• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Fast Userspace Mutexes (which I call "Futexes!").
4  *  (C) Rusty Russell, IBM 2002
5  *
6  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8  *
9  *  Removed page pinning, fix privately mapped COW pages and other cleanups
10  *  (C) Copyright 2003, 2004 Jamie Lokier
11  *
12  *  Robust futex support started by Ingo Molnar
13  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15  *
16  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
17  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19  *
20  *  PRIVATE futexes by Eric Dumazet
21  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22  *
23  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24  *  Copyright (C) IBM Corporation, 2009
25  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
26  *
27  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28  *  enough at me, Linus for the original (flawed) idea, Matthew
29  *  Kirkwood for proof-of-concept implementation.
30  *
31  *  "The futexes are also cursed."
32  *  "But they come in a choice of three flavours!"
33  */
34 #include <linux/compat.h>
35 #include <linux/slab.h>
36 #include <linux/poll.h>
37 #include <linux/fs.h>
38 #include <linux/file.h>
39 #include <linux/jhash.h>
40 #include <linux/init.h>
41 #include <linux/futex.h>
42 #include <linux/mount.h>
43 #include <linux/pagemap.h>
44 #include <linux/syscalls.h>
45 #include <linux/signal.h>
46 #include <linux/export.h>
47 #include <linux/magic.h>
48 #include <linux/pid.h>
49 #include <linux/nsproxy.h>
50 #include <linux/ptrace.h>
51 #include <linux/sched/rt.h>
52 #include <linux/sched/wake_q.h>
53 #include <linux/sched/mm.h>
54 #include <linux/hugetlb.h>
55 #include <linux/freezer.h>
56 #include <linux/memblock.h>
57 #include <linux/fault-inject.h>
58 #include <linux/refcount.h>
59 
60 #include <asm/futex.h>
61 
62 #include "locking/rtmutex_common.h"
63 
64 /*
65  * READ this before attempting to hack on futexes!
66  *
67  * Basic futex operation and ordering guarantees
68  * =============================================
69  *
70  * The waiter reads the futex value in user space and calls
71  * futex_wait(). This function computes the hash bucket and acquires
72  * the hash bucket lock. After that it reads the futex user space value
73  * again and verifies that the data has not changed. If it has not changed
74  * it enqueues itself into the hash bucket, releases the hash bucket lock
75  * and schedules.
76  *
77  * The waker side modifies the user space value of the futex and calls
78  * futex_wake(). This function computes the hash bucket and acquires the
79  * hash bucket lock. Then it looks for waiters on that futex in the hash
80  * bucket and wakes them.
81  *
82  * In futex wake up scenarios where no tasks are blocked on a futex, taking
83  * the hb spinlock can be avoided and simply return. In order for this
84  * optimization to work, ordering guarantees must exist so that the waiter
85  * being added to the list is acknowledged when the list is concurrently being
86  * checked by the waker, avoiding scenarios like the following:
87  *
88  * CPU 0                               CPU 1
89  * val = *futex;
90  * sys_futex(WAIT, futex, val);
91  *   futex_wait(futex, val);
92  *   uval = *futex;
93  *                                     *futex = newval;
94  *                                     sys_futex(WAKE, futex);
95  *                                       futex_wake(futex);
96  *                                       if (queue_empty())
97  *                                         return;
98  *   if (uval == val)
99  *      lock(hash_bucket(futex));
100  *      queue();
101  *     unlock(hash_bucket(futex));
102  *     schedule();
103  *
104  * This would cause the waiter on CPU 0 to wait forever because it
105  * missed the transition of the user space value from val to newval
106  * and the waker did not find the waiter in the hash bucket queue.
107  *
108  * The correct serialization ensures that a waiter either observes
109  * the changed user space value before blocking or is woken by a
110  * concurrent waker:
111  *
112  * CPU 0                                 CPU 1
113  * val = *futex;
114  * sys_futex(WAIT, futex, val);
115  *   futex_wait(futex, val);
116  *
117  *   waiters++; (a)
118  *   smp_mb(); (A) <-- paired with -.
119  *                                  |
120  *   lock(hash_bucket(futex));      |
121  *                                  |
122  *   uval = *futex;                 |
123  *                                  |        *futex = newval;
124  *                                  |        sys_futex(WAKE, futex);
125  *                                  |          futex_wake(futex);
126  *                                  |
127  *                                  `--------> smp_mb(); (B)
128  *   if (uval == val)
129  *     queue();
130  *     unlock(hash_bucket(futex));
131  *     schedule();                         if (waiters)
132  *                                           lock(hash_bucket(futex));
133  *   else                                    wake_waiters(futex);
134  *     waiters--; (b)                        unlock(hash_bucket(futex));
135  *
136  * Where (A) orders the waiters increment and the futex value read through
137  * atomic operations (see hb_waiters_inc) and where (B) orders the write
138  * to futex and the waiters read -- this is done by the barriers for both
139  * shared and private futexes in get_futex_key_refs().
140  *
141  * This yields the following case (where X:=waiters, Y:=futex):
142  *
143  *	X = Y = 0
144  *
145  *	w[X]=1		w[Y]=1
146  *	MB		MB
147  *	r[Y]=y		r[X]=x
148  *
149  * Which guarantees that x==0 && y==0 is impossible; which translates back into
150  * the guarantee that we cannot both miss the futex variable change and the
151  * enqueue.
152  *
153  * Note that a new waiter is accounted for in (a) even when it is possible that
154  * the wait call can return error, in which case we backtrack from it in (b).
155  * Refer to the comment in queue_lock().
156  *
157  * Similarly, in order to account for waiters being requeued on another
158  * address we always increment the waiters for the destination bucket before
159  * acquiring the lock. It then decrements them again  after releasing it -
160  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
161  * will do the additional required waiter count housekeeping. This is done for
162  * double_lock_hb() and double_unlock_hb(), respectively.
163  */
164 
165 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
166 #define futex_cmpxchg_enabled 1
167 #else
168 static int  __read_mostly futex_cmpxchg_enabled;
169 #endif
170 
171 /*
172  * Futex flags used to encode options to functions and preserve them across
173  * restarts.
174  */
175 #ifdef CONFIG_MMU
176 # define FLAGS_SHARED		0x01
177 #else
178 /*
179  * NOMMU does not have per process address space. Let the compiler optimize
180  * code away.
181  */
182 # define FLAGS_SHARED		0x00
183 #endif
184 #define FLAGS_CLOCKRT		0x02
185 #define FLAGS_HAS_TIMEOUT	0x04
186 
187 /*
188  * Priority Inheritance state:
189  */
190 struct futex_pi_state {
191 	/*
192 	 * list of 'owned' pi_state instances - these have to be
193 	 * cleaned up in do_exit() if the task exits prematurely:
194 	 */
195 	struct list_head list;
196 
197 	/*
198 	 * The PI object:
199 	 */
200 	struct rt_mutex pi_mutex;
201 
202 	struct task_struct *owner;
203 	refcount_t refcount;
204 
205 	union futex_key key;
206 } __randomize_layout;
207 
208 /**
209  * struct futex_q - The hashed futex queue entry, one per waiting task
210  * @list:		priority-sorted list of tasks waiting on this futex
211  * @task:		the task waiting on the futex
212  * @lock_ptr:		the hash bucket lock
213  * @key:		the key the futex is hashed on
214  * @pi_state:		optional priority inheritance state
215  * @rt_waiter:		rt_waiter storage for use with requeue_pi
216  * @requeue_pi_key:	the requeue_pi target futex key
217  * @bitset:		bitset for the optional bitmasked wakeup
218  *
219  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
220  * we can wake only the relevant ones (hashed queues may be shared).
221  *
222  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
223  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
224  * The order of wakeup is always to make the first condition true, then
225  * the second.
226  *
227  * PI futexes are typically woken before they are removed from the hash list via
228  * the rt_mutex code. See unqueue_me_pi().
229  */
230 struct futex_q {
231 	struct plist_node list;
232 
233 	struct task_struct *task;
234 	spinlock_t *lock_ptr;
235 	union futex_key key;
236 	struct futex_pi_state *pi_state;
237 	struct rt_mutex_waiter *rt_waiter;
238 	union futex_key *requeue_pi_key;
239 	u32 bitset;
240 } __randomize_layout;
241 
242 static const struct futex_q futex_q_init = {
243 	/* list gets initialized in queue_me()*/
244 	.key = FUTEX_KEY_INIT,
245 	.bitset = FUTEX_BITSET_MATCH_ANY
246 };
247 
248 /*
249  * Hash buckets are shared by all the futex_keys that hash to the same
250  * location.  Each key may have multiple futex_q structures, one for each task
251  * waiting on a futex.
252  */
253 struct futex_hash_bucket {
254 	atomic_t waiters;
255 	spinlock_t lock;
256 	struct plist_head chain;
257 } ____cacheline_aligned_in_smp;
258 
259 /*
260  * The base of the bucket array and its size are always used together
261  * (after initialization only in hash_futex()), so ensure that they
262  * reside in the same cacheline.
263  */
264 static struct {
265 	struct futex_hash_bucket *queues;
266 	unsigned long            hashsize;
267 } __futex_data __read_mostly __aligned(2*sizeof(long));
268 #define futex_queues   (__futex_data.queues)
269 #define futex_hashsize (__futex_data.hashsize)
270 
271 
272 /*
273  * Fault injections for futexes.
274  */
275 #ifdef CONFIG_FAIL_FUTEX
276 
277 static struct {
278 	struct fault_attr attr;
279 
280 	bool ignore_private;
281 } fail_futex = {
282 	.attr = FAULT_ATTR_INITIALIZER,
283 	.ignore_private = false,
284 };
285 
setup_fail_futex(char * str)286 static int __init setup_fail_futex(char *str)
287 {
288 	return setup_fault_attr(&fail_futex.attr, str);
289 }
290 __setup("fail_futex=", setup_fail_futex);
291 
should_fail_futex(bool fshared)292 static bool should_fail_futex(bool fshared)
293 {
294 	if (fail_futex.ignore_private && !fshared)
295 		return false;
296 
297 	return should_fail(&fail_futex.attr, 1);
298 }
299 
300 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
301 
fail_futex_debugfs(void)302 static int __init fail_futex_debugfs(void)
303 {
304 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
305 	struct dentry *dir;
306 
307 	dir = fault_create_debugfs_attr("fail_futex", NULL,
308 					&fail_futex.attr);
309 	if (IS_ERR(dir))
310 		return PTR_ERR(dir);
311 
312 	debugfs_create_bool("ignore-private", mode, dir,
313 			    &fail_futex.ignore_private);
314 	return 0;
315 }
316 
317 late_initcall(fail_futex_debugfs);
318 
319 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
320 
321 #else
should_fail_futex(bool fshared)322 static inline bool should_fail_futex(bool fshared)
323 {
324 	return false;
325 }
326 #endif /* CONFIG_FAIL_FUTEX */
327 
328 #ifdef CONFIG_COMPAT
329 static void compat_exit_robust_list(struct task_struct *curr);
330 #else
compat_exit_robust_list(struct task_struct * curr)331 static inline void compat_exit_robust_list(struct task_struct *curr) { }
332 #endif
333 
futex_get_mm(union futex_key * key)334 static inline void futex_get_mm(union futex_key *key)
335 {
336 	mmgrab(key->private.mm);
337 	/*
338 	 * Ensure futex_get_mm() implies a full barrier such that
339 	 * get_futex_key() implies a full barrier. This is relied upon
340 	 * as smp_mb(); (B), see the ordering comment above.
341 	 */
342 	smp_mb__after_atomic();
343 }
344 
345 /*
346  * Reflects a new waiter being added to the waitqueue.
347  */
hb_waiters_inc(struct futex_hash_bucket * hb)348 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
349 {
350 #ifdef CONFIG_SMP
351 	atomic_inc(&hb->waiters);
352 	/*
353 	 * Full barrier (A), see the ordering comment above.
354 	 */
355 	smp_mb__after_atomic();
356 #endif
357 }
358 
359 /*
360  * Reflects a waiter being removed from the waitqueue by wakeup
361  * paths.
362  */
hb_waiters_dec(struct futex_hash_bucket * hb)363 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
364 {
365 #ifdef CONFIG_SMP
366 	atomic_dec(&hb->waiters);
367 #endif
368 }
369 
hb_waiters_pending(struct futex_hash_bucket * hb)370 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
371 {
372 #ifdef CONFIG_SMP
373 	return atomic_read(&hb->waiters);
374 #else
375 	return 1;
376 #endif
377 }
378 
379 /**
380  * hash_futex - Return the hash bucket in the global hash
381  * @key:	Pointer to the futex key for which the hash is calculated
382  *
383  * We hash on the keys returned from get_futex_key (see below) and return the
384  * corresponding hash bucket in the global hash.
385  */
hash_futex(union futex_key * key)386 static struct futex_hash_bucket *hash_futex(union futex_key *key)
387 {
388 	u32 hash = jhash2((u32*)&key->both.word,
389 			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
390 			  key->both.offset);
391 	return &futex_queues[hash & (futex_hashsize - 1)];
392 }
393 
394 
395 /**
396  * match_futex - Check whether two futex keys are equal
397  * @key1:	Pointer to key1
398  * @key2:	Pointer to key2
399  *
400  * Return 1 if two futex_keys are equal, 0 otherwise.
401  */
match_futex(union futex_key * key1,union futex_key * key2)402 static inline int match_futex(union futex_key *key1, union futex_key *key2)
403 {
404 	return (key1 && key2
405 		&& key1->both.word == key2->both.word
406 		&& key1->both.ptr == key2->both.ptr
407 		&& key1->both.offset == key2->both.offset);
408 }
409 
410 /*
411  * Take a reference to the resource addressed by a key.
412  * Can be called while holding spinlocks.
413  *
414  */
get_futex_key_refs(union futex_key * key)415 static void get_futex_key_refs(union futex_key *key)
416 {
417 	if (!key->both.ptr)
418 		return;
419 
420 	/*
421 	 * On MMU less systems futexes are always "private" as there is no per
422 	 * process address space. We need the smp wmb nevertheless - yes,
423 	 * arch/blackfin has MMU less SMP ...
424 	 */
425 	if (!IS_ENABLED(CONFIG_MMU)) {
426 		smp_mb(); /* explicit smp_mb(); (B) */
427 		return;
428 	}
429 
430 	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
431 	case FUT_OFF_INODE:
432 		ihold(key->shared.inode); /* implies smp_mb(); (B) */
433 		break;
434 	case FUT_OFF_MMSHARED:
435 		futex_get_mm(key); /* implies smp_mb(); (B) */
436 		break;
437 	default:
438 		/*
439 		 * Private futexes do not hold reference on an inode or
440 		 * mm, therefore the only purpose of calling get_futex_key_refs
441 		 * is because we need the barrier for the lockless waiter check.
442 		 */
443 		smp_mb(); /* explicit smp_mb(); (B) */
444 	}
445 }
446 
447 /*
448  * Drop a reference to the resource addressed by a key.
449  * The hash bucket spinlock must not be held. This is
450  * a no-op for private futexes, see comment in the get
451  * counterpart.
452  */
drop_futex_key_refs(union futex_key * key)453 static void drop_futex_key_refs(union futex_key *key)
454 {
455 	if (!key->both.ptr) {
456 		/* If we're here then we tried to put a key we failed to get */
457 		WARN_ON_ONCE(1);
458 		return;
459 	}
460 
461 	if (!IS_ENABLED(CONFIG_MMU))
462 		return;
463 
464 	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
465 	case FUT_OFF_INODE:
466 		iput(key->shared.inode);
467 		break;
468 	case FUT_OFF_MMSHARED:
469 		mmdrop(key->private.mm);
470 		break;
471 	}
472 }
473 
474 enum futex_access {
475 	FUTEX_READ,
476 	FUTEX_WRITE
477 };
478 
479 /**
480  * futex_setup_timer - set up the sleeping hrtimer.
481  * @time:	ptr to the given timeout value
482  * @timeout:	the hrtimer_sleeper structure to be set up
483  * @flags:	futex flags
484  * @range_ns:	optional range in ns
485  *
486  * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
487  *	   value given
488  */
489 static inline struct hrtimer_sleeper *
futex_setup_timer(ktime_t * time,struct hrtimer_sleeper * timeout,int flags,u64 range_ns)490 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
491 		  int flags, u64 range_ns)
492 {
493 	if (!time)
494 		return NULL;
495 
496 	hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
497 				      CLOCK_REALTIME : CLOCK_MONOTONIC,
498 				      HRTIMER_MODE_ABS);
499 	/*
500 	 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
501 	 * effectively the same as calling hrtimer_set_expires().
502 	 */
503 	hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
504 
505 	return timeout;
506 }
507 
508 /**
509  * get_futex_key() - Get parameters which are the keys for a futex
510  * @uaddr:	virtual address of the futex
511  * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
512  * @key:	address where result is stored.
513  * @rw:		mapping needs to be read/write (values: FUTEX_READ,
514  *              FUTEX_WRITE)
515  *
516  * Return: a negative error code or 0
517  *
518  * The key words are stored in @key on success.
519  *
520  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
521  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
522  * We can usually work out the index without swapping in the page.
523  *
524  * lock_page() might sleep, the caller should not hold a spinlock.
525  */
526 static int
get_futex_key(u32 __user * uaddr,int fshared,union futex_key * key,enum futex_access rw)527 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
528 {
529 	unsigned long address = (unsigned long)uaddr;
530 	struct mm_struct *mm = current->mm;
531 	struct page *page, *tail;
532 	struct address_space *mapping;
533 	int err, ro = 0;
534 
535 	/*
536 	 * The futex address must be "naturally" aligned.
537 	 */
538 	key->both.offset = address % PAGE_SIZE;
539 	if (unlikely((address % sizeof(u32)) != 0))
540 		return -EINVAL;
541 	address -= key->both.offset;
542 
543 	if (unlikely(!access_ok(uaddr, sizeof(u32))))
544 		return -EFAULT;
545 
546 	if (unlikely(should_fail_futex(fshared)))
547 		return -EFAULT;
548 
549 	/*
550 	 * PROCESS_PRIVATE futexes are fast.
