_get_pid(-upid);
1603 } else if (upid == 0) {
1604 type = PIDTYPE_PGID;
1605 pid = get_task_pid(current, PIDTYPE_PGID);
1606 } else /* upid > 0 */ {
1607 type = PIDTYPE_PID;
1608 pid = find_get_pid(upid);
1609 }
1610
1611 wo.wo_type = type;
1612 wo.wo_pid = pid;
1613 wo.wo_flags = options | WEXITED;
1614 wo.wo_info = NULL;
1615 wo.wo_stat = 0;
1616 wo.wo_rusage = ru;
1617 ret = do_wait(&wo);
1618 put_pid(pid);
1619 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1620 ret = -EFAULT;
1621
1622 return ret;
1623 }
1624
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1625 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1626 int, options, struct rusage __user *, ru)
1627 {
1628 struct rusage r;
1629 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1630
1631 if (err > 0) {
1632 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1633 return -EFAULT;
1634 }
1635 return err;
1636 }
1637
1638 #ifdef __ARCH_WANT_SYS_WAITPID
1639
1640 /*
1641 * sys_waitpid() remains for compatibility. waitpid() should be
1642 * implemented by calling sys_wait4() from libc.a.
1643 */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1644 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1645 {
1646 return kernel_wait4(pid, stat_addr, options, NULL);
1647 }
1648
1649 #endif
1650
1651 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1652 COMPAT_SYSCALL_DEFINE4(wait4,
1653 compat_pid_t, pid,
1654 compat_uint_t __user *, stat_addr,
1655 int, options,
1656 struct compat_rusage __user *, ru)
1657 {
1658 struct rusage r;
1659 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1660 if (err > 0) {
1661 if (ru && put_compat_rusage(&r, ru))
1662 return -EFAULT;
1663 }
1664 return err;
1665 }
1666
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1667 COMPAT_SYSCALL_DEFINE5(waitid,
1668 int, which, compat_pid_t, pid,
1669 struct compat_siginfo __user *, infop, int, options,
1670 struct compat_rusage __user *, uru)
1671 {
1672 struct rusage ru;
1673 struct waitid_info info = {.status = 0};
1674 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1675 int signo = 0;
1676 if (err > 0) {
1677 signo = SIGCHLD;
1678 err = 0;
1679 if (uru) {
1680 /* kernel_waitid() overwrites everything in ru */
1681 if (COMPAT_USE_64BIT_TIME)
1682 err = copy_to_user(uru, &ru, sizeof(ru));
1683 else
1684 err = put_compat_rusage(&ru, uru);
1685 if (err)
1686 return -EFAULT;
1687 }
1688 }
1689
1690 if (!infop)
1691 return err;
1692
1693 if (!user_access_begin(infop, sizeof(*infop)))
1694 return -EFAULT;
1695
1696 unsafe_put_user(signo, &infop->si_signo, Efault);
1697 unsafe_put_user(0, &infop->si_errno, Efault);
1698 unsafe_put_user(info.cause, &infop->si_code, Efault);
1699 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1700 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1701 unsafe_put_user(info.status, &infop->si_status, Efault);
1702 user_access_end();
1703 return err;
1704 Efault:
1705 user_access_end();
1706 return -EFAULT;
1707 }
1708 #endif
1709
abort(void)1710 __weak void abort(void)
1711 {
1712 BUG();
1713
1714 /* if that doesn't kill us, halt */
1715 panic("Oops failed to kill thread");
1716 }
1717 EXPORT_SYMBOL(abort);
1718