551 	 * As the mm cannot disappear under us and the 'key' only needs
552 	 * virtual address, we dont even have to find the underlying vma.
553 	 * Note : We do have to check 'uaddr' is a valid user address,
554 	 *        but access_ok() should be faster than find_vma()
555 	 */
556 	if (!fshared) {
557 		key->private.mm = mm;
558 		key->private.address = address;
559 		get_futex_key_refs(key);  /* implies smp_mb(); (B) */
560 		return 0;
561 	}
562 
563 again:
564 	/* Ignore any VERIFY_READ mapping (futex common case) */
565 	if (unlikely(should_fail_futex(fshared)))
566 		return -EFAULT;
567 
568 	err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
569 	/*
570 	 * If write access is not required (eg. FUTEX_WAIT), try
571 	 * and get read-only access.
572 	 */
573 	if (err == -EFAULT && rw == FUTEX_READ) {
574 		err = get_user_pages_fast(address, 1, 0, &page);
575 		ro = 1;
576 	}
577 	if (err < 0)
578 		return err;
579 	else
580 		err = 0;
581 
582 	/*
583 	 * The treatment of mapping from this point on is critical. The page
584 	 * lock protects many things but in this context the page lock
585 	 * stabilizes mapping, prevents inode freeing in the shared
586 	 * file-backed region case and guards against movement to swap cache.
587 	 *
588 	 * Strictly speaking the page lock is not needed in all cases being
589 	 * considered here and page lock forces unnecessarily serialization
590 	 * From this point on, mapping will be re-verified if necessary and
591 	 * page lock will be acquired only if it is unavoidable
592 	 *
593 	 * Mapping checks require the head page for any compound page so the
594 	 * head page and mapping is looked up now. For anonymous pages, it
595 	 * does not matter if the page splits in the future as the key is
596 	 * based on the address. For filesystem-backed pages, the tail is
597 	 * required as the index of the page determines the key. For
598 	 * base pages, there is no tail page and tail == page.
599 	 */
600 	tail = page;
601 	page = compound_head(page);
602 	mapping = READ_ONCE(page->mapping);
603 
604 	/*
605 	 * If page->mapping is NULL, then it cannot be a PageAnon
606 	 * page; but it might be the ZERO_PAGE or in the gate area or
607 	 * in a special mapping (all cases which we are happy to fail);
608 	 * or it may have been a good file page when get_user_pages_fast
609 	 * found it, but truncated or holepunched or subjected to
610 	 * invalidate_complete_page2 before we got the page lock (also
611 	 * cases which we are happy to fail).  And we hold a reference,
612 	 * so refcount care in invalidate_complete_page's remove_mapping
613 	 * prevents drop_caches from setting mapping to NULL beneath us.
614 	 *
615 	 * The case we do have to guard against is when memory pressure made
616 	 * shmem_writepage move it from filecache to swapcache beneath us:
617 	 * an unlikely race, but we do need to retry for page->mapping.
618 	 */
619 	if (unlikely(!mapping)) {
620 		int shmem_swizzled;
621 
622 		/*
623 		 * Page lock is required to identify which special case above
624 		 * applies. If this is really a shmem page then the page lock
625 		 * will prevent unexpected transitions.
626 		 */
627 		lock_page(page);
628 		shmem_swizzled = PageSwapCache(page) || page->mapping;
629 		unlock_page(page);
630 		put_page(page);
631 
632 		if (shmem_swizzled)
633 			goto again;
634 
635 		return -EFAULT;
636 	}
637 
638 	/*
639 	 * Private mappings are handled in a simple way.
640 	 *
641 	 * If the futex key is stored on an anonymous page, then the associated
642 	 * object is the mm which is implicitly pinned by the calling process.
643 	 *
644 	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
645 	 * it's a read-only handle, it's expected that futexes attach to
646 	 * the object not the particular process.
647 	 */
648 	if (PageAnon(page)) {
649 		/*
650 		 * A RO anonymous page will never change and thus doesn't make
651 		 * sense for futex operations.
652 		 */
653 		if (unlikely(should_fail_futex(fshared)) || ro) {
654 			err = -EFAULT;
655 			goto out;
656 		}
657 
658 		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
659 		key->private.mm = mm;
660 		key->private.address = address;
661 
662 		get_futex_key_refs(key); /* implies smp_mb(); (B) */
663 
664 	} else {
665 		struct inode *inode;
666 
667 		/*
668 		 * The associated futex object in this case is the inode and
669 		 * the page->mapping must be traversed. Ordinarily this should
670 		 * be stabilised under page lock but it's not strictly
671 		 * necessary in this case as we just want to pin the inode, not
672 		 * update the radix tree or anything like that.
673 		 *
674 		 * The RCU read lock is taken as the inode is finally freed
675 		 * under RCU. If the mapping still matches expectations then the
676 		 * mapping->host can be safely accessed as being a valid inode.
677 		 */
678 		rcu_read_lock();
679 
680 		if (READ_ONCE(page->mapping) != mapping) {
681 			rcu_read_unlock();
682 			put_page(page);
683 
684 			goto again;
685 		}
686 
687 		inode = READ_ONCE(mapping->host);
688 		if (!inode) {
689 			rcu_read_unlock();
690 			put_page(page);
691 
692 			goto again;
693 		}
694 
695 		/*
696 		 * Take a reference unless it is about to be freed. Previously
697 		 * this reference was taken by ihold under the page lock
698 		 * pinning the inode in place so i_lock was unnecessary. The
699 		 * only way for this check to fail is if the inode was
700 		 * truncated in parallel which is almost certainly an
701 		 * application bug. In such a case, just retry.
702 		 *
703 		 * We are not calling into get_futex_key_refs() in file-backed
704 		 * cases, therefore a successful atomic_inc return below will
705 		 * guarantee that get_futex_key() will still imply smp_mb(); (B).
706 		 */
707 		if (!atomic_inc_not_zero(&inode->i_count)) {
708 			rcu_read_unlock();
709 			put_page(page);
710 
711 			goto again;
712 		}
713 
714 		/* Should be impossible but lets be paranoid for now */
715 		if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
716 			err = -EFAULT;
717 			rcu_read_unlock();
718 			iput(inode);
719 
720 			goto out;
721 		}
722 
723 		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
724 		key->shared.inode = inode;
725 		key->shared.pgoff = basepage_index(tail);
726 		rcu_read_unlock();
727 	}
728 
729 out:
730 	put_page(page);
731 	return err;
732 }
733 
put_futex_key(union futex_key * key)734 static inline void put_futex_key(union futex_key *key)
735 {
736 	drop_futex_key_refs(key);
737 }
738 
739 /**
740  * fault_in_user_writeable() - Fault in user address and verify RW access
741  * @uaddr:	pointer to faulting user space address
742  *
743  * Slow path to fixup the fault we just took in the atomic write
744  * access to @uaddr.
745  *
746  * We have no generic implementation of a non-destructive write to the
747  * user address. We know that we faulted in the atomic pagefault
748  * disabled section so we can as well avoid the #PF overhead by
749  * calling get_user_pages() right away.
750  */
fault_in_user_writeable(u32 __user * uaddr)751 static int fault_in_user_writeable(u32 __user *uaddr)
752 {
753 	struct mm_struct *mm = current->mm;
754 	int ret;
755 
756 	down_read(&mm->mmap_sem);
757 	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
758 			       FAULT_FLAG_WRITE, NULL);
759 	up_read(&mm->mmap_sem);
760 
761 	return ret < 0 ? ret : 0;
762 }
763 
764 /**
765  * futex_top_waiter() - Return the highest priority waiter on a futex
766  * @hb:		the hash bucket the futex_q's reside in
767  * @key:	the futex key (to distinguish it from other futex futex_q's)
768  *
769  * Must be called with the hb lock held.
770  */
futex_top_waiter(struct futex_hash_bucket * hb,union futex_key * key)771 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
772 					union futex_key *key)
773 {
774 	struct futex_q *this;
775 
776 	plist_for_each_entry(this, &hb->chain, list) {
777 		if (match_futex(&this->key, key))
778 			return this;
779 	}
780 	return NULL;
781 }
782 
cmpxchg_futex_value_locked(u32 * curval,u32 __user * uaddr,u32 uval,u32 newval)783 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
784 				      u32 uval, u32 newval)
785 {
786 	int ret;
787 
788 	pagefault_disable();
789 	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
790 	pagefault_enable();
791 
792 	return ret;
793 }
794 
get_futex_value_locked(u32 * dest,u32 __user * from)795 static int get_futex_value_locked(u32 *dest, u32 __user *from)
796 {
797 	int ret;
798 
799 	pagefault_disable();
800 	ret = __get_user(*dest, from);
801 	pagefault_enable();
802 
803 	return ret ? -EFAULT : 0;
804 }
805 
806 
807 /*
808  * PI code:
809  */
refill_pi_state_cache(void)810 static int refill_pi_state_cache(void)
811 {
812 	struct futex_pi_state *pi_state;
813 
814 	if (likely(current->pi_state_cache))
815 		return 0;
816 
817 	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
818 
819 	if (!pi_state)
820 		return -ENOMEM;
821 
822 	INIT_LIST_HEAD(&pi_state->list);
823 	/* pi_mutex gets initialized later */
824 	pi_state->owner = NULL;
825 	refcount_set(&pi_state->refcount, 1);
826 	pi_state->key = FUTEX_KEY_INIT;
827 
828 	current->pi_state_cache = pi_state;
829 
830 	return 0;
831 }
832 
alloc_pi_state(void)833 static struct futex_pi_state *alloc_pi_state(void)
834 {
835 	struct futex_pi_state *pi_state = current->pi_state_cache;
836 
837 	WARN_ON(!pi_state);
838 	current->pi_state_cache = NULL;
839 
840 	return pi_state;
841 }
842 
get_pi_state(struct futex_pi_state * pi_state)843 static void get_pi_state(struct futex_pi_state *pi_state)
844 {
845 	WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
846 }
847 
848 /*
849  * Drops a reference to the pi_state object and frees or caches it
850  * when the last reference is gone.
851  */
put_pi_state(struct futex_pi_state * pi_state)852 static void put_pi_state(struct futex_pi_state *pi_state)
853 {
854 	if (!pi_state)
855 		return;
856 
857 	if (!refcount_dec_and_test(&pi_state->refcount))
858 		return;
859 
860 	/*
861 	 * If pi_state->owner is NULL, the owner is most probably dying
862 	 * and has cleaned up the pi_state already
863 	 */
864 	if (pi_state->owner) {
865 		struct task_struct *owner;
866 
867 		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
868 		owner = pi_state->owner;
869 		if (owner) {
870 			raw_spin_lock(&owner->pi_lock);
871 			list_del_init(&pi_state->list);
872 			raw_spin_unlock(&owner->pi_lock);
873 		}
874 		rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
875 		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
876 	}
877 
878 	if (current->pi_state_cache) {
879 		kfree(pi_state);
880 	} else {
881 		/*
882 		 * pi_state->list is already empty.
883 		 * clear pi_state->owner.
884 		 * refcount is at 0 - put it back to 1.
885 		 */
886 		pi_state->owner = NULL;
887 		refcount_set(&pi_state->refcount, 1);
888 		current->pi_state_cache = pi_state;
889 	}
890 }
891 
892 #ifdef CONFIG_FUTEX_PI
893 
894 /*
895  * This task is holding PI mutexes at exit time => bad.
896  * Kernel cleans up PI-state, but userspace is likely hosed.
897  * (Robust-futex cleanup is separate and might save the day for userspace.)
898  */
exit_pi_state_list(struct task_struct * curr)899 static void exit_pi_state_list(struct task_struct *curr)
900 {
901 	struct list_head *next, *head = &curr->pi_state_list;
902 	struct futex_pi_state *pi_state;
903 	struct futex_hash_bucket *hb;
904 	union futex_key key = FUTEX_KEY_INIT;
905 
906 	if (!futex_cmpxchg_enabled)
907 		return;
908 	/*
909 	 * We are a ZOMBIE and nobody can enqueue itself on
910 	 * pi_state_list anymore, but we have to be careful
911 	 * versus waiters unqueueing themselves:
912 	 */
913 	raw_spin_lock_irq(&curr->pi_lock);
914 	while (!list_empty(head)) {
915 		next = head->next;
916 		pi_state = list_entry(next, struct futex_pi_state, list);
917 		key = pi_state->key;
918 		hb = hash_futex(&key);
919 
920 		/*
921 		 * We can race against put_pi_state() removing itself from the
922 		 * list (a waiter going away). put_pi_state() will first
923 		 * decrement the reference count and then modify the list, so
924 		 * its possible to see the list entry but fail this reference
925 		 * acquire.
926 		 *
927 		 * In that case; drop the locks to let put_pi_state() make
928 		 * progress and retry the loop.
929 		 */
930 		if (!refcount_inc_not_zero(&pi_state->refcount)) {
931 			raw_spin_unlock_irq(&curr->pi_lock);
932 			cpu_relax();
933 			raw_spin_lock_irq(&curr->pi_lock);
934 			continue;
935 		}
936 		raw_spin_unlock_irq(&curr->pi_lock);
937 
938 		spin_lock(&hb->lock);
939 		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
940 		raw_spin_lock(&curr->pi_lock);
941 		/*
942 		 * We dropped the pi-lock, so re-check whether this
943 		 * task still owns the PI-state:
944 		 */
945 		if (head->next != next) {
946 			/* retain curr->pi_lock for the loop invariant */
947 			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
948 			spin_unlock(&hb->lock);
949 			put_pi_state(pi_state);
950 			continue;
951 		}
952 
953 		WARN_ON(pi_state->owner != curr);
954 		WARN_ON(list_empty(&pi_state->list));
955 		list_del_init(&pi_state->list);
956 		pi_state->owner = NULL;
957 
958 		raw_spin_unlock(&curr->pi_lock);
959 		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
960 		spin_unlock(&hb->lock);
961 
962 		rt_mutex_futex_unlock(&pi_state->pi_mutex);
963 		put_pi_state(pi_state);
964 
965 		raw_spin_lock_irq(&curr->pi_lock);
966 	}
967 	raw_spin_unlock_irq(&curr->pi_lock);
968 }
969 #else
exit_pi_state_list(struct task_struct * curr)970 static inline void exit_pi_state_list(struct task_struct *curr) { }
971 #endif
972 
973 /*
974  * We need to check the following states:
975  *
976  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
977  *
978  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
979  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
980  *
981  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
982  *
983  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
984  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
985  *
986  * [6]  Found  | Found    | task      | 0         | 1      | Valid
987  *
988  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
989  *
990  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
991  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
992  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
993  *
994  * [1]	Indicates that the kernel can acquire the futex atomically. We
995  *	came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
996  *
997  * [2]	Valid, if TID does not belong to a kernel thread. If no matching
998  *      thread is found then it indicates that the owner TID has died.
999  *
1000  * [3]	Invalid. The waiter is queued on a non PI futex
1001  *
1002  * [4]	Valid state after exit_robust_list(), which sets the user space
1003  *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
1004  *
1005  * [5]	The user space value got manipulated between exit_robust_list()
1006  *	and exit_pi_state_list()
1007  *
1008  * [6]	Valid state after exit_pi_state_list() which sets the new owner in
1009  *	the pi_state but cannot access the user space value.
1010  *
1011  * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1012  *
1013  * [8]	Owner and user space value match
1014  *
1015  * [9]	There is no transient state which sets the user space TID to 0
1016  *	except exit_robust_list(), but this is indicated by the
1017  *	FUTEX_OWNER_DIED bit. See [4]
1018  *
1019  * [10] There is no transient state which leaves owner and user space
1020  *	TID out of sync.
1021  *
1022  *
1023  * Serialization and lifetime rules:
1024  *
1025  * hb->lock:
1026  *
1027  *	hb -> futex_q, relation
1028  *	futex_q -> pi_state, relation
1029  *
1030  *	(cannot be raw because hb can contain arbitrary amount
1031  *	 of futex_q's)
1032  *
1033  * pi_mutex->wait_lock:
1034  *
1035  *	{uval, pi_state}
1036  *
1037  *	(and pi_mutex 'obviously')
1038  *
1039  * p->pi_lock:
1040  *
1041  *	p->pi_state_list -> pi_state->list, relation
1042  *
1043  * pi_state->refcount:
1044  *
1045  *	pi_state lifetime
1046  *
1047  *
1048  * Lock order:
1049  *
1050  *   hb->lock
1051  *     pi_mutex->wait_lock
1052  *       p->pi_lock
1053  *
1054  */
1055 
1056 /*
1057  * Validate that the existing waiter has a pi_state and sanity check
1058  * the pi_state against the user space value. If correct, attach to
1059  * it.
1060  */
attach_to_pi_state(u32 __user * uaddr,u32 uval,struct futex_pi_state * pi_state,struct futex_pi_state ** ps)1061 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1062 			      struct futex_pi_state *pi_state,
1063 			      struct futex_pi_state **ps)
1064 {
1065 	pid_t pid = uval & FUTEX_TID_MASK;
1066 	u32 uval2;
1067 	int ret;
1068 
1069 	/*
1070 	 * Userspace might have messed up non-PI and PI futexes [3]
1071 	 */
1072 	if (unlikely(!pi_state))
1073 		return -EINVAL;
1074 
1075 	/*
1076 	 * We get here with hb->lock held, and having found a
1077 	 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1078 	 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1079 	 * which in turn means that futex_lock_pi() still has a reference on
1080 	 * our pi_state.
1081 	 *
1082 	 * The waiter holding a reference on @pi_state also protects against
1083 	 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1084 	 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1085 	 * free pi_state before we can take a reference ourselves.
1086 	 */
1087 	WARN_ON(!refcount_read(&pi_state->refcount));
1088 
1089 	/*
1090 	 * Now that we have a pi_state, we can acquire wait_lock
1091 	 * and do the state validation.
1092 	 */
1093 	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1094 
1095 	/*
1096 	 * Since {uval, pi_state} is serialized by wait_lock, and our current
1097 	 * uval was read without holding it, it can have changed. Verify it
1098 	 * still is what we expect it to be, otherwise retry the entire
1099 	 * operation.
1100 	 */
1101 	if (get_futex_value_locked(&uval2, uaddr))
1102 		goto out_efault;
1103 
1104 	if (uval != uval2)
1105 		goto out_eagain;
1106 
1107 	/*
1108 	 * Handle the owner died case:
1109 	 */
1110 	if (uval & FUTEX_OWNER_DIED) {
1111 		/*
1112 		 * exit_pi_state_list sets owner to NULL and wakes the
1113 		 * topmost waiter. The task which acquires the
1114 		 * pi_state->rt_mutex will fixup owner.
1115 		 */
1116 		if (!pi_state->owner) {
1117 			/*
1118 			 * No pi state owner, but the user space TID
1119 			 * is not 0. Inconsistent state. [5]
1120 			 */
1121 			if (pid)
1122 				goto out_einval;
1123 			/*
1124 			 * Take a ref on the state and return success. [4]
1125 			 */
1126 			goto out_attach;
1127 		}
1128 
1129 		/*
1130 		 * If TID is 0, then either the dying owner has not
1131 		 * yet executed exit_pi_state_list() or some waiter
1132 		 * acquired the rtmutex in the pi state, but did not
1133 		 * yet fixup the TID in user space.
1134 		 *
1135 		 * Take a ref on the state and return success. [6]
1136 		 */
1137 		if (!pid)
1138 			goto out_attach;
1139 	} else {
1140 		/*
1141 		 * If the owner died bit is not set, then the pi_state
1142 		 * must have an owner. [7]
1143 		 */
1144 		if (!pi_state->owner)
1145 			goto out_einval;
1146 	}
1147 
1148 	/*
1149 	 * Bail out if user space manipulated the futex value. If pi
1150 	 * state exists then the owner TID must be the same as the
1151 	 * user space TID. [9/10]
1152 	 */
1153 	if (pid != task_pid_vnr(pi_state->owner))
1154 		goto out_einval;
1155 
1156 out_attach:
1157 	get_pi_state(pi_state);
1158 	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1159 	*ps = pi_state;
1160 	return 0;
1161 
1162 out_einval:
1163 	ret = -EINVAL;
1164 	goto out_error;
1165 
1166 out_eagain:
1167 	ret = -EAGAIN;
1168 	goto out_error;
1169 
1170 out_efault:
1171 	ret = -EFAULT;
1172 	goto out_error;
1173 
1174 out_error:
1175 	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1176 	return ret;
1177 }
1178 
1179 /**
1180  * wait_for_owner_exiting - Block until the owner has exited
1181  * @exiting:	Pointer to the exiting task
1182  *
1183  * Caller must hold a refcount on @exiting.
1184  */
wait_for_owner_exiting(int ret,struct task_struct * exiting)1185 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1186 {
1187 	if (ret != -EBUSY) {
1188 		WARN_ON_ONCE(exiting);
1189 		return;
1190 	}
1191 
1192 	if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1193 		return;
1194 
1195 	mutex_lock(&exiting->futex_exit_mutex);
1196 	/*
1197 	 * No point in doing state checking here. If the waiter got here
1198 	 * while the task was in exec()->exec_futex_release() then it can
1199 	 * have any FUTEX_STATE_* value when the waiter has acquired the
1200 	 * mutex. OK, if running, EXITING or DEAD if it reached exit()
1201 	 * already. Highly unlikely and not a problem. Just one more round
1202 	 * through the futex maze.
1203 	 */
1204 	mutex_unlock(&exiting->futex_exit_mutex);
1205 
1206 	put_task_struct(exiting);
1207 }
1208 
handle_exit_race(u32 __user * uaddr,u32 uval,struct task_struct * tsk)1209 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1210 			    struct task_struct *tsk)
1211 {
1212 	u32 uval2;
1213 
1214 	/*
1215 	 * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1216 	 * caller that the alleged owner is busy.
1217 	 */
1218 	if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1219 		return -EBUSY;
1220 
1221 	/*
1222 	 * Reread the user space value to handle the following situation:
1223 	 *
1224 	 * CPU0				CPU1
1225 	 *
1226 	 * sys_exit()			sys_futex()
1227 	 *  do_exit()			 futex_lock_pi()
1228 	 *                                futex_lock_pi_atomic()
1229 	 *   exit_signals(tsk)		    No waiters:
1230 	 *    tsk->flags |= PF_EXITING;	    *uaddr == 0x00000PID
1231 	 *  mm_release(tsk)		    Set waiter bit
1232 	 *   exit_robust_list(tsk) {	    *uaddr = 0x80000PID;
1233 	 *      Set owner died		    attach_to_pi_owner() {
1234 	 *    *uaddr = 0xC0000000;	     tsk = get_task(PID);
1235 	 *   }				     if (!tsk->flags & PF_EXITING) {
1236 	 *  ...				       attach();
1237 	 *  tsk->futex_state =               } else {
1238 	 *	FUTEX_STATE_DEAD;              if (tsk->futex_state !=
1239 	 *					  FUTEX_STATE_DEAD)
1240 	 *				         return -EAGAIN;
1241 	 *				       return -ESRCH; <--- FAIL
1242 	 *				     }
1243 	 *
1244 	 * Returning ESRCH unconditionally is wrong here because the
1245 	 * user space value has been changed by the exiting task.
1246 	 *
1247 	 * The same logic applies to the case where the exiting task is
1248 	 * already gone.
1249 	 */
1250 	if (get_futex_value_locked(&uval2, uaddr))
1251 		return -EFAULT;
1252 
1253 	/* If the user space value has changed, try again. */
1254 	if (uval2 != uval)
1255 		return -EAGAIN;
1256 
1257 	/*
1258 	 * The exiting task did not have a robust list, the robust list was
1259 	 * corrupted or the user space value in *uaddr is simply bogus.
1260 	 * Give up and tell user space.
1261 	 */
1262 	return -ESRCH;
1263 }
1264 
1265 /*
1266  * Lookup the task for the TID provided from user space and attach to
1267  * it after doing proper sanity checks.
1268  */
attach_to_pi_owner(u32 __user * uaddr,u32 uval,union futex_key * key,struct futex_pi_state ** ps,struct task_struct ** exiting)1269 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1270 			      struct futex_pi_state **ps,
1271 			      struct task_struct **exiting)
1272 {
1273 	pid_t pid = uval & FUTEX_TID_MASK;
1274 	struct futex_pi_state *pi_state;
1275 	struct task_struct *p;
1276 
1277 	/*
1278 	 * We are the first waiter - try to look up the real owner and attach
1279 	 * the new pi_state to it, but bail out when TID = 0 [1]
1280 	 *
1281 	 * The !pid check is paranoid. None of the call sites should end up
1282 	 * with pid == 0, but better safe than sorry. Let the caller retry
1283 	 */
1284 	if (!pid)
1285 		return -EAGAIN;
1286 	p = find_get_task_by_vpid(pid);
1287 	if (!p)
1288 		return handle_exit_race(uaddr, uval, NULL);
1289 
1290 	if (unlikely(p->flags & PF_KTHREAD)) {
1291 		put_task_struct(p);
1292 		return -EPERM;
1293 	}
1294 
1295 	/*
1296 	 * We need to look at the task state to figure out, whether the
1297 	 * task is exiting. To protect against the change of the task state
1298 	 * in futex_exit_release(), we do this protected by p->pi_lock:
1299 	 */
1300 	raw_spin_lock_irq(&p->pi_lock);
1301 	if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1302 		/*
1303 		 * The task is on the way out. When the futex state is
1304 		 * FUTEX_STATE_DEAD, we know that the task has finished
1305 		 * the cleanup:
1306 		 */
1307 		int ret = handle_exit_race(uaddr, uval, p);
1308 
1309 		raw_spin_unlock_irq(&p->pi_lock);
1310 		/*
1311 		 * If the owner task is between FUTEX_STATE_EXITING and
1312 		 * FUTEX_STATE_DEAD then store the task pointer and keep
1313 		 * the reference on the task struct. The calling code will
1314 		 * drop all locks, wait for the task to reach
1315 		 * FUTEX_STATE_DEAD and then drop the refcount. This is
1316 		 * required to prevent a live lock when the current task
1317 		 * preempted the exiting task between the two states.
1318 		 */
1319 		if (ret == -EBUSY)
1320 			*exiting = p;
1321 		else
1322 			put_task_struct(p);
1323 		return ret;
1324 	}
1325 
1326 	/*
1327 	 * No existing pi state. First waiter. [2]
1328 	 *
1329 	 * This creates pi_state, we have hb->lock held, this means nothing can
1330 	 * observe this state, wait_lock is irrelevant.
1331 	 */
1332 	pi_state = alloc_pi_state();
1333 
1334 	/*
1335 	 * Initialize the pi_mutex in locked state and make @p
1336 	 * the owner of it:
1337 	 */
1338 	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1339 
1340 	/* Store the key for possible exit cleanups: */
1341 	pi_state->key = *key;
1342 
1343 	WARN_ON(!list_empty(&pi_state->list));
1344 	list_add(&pi_state->list, &p->pi_state_list);
1345 	/*
1346 	 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1347 	 * because there is no concurrency as the object is not published yet.
1348 	 */
1349 	pi_state->owner = p;
1350 	raw_spin_unlock_irq(&p->pi_lock);
1351 
1352 	put_task_struct(p);
1353 
1354 	*ps = pi_state;
1355 
1356 	return 0;
1357 }
1358 
lookup_pi_state(u32 __user * uaddr,u32 uval,struct futex_hash_bucket * hb,union futex_key * key,struct futex_pi_state ** ps,struct task_struct ** exiting)1359 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1360 			   struct futex_hash_bucket *hb,
1361 			   union futex_key *key, struct futex_pi_state **ps,
1362 			   struct task_struct **exiting)
1363 {
1364 	struct futex_q *top_waiter = futex_top_waiter(hb, key);
1365 
1366 	/*
1367 	 * If there is a waiter on that futex, validate it and
1368 	 * attach to the pi_state when the validation succeeds.
1369 	 */
1370 	if (top_waiter)
1371 		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1372 
1373 	/*
1374 	 * We are the first waiter - try to look up the owner based on
1375 	 * @uval and attach to it.
1376 	 */
1377 	return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1378 }
1379 
lock_pi_update_atomic(u32 __user * uaddr,u32 uval,u32 newval)1380 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1381 {
1382 	int err;
1383 	u32 uninitialized_var(curval);
1384 
1385 	if (unlikely(should_fail_futex(true)))
1386 		return -EFAULT;
1387 
1388 	err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1389 	if (unlikely(err))
1390 		return err;
1391 
1392 	/* If user space value changed, let the caller retry */
1393 	return curval != uval ? -EAGAIN : 0;
1394 }
1395 
1396 /**
1397  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1398  * @uaddr:		the pi futex user address
1399  * @hb:			the pi futex hash bucket
1400  * @key:		the futex key associated with uaddr and hb
1401  * @ps:			the pi_state pointer where we store the result of the
1402  *			lookup
1403  * @task:		the task to perform the atomic lock work for.  This will
1404  *			be "current" except in the case of requeue pi.
1405  * @exiting:		Pointer to store the task pointer of the owner task
1406  *			which is in the middle of exiting
1407  * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1408  *
1409  * Return:
1410  *  -  0 - ready to wait;
1411  *  -  1 - acquired the lock;
1412  *  - <0 - error
1413  *
1414  * The hb->lock and futex_key refs shall be held by the caller.
1415  *
1416  * @exiting is only set when the return value is -EBUSY. If so, this holds
1417  * a refcount on the exiting task on return and the caller needs to drop it
1418  * after waiting for the exit to complete.
1419  */
futex_lock_pi_atomic(u32 __user * uaddr,struct futex_hash_bucket * hb,union futex_key * key,struct futex_pi_state ** ps,struct task_struct * task,struct task_struct ** exiting,int set_waiters)1420 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1421 				union futex_key *key,
1422 				struct futex_pi_state **ps,
1423 				struct task_struct *task,
1424 				struct task_struct **exiting,
1425 				int set_waiters)
1426 {
1427 	u32 uval, newval, vpid = task_pid_vnr(task);
1428 	struct futex_q *top_waiter;
1429 	int ret;
1430 
1431 	/*
1432 	 * Read the user space value first so we can validate a few
1433 	 * things before proceeding further.
1434 	 */
1435 	if (get_futex_value_locked(&uval, uaddr))
1436 		return -EFAULT;
1437 
1438 	if (unlikely(should_fail_futex(true)))
1439 		return -EFAULT;
1440 
1441 	/*
1442 	 * Detect deadlocks.
1443 	 */
1444 	if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1445 		return -EDEADLK;
1446 
1447 	if ((unlikely(should_fail_futex(true))))
1448 		return -EDEADLK;
1449 
1450 	/*
1451 	 * Lookup existing state first. If it exists, try to attach to
1452 	 * its pi_state.
1453 	 */
1454 	top_waiter = futex_top_waiter(hb, key);
1455 	if (top_waiter)
1456 		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1457 
1458 	/*
1459 	 * No waiter and user TID is 0. We are here because the
1460 	 * waiters or the owner died bit is set or called from
1461 	 * requeue_cmp_pi or for whatever reason something took the
1462 	 * syscall.
1463 	 */
1464 	if (!(uval & FUTEX_TID_MASK)) {
1465 		/*
1466 		 * We take over the futex. No other waiters and the user space
1467 		 * TID is 0. We preserve the owner died bit.
1468 		 */
1469 		newval = uval & FUTEX_OWNER_DIED;
1470 		newval |= vpid;
1471 
1472 		/* The futex requeue_pi code can enforce the waiters bit */
1473 		if (set_waiters)
1474 			newval |= FUTEX_WAITERS;
1475 
1476 		ret = lock_pi_update_atomic(uaddr, uval, newval);
1477 		/* If the take over worked, return 1 */
1478 		return ret < 0 ? ret : 1;
1479 	}
1480 
1481 	/*
1482 	 * First waiter. Set the waiters bit before attaching ourself to
1483 	 * the owner. If owner tries to unlock, it will be forced into
1484 	 * the kernel and blocked on hb->lock.
1485 	 */
1486 	newval = uval | FUTEX_WAITERS;
1487 	ret = lock_pi_update_atomic(uaddr, uval, newval);
1488 	if (ret)
1489 		return ret;
1490 	/*
1491 	 * If the update of the user space value succeeded, we try to
1492 	 * attach to the owner. If that fails, no harm done, we only
1493 	 * set the FUTEX_WAITERS bit in the user space variable.
1494 	 */
1495 	return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1496 }
1497 
1498 /**
1499  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1500  * @q:	The futex_q to unqueue
1501  *
1502  * The q->lock_ptr must not be NULL and must be held by the caller.
1503  */
__unqueue_futex(struct futex_q * q)1504 static void __unqueue_futex(struct futex_q *q)
1505 {
1506 	struct futex_hash_bucket *hb;
1507 
1508 	if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1509 		return;
1510 	lockdep_assert_held(q->lock_ptr);
1511 
1512 	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1513 	plist_del(&q->list, &hb->chain);
1514 	hb_waiters_dec(hb);
1515 }
1516 
1517 /*
1518  * The hash bucket lock must be held when this is called.
1519  * Afterwards, the futex_q must not be accessed. Callers
1520  * must ensure to later call wake_up_q() for the actual
1521  * wakeups to occur.
1522  */
mark_wake_futex(struct wake_q_head * wake_q,struct futex_q * q)1523 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1524 {
1525 	struct task_struct *p = q->task;
1526 
1527 	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1528 		return;
1529 
1530 	get_task_struct(p);
1531 	__unqueue_futex(q);
1532 	/*
1533 	 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1534 	 * is written, without taking any locks. This is possible in the event
1535 	 * of a spurious wakeup, for example. A memory barrier is required here
1536 	 * to prevent the following store to lock_ptr from getting ahead of the
1537 	 * plist_del in __unqueue_futex().
1538 	 */
1539 	smp_store_release(&q->lock_ptr, NULL);
1540 
1541 	/*
1542 	 * Queue the task for later wakeup for after we've released
1543 	 * the hb->lock. wake_q_add() grabs reference to p.
1544 	 */
1545 	wake_q_add_safe(wake_q, p);
1546 }
1547 
1548 /*
1549  * Caller must hold a reference on @pi_state.
1550  */
wake_futex_pi(u32 __user * uaddr,u32 uval,struct futex_pi_state * pi_state)1551 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1552 {
1553 	u32 uninitialized_var(curval), newval;
1554 	struct task_struct *new_owner;
1555 	bool postunlock = false;
1556 	DEFINE_WAKE_Q(wake_q);
1557 	int ret = 0;
1558 
1559 	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1560 	if (WARN_ON_ONCE(!new_owner)) {
1561 		/*
1562 		 * As per the comment in futex_unlock_pi() this should not happen.
1563 		 *
1564 		 * When this happens, give up our locks and try again, giving
1565 		 * the futex_lock_pi() instance time to complete, either by
1566 		 * waiting on the rtmutex or removing itself from the futex
1567 		 * queue.
1568 		 */
1569 		ret = -EAGAIN;
1570 		goto out_unlock;
1571 	}
1572 
1573 	/*
1574 	 * We pass it to the next owner. The WAITERS bit is always kept
1575 	 * enabled while there is PI state around. We cleanup the owner
1576 	 * died bit, because we are the owner.
1577 	 */
1578 	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1579 
1580 	if (unlikely(should_fail_futex(true)))
1581 		ret = -EFAULT;
1582 
1583 	ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1584 	if (!ret && (curval != uval)) {
1585 		/*
1586 		 * If a unconditional UNLOCK_PI operation (user space did not
1587 		 * try the TID->0 transition) raced with a waiter setting the
1588 		 * FUTEX_WAITERS flag between get_user() and locking the hash
1589 		 * bucket lock, retry the operation.
1590 		 */
1591 		if ((FUTEX_TID_MASK & curval) == uval)
1592 			ret = -EAGAIN;
1593 		else
1594 			ret = -EINVAL;
1595 	}
1596 
1597 	if (ret)
1598 		goto out_unlock;
1599 
1600 	/*
1601 	 * This is a point of no return; once we modify the uval there is no
1602 	 * going back and subsequent operations must not fail.
1603 	 */
1604 
1605 	raw_spin_lock(&pi_state->owner->pi_lock);
1606 	WARN_ON(list_empty(&pi_state->list));
1607 	list_del_init(&pi_state->list);
1608 	raw_spin_unlock(&pi_state->owner->pi_lock);
1609 
1610 	raw_spin_lock(&new_owner->pi_lock);
1611 	WARN_ON(!list_empty(&pi_state->list));
1612 	list_add(&pi_state->list, &new_owner->pi_state_list);
1613 	pi_state->owner = new_owner;
1614 	raw_spin_unlock(&new_owner->pi_lock);
1615 
1616 	postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1617 
1618 out_unlock:
1619 	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1620 
1621 	if (postunlock)
1622 		rt_mutex_postunlock(&wake_q);
1623 
1624 	return ret;
1625 }
1626 
1627 /*
1628  * Express the locking dependencies for lockdep:
1629  */
1630 static inline void
double_lock_hb(struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2)1631 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1632 {
1633 	if (hb1 <= hb2) {
1634 		spin_lock(&hb1->lock);
1635 		if (hb1 < hb2)
1636 			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1637 	} else { /* hb1 > hb2 */
1638 		spin_lock(&hb2->lock);
1639 		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1640 	}
1641 }
1642 
1643 static inline void
double_unlock_hb(struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2)1644 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1645 {
1646 	spin_unlock(&hb1->lock);
1647 	if (hb1 != hb2)
1648 		spin_unlock(&hb2->lock);
1649 }
1650 
1651 /*
1652  * Wake up waiters matching bitset queued on this futex (uaddr).
1653  */
1654 static int
futex_wake(u32 __user * uaddr,unsigned int flags,int nr_wake,u32 bitset)1655 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1656 {
1657 	struct futex_hash_bucket *hb;
1658 	struct futex_q *this, *next;
1659 	union futex_key key = FUTEX_KEY_INIT;
1660 	int ret;
1661 	DEFINE_WAKE_Q(wake_q);
1662 
1663 	if (!bitset)
1664 		return -EINVAL;
1665 
1666 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1667 	if (unlikely(ret != 0))
1668 		goto out;
1669 
1670 	hb = hash_futex(&key);
1671 
1672 	/* Make sure we really have tasks to wakeup */
1673 	if (!hb_waiters_pending(hb))
1674 		goto out_put_key;
1675 
1676 	spin_lock(&hb->lock);
1677 
1678 	plist_for_each_entry_safe(this, next, &hb->chain, list) {
1679 		if (match_futex (&this->key, &key)) {
1680 			if (this->pi_state || this->rt_waiter) {
1681 				ret = -EINVAL;
1682 				break;
1683 			}
1684 
1685 			/* Check if one of the bits is set in both bitsets */
1686 			if (!(this->bitset & bitset))
1687 				continue;
1688 
1689 			mark_wake_futex(&wake_q, this);
1690 			if (++ret >= nr_wake)
1691 				break;
1692 		}
1693 	}
1694 
1695 	spin_unlock(&hb->lock);
1696 	wake_up_q(&wake_q);
1697 out_put_key:
1698 	put_futex_key(&key);
1699 out:
1700 	return ret;
1701 }
1702 
futex_atomic_op_inuser(unsigned int encoded_op,u32 __user * uaddr)1703 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1704 {
1705 	unsigned int op =	  (encoded_op & 0x70000000) >> 28;
1706 	unsigned int cmp =	  (encoded_op & 0x0f000000) >> 24;
1707 	int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1708 	int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1709 	int oldval, ret;
1710 
1711 	if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1712 		if (oparg < 0 || oparg > 31) {
1713 			char comm[sizeof(current->comm)];
1714 			/*
1715 			 * kill this print and return -EINVAL when userspace
1716 			 * is sane again
1717 			 */
1718 			pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1719 					get_task_comm(comm, current), oparg);
1720 			oparg &= 31;
1721 		}
1722 		oparg = 1 << oparg;
1723 	}
1724 
1725 	if (!access_ok(uaddr, sizeof(u32)))
1726 		return -EFAULT;
1727 
1728 	ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1729 	if (ret)
1730 		return ret;
1731 
1732 	switch (cmp) {
1733 	case FUTEX_OP_CMP_EQ:
1734 		return oldval == cmparg;
1735 	case FUTEX_OP_CMP_NE:
1736 		return oldval != cmparg;
1737 	case FUTEX_OP_CMP_LT:
1738 		return oldval < cmparg;
1739 	case FUTEX_OP_CMP_GE:
1740 		return oldval >= cmparg;
1741 	case FUTEX_OP_CMP_LE:
1742 		return oldval <= cmparg;
1743 	case FUTEX_OP_CMP_GT:
1744 		return oldval > cmparg;
1745 	default:
1746 		return -ENOSYS;
1747 	}
1748 }
1749 
1750 /*
1751  * Wake up all waiters hashed on the physical page that is mapped
1752  * to this virtual address:
1753  */
1754 static int
futex_wake_op(u32 __user * uaddr1,unsigned int flags,u32 __user * uaddr2,int nr_wake,int nr_wake2,int op)1755 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1756 	      int nr_wake, int nr_wake2, int op)
1757 {
1758 	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1759 	struct futex_hash_bucket *hb1, *hb2;
1760 	struct futex_q *this, *next;
1761 	int ret, op_ret;
1762 	DEFINE_WAKE_Q(wake_q);
1763 
1764 retry:
1765 	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1766 	if (unlikely(ret != 0))
1767 		goto out;
1768 	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1769 	if (unlikely(ret != 0))
1770 		goto out_put_key1;
1771 
1772 	hb1 = hash_futex(&key1);
1773 	hb2 = hash_futex(&key2);
1774 
1775 retry_private:
1776 	double_lock_hb(hb1, hb2);
1777 	op_ret = futex_atomic_op_inuser(op, uaddr2);
1778 	if (unlikely(op_ret < 0)) {
1779 		double_unlock_hb(hb1, hb2);
1780 
1781 		if (!IS_ENABLED(CONFIG_MMU) ||
1782 		    unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1783 			/*
1784 			 * we don't get EFAULT from MMU faults if we don't have
1785 			 * an MMU, but we might get them from range checking
1786 			 */
1787 			ret = op_ret;
1788 			goto out_put_keys;
1789 		}
1790 
1791 		if (op_ret == -EFAULT) {
1792 			ret = fault_in_user_writeable(uaddr2);
1793 			if (ret)
1794 				goto out_put_keys;
1795 		}
1796 
1797 		if (!(flags & FLAGS_SHARED)) {
1798 			cond_resched();
1799 			goto retry_private;
1800 		}
1801 
1802 		put_futex_key(&key2);
1803 		put_futex_key(&key1);
1804 		cond_resched();
1805 		goto retry;
1806 	}
1807 
1808 	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1809 		if (match_futex (&this->key, &key1)) {
1810 			if (this->pi_state || this->rt_waiter) {
1811 				ret = -EINVAL;
1812 				goto out_unlock;
1813 			}
1814 			mark_wake_futex(&wake_q, this);
1815 			if (++ret >= nr_wake)
1816 				break;
1817 		}
1818 	}
1819 
1820 	if (op_ret > 0) {
1821 		op_ret = 0;
1822 		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1823 			if (match_futex (&this->key, &key2)) {
1824 				if (this->pi_state || this->rt_waiter) {
1825 					ret = -EINVAL;
1826 					goto out_unlock;
1827 				}
1828 				mark_wake_futex(&wake_q, this);
1829 				if (++op_ret >= nr_wake2)
1830 					break;
1831 			}
1832 		}
1833 		ret += op_ret;
1834 	}
1835 
1836 out_unlock:
1837 	double_unlock_hb(hb1, hb2);
1838 	wake_up_q(&wake_q);
1839 out_put_keys:
1840 	put_futex_key(&key2);
1841 out_put_key1:
1842 	put_futex_key(&key1);
1843 out:
1844 	return ret;
1845 }
1846 
1847 /**
1848  * requeue_futex() - Requeue a futex_q from one hb to another
1849  * @q:		the futex_q to requeue
1850  * @hb1:	the source hash_bucket
1851  * @hb2:	the target hash_bucket
1852  * @key2:	the new key for the requeued futex_q
1853  */
1854 static inline
requeue_futex(struct futex_q * q,struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2,union futex_key * key2)1855 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1856 		   struct futex_hash_bucket *hb2, union futex_key *key2)
1857 {
1858 
1859 	/*
1860 	 * If key1 and key2 hash to the same bucket, no need to
1861 	 * requeue.
1862 	 */
1863 	if (likely(&hb1->chain != &hb2->chain)) {
1864 		plist_del(&q->list, &hb1->chain);
1865 		hb_waiters_dec(hb1);
1866 		hb_waiters_inc(hb2);
1867 		plist_add(&q->list, &hb2->chain);
1868 		q->lock_ptr = &hb2->lock;
1869 	}
1870 	get_futex_key_refs(key2);
1871 	q->key = *key2;
1872 }
1873 
1874 /**
1875  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1876  * @q:		the futex_q
1877  * @key:	the key of the requeue target futex
1878  * @hb:		the hash_bucket of the requeue target futex
1879  *
1880  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1881  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1882  * to the requeue target futex so the waiter can detect the wakeup on the right
1883  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1884  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1885  * to protect access to the pi_state to fixup the owner later.  Must be called
1886  * with both q->lock_ptr and hb->lock held.
1887  */
1888 static inline
requeue_pi_wake_futex(struct futex_q * q,union futex_key * key,struct futex_hash_bucket * hb)1889 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1890 			   struct futex_hash_bucket *hb)
1891 {
1892 	get_futex_key_refs(key);
1893 	q->key = *key;
1894 
1895 	__unqueue_futex(q);
1896 
1897 	WARN_ON(!q->rt_waiter);
1898 	q->rt_waiter = NULL;
1899 
1900 	q->lock_ptr = &hb->lock;
1901 
1902 	wake_up_state(q->task, TASK_NORMAL);
1903 }
1904 
1905 /**
1906  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1907  * @pifutex:		the user address of the to futex
1908  * @hb1:		the from futex hash bucket, must be locked by the caller
1909  * @hb2:		the to futex hash bucket, must be locked by the caller
1910  * @key1:		the from futex key
1911  * @key2:		the to futex key
1912  * @ps:			address to store the pi_state pointer
1913  * @exiting:		Pointer to store the task pointer of the owner task
1914  *			which is in the middle of exiting
1915  * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1916  *
1917  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1918  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1919  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1920  * hb1 and hb2 must be held by the caller.
1921  *
1922  * @exiting is only set when the return value is -EBUSY. If so, this holds
1923  * a refcount on the exiting task on return and the caller needs to drop it
1924  * after waiting for the exit to complete.
1925  *
1926  * Return:
1927  *  -  0 - failed to acquire the lock atomically;
1928  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1929  *  - <0 - error
1930  */
1931 static int
futex_proxy_trylock_atomic(u32 __user * pifutex,struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2,union futex_key * key1,union futex_key * key2,struct futex_pi_state ** ps,struct task_struct ** exiting,int set_waiters)1932 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1933 			   struct futex_hash_bucket *hb2, union futex_key *key1,
1934 			   union futex_key *key2, struct futex_pi_state **ps,
1935 			   struct task_struct **exiting, int set_waiters)
1936 {
1937 	struct futex_q *top_waiter = NULL;
1938 	u32 curval;
1939 	int ret, vpid;
1940 
1941 	if (get_futex_value_locked(&curval, pifutex))
1942 		return -EFAULT;
1943 
1944 	if (unlikely(should_fail_futex(true)))
1945 		return -EFAULT;
1946 
1947 	/*
1948 	 * Find the top_waiter and determine if there are additional waiters.
1949 	 * If the caller intends to requeue more than 1 waiter to pifutex,
1950 	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1951 	 * as we have means to handle the possible fault.  If not, don't set
1952 	 * the bit unecessarily as it will force the subsequent unlock to enter
1953 	 * the kernel.
1954 	 */
1955 	top_waiter = futex_top_waiter(hb1, key1);
1956 
1957 	/* There are no waiters, nothing for us to do. */
1958 	if (!top_waiter)
1959 		return 0;
1960 
1961 	/* Ensure we requeue to the expected futex. */
1962 	if (!match_futex(top_waiter->requeue_pi_key, key2))
1963 		return -EINVAL;
1964 
1965 	/*
1966 	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1967 	 * the contended case or if set_waiters is 1.  The pi_state is returned
1968 	 * in ps in contended cases.
1969 	 */
1970 	vpid = task_pid_vnr(top_waiter->task);
1971 	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1972 				   exiting, set_waiters);
1973 	if (ret == 1) {
1974 		requeue_pi_wake_futex(top_waiter, key2, hb2);
1975 		return vpid;
1976 	}
1977 	return ret;
1978 }
1979 
1980 /**
1981  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1982  * @uaddr1:	source futex user address
1983  * @flags:	futex flags (FLAGS_SHARED, etc.)
1984  * @uaddr2:	target futex user address
1985  * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
1986  * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
1987  * @cmpval:	@uaddr1 expected value (or %NULL)
1988  * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1989  *		pi futex (pi to pi requeue is not supported)
1990  *
1991  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1992  * uaddr2 atomically on behalf of the top waiter.
1993  *
1994  * Return:
1995  *  - >=0 - on success, the number of tasks requeued or woken;
1996  *  -  <0 - on error
1997  */
futex_requeue(u32 __user * uaddr1,unsigned int flags,u32 __user * uaddr2,int nr_wake,int nr_requeue,u32 * cmpval,int requeue_pi)1998 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1999 			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
2000 			 u32 *cmpval, int requeue_pi)
2001 {
2002 	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
2003 	int drop_count = 0, task_count = 0, ret;
2004 	struct futex_pi_state *pi_state = NULL;
2005 	struct futex_hash_bucket *hb1, *hb2;
2006 	struct futex_q *this, *next;
2007 	DEFINE_WAKE_Q(wake_q);
2008 
2009 	if (nr_wake < 0 || nr_requeue < 0)
2010 		return -EINVAL;
2011 
2012 	/*
2013 	 * When PI not supported: return -ENOSYS if requeue_pi is true,
2014 	 * consequently the compiler knows requeue_pi is always false past
2015 	 * this point which will optimize away all the conditional code
2016 	 * further down.
2017 	 */
2018 	if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
2019 		return -ENOSYS;
2020 
2021 	if (requeue_pi) {
2022 		/*
2023 		 * Requeue PI only works on two distinct uaddrs. This
2024 		 * check is only valid for private futexes. See below.
2025 		 */
2026 		if (uaddr1 == uaddr2)
2027 			return -EINVAL;
2028 
2029 		/*
2030 		 * requeue_pi requires a pi_state, try to allocate it now
2031 		 * without any locks in case it fails.
2032 		 */
2033 		if (refill_pi_state_cache())
2034 			return -ENOMEM;
2035 		/*
2036 		 * requeue_pi must wake as many tasks as it can, up to nr_wake
2037 		 * + nr_requeue, since it acquires the rt_mutex prior to
2038 		 * returning to userspace, so as to not leave the rt_mutex with
2039 		 * waiters and no owner.  However, second and third wake-ups
2040 		 * cannot be predicted as they involve race conditions with the
2041 		 * first wake and a fault while looking up the pi_state.  Both
2042 		 * pthread_cond_signal() and pthread_cond_broadcast() should
2043 		 * use nr_wake=1.
2044 		 */
2045 		if (nr_wake != 1)
2046 			return -EINVAL;
2047 	}
2048 
2049 retry:
2050 	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
2051 	if (unlikely(ret != 0))
2052 		goto out;
2053 	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
2054 			    requeue_pi ? FUTEX_WRITE : FUTEX_READ);
2055 	if (unlikely(ret != 0))
2056 		goto out_put_key1;
2057 
2058 	/*
2059 	 * The check above which compares uaddrs is not sufficient for
2060 	 * shared futexes. We need to compare the keys:
2061 	 */
2062 	if (requeue_pi && match_futex(&key1, &key2)) {
2063 		ret = -EINVAL;
2064 		goto out_put_keys;
2065 	}
2066 
2067 	hb1 = hash_futex(&key1);
2068 	hb2 = hash_futex(&key2);
2069 
2070 retry_private:
2071 	hb_waiters_inc(hb2);
2072 	double_lock_hb(hb1, hb2);
2073 
2074 	if (likely(cmpval != NULL)) {
2075 		u32 curval;
2076 
2077 		ret = get_futex_value_locked(&curval, uaddr1);
2078 
2079 		if (unlikely(ret)) {
2080 			double_unlock_hb(hb1, hb2);
2081 			hb_waiters_dec(hb2);
2082 
2083 			ret = get_user(curval, uaddr1);
2084 			if (ret)
2085 				goto out_put_keys;
2086 
2087 			if (!(flags & FLAGS_SHARED))
2088 				goto retry_private;
2089 
2090 			put_futex_key(&key2);
2091 			put_futex_key(&key1);
2092 			goto retry;
2093 		}
2094 		if (curval != *cmpval) {
2095 			ret = -EAGAIN;
2096 			goto out_unlock;
2097 		}
2098 	}
2099 
2100 	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2101 		struct task_struct *exiting = NULL;
2102 
2103 		/*
2104 		 * Attempt to acquire uaddr2 and wake the top waiter. If we
2105 		 * intend to requeue waiters, force setting the FUTEX_WAITERS
2106 		 * bit.  We force this here where we are able to easily handle
2107 		 * faults rather in the requeue loop below.
2108 		 */
2109 		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2110 						 &key2, &pi_state,
2111 						 &exiting, nr_requeue);
2112 
2113 		/*
2114 		 * At this point the top_waiter has either taken uaddr2 or is
2115 		 * waiting on it.  If the former, then the pi_state will not
2116 		 * exist yet, look it up one more time to ensure we have a
2117 		 * reference to it. If the lock was taken, ret contains the
2118 		 * vpid of the top waiter task.
2119 		 * If the lock was not taken, we have pi_state and an initial
2120 		 * refcount on it. In case of an error we have nothing.
2121 		 */
2122 		if (ret > 0) {
2123 			WARN_ON(pi_state);
2124 			drop_count++;
2125 			task_count++;
2126 			/*
2127 			 * If we acquired the lock, then the user space value
2128 			 * of uaddr2 should be vpid. It cannot be changed by
2129 			 * the top waiter as it is blocked on hb2 lock if it
2130 			 * tries to do so. If something fiddled with it behind
2131 			 * our back the pi state lookup might unearth it. So
2132 			 * we rather use the known value than rereading and
2133 			 * handing potential crap to lookup_pi_state.
2134 			 *
2135 			 * If that call succeeds then we have pi_state and an
2136 			 * initial refcount on it.
2137 			 */
2138 			ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2139 					      &pi_state, &exiting);
2140 		}
2141 
2142 		switch (ret) {
2143 		case 0:
2144 			/* We hold a reference on the pi state. */
2145 			break;
2146 
2147 			/* If the above failed, then pi_state is NULL */
2148 		case -EFAULT:
2149 			double_unlock_hb(hb1, hb2);
2150 			hb_waiters_dec(hb2);
2151 			put_futex_key(&key2);
2152 			put_futex_key(&key1);
2153 			ret = fault_in_user_writeable(uaddr2);
2154 			if (!ret)
2155 				goto retry;
2156 			goto out;
2157 		case -EBUSY:
2158 		case -EAGAIN:
2159 			/*
2160 			 * Two reasons for this:
2161 			 * - EBUSY: Owner is exiting and we just wait for the
2162 			 *   exit to complete.
2163 			 * - EAGAIN: The user space value changed.
2164 			 */
2165 			double_unlock_hb(hb1, hb2);
2166 			hb_waiters_dec(hb2);
2167 			put_futex_key(&key2);
2168 			put_futex_key(&key1);
2169 			/*
2170 			 * Handle the case where the owner is in the middle of
2171 			 * exiting. Wait for the exit to complete otherwise
2172 			 * this task might loop forever, aka. live lock.
2173 			 */
2174 			wait_for_owner_exiting(ret, exiting);
2175 			cond_resched();
2176 			goto retry;
2177 		default:
2178 			goto out_unlock;
2179 		}
2180 	}
2181 
2182 	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2183 		if (task_count - nr_wake >= nr_requeue)
2184 			break;
2185 
2186 		if (!match_futex(&this->key, &key1))
2187 			continue;
2188 
2189 		/*
2190 		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2191 		 * be paired with each other and no other futex ops.
2192 		 *
2193 		 * We should never be requeueing a futex_q with a pi_state,
2194 		 * which is awaiting a futex_unlock_pi().
2195 		 */
2196 		if ((requeue_pi && !this->rt_waiter) ||
2197 		    (!requeue_pi && this->rt_waiter) ||
2198 		    this->pi_state) {
2199 			ret = -EINVAL;
2200 			break;
2201 		}
2202 
2203 		/*
2204 		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2205 		 * lock, we already woke the top_waiter.  If not, it will be
2206 		 * woken by futex_unlock_pi().
2207 		 */
2208 		if (++task_count <= nr_wake && !requeue_pi) {
2209 			mark_wake_futex(&wake_q, this);
2210 			continue;
2211 		}
2212 
2213 		/* Ensure we requeue to the expected futex for requeue_pi. */
2214 		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2215 			ret = -EINVAL;
2216 			break;
2217 		}
2218 
2219 		/*
2220 		 * Requeue nr_requeue waiters and possibly one more in the case
2221 		 * of requeue_pi if we couldn't acquire the lock atomically.
2222 		 */
2223 		if (requeue_pi) {
2224 			/*
2225 			 * Prepare the waiter to take the rt_mutex. Take a
2226 			 * refcount on the pi_state and store the pointer in
2227 			 * the futex_q object of the waiter.
2228 			 */
2229 			get_pi_state(pi_state);
2230 			this->pi_state = pi_state;
2231 			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2232 							this->rt_waiter,
2233 							this->task);
2234 			if (ret == 1) {
2235 				/*
2236 				 * We got the lock. We do neither drop the
2237 				 * refcount on pi_state nor clear
2238 				 * this->pi_state because the waiter needs the
2239 				 * pi_state for cleaning up the user space
2240 				 * value. It will drop the refcount after
2241 				 * doing so.
2242 				 */
2243 				requeue_pi_wake_futex(this, &key2, hb2);
2244 				drop_count++;
2245 				continue;
2246 			} else if (ret) {
2247 				/*
2248 				 * rt_mutex_start_proxy_lock() detected a
2249 				 * potential deadlock when we tried to queue
2250 				 * that waiter. Drop the pi_state reference
2251 				 * which we took above and remove the pointer
2252 				 * to the state from the waiters futex_q
2253 				 * object.
2254 				 */
2255 				this->pi_state = NULL;
2256 				put_pi_state(pi_state);
2257 				/*
2258 				 * We stop queueing more waiters and let user
2259 				 * space deal with the mess.
2260 				 */
2261 				break;
2262 			}
2263 		}
2264 		requeue_futex(this, hb1, hb2, &key2);
2265 		drop_count++;
2266 	}
2267 
2268 	/*
2269 	 * We took an extra initial reference to the pi_state either
2270 	 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2271 	 * need to drop it here again.
2272 	 */
2273 	put_pi_state(pi_state);
2274 
2275 out_unlock:
2276 	double_unlock_hb(hb1, hb2);
2277 	wake_up_q(&wake_q);
2278 	hb_waiters_dec(hb2);
2279 
2280 	/*
2281 	 * drop_futex_key_refs() must be called outside the spinlocks. During
2282 	 * the requeue we moved futex_q's from the hash bucket at key1 to the
2283 	 * one at key2 and updated their key pointer.  We no longer need to
2284 	 * hold the references to key1.
2285 	 */
2286 	while (--drop_count >= 0)
2287 		drop_futex_key_refs(&key1);
2288 
2289 out_put_keys:
2290 	put_futex_key(&key2);
2291 out_put_key1:
2292 	put_futex_key(&key1);
2293 out:
2294 	return ret ? ret : task_count;
2295 }
2296 
2297 /* The key must be already stored in q->key. */
queue_lock(struct futex_q * q)2298 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2299 	__acquires(&hb->lock)
2300 {
2301 	struct futex_hash_bucket *hb;
2302 
2303 	hb = hash_futex(&q->key);
2304 
2305 	/*
2306 	 * Increment the counter before taking the lock so that
2307 	 * a potential waker won't miss a to-be-slept task that is
2308 	 * waiting for the spinlock. This is safe as all queue_lock()
2309 	 * users end up calling queue_me(). Similarly, for housekeeping,
2310 	 * decrement the counter at queue_unlock() when some error has
2311 	 * occurred and we don't end up adding the task to the list.
2312 	 */
2313 	hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2314 
2315 	q->lock_ptr = &hb->lock;
2316 
2317 	spin_lock(&hb->lock);
2318 	return hb;
2319 }
2320 
2321 static inline void
queue_unlock(struct futex_hash_bucket * hb)2322 queue_unlock(struct futex_hash_bucket *hb)
2323 	__releases(&hb->lock)
2324 {
2325 	spin_unlock(&hb->lock);
2326 	hb_waiters_dec(hb);
2327 }
2328 
__queue_me(struct futex_q * q,struct futex_hash_bucket * hb)2329 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2330 {
2331 	int prio;
2332 
2333 	/*
2334 	 * The priority used to register this element is
2335 	 * - either the real thread-priority for the real-time threads
2336 	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2337 	 * - or MAX_RT_PRIO for non-RT threads.
2338 	 * Thus, all RT-threads are woken first in priority order, and
2339 	 * the others are woken last, in FIFO order.
2340 	 */
2341 	prio = min(current->normal_prio, MAX_RT_PRIO);
2342 
2343 	plist_node_init(&q->list, prio);
2344 	plist_add(&q->list, &hb->chain);
2345 	q->task = current;
2346 }
2347 
2348 /**
2349  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2350  * @q:	The futex_q to enqueue
2351  * @hb:	The destination hash bucket
2352  *
2353  * The hb->lock must be held by the caller, and is released here. A call to
2354  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2355  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2356  * or nothing if the unqueue is done as part of the wake process and the unqueue
2357  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2358  * an example).
2359  */
queue_me(struct futex_q * q,struct futex_hash_bucket * hb)2360 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2361 	__releases(&hb->lock)
2362 {
2363 	__queue_me(q, hb);
2364 	spin_unlock(&hb->lock);
2365 }
2366 
2367 /**
2368  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2369  * @q:	The futex_q to unqueue
2370  *
2371  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2372  * be paired with exactly one earlier call to queue_me().
2373  *
2374  * Return:
2375  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2376  *  - 0 - if the futex_q was already removed by the waking thread
2377  */
unqueue_me(struct futex_q * q)2378 static int unqueue_me(struct futex_q *q)
2379 {
2380 	spinlock_t *lock_ptr;
2381 	int ret = 0;
2382 
2383 	/* In the common case we don't take the spinlock, which is nice. */
2384 retry:
2385 	/*
2386 	 * q->lock_ptr can change between this read and the following spin_lock.
2387 	 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2388 	 * optimizing lock_ptr out of the logic below.
2389 	 */
2390 	lock_ptr = READ_ONCE(q->lock_ptr);
2391 	if (lock_ptr != NULL) {
2392 		spin_lock(lock_ptr);
2393 		/*
2394 		 * q->lock_ptr can change between reading it and
2395 		 * spin_lock(), causing us to take the wrong lock.  This
2396 		 * corrects the race condition.
2397 		 *
2398 		 * Reasoning goes like this: if we have the wrong lock,
2399 		 * q->lock_ptr must have changed (maybe several times)
2400 		 * between reading it and the spin_lock().  It can
2401 		 * change again after the spin_lock() but only if it was
2402 		 * already changed before the spin_lock().  It cannot,
2403 		 * however, change back to the original value.  Therefore
2404 		 * we can detect whether we acquired the correct lock.
2405 		 */
2406 		if (unlikely(lock_ptr != q->lock_ptr)) {
2407 			spin_unlock(lock_ptr);
2408 			goto retry;
2409 		}
2410 		__unqueue_futex(q);
2411 
2412 		BUG_ON(q->pi_state);
2413 
2414 		spin_unlock(lock_ptr);
2415 		ret = 1;
2416 	}
2417 
2418 	drop_futex_key_refs(&q->key);
2419 	return ret;
2420 }
2421 
2422 /*
2423  * PI futexes can not be requeued and must remove themself from the
2424  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2425  * and dropped here.
2426  */
unqueue_me_pi(struct futex_q * q)2427 static void unqueue_me_pi(struct futex_q *q)
2428 	__releases(q->lock_ptr)
2429 {
2430 	__unqueue_futex(q);
2431 
2432 	BUG_ON(!q->pi_state);
2433 	put_pi_state(q->pi_state);
2434 	q->pi_state = NULL;
2435 
2436 	spin_unlock(q->lock_ptr);
2437 }
2438 
fixup_pi_state_owner(u32 __user * uaddr,struct futex_q * q,struct task_struct * argowner)2439 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2440 				struct task_struct *argowner)
2441 {
2442 	struct futex_pi_state *pi_state = q->pi_state;
2443 	u32 uval, uninitialized_var(curval), newval;
2444 	struct task_struct *oldowner, *newowner;
2445 	u32 newtid;
2446 	int ret, err = 0;
2447 
2448 	lockdep_assert_held(q->lock_ptr);
2449 
2450 	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2451 
2452 	oldowner = pi_state->owner;
2453 
2454 	/*
2455 	 * We are here because either:
2456 	 *
2457 	 *  - we stole the lock and pi_state->owner needs updating to reflect
2458 	 *    that (@argowner == current),
2459 	 *
2460 	 * or:
2461 	 *
2462 	 *  - someone stole our lock and we need to fix things to point to the
2463 	 *    new owner (@argowner == NULL).
2464 	 *
2465 	 * Either way, we have to replace the TID in the user space variable.
2466 	 * This must be atomic as we have to preserve the owner died bit here.
2467 	 *
2468 	 * Note: We write the user space value _before_ changing the pi_state
2469 	 * because we can fault here. Imagine swapped out pages or a fork
2470 	 * that marked all the anonymous memory readonly for cow.
2471 	 *
2472 	 * Modifying pi_state _before_ the user space value would leave the
2473 	 * pi_state in an inconsistent state when we fault here, because we
2474 	 * need to drop the locks to handle the fault. This might be observed
2475 	 * in the PID check in lookup_pi_state.
2476 	 */
2477 retry:
2478 	if (!argowner) {
2479 		if (oldowner != current) {
2480 			/*
2481 			 * We raced against a concurrent self; things are
2482 			 * already fixed up. Nothing to do.
2483 			 */
2484 			ret = 0;
2485 			goto out_unlock;
2486 		}
2487 
2488 		if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2489 			/* We got the lock after all, nothing to fix. */
2490 			ret = 0;
2491 			goto out_unlock;
2492 		}
2493 
2494 		/*
2495 		 * Since we just failed the trylock; there must be an owner.
2496 		 */
2497 		newowner = rt_mutex_owner(&pi_state->pi_mutex);
2498 		BUG_ON(!newowner);
2499 	} else {
2500 		WARN_ON_ONCE(argowner != current);
2501 		if (oldowner == current) {
2502 			/*
2503 			 * We raced against a concurrent self; things are
2504 			 * already fixed up. Nothing to do.
2505 			 */
2506 			ret = 0;
2507 			goto out_unlock;
2508 		}
2509 		newowner = argowner;
2510 	}
2511 
2512 	newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2513 	/* Owner died? */
2514 	if (!pi_state->owner)
2515 		newtid |= FUTEX_OWNER_DIED;
2516 
2517 	err = get_futex_value_locked(&uval, uaddr);
2518 	if (err)
2519 		goto handle_err;
2520 
2521 	for (;;) {
2522 		newval = (uval & FUTEX_OWNER_DIED) | newtid;
2523 
2524 		err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2525 		if (err)
2526 			goto handle_err;
2527 
2528 		if (curval == uval)
2529 			break;
2530 		uval = curval;
2531 	}
2532 
2533 	/*
2534 	 * We fixed up user space. Now we need to fix the pi_state
2535 	 * itself.
2536 	 */
2537 	if (pi_state->owner != NULL) {
2538 		raw_spin_lock(&pi_state->owner->pi_lock);
2539 		WARN_ON(list_empty(&pi_state->list));
2540 		list_del_init(&pi_state->list);
2541 		raw_spin_unlock(&pi_state->owner->pi_lock);
2542 	}
2543 
2544 	pi_state->owner = newowner;
2545 
2546 	raw_spin_lock(&newowner->pi_lock);
2547 	WARN_ON(!list_empty(&pi_state->list));
2548 	list_add(&pi_state->list, &newowner->pi_state_list);
2549 	raw_spin_unlock(&newowner->pi_lock);
2550 	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2551 
2552 	return 0;
2553 
2554 	/*
2555 	 * In order to reschedule or handle a page fault, we need to drop the
2556 	 * locks here. In the case of a fault, this gives the other task
2557 	 * (either the highest priority waiter itself or the task which stole
2558 	 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2559 	 * are back from handling the fault we need to check the pi_state after
2560 	 * reacquiring the locks and before trying to do another fixup. When
2561 	 * the fixup has been done already we simply return.
2562 	 *
2563 	 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2564 	 * drop hb->lock since the caller owns the hb -> futex_q relation.
2565 	 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2566 	 */
2567 handle_err:
2568 	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2569 	spin_unlock(q->lock_ptr);
2570 
2571 	switch (err) {
2572 	case -EFAULT:
2573 		ret = fault_in_user_writeable(uaddr);
2574 		break;
2575 
2576 	case -EAGAIN:
2577 		cond_resched();
2578 		ret = 0;
2579 		break;
2580 
2581 	default:
2582 		WARN_ON_ONCE(1);
2583 		ret = err;
2584 		break;
2585 	}
2586 
2587 	spin_lock(q->lock_ptr);
2588 	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2589 
2590 	/*
2591 	 * Check if someone else fixed it for us:
2592 	 */
2593 	if (pi_state->owner != oldowner) {
2594 		ret = 0;
2595 		goto out_unlock;
2596 	}
2597 
2598 	if (ret)
2599 		goto out_unlock;
2600 
2601 	goto retry;
2602 
2603 out_unlock:
2604 	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2605 	return ret;
2606 }
2607 
2608 static long futex_wait_restart(struct restart_block *restart);
2609 
2610 /**
2611  * fixup_owner() - Post lock pi_state and corner case management
2612  * @uaddr:	user address of the futex
2613  * @q:		futex_q (contains pi_state and access to the rt_mutex)
2614  * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
2615  *
2616  * After attempting to lock an rt_mutex, this function is called to cleanup
2617  * the pi_state owner as well as handle race conditions that may allow us to
2618  * acquire the lock. Must be called with the hb lock held.
2619  *
2620  * Return:
2621  *  -  1 - success, lock taken;
2622  *  -  0 - success, lock not taken;
2623  *  - <0 - on error (-EFAULT)
2624  */
fixup_owner(u32 __user * uaddr,struct futex_q * q,int locked)2625 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2626 {
2627 	int ret = 0;
2628 
2629 	if (locked) {
2630 		/*
2631 		 * Got the lock. We might not be the anticipated owner if we
2632 		 * did a lock-steal - fix up the PI-state in that case:
2633 		 *
2634 		 * Speculative pi_state->owner read (we don't hold wait_lock);
2635 		 * since we own the lock pi_state->owner == current is the
2636 		 * stable state, anything else needs more attention.
2637 		 */
2638 		if (q->pi_state->owner != current)
2639 			ret = fixup_pi_state_owner(uaddr, q, current);
2640 		goto out;
2641 	}
2642 
2643 	/*
2644 	 * If we didn't get the lock; check if anybody stole it from us. In
2645 	 * that case, we need to fix up the uval to point to them instead of
2646 	 * us, otherwise bad things happen. [10]
2647 	 *
2648 	 * Another speculative read; pi_state->owner == current is unstable
2649 	 * but needs our attention.
2650 	 */
2651 	if (q->pi_state->owner == current) {
2652 		ret = fixup_pi_state_owner(uaddr, q, NULL);
2653 		goto out;
2654 	}
2655 
2656 	/*
2657 	 * Paranoia check. If we did not take the lock, then we should not be
2658 	 * the owner of the rt_mutex.
2659 	 */
2660 	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2661 		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2662 				"pi-state %p\n", ret,
2663 				q->pi_state->pi_mutex.owner,
2664 				q->pi_state->owner);
2665 	}
2666 
2667 out:
2668 	return ret ? ret : locked;
2669 }
2670 
2671 /**
2672  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2673  * @hb:		the futex hash bucket, must be locked by the caller
2674  * @q:		the futex_q to queue up on
2675  * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
2676  */
futex_wait_queue_me(struct futex_hash_bucket * hb,struct futex_q * q,struct hrtimer_sleeper * timeout)2677 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2678 				struct hrtimer_sleeper *timeout)
2679 {
2680 	/*
2681 	 * The task state is guaranteed to be set before another task can
2682 	 * wake it. set_current_state() is implemented using smp_store_mb() and
2683 	 * queue_me() calls spin_unlock() upon completion, both serializing
2684 	 * access to the hash list and forcing another memory barrier.
2685 	 */
2686 	set_current_state(TASK_INTERRUPTIBLE);
2687 	queue_me(q, hb);
2688 
2689 	/* Arm the timer */
2690 	if (timeout)
2691 		hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2692 
2693 	/*
2694 	 * If we have been removed from the hash list, then another task
2695 	 * has tried to wake us, and we can skip the call to schedule().
2696 	 */
2697 	if (likely(!plist_node_empty(&q->list))) {
2698 		/*
2699 		 * If the timer has already expired, current will already be
2700 		 * flagged for rescheduling. Only call schedule if there
2701 		 * is no timeout, or if it has yet to expire.
2702 		 */
2703 		if (!timeout || timeout->task)
2704 			freezable_schedule();
2705 	}
2706 	__set_current_state(TASK_RUNNING);
2707 }
2708 
2709 /**
2710  * futex_wait_setup() - Prepare to wait on a futex
2711  * @uaddr:	the futex userspace address
2712  * @val:	the expected value
2713  * @flags:	futex flags (FLAGS_SHARED, etc.)
2714  * @q:		the associated futex_q
2715  * @hb:		storage for hash_bucket pointer to be returned to caller
2716  *
2717  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2718  * compare it with the expected value.  Handle atomic faults internally.
2719  * Return with the hb lock held and a q.key reference on success, and unlocked
2720  * with no q.key reference on failure.
2721  *
2722  * Return:
2723  *  -  0 - uaddr contains val and hb has been locked;
2724  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2725  */
futex_wait_setup(u32 __user * uaddr,u32 val,unsigned int flags,struct futex_q * q,struct futex_hash_bucket ** hb)2726 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2727 			   struct futex_q *q, struct futex_hash_bucket **hb)
2728 {
2729 	u32 uval;
2730 	int ret;
2731 
2732 	/*
2733 	 * Access the page AFTER the hash-bucket is locked.
2734 	 * Order is important:
2735 	 *
2736 	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2737 	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2738 	 *
2739 	 * The basic logical guarantee of a futex is that it blocks ONLY
2740 	 * if cond(var) is known to be true at the time of blocking, for
2741 	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
2742 	 * would open a race condition where we could block indefinitely with
2743 	 * cond(var) false, which would violate the guarantee.
2744 	 *
2745 	 * On the other hand, we insert q and release the hash-bucket only
2746 	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
2747 	 * absorb a wakeup if *uaddr does not match the desired values
2748 	 * while the syscall executes.
2749 	 */
2750 retry:
2751 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2752 	if (unlikely(ret != 0))
2753 		return ret;
2754 
2755 retry_private:
2756 	*hb = queue_lock(q);
2757 
2758 	ret = get_futex_value_locked(&uval, uaddr);
2759 
2760 	if (ret) {
2761 		queue_unlock(*hb);
2762 
2763 		ret = get_user(uval, uaddr);
2764 		if (ret)
2765 			goto out;
2766 
2767 		if (!(flags & FLAGS_SHARED))
2768 			goto retry_private;
2769 
2770 		put_futex_key(&q->key);
2771 		goto retry;
2772 	}
2773 
2774 	if (uval != val) {
2775 		queue_unlock(*hb);
2776 		ret = -EWOULDBLOCK;
2777 	}
2778 
2779 out:
2780 	if (ret)
2781 		put_futex_key(&q->key);
2782 	return ret;
2783 }
2784 
futex_wait(u32 __user * uaddr,unsigned int flags,u32 val,ktime_t * abs_time,u32 bitset)2785 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2786 		      ktime_t *abs_time, u32 bitset)
2787 {
2788 	struct hrtimer_sleeper timeout, *to;
2789 	struct restart_block *restart;
2790 	struct futex_hash_bucket *hb;
2791 	struct futex_q q = futex_q_init;
2792 	int ret;
2793 
2794 	if (!bitset)
2795 		return -EINVAL;
2796 	q.bitset = bitset;
2797 
2798 	to = futex_setup_timer(abs_time, &timeout, flags,
2799 			       current->timer_slack_ns);
2800 retry:
2801 	/*
2802 	 * Prepare to wait on uaddr. On success, holds hb lock and increments
2803 	 * q.key refs.
2804 	 */
2805 	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2806 	if (ret)
2807 		goto out;
2808 
2809 	/* queue_me and wait for wakeup, timeout, or a signal. */
2810 	futex_wait_queue_me(hb, &q, to);
2811 
2812 	/* If we were woken (and unqueued), we succeeded, whatever. */
2813 	ret = 0;
2814 	/* unqueue_me() drops q.key ref */
2815 	if (!unqueue_me(&q))
2816 		goto out;
2817 	ret = -ETIMEDOUT;
2818 	if (to && !to->task)
2819 		goto out;
2820 
2821 	/*
2822 	 * We expect signal_pending(current), but we might be the
2823 	 * victim of a spurious wakeup as well.
2824 	 */
2825 	if (!signal_pending(current))
2826 		goto retry;
2827 
2828 	ret = -ERESTARTSYS;
2829 	if (!abs_time)
2830 		goto out;
2831 
2832 	restart = &current->restart_block;
2833 	restart->fn = futex_wait_restart;
2834 	restart->futex.uaddr = uaddr;
2835 	restart->futex.val = val;
2836 	restart->futex.time = *abs_time;
2837 	restart->futex.bitset = bitset;
2838 	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2839 
2840 	ret = -ERESTART_RESTARTBLOCK;
2841 
2842 out:
2843 	if (to) {
2844 		hrtimer_cancel(&to->timer);
2845 		destroy_hrtimer_on_stack(&to->timer);
2846 	}
2847 	return ret;
2848 }
2849 
2850 
futex_wait_restart(struct restart_block * restart)2851 static long futex_wait_restart(struct restart_block *restart)
2852 {
2853 	u32 __user *uaddr = restart->futex.uaddr;
2854 	ktime_t t, *tp = NULL;
2855 
2856 	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2857 		t = restart->futex.time;
2858 		tp = &t;
2859 	}
2860 	restart->fn = do_no_restart_syscall;
2861 
2862 	return (long)futex_wait(uaddr, restart->futex.flags,
2863 				restart->futex.val, tp, restart->futex.bitset);
2864 }
2865 
2866 
2867 /*
2868  * Userspace tried a 0 -> TID atomic transition of the futex value
2869  * and failed. The kernel side here does the whole locking operation:
2870  * if there are waiters then it will block as a consequence of relying
2871  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2872  * a 0 value of the futex too.).
2873  *
2874  * Also serves as futex trylock_pi()'ing, and due semantics.
2875  */
futex_lock_pi(u32 __user * uaddr,unsigned int flags,ktime_t * time,int trylock)2876 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2877 			 ktime_t *time, int trylock)
2878 {
2879 	struct hrtimer_sleeper timeout, *to;
2880 	struct futex_pi_state *pi_state = NULL;
2881 	struct task_struct *exiting = NULL;
2882 	struct rt_mutex_waiter rt_waiter;
2883 	struct futex_hash_bucket *hb;
2884 	struct futex_q q = futex_q_init;
2885 	int res, ret;
2886 
2887 	if (!IS_ENABLED(CONFIG_FUTEX_PI))
2888 		return -ENOSYS;
2889 
2890 	if (refill_pi_state_cache())
2891 		return -ENOMEM;
2892 
2893 	to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2894 
2895 retry:
2896 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2897 	if (unlikely(ret != 0))
2898 		goto out;
2899 
2900 retry_private:
2901 	hb = queue_lock(&q);
2902 
2903 	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2904 				   &exiting, 0);
2905 	if (unlikely(ret)) {
2906 		/*
2907 		 * Atomic work succeeded and we got the lock,
2908 		 * or failed. Either way, we do _not_ block.
2909 		 */
2910 		switch (ret) {
2911 		case 1:
2912 			/* We got the lock. */
2913 			ret = 0;
2914 			goto out_unlock_put_key;
2915 		case -EFAULT:
2916 			goto uaddr_faulted;
2917 		case -EBUSY:
2918 		case -EAGAIN:
2919 			/*
2920 			 * Two reasons for this:
2921 			 * - EBUSY: Task is exiting and we just wait for the
2922 			 *   exit to complete.
2923 			 * - EAGAIN: The user space value changed.
2924 			 */
2925 			queue_unlock(hb);
2926 			put_futex_key(&q.key);
2927 			/*
2928 			 * Handle the case where the owner is in the middle of
2929 			 * exiting. Wait for the exit to complete otherwise
2930 			 * this task might loop forever, aka. live lock.
2931 			 */
2932 			wait_for_owner_exiting(ret, exiting);
2933 			cond_resched();
2934 			goto retry;
2935 		default:
2936 			goto out_unlock_put_key;
2937 		}
2938 	}
2939 
2940 	WARN_ON(!q.pi_state);
2941 
2942 	/*
2943 	 * Only actually queue now that the atomic ops are done:
2944 	 */
2945 	__queue_me(&q, hb);
2946 
2947 	if (trylock) {
2948 		ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2949 		/* Fixup the trylock return value: */
2950 		ret = ret ? 0 : -EWOULDBLOCK;
2951 		goto no_block;
2952 	}
2953 
2954 	rt_mutex_init_waiter(&rt_waiter);
2955 
2956 	/*
2957 	 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2958 	 * hold it while doing rt_mutex_start_proxy(), because then it will
2959 	 * include hb->lock in the blocking chain, even through we'll not in
2960 	 * fact hold it while blocking. This will lead it to report -EDEADLK
2961 	 * and BUG when futex_unlock_pi() interleaves with this.
2962 	 *
2963 	 * Therefore acquire wait_lock while holding hb->lock, but drop the
2964 	 * latter before calling __rt_mutex_start_proxy_lock(). This
2965 	 * interleaves with futex_unlock_pi() -- which does a similar lock
2966 	 * handoff -- such that the latter can observe the futex_q::pi_state
2967 	 * before __rt_mutex_start_proxy_lock() is done.
2968 	 */
2969 	raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2970 	spin_unlock(q.lock_ptr);
2971 	/*
2972 	 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2973 	 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2974 	 * it sees the futex_q::pi_state.
2975 	 */
2976 	ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2977 	raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2978 
2979 	if (ret) {
2980 		if (ret == 1)
2981 			ret = 0;
2982 		goto cleanup;
2983 	}
2984 
2985 	if (unlikely(to))
2986 		hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2987 
2988 	ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2989 
2990 cleanup:
2991 	spin_lock(q.lock_ptr);
2992 	/*
2993 	 * If we failed to acquire the lock (deadlock/signal/timeout), we must
2994 	 * first acquire the hb->lock before removing the lock from the
2995 	 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2996 	 * lists consistent.
2997 	 *
2998 	 * In particular; it is important that futex_unlock_pi() can not
2999 	 * observe this inconsistency.
3000 	 */
3001 	if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
3002 		ret = 0;
3003 
3004 no_block:
3005 	/*
3006 	 * Fixup the pi_state owner and possibly acquire the lock if we
3007 	 * haven't already.
3008 	 */
3009 	res = fixup_owner(uaddr, &q, !ret);
3010 	/*
3011 	 * If fixup_owner() returned an error, proprogate that.  If it acquired
3012 	 * the lock, clear our -ETIMEDOUT or -EINTR.
3013 	 */
3014 	if (res)
3015 		ret = (res < 0) ? res : 0;
3016 
3017 	/*
3018 	 * If fixup_owner() faulted and was unable to handle the fault, unlock
3019 	 * it and return the fault to userspace.
3020 	 */
3021 	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
3022 		pi_state = q.pi_state;
3023 		get_pi_state(pi_state);
3024 	}
3025 
3026 	/* Unqueue and drop the lock */
3027 	unqueue_me_pi(&q);
3028 
3029 	if (pi_state) {
3030 		rt_mutex_futex_unlock(&pi_state->pi_mutex);
3031 		put_pi_state(pi_state);
3032 	}
3033 
3034 	goto out_put_key;
3035 
3036 out_unlock_put_key:
3037 	queue_unlock(hb);
3038 
3039 out_put_key:
3040 	put_futex_key(&q.key);
3041 out:
3042 	if (to) {
3043 		hrtimer_cancel(&to->timer);
3044 		destroy_hrtimer_on_stack(&to->timer);
3045 	}
3046 	return ret != -EINTR ? ret : -ERESTARTNOINTR;
3047 
3048 uaddr_faulted:
3049 	queue_unlock(hb);
3050 
3051 	ret = fault_in_user_writeable(uaddr);
3052 	if (ret)
3053 		goto out_put_key;
3054 
3055 	if (!(flags & FLAGS_SHARED))
3056 		goto retry_private;
3057 
3058 	put_futex_key(&q.key);
3059 	goto retry;
3060 }
3061 
3062 /*
3063  * Userspace attempted a TID -> 0 atomic transition, and failed.
3064  * This is the in-kernel slowpath: we look up the PI state (if any),
3065  * and do the rt-mutex unlock.
3066  */
futex_unlock_pi(u32 __user * uaddr,unsigned int flags)3067 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
3068 {
3069 	u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
3070 	union futex_key key = FUTEX_KEY_INIT;
3071 	struct futex_hash_bucket *hb;
3072 	struct futex_q *top_waiter;
3073 	int ret;
3074 
3075 	if (!IS_ENABLED(CONFIG_FUTEX_PI))
3076 		return -ENOSYS;
3077 
3078 retry:
3079 	if (get_user(uval, uaddr))
3080 		return -EFAULT;
3081 	/*
3082 	 * We release only a lock we actually own:
3083 	 */
3084 	if ((uval & FUTEX_TID_MASK) != vpid)
3085 		return -EPERM;
3086 
3087 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
3088 	if (ret)
3089 		return ret;
3090 
3091 	hb = hash_futex(&key);
3092 	spin_lock(&hb->lock);
3093 
3094 	/*
3095 	 * Check waiters first. We do not trust user space values at
3096 	 * all and we at least want to know if user space fiddled
3097 	 * with the futex value instead of blindly unlocking.
3098 	 */
3099 	top_waiter = futex_top_waiter(hb, &key);
3100 	if (top_waiter) {
3101 		struct futex_pi_state *pi_state = top_waiter->pi_state;
3102 
3103 		ret = -EINVAL;
3104 		if (!pi_state)
3105 			goto out_unlock;
3106 
3107 		/*
3108 		 * If current does not own the pi_state then the futex is
3109 		 * inconsistent and user space fiddled with the futex value.
3110 		 */
3111 		if (pi_state->owner != current)
3112 			goto out_unlock;
3113 
3114 		get_pi_state(pi_state);
3115 		/*
3116 		 * By taking wait_lock while still holding hb->lock, we ensure
3117 		 * there is no point where we hold neither; and therefore
3118 		 * wake_futex_pi() must observe a state consistent with what we
3119 		 * observed.
3120 		 *
3121 		 * In particular; this forces __rt_mutex_start_proxy() to
3122 		 * complete such that we're guaranteed to observe the
3123 		 * rt_waiter. Also see the WARN in wake_futex_pi().
3124 		 */
3125 		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3126 		spin_unlock(&hb->lock);
3127 
3128 		/* drops pi_state->pi_mutex.wait_lock */
3129 		ret = wake_futex_pi(uaddr, uval, pi_state);
3130 
3131 		put_pi_state(pi_state);
3132 
3133 		/*
3134 		 * Success, we're done! No tricky corner cases.
3135 		 */
3136 		if (!ret)
3137 			goto out_putkey;
3138 		/*
3139 		 * The atomic access to the futex value generated a
3140 		 * pagefault, so retry the user-access and the wakeup:
3141 		 */
3142 		if (ret == -EFAULT)
3143 			goto pi_faulted;
3144 		/*
3145 		 * A unconditional UNLOCK_PI op raced against a waiter
3146 		 * setting the FUTEX_WAITERS bit. Try again.
3147 		 */
3148 		if (ret == -EAGAIN)
3149 			goto pi_retry;
3150 		/*
3151 		 * wake_futex_pi has detected invalid state. Tell user
3152 		 * space.
3153 		 */
3154 		goto out_putkey;
3155 	}
3156 
3157 	/*
3158 	 * We have no kernel internal state, i.e. no waiters in the
3159 	 * kernel. Waiters which are about to queue themselves are stuck
3160 	 * on hb->lock. So we can safely ignore them. We do neither
3161 	 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3162 	 * owner.
3163 	 */
3164 	if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3165 		spin_unlock(&hb->lock);
3166 		switch (ret) {
3167 		case -EFAULT:
3168 			goto pi_faulted;
3169 
3170 		case -EAGAIN:
3171 			goto pi_retry;
3172 
3173 		default:
3174 			WARN_ON_ONCE(1);
3175 			goto out_putkey;
3176 		}
3177 	}
3178 
3179 	/*
3180 	 * If uval has changed, let user space handle it.
3181 	 */
3182 	ret = (curval == uval) ? 0 : -EAGAIN;
3183 
3184 out_unlock:
3185 	spin_unlock(&hb->lock);
3186 out_putkey:
3187 	put_futex_key(&key);
3188 	return ret;
3189 
3190 pi_retry:
3191 	put_futex_key(&key);
3192 	cond_resched();
3193 	goto retry;
3194 
3195 pi_faulted:
3196 	put_futex_key(&key);
3197 
3198 	ret = fault_in_user_writeable(uaddr);
3199 	if (!ret)
3200 		goto retry;
3201 
3202 	return ret;
3203 }
3204 
3205 /**
3206  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3207  * @hb:		the hash_bucket futex_q was original enqueued on
3208  * @q:		the futex_q woken while waiting to be requeued
3209  * @key2:	the futex_key of the requeue target futex
3210  * @timeout:	the timeout associated with the wait (NULL if none)
3211  *
3212  * Detect if the task was woken on the initial futex as opposed to the requeue
3213  * target futex.  If so, determine if it was a timeout or a signal that caused
3214  * the wakeup and return the appropriate error code to the caller.  Must be
3215  * called with the hb lock held.
3216  *
3217  * Return:
3218  *  -  0 = no early wakeup detected;
3219  *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3220  */
3221 static inline
handle_early_requeue_pi_wakeup(struct futex_hash_bucket * hb,struct futex_q * q,union futex_key * key2,struct hrtimer_sleeper * timeout)3222 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3223 				   struct futex_q *q, union futex_key *key2,
3224 				   struct hrtimer_sleeper *timeout)
3225 {
3226 	int ret = 0;
3227 
3228 	/*
3229 	 * With the hb lock held, we avoid races while we process the wakeup.
3230 	 * We only need to hold hb (and not hb2) to ensure atomicity as the
3231 	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3232 	 * It can't be requeued from uaddr2 to something else since we don't
3233 	 * support a PI aware source futex for requeue.
3234 	 */
3235 	if (!match_futex(&q->key, key2)) {
3236 		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3237 		/*
3238 		 * We were woken prior to requeue by a timeout or a signal.
3239 		 * Unqueue the futex_q and determine which it was.
3240 		 */
3241 		plist_del(&q->list, &hb->chain);
3242 		hb_waiters_dec(hb);
3243 
3244 		/* Handle spurious wakeups gracefully */
3245 		ret = -EWOULDBLOCK;
3246 		if (timeout && !timeout->task)
3247 			ret = -ETIMEDOUT;
3248 		else if (signal_pending(current))
3249 			ret = -ERESTARTNOINTR;
3250 	}
3251 	return ret;
3252 }
3253 
3254 /**
3255  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3256  * @uaddr:	the futex we initially wait on (non-pi)
3257  * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3258  *		the same type, no requeueing from private to shared, etc.
3259  * @val:	the expected value of uaddr
3260  * @abs_time:	absolute timeout
3261  * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
3262  * @uaddr2:	the pi futex we will take prior to returning to user-space
3263  *
3264  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3265  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3266  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3267  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3268  * without one, the pi logic would not know which task to boost/deboost, if
3269  * there was a need to.
3270  *
3271  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3272  * via the following--
3273  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3274  * 2) wakeup on uaddr2 after a requeue
3275  * 3) signal
3276  * 4) timeout
3277  *
3278  * If 3, cleanup and return -ERESTARTNOINTR.
3279  *
3280  * If 2, we may then block on trying to take the rt_mutex and return via:
3281  * 5) successful lock
3282  * 6) signal
3283  * 7) timeout
3284  * 8) other lock acquisition failure
3285  *
3286  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3287  *
3288  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3289  *
3290  * Return:
3291  *  -  0 - On success;
3292  *  - <0 - On error
3293  */
futex_wait_requeue_pi(u32 __user * uaddr,unsigned int flags,u32 val,ktime_t * abs_time,u32 bitset,u32 __user * uaddr2)3294 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3295 				 u32 val, ktime_t *abs_time, u32 bitset,
3296 				 u32 __user *uaddr2)
3297 {
3298 	struct hrtimer_sleeper timeout, *to;
3299 	struct futex_pi_state *pi_state = NULL;
3300 	struct rt_mutex_waiter rt_waiter;
3301 	struct futex_hash_bucket *hb;
3302 	union futex_key key2 = FUTEX_KEY_INIT;
3303 	struct futex_q q = futex_q_init;
3304 	int res, ret;
3305 
3306 	if (!IS_ENABLED(CONFIG_FUTEX_PI))
3307 		return -ENOSYS;
3308 
3309 	if (uaddr == uaddr2)
3310 		return -EINVAL;
3311 
3312 	if (!bitset)
3313 		return -EINVAL;
3314 
3315 	to = futex_setup_timer(abs_time, &timeout, flags,
3316 			       current->timer_slack_ns);
3317 
3318 	/*
3319 	 * The waiter is allocated on our stack, manipulated by the requeue
3320 	 * code while we sleep on uaddr.
3321 	 */
3322 	rt_mutex_init_waiter(&rt_waiter);
3323 
3324 	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3325 	if (unlikely(ret != 0))
3326 		goto out;
3327 
3328 	q.bitset = bitset;
3329 	q.rt_waiter = &rt_waiter;
3330 	q.requeue_pi_key = &key2;
3331 
3332 	/*
3333 	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3334 	 * count.
3335 	 */
3336 	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3337 	if (ret)
3338 		goto out_key2;
3339 
3340 	/*
3341 	 * The check above which compares uaddrs is not sufficient for
3342 	 * shared futexes. We need to compare the keys:
3343 	 */
3344 	if (match_futex(&q.key, &key2)) {
3345 		queue_unlock(hb);
3346 		ret = -EINVAL;
3347 		goto out_put_keys;
3348 	}
3349 
3350 	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
3351 	futex_wait_queue_me(hb, &q, to);
3352 
3353 	spin_lock(&hb->lock);
3354 	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3355 	spin_unlock(&hb->lock);
3356 	if (ret)
3357 		goto out_put_keys;
3358 
3359 	/*
3360 	 * In order for us to be here, we know our q.key == key2, and since
3361 	 * we took the hb->lock above, we also know that futex_requeue() has
3362 	 * completed and we no longer have to concern ourselves with a wakeup
3363 	 * race with the atomic proxy lock acquisition by the requeue code. The
3364 	 * futex_requeue dropped our key1 reference and incremented our key2
3365 	 * reference count.
3366 	 */
3367 
3368 	/* Check if the requeue code acquired the second futex for us. */
3369 	if (!q.rt_waiter) {
3370 		/*
3371 		 * Got the lock. We might not be the anticipated owner if we
3372 		 * did a lock-steal - fix up the PI-state in that case.
3373 		 */
3374 		if (q.pi_state && (q.pi_state->owner != current)) {
3375 			spin_lock(q.lock_ptr);
3376 			ret = fixup_pi_state_owner(uaddr2, &q, current);
3377 			if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3378 				pi_state = q.pi_state;
3379 				get_pi_state(pi_state);
3380 			}
3381 			/*
3382 			 * Drop the reference to the pi state which
3383 			 * the requeue_pi() code acquired for us.
3384 			 */
3385 			put_pi_state(q.pi_state);
3386 			spin_unlock(q.lock_ptr);
3387 		}
3388 	} else {
3389 		struct rt_mutex *pi_mutex;
3390 
3391 		/*
3392 		 * We have been woken up by futex_unlock_pi(), a timeout, or a
3393 		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3394 		 * the pi_state.
3395 		 */
3396 		WARN_ON(!q.pi_state);
3397 		pi_mutex = &q.pi_state->pi_mutex;
3398 		ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3399 
3400 		spin_lock(q.lock_ptr);
3401 		if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3402 			ret = 0;
3403 
3404 		debug_rt_mutex_free_waiter(&rt_waiter);
3405 		/*
3406 		 * Fixup the pi_state owner and possibly acquire the lock if we
3407 		 * haven't already.
3408 		 */
3409 		res = fixup_owner(uaddr2, &q, !ret);
3410 		/*
3411 		 * If fixup_owner() returned an error, proprogate that.  If it
3412 		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3413 		 */
3414 		if (res)
3415 			ret = (res < 0) ? res : 0;
3416 
3417 		/*
3418 		 * If fixup_pi_state_owner() faulted and was unable to handle
3419 		 * the fault, unlock the rt_mutex and return the fault to
3420 		 * userspace.
3421 		 */
3422 		if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3423 			pi_state = q.pi_state;
3424 			get_pi_state(pi_state);
3425 		}
3426 
3427 		/* Unqueue and drop the lock. */
3428 		unqueue_me_pi(&q);
3429 	}
3430 
3431 	if (pi_state) {
3432 		rt_mutex_futex_unlock(&pi_state->pi_mutex);
3433 		put_pi_state(pi_state);
3434 	}
3435 
3436 	if (ret == -EINTR) {
3437 		/*
3438 		 * We've already been requeued, but cannot restart by calling
3439 		 * futex_lock_pi() directly. We could restart this syscall, but
3440 		 * it would detect that the user space "val" changed and return
3441 		 * -EWOULDBLOCK.  Save the overhead of the restart and return
3442 		 * -EWOULDBLOCK directly.
3443 		 */
3444 		ret = -EWOULDBLOCK;
3445 	}
3446 
3447 out_put_keys:
3448 	put_futex_key(&q.key);
3449 out_key2:
3450 	put_futex_key(&key2);
3451 
3452 out:
3453 	if (to) {
3454 		hrtimer_cancel(&to->timer);
3455 		destroy_hrtimer_on_stack(&to->timer);
3456 	}
3457 	return ret;
3458 }
3459 
3460 /*
3461  * Support for robust futexes: the kernel cleans up held futexes at
3462  * thread exit time.
3463  *
3464  * Implementation: user-space maintains a per-thread list of locks it
3465  * is holding. Upon do_exit(), the kernel carefully walks this list,
3466  * and marks all locks that are owned by this thread with the
3467  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3468  * always manipulated with the lock held, so the list is private and
3469  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3470  * field, to allow the kernel to clean up if the thread dies after
3471  * acquiring the lock, but just before it could have added itself to
3472  * the list. There can only be one such pending lock.
3473  */
3474 
3475 /**
3476  * sys_set_robust_list() - Set the robust-futex list head of a task
3477  * @head:	pointer to the list-head
3478  * @len:	length of the list-head, as userspace expects
3479  */
SYSCALL_DEFINE2(set_robust_list,struct robust_list_head __user *,head,size_t,len)3480 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3481 		size_t, len)
3482 {
3483 	if (!futex_cmpxchg_enabled)
3484 		return -ENOSYS;
3485 	/*
3486 	 * The kernel knows only one size for now:
3487 	 */
3488 	if (unlikely(len != sizeof(*head)))
3489 		return -EINVAL;
3490 
3491 	current->robust_list = head;
3492 
3493 	return 0;
3494 }
3495 
3496 /**
3497  * sys_get_robust_list() - Get the robust-futex list head of a task
3498  * @pid:	pid of the process [zero for current task]
3499  * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
3500  * @len_ptr:	pointer to a length field, the kernel fills in the header size
3501  */
SYSCALL_DEFINE3(get_robust_list,int,pid,struct robust_list_head __user * __user *,head_ptr,size_t __user *,len_ptr)3502 SYSCALL_DEFINE3(get_robust_list, int, pid,
3503 		struct robust_list_head __user * __user *, head_ptr,
3504 		size_t __user *, len_ptr)
3505 {
3506 	struct robust_list_head __user *head;
3507 	unsigned long ret;
3508 	struct task_struct *p;
3509 
3510 	if (!futex_cmpxchg_enabled)
3511 		return -ENOSYS;
3512 
3513 	rcu_read_lock();
3514 
3515 	ret = -ESRCH;
3516 	if (!pid)
3517 		p = current;
3518 	else {
3519 		p = find_task_by_vpid(pid);
3520 		if (!p)
3521 			goto err_unlock;
3522 	}
3523 
3524 	ret = -EPERM;
3525 	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3526 		goto err_unlock;
3527 
3528 	head = p->robust_list;
3529 	rcu_read_unlock();
3530 
3531 	if (put_user(sizeof(*head), len_ptr))
3532 		return -EFAULT;
3533 	return put_user(head, head_ptr);
3534 
3535 err_unlock:
3536 	rcu_read_unlock();
3537 
3538 	return ret;
3539 }
3540 
3541 /* Constants for the pending_op argument of handle_futex_death */
3542 #define HANDLE_DEATH_PENDING	true
3543 #define HANDLE_DEATH_LIST	false
3544 
3545 /*
3546  * Process a futex-list entry, check whether it's owned by the
3547  * dying task, and do notification if so:
3548  */
handle_futex_death(u32 __user * uaddr,struct task_struct * curr,bool pi,bool pending_op)3549 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3550 			      bool pi, bool pending_op)
3551 {
3552 	u32 uval, uninitialized_var(nval), mval;
3553 	int err;
3554 
3555 	/* Futex address must be 32bit aligned */
3556 	if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3557 		return -1;
3558 
3559 retry:
3560 	if (get_user(uval, uaddr))
3561 		return -1;
3562 
3563 	/*
3564 	 * Special case for regular (non PI) futexes. The unlock path in
3565 	 * user space has two race scenarios:
3566 	 *
3567 	 * 1. The unlock path releases the user space futex value and
3568 	 *    before it can execute the futex() syscall to wake up
3569 	 *    waiters it is killed.
3570 	 *
3571 	 * 2. A woken up waiter is killed before it can acquire the
3572 	 *    futex in user space.
3573 	 *
3574 	 * In both cases the TID validation below prevents a wakeup of
3575 	 * potential waiters which can cause these waiters to block
3576 	 * forever.
3577 	 *
3578 	 * In both cases the following conditions are met:
3579 	 *
3580 	 *	1) task->robust_list->list_op_pending != NULL
3581 	 *	   @pending_op == true
3582 	 *	2) User space futex value == 0
3583 	 *	3) Regular futex: @pi == false
3584 	 *
3585 	 * If these conditions are met, it is safe to attempt waking up a
3586 	 * potential waiter without touching the user space futex value and
3587 	 * trying to set the OWNER_DIED bit. The user space futex value is
3588 	 * uncontended and the rest of the user space mutex state is
3589 	 * consistent, so a woken waiter will just take over the
3590 	 * uncontended futex. Setting the OWNER_DIED bit would create
3591 	 * inconsistent state and malfunction of the user space owner died
3592 	 * handling.
3593 	 */
3594 	if (pending_op && !pi && !uval) {
3595 		futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3596 		return 0;
3597 	}
3598 
3599 	if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3600 		return 0;
3601 
3602 	/*
3603 	 * Ok, this dying thread is truly holding a futex
3604 	 * of interest. Set the OWNER_DIED bit atomically
3605 	 * via cmpxchg, and if the value had FUTEX_WAITERS
3606 	 * set, wake up a waiter (if any). (We have to do a
3607 	 * futex_wake() even if OWNER_DIED is already set -
3608 	 * to handle the rare but possible case of recursive
3609 	 * thread-death.) The rest of the cleanup is done in
3610 	 * userspace.
3611 	 */
3612 	mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3613 
3614 	/*
3615 	 * We are not holding a lock here, but we want to have
3616 	 * the pagefault_disable/enable() protection because
3617 	 * we want to handle the fault gracefully. If the
3618 	 * access fails we try to fault in the futex with R/W
3619 	 * verification via get_user_pages. get_user() above
3620 	 * does not guarantee R/W access. If that fails we
3621 	 * give up and leave the futex locked.
3622 	 */
3623 	if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3624 		switch (err) {
3625 		case -EFAULT:
3626 			if (fault_in_user_writeable(uaddr))
3627 				return -1;
3628 			goto retry;
3629 
3630 		case -EAGAIN:
3631 			cond_resched();
3632 			goto retry;
3633 
3634 		default:
3635 			WARN_ON_ONCE(1);
3636 			return err;
3637 		}
3638 	}
3639 
3640 	if (nval != uval)
3641 		goto retry;
3642 
3643 	/*
3644 	 * Wake robust non-PI futexes here. The wakeup of
3645 	 * PI futexes happens in exit_pi_state():
3646 	 */
3647 	if (!pi && (uval & FUTEX_WAITERS))
3648 		futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3649 
3650 	return 0;
3651 }
3652 
3653 /*
3654  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3655  */
fetch_robust_entry(struct robust_list __user ** entry,struct robust_list __user * __user * head,unsigned int * pi)3656 static inline int fetch_robust_entry(struct robust_list __user **entry,
3657 				     struct robust_list __user * __user *head,
3658 				     unsigned int *pi)
3659 {
3660 	unsigned long uentry;
3661 
3662 	if (get_user(uentry, (unsigned long __user *)head))
3663 		return -EFAULT;
3664 
3665 	*entry = (void __user *)(uentry & ~1UL);
3666 	*pi = uentry & 1;
3667 
3668 	return 0;
3669 }
3670 
3671 /*
3672  * Walk curr->robust_list (very carefully, it's a userspace list!)
3673  * and mark any locks found there dead, and notify any waiters.
3674  *
3675  * We silently return on any sign of list-walking problem.
3676  */
exit_robust_list(struct task_struct * curr)3677 static void exit_robust_list(struct task_struct *curr)
3678 {
3679 	struct robust_list_head __user *head = curr->robust_list;
3680 	struct robust_list __user *entry, *next_entry, *pending;
3681 	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3682 	unsigned int uninitialized_var(next_pi);
3683 	unsigned long futex_offset;
3684 	int rc;
3685 
3686 	if (!futex_cmpxchg_enabled)
3687 		return;
3688 
3689 	/*
3690 	 * Fetch the list head (which was registered earlier, via
3691 	 * sys_set_robust_list()):
3692 	 */
3693 	if (fetch_robust_entry(&entry, &head->list.next, &pi))
3694 		return;
3695 	/*
3696 	 * Fetch the relative futex offset:
3697 	 */
3698 	if (get_user(futex_offset, &head->futex_offset))
3699 		return;
3700 	/*
3701 	 * Fetch any possibly pending lock-add first, and handle it
3702 	 * if it exists:
3703 	 */
3704 	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3705 		return;
3706 
3707 	next_entry = NULL;	/* avoid warning with gcc */
3708 	while (entry != &head->list) {
3709 		/*
3710 		 * Fetch the next entry in the list before calling
3711 		 * handle_futex_death:
3712 		 */
3713 		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3714 		/*
3715 		 * A pending lock might already be on the list, so
3716 		 * don't process it twice:
3717 		 */
3718 		if (entry != pending) {
3719 			if (handle_futex_death((void __user *)entry + futex_offset,
3720 						curr, pi, HANDLE_DEATH_LIST))
3721 				return;
3722 		}
3723 		if (rc)
3724 			return;
3725 		entry = next_entry;
3726 		pi = next_pi;
3727 		/*
3728 		 * Avoid excessively long or circular lists:
3729 		 */
3730 		if (!--limit)
3731 			break;
3732 
3733 		cond_resched();
3734 	}
3735 
3736 	if (pending) {
3737 		handle_futex_death((void __user *)pending + futex_offset,
3738 				   curr, pip, HANDLE_DEATH_PENDING);
3739 	}
3740 }
3741 
futex_cleanup(struct task_struct * tsk)3742 static void futex_cleanup(struct task_struct *tsk)
3743 {
3744 	if (unlikely(tsk->robust_list)) {
3745 		exit_robust_list(tsk);
3746 		tsk->robust_list = NULL;
3747 	}
3748 
3749 #ifdef CONFIG_COMPAT
3750 	if (unlikely(tsk->compat_robust_list)) {
3751 		compat_exit_robust_list(tsk);
3752 		tsk->compat_robust_list = NULL;
3753 	}
3754 #endif
3755 
3756 	if (unlikely(!list_empty(&tsk->pi_state_list)))
3757 		exit_pi_state_list(tsk);
3758 }
3759 
3760 /**
3761  * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3762  * @tsk:	task to set the state on
3763  *
3764  * Set the futex exit state of the task lockless. The futex waiter code
3765  * observes that state when a task is exiting and loops until the task has
3766  * actually finished the futex cleanup. The worst case for this is that the
3767  * waiter runs through the wait loop until the state becomes visible.
3768  *
3769  * This is called from the recursive fault handling path in do_exit().
3770  *
3771  * This is best effort. Either the futex exit code has run already or
3772  * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3773  * take it over. If not, the problem is pushed back to user space. If the
3774  * futex exit code did not run yet, then an already queued waiter might
3775  * block forever, but there is nothing which can be done about that.
3776  */
futex_exit_recursive(struct task_struct * tsk)3777 void futex_exit_recursive(struct task_struct *tsk)
3778 {
3779 	/* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3780 	if (tsk->futex_state == FUTEX_STATE_EXITING)
3781 		mutex_unlock(&tsk->futex_exit_mutex);
3782 	tsk->futex_state = FUTEX_STATE_DEAD;
3783 }
3784 
futex_cleanup_begin(struct task_struct * tsk)3785 static void futex_cleanup_begin(struct task_struct *tsk)
3786 {
3787 	/*
3788 	 * Prevent various race issues against a concurrent incoming waiter
3789 	 * including live locks by forcing the waiter to block on
3790 	 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3791 	 * attach_to_pi_owner().
3792 	 */
3793 	mutex_lock(&tsk->futex_exit_mutex);
3794 
3795 	/*
3796 	 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3797 	 *
3798 	 * This ensures that all subsequent checks of tsk->futex_state in
3799 	 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3800 	 * tsk->pi_lock held.
3801 	 *
3802 	 * It guarantees also that a pi_state which was queued right before
3803 	 * the state change under tsk->pi_lock by a concurrent waiter must
3804 	 * be observed in exit_pi_state_list().
3805 	 */
3806 	raw_spin_lock_irq(&tsk->pi_lock);
3807 	tsk->futex_state = FUTEX_STATE_EXITING;
3808 	raw_spin_unlock_irq(&tsk->pi_lock);
3809 }
3810 
futex_cleanup_end(struct task_struct * tsk,int state)3811 static void futex_cleanup_end(struct task_struct *tsk, int state)
3812 {
3813 	/*
3814 	 * Lockless store. The only side effect is that an observer might
3815 	 * take another loop until it becomes visible.
3816 	 */
3817 	tsk->futex_state = state;
3818 	/*
3819 	 * Drop the exit protection. This unblocks waiters which observed
3820 	 * FUTEX_STATE_EXITING to reevaluate the state.
3821 	 */
3822 	mutex_unlock(&tsk->futex_exit_mutex);
3823 }
3824 
futex_exec_release(struct task_struct * tsk)3825 void futex_exec_release(struct task_struct *tsk)
3826 {
3827 	/*
3828 	 * The state handling is done for consistency, but in the case of
3829 	 * exec() there is no way to prevent futher damage as the PID stays
3830 	 * the same. But for the unlikely and arguably buggy case that a
3831 	 * futex is held on exec(), this provides at least as much state
3832 	 * consistency protection which is possible.
3833 	 */
3834 	futex_cleanup_begin(tsk);
3835 	futex_cleanup(tsk);
3836 	/*
3837 	 * Reset the state to FUTEX_STATE_OK. The task is alive and about
3838 	 * exec a new binary.
3839 	 */
3840 	futex_cleanup_end(tsk, FUTEX_STATE_OK);
3841 }
3842 
futex_exit_release(struct task_struct * tsk)3843 void futex_exit_release(struct task_struct *tsk)
3844 {
3845 	futex_cleanup_begin(tsk);
3846 	futex_cleanup(tsk);
3847 	futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3848 }
3849 
do_futex(u32 __user * uaddr,int op,u32 val,ktime_t * timeout,u32 __user * uaddr2,u32 val2,u32 val3)3850 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3851 		u32 __user *uaddr2, u32 val2, u32 val3)
3852 {
3853 	int cmd = op & FUTEX_CMD_MASK;
3854 	unsigned int flags = 0;
3855 
3856 	if (!(op & FUTEX_PRIVATE_FLAG))
3857 		flags |= FLAGS_SHARED;
3858 
3859 	if (op & FUTEX_CLOCK_REALTIME) {
3860 		flags |= FLAGS_CLOCKRT;
3861 		if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3862 		    cmd != FUTEX_WAIT_REQUEUE_PI)
3863 			return -ENOSYS;
3864 	}
3865 
3866 	switch (cmd) {
3867 	case FUTEX_LOCK_PI:
3868 	case FUTEX_UNLOCK_PI:
3869 	case FUTEX_TRYLOCK_PI:
3870 	case FUTEX_WAIT_REQUEUE_PI:
3871 	case FUTEX_CMP_REQUEUE_PI:
3872 		if (!futex_cmpxchg_enabled)
3873 			return -ENOSYS;
3874 	}
3875 
3876 	switch (cmd) {
3877 	case FUTEX_WAIT:
3878 		val3 = FUTEX_BITSET_MATCH_ANY;
3879 		/* fall through */
3880 	case FUTEX_WAIT_BITSET:
3881 		return futex_wait(uaddr, flags, val, timeout, val3);
3882 	case FUTEX_WAKE:
3883 		val3 = FUTEX_BITSET_MATCH_ANY;
3884 		/* fall through */
3885 	case FUTEX_WAKE_BITSET:
3886 		return futex_wake(uaddr, flags, val, val3);
3887 	case FUTEX_REQUEUE:
3888 		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3889 	case FUTEX_CMP_REQUEUE:
3890 		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3891 	case FUTEX_WAKE_OP:
3892 		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3893 	case FUTEX_LOCK_PI:
3894 		return futex_lock_pi(uaddr, flags, timeout, 0);
3895 	case FUTEX_UNLOCK_PI:
3896 		return futex_unlock_pi(uaddr, flags);
3897 	case FUTEX_TRYLOCK_PI:
3898 		return futex_lock_pi(uaddr, flags, NULL, 1);
3899 	case FUTEX_WAIT_REQUEUE_PI:
3900 		val3 = FUTEX_BITSET_MATCH_ANY;
3901 		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3902 					     uaddr2);
3903 	case FUTEX_CMP_REQUEUE_PI:
3904 		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3905 	}
3906 	return -ENOSYS;
3907 }
3908 
3909 
SYSCALL_DEFINE6(futex,u32 __user *,uaddr,int,op,u32,val,struct __kernel_timespec __user *,utime,u32 __user *,uaddr2,u32,val3)3910 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3911 		struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3912 		u32, val3)
3913 {
3914 	struct timespec64 ts;
3915 	ktime_t t, *tp = NULL;
3916 	u32 val2 = 0;
3917 	int cmd = op & FUTEX_CMD_MASK;
3918 
3919 	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3920 		      cmd == FUTEX_WAIT_BITSET ||
3921 		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3922 		if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3923 			return -EFAULT;
3924 		if (get_timespec64(&ts, utime))
3925 			return -EFAULT;
3926 		if (!timespec64_valid(&ts))
3927 			return -EINVAL;
3928 
3929 		t = timespec64_to_ktime(ts);
3930 		if (cmd == FUTEX_WAIT)
3931 			t = ktime_add_safe(ktime_get(), t);
3932 		tp = &t;
3933 	}
3934 	/*
3935 	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3936 	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3937 	 */
3938 	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3939 	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3940 		val2 = (u32) (unsigned long) utime;
3941 
3942 	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3943 }
3944 
3945 #ifdef CONFIG_COMPAT
3946 /*
3947  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3948  */
3949 static inline int
compat_fetch_robust_entry(compat_uptr_t * uentry,struct robust_list __user ** entry,compat_uptr_t __user * head,unsigned int * pi)3950 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3951 		   compat_uptr_t __user *head, unsigned int *pi)
3952 {
3953 	if (get_user(*uentry, head))
3954 		return -EFAULT;
3955 
3956 	*entry = compat_ptr((*uentry) & ~1);
3957 	*pi = (unsigned int)(*uentry) & 1;
3958 
3959 	return 0;
3960 }
3961 
futex_uaddr(struct robust_list __user * entry,compat_long_t futex_offset)3962 static void __user *futex_uaddr(struct robust_list __user *entry,
3963 				compat_long_t futex_offset)
3964 {
3965 	compat_uptr_t base = ptr_to_compat(entry);
3966 	void __user *uaddr = compat_ptr(base + futex_offset);
3967 
3968 	return uaddr;
3969 }
3970 
3971 /*
3972  * Walk curr->robust_list (very carefully, it's a userspace list!)
3973  * and mark any locks found there dead, and notify any waiters.
3974  *
3975  * We silently return on any sign of list-walking problem.
3976  */
compat_exit_robust_list(struct task_struct * curr)3977 static void compat_exit_robust_list(struct task_struct *curr)
3978 {
3979 	struct compat_robust_list_head __user *head = curr->compat_robust_list;
3980 	struct robust_list __user *entry, *next_entry, *pending;
3981 	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3982 	unsigned int uninitialized_var(next_pi);
3983 	compat_uptr_t uentry, next_uentry, upending;
3984 	compat_long_t futex_offset;
3985 	int rc;
3986 
3987 	if (!futex_cmpxchg_enabled)
3988 		return;
3989 
3990 	/*
3991 	 * Fetch the list head (which was registered earlier, via
3992 	 * sys_set_robust_list()):
3993 	 */
3994 	if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3995 		return;
3996 	/*
3997 	 * Fetch the relative futex offset:
3998 	 */
3999 	if (get_user(futex_offset, &head->futex_offset))
4000 		return;
4001 	/*
4002 	 * Fetch any possibly pending lock-add first, and handle it
4003 	 * if it exists:
4004 	 */
4005 	if (compat_fetch_robust_entry(&upending, &pending,
4006 			       &head->list_op_pending, &pip))
4007 		return;
4008 
4009 	next_entry = NULL;	/* avoid warning with gcc */
4010 	while (entry != (struct robust_list __user *) &head->list) {
4011 		/*
4012 		 * Fetch the next entry in the list before calling
4013 		 * handle_futex_death:
4014 		 */
4015 		rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
4016 			(compat_uptr_t __user *)&entry->next, &next_pi);
4017 		/*
4018 		 * A pending lock might already be on the list, so
4019 		 * dont process it twice:
4020 		 */
4021 		if (entry != pending) {
4022 			void __user *uaddr = futex_uaddr(entry, futex_offset);
4023 
4024 			if (handle_futex_death(uaddr, curr, pi,
4025 					       HANDLE_DEATH_LIST))
4026 				return;
4027 		}
4028 		if (rc)
4029 			return;
4030 		uentry = next_uentry;
4031 		entry = next_entry;
4032 		pi = next_pi;
4033 		/*
4034 		 * Avoid excessively long or circular lists:
4035 		 */
4036 		if (!--limit)
4037 			break;
4038 
4039 		cond_resched();
4040 	}
4041 	if (pending) {
4042 		void __user *uaddr = futex_uaddr(pending, futex_offset);
4043 
4044 		handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
4045 	}
4046 }
4047 
COMPAT_SYSCALL_DEFINE2(set_robust_list,struct compat_robust_list_head __user *,head,compat_size_t,len)4048 COMPAT_SYSCALL_DEFINE2(set_robust_list,
4049 		struct compat_robust_list_head __user *, head,
4050 		compat_size_t, len)
4051 {
4052 	if (!futex_cmpxchg_enabled)
4053 		return -ENOSYS;
4054 
4055 	if (unlikely(len != sizeof(*head)))
4056 		return -EINVAL;
4057 
4058 	current->compat_robust_list = head;
4059 
4060 	return 0;
4061 }
4062 
COMPAT_SYSCALL_DEFINE3(get_robust_list,int,pid,compat_uptr_t __user *,head_ptr,compat_size_t __user *,len_ptr)4063 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
4064 			compat_uptr_t __user *, head_ptr,
4065 			compat_size_t __user *, len_ptr)
4066 {
4067 	struct compat_robust_list_head __user *head;
4068 	unsigned long ret;
4069 	struct task_struct *p;
4070 
4071 	if (!futex_cmpxchg_enabled)
4072 		return -ENOSYS;
4073 
4074 	rcu_read_lock();
4075 
4076 	ret = -ESRCH;
4077 	if (!pid)
4078 		p = current;
4079 	else {
4080 		p = find_task_by_vpid(pid);
4081 		if (!p)
4082 			goto err_unlock;
4083 	}
4084 
4085 	ret = -EPERM;
4086 	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
4087 		goto err_unlock;
4088 
4089 	head = p->compat_robust_list;
4090 	rcu_read_unlock();
4091 
4092 	if (put_user(sizeof(*head), len_ptr))
4093 		return -EFAULT;
4094 	return put_user(ptr_to_compat(head), head_ptr);
4095 
4096 err_unlock:
4097 	rcu_read_unlock();
4098 
4099 	return ret;
4100 }
4101 #endif /* CONFIG_COMPAT */
4102 
4103 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE6(futex_time32,u32 __user *,uaddr,int,op,u32,val,struct old_timespec32 __user *,utime,u32 __user *,uaddr2,u32,val3)4104 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
4105 		struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
4106 		u32, val3)
4107 {
4108 	struct timespec64 ts;
4109 	ktime_t t, *tp = NULL;
4110 	int val2 = 0;
4111 	int cmd = op & FUTEX_CMD_MASK;
4112 
4113 	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
4114 		      cmd == FUTEX_WAIT_BITSET ||
4115 		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
4116 		if (get_old_timespec32(&ts, utime))
4117 			return -EFAULT;
4118 		if (!timespec64_valid(&ts))
4119 			return -EINVAL;
4120 
4121 		t = timespec64_to_ktime(ts);
4122 		if (cmd == FUTEX_WAIT)
4123 			t = ktime_add_safe(ktime_get(), t);
4124 		tp = &t;
4125 	}
4126 	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
4127 	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
4128 		val2 = (int) (unsigned long) utime;
4129 
4130 	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
4131 }
4132 #endif /* CONFIG_COMPAT_32BIT_TIME */
4133 
futex_detect_cmpxchg(void)4134 static void __init futex_detect_cmpxchg(void)
4135 {
4136 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
4137 	u32 curval;
4138 
4139 	/*
4140 	 * This will fail and we want it. Some arch implementations do
4141 	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
4142 	 * functionality. We want to know that before we call in any
4143 	 * of the complex code paths. Also we want to prevent
4144 	 * registration of robust lists in that case. NULL is
4145 	 * guaranteed to fault and we get -EFAULT on functional
4146 	 * implementation, the non-functional ones will return
4147 	 * -ENOSYS.
4148 	 */
4149 	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4150 		futex_cmpxchg_enabled = 1;
4151 #endif
4152 }
4153 
futex_init(void)4154 static int __init futex_init(void)
4155 {
4156 	unsigned int futex_shift;
4157 	unsigned long i;
4158 
4159 #if CONFIG_BASE_SMALL
4160 	futex_hashsize = 16;
4161 #else
4162 	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4163 #endif
4164 
4165 	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4166 					       futex_hashsize, 0,
4167 					       futex_hashsize < 256 ? HASH_SMALL : 0,
4168 					       &futex_shift, NULL,
4169 					       futex_hashsize, futex_hashsize);
4170 	futex_hashsize = 1UL << futex_shift;
4171 
4172 	futex_detect_cmpxchg();
4173 
4174 	for (i = 0; i < futex_hashsize; i++) {
4175 		atomic_set(&futex_queues[i].waiters, 0);
4176 		plist_head_init(&futex_queues[i].chain);
4177 		spin_lock_init(&futex_queues[i].lock);
4178 	}
4179 
4180 	return 0;
4181 }
4182 core_initcall(futex_init);
4